
Hawking radiation for detectors in superposition
of locations outside a black hole

Jerzy Paczos 1,* and Luis C. Barbado 2,3,†

1Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
2Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences,

Boltzmanngasse 3, 1090 Vienna, Austria
3Quantum Optics, Quantum Nanophysics and Quantum Information, Faculty of Physics,

University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

(Received 31 October 2023; accepted 27 November 2023; published 22 December 2023)

Hawking radiation is the proposed thermal black-body radiation of quantum nature emitted from a black
hole. One common way to give an account of Hawking radiation is to consider a detector that follows a
static trajectory in the vicinity of a black hole and interacts with the quantum field of the radiation. In the
present work, we study the Hawking radiation perceived by a detector that follows a quantum superposition
of static trajectories in Schwarzschild spacetime, instead of a unique well-defined trajectory. We analyze the
quantum state of the detector after the interaction with a massless real scalar field. We find that for certain
trajectories and excitation levels, there are nonvanishing coherences in the final state of the detector. We
then examine the dependence of these coherences on the trajectories followed by the detector and relate
them to the distinguishability of the different possible states in which the field is left after the excitation of
the detector. We interpret our results in terms of the spatial distribution and propagation of particles of the
quantum field.
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I. INTRODUCTION

Hawking radiation [1,2] is arguably the most important
result of quantum field theory in curved spacetimes
(QFT-CS). Hawking’s prediction implies that there is some
thermal black-body radiation released outside a black
hole’s horizon. It is a striking quantum phenomenon since,
according to classical general relativity, nothing can escape
from inside a black hole. This has momentous conse-
quences such as the gradual evaporation of black holes and
their eventual disappearance. According to theoretical
predictions, Hawking radiation is very weak—a black hole
of one solar mass would emit radiation like a black body
with a temperature of about 60 nanokelvins. Because of
the extraordinary weakness of the effect, it has not been
found in astronomical observations. Experimental evi-
dence has been reported in black hole analogs employing
Bose-Einstein condensates [3–6].

A common tool used in QFT-CS, and in particular in
the study of the properties of Hawking radiation, is a
particle detector. A simple model of a detector as a two-
state quantum system coupled to the quantum field was
first proposed by Unruh [7] and DeWitt [8], and since then
it has been widely used to investigate the properties of
Hawking radiation in various spacetimes [9–13]. This
model has been extensively used to investigate also the
“flat spacetime relative of Hawking radiation,” namely the
Unruh effect [7,8,14–18], which is an effect experienced
by accelerated observers moving in flat spacetime: the
vacuum state for an inertial observer is perceived by the
accelerated one as a thermal bath with temperature propor-
tional to the acceleration.
Recently, there has been some interest in the relativistic

effects perceived by particle detectors following a super-
position of trajectories [16,17,19–21]. In particular, in
[16,17] the Unruh effect for detectors in a superposition
of classical accelerated trajectories is studied. The authors
of [17] analyze the response of the Unruh-DeWitt detector
and discover the presence of novel interference dynamics in
its emission and absorption spectra. On the other hand, the
work [16] is focused on the coherences left in the state of
the detector after the interaction with the field. It is shown
there that the excitation of the particle detector due to the
Unruh effect does not need to imply complete decoherence
in its final state.
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Building on the idea of [16], and making extensive use
of the technical results from [11], in this work, we study
Hawking radiation as perceived by a particle detector fol-
lowing a quantumsuperposition of classical static trajectories
in the vicinity of the Schwarzschild black hole.We derive the
formula for the final state of the detector after its interaction
with the massless scalar quantum field of the radiation and
analyze the coherences left in it. We consider two specific
initial states of the field, namely, Hartle-Hawking and Unruh
state. In both cases, we find that coherences in the final state
of the detector are in general present, in an analogous way as
for the Unruh effect in [16]. We derive the conditions which
must be satisfied in order to have nonzero coherence after the
excitation of the detector and analyze the dependence of the
coherences on the trajectories followed by the detector, and
the energies of the excitation. As part of our considerations,
we discuss the state in which the field is left after the
excitation of the detector. This is closely related to the
presence of coherences in the final state of the detector—
these coherences have their origin in thenondistinguishability
of the final states of the field left along different trajectories.
Ultimately, based on this discussion, we draw conclusions
concerning the spatial shape and propagation of the particles
corresponding to the scalar field.
This article is organized as follows. In Sec. II we set up

the problem, introducing the metric, the field, the detector
model, the trajectories, and the interaction. In Sec. III we
give the results obtained for the state of the detector after
the interaction. The results are visualized and interpreted in
Sec. IV. Finally, in Sec. V we draw some conclusions and
identify possible directions for future developments of the
work. In the Appendix we present the detailed calculations
leading to the results in Secs. III and IV.

II. STATEMENT OF THE PROBLEM

Throughout the article, we will use natural units
ℏ ¼ c ¼ G ¼ kB ¼ 1. Let us consider a real scalar massless
quantum field ϕ̂ðt; r; θ;φÞ on a Schwarzschild black hole,

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

whereM stands for the mass of the black hole. We consider a
pointlike detector that couples to the field. The detector has
several internal excitation levels fj0iD; jω1iD; jω2iD;…g,
with energies 0 < ω1 < ω2 < � � �, and an external degree
of freedom corresponding to its trajectory. We will consider
quantum superpositions of static trajectories (r;θ;φ¼ const),
described by the Hilbert space spanned by the states
fj1iT; j2iT;…g. The states jniT correspond to well-defined
static trajectories, and are defined by the relation

ðt̂ðτÞ; r̂ðτÞ; θ̂ðτÞ; φ̂ðτÞÞjniT ¼ ðαnτ; rn; θn;φnÞjniT; ð2Þ

where τ is the proper time of the detector, αn stands for the
gravitational time dilation factor

αn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M=rn
p ; ð3Þ

and rn, θn, and φn are constants. We assume that all trajec-
tories in the basis are fully distinguishable, hnjmiT¼δnm.We
will denote the operator standing on the lhs of (2) by x̂ðτÞ—it
is the operator associating Schwarzschild coordinates to each
trajectory state.
The coupling of the detector and the scalar field is given

by the following interaction term in the Hamiltonian:

ĤIðτÞ ¼ −εχðτÞm̂ðτÞϕ̂ðx̂ðτÞÞ; ð4Þ
where ε ≪ 1 is a weak coupling constant, χðτÞ is a
switching function that controls the intensity of the cou-
pling, and m̂ðτÞ is the monopole moment of the detector.
For the switching function, we choose the square root of

a Gaussian function,

χðτÞ ¼ 1

ð2πÞ1=4 e
−τ2=ð4T2Þ; ð5Þ

with T being the approximate time duration of the
interaction. We assume that

T ∼
1

εω1

≫
1

ω1

≥
1

ωi
; ð6Þ

which means that we switch the interaction adiabatically.
The monopole moment equals

m̂ðτÞ ¼
X
i

ζieiωiτjωiih0jD þ H:c:; ð7Þ

where ζi is the coupling amplitude from the ground state
j0iD to the excited state jωiiD.
We consider the initial state of the system to be

jΨðτ → −∞Þi ¼ j0iDjΩiF
�X

n

AnjniT
�
; ð8Þ

where An is the amplitude for the trajectory jniT, and
jΩiF is the initial state of the field (Unruh or Hartle-
Hawking state).
Up to the first order in ε, the state of the system after the

interaction is given by

jΨðτ → ∞Þi ¼
�
Î − i

Z
∞

−∞
dτĤIðτÞ

�
jΨðτ → −∞Þi: ð9Þ

This can be rewritten in a generic way,

jΨðτ → ∞Þi ¼ j0iDjΩiF
�X

n

AnjniT
�

þ iε
X
i;n

ζiAnjωiiDjωi; niFjniT; ð10Þ
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where

jωi; niF ≔ ðiεζiAnÞ−1hωijDhnjTjΨðτ → ∞Þi

¼ −ðεζiÞ−1hωijDhnjT
Z

∞

−∞
dτĤIðτÞj0iDjΩiFjniT

ð11Þ

is the state of the field left after the interaction with the atom
following the trajectory jniT causing its excitation to the
level jωiiD.

III. RESULTS

In order to compute the final state of the detector, we
trace out the field degrees of freedom:

ρDT ≔ TrFðjΨðτ → ∞ÞihΨðτ → ∞ÞjÞ

¼
�X

n;m

A�
nAmjmihnjT

�
j0ih0jD þ ε2

X
i;j;n;m

ζ�i A
�
nζjAmhωi; njωj; miFjωjihωijDjmihnjT: ð12Þ

The quantities that remain to be computed in the above formula are the scalar products hωi; njωj; miF. They are computed in
the Appendix. The result is

ρDT ≈
�X

n;m

A�
nAmjmihnjT

�
j0ih0jD þ ε2T

2π

�X
n

jAnj2jnihnjT
X
i

jζij2σin
ωi

eqin=TH − 1
jωiihωijD

þ
X
n;m
n≠m

A�
nAmjmihnjT

Xcond
i;j
i≠j

ζ�i ζjΛ
ij
nm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σinσjm

p ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
eqin=TH − 1

jωjihωijD
�
: ð13Þ

Let us explain the notation in (13). First, σin ¼ σðωi; rnÞ
accounts for correction to the radiation due to the radial
position of the trajectory, including dispersion and back-
scattering of the radiation, and also depending on the
concrete initial state of the field. We will comment on this
in the interpretation section.
Next, we introduce

qin ≔
ωi

αn
; ð14Þ

which is the energy of the ith level rescaled by the blueshift
factor at the trajectory jniT, and

TH ≔
1

8πM
; ð15Þ

which stands for the Hawking temperature of the black hole
radiation. In the last sum, we use the label “cond,” which
denotes that we sum only over the terms for which

qin ≈ qjm ð16Þ

holds to order ε. Finally,

Λij
nm ≔

hωi; njωj; miFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihωi; njωi; niFhωj; mjωj; miF
p ð17Þ

is the inner product between the normalized states of the
field. In the Appendix, one can find the explicit formulas
for the factors σin and Λ

ij
nm together with the derivations. In

particular, it is shown there that the product hωi; njωj; miF
vanishes unless the condition (16) is satisfied, which
justifies the constraint on the last sum in (13).
It is also interesting to consider the state of the internal

energy levels left after performing the measurement of the
trajectory, and finding it to be e.g., jηiT ¼ P

n Bnjni. Up to
a normalization constant, such a state is given by

ρmeasure
D ≔ TrTðjηihηjTρDTÞ ≈

�X
n;m

A�
nB�

mAmBn

�
j0ih0jD þ ε2T

2π

�X
n

jAnBnj2
X
i

jζij2σin
ωi

eqin=TH − 1
jωiihωijD

þ
X
n;m
n≠m

A�
nB�

mAmBn

Xcond
i;j
i≠j

ζ�i ζjΛ
ij
nm

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σinσjm

p ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
eqin=TH − 1

jωjihωijD
�
: ð18Þ
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The main conclusion we can already extract is that any time
the product hωi; njωj; miF does not vanish for different
excited states and different trajectories, the internal state
of the detector is not just a classical mixture of spectra
perceived along the different trajectories, but rather some
coherences remain between the different excited states.
Formulas (13) and (18) constitute the main results of

our work. In the following section, we will discuss them
physically.

IV. INTERPRETATION OF THE RESULTS

Let us comment on the different terms appearing in (13)
in detail. The first term is the zeroth order in ε and
corresponds to the case in which interaction between the
detector and the field yielded no excitation. The terms with
the factor ε2T are first order in ε [recall that we assumed in
(6) that T ∼ ε−1] and they correspond to the contribution of
the interaction. There are both diagonal and off-diagonal
terms contained in the sum.
The diagonal terms for each trajectory n follow a

Planckian probability distribution with the Hawking tem-
perature TH, rescaled by a position dependent factor σin and
filtered by the coupling amplitudes ζi for each frequency.
These are the contributions of the radiation of the field for
each trajectory separately, combined in an incoherent way.
Therefore, our construction reproduces the standard black
hole radiation effect for detectors following a well-defined
classical trajectory.
The most relevant result is the appearance of the

off-diagonal terms [16], corresponding to coherences
between different trajectories. The necessary condition
for these terms to appear is given by (16). Physically, this
condition means that the quotients of the energies ωi andωj
with the blueshift factors αn and αm, respectively, are
(approximately) the same in both trajectories and excita-
tions compared. This means that the detector’s two excited
states must degenerate in energy as perceived by any static
observer. If the condition is satisfied, the corresponding
off-diagonal term is the square root of the product of the
Planckian spectra for the two corresponding trajectories

FIG. 1. The value of the σin for the Hartle-Hawking state as a
function of the tortoise coordinate r�n and the energy of the
excitation rescaled by appropriate blueshift factor qin.

FIG. 2. The absolute value of the normalized product jΛij
nmj, for

the initial state of the field being the Hartle-Hawking state, as a
function of the tortoise coordinate r�n corresponding to the
trajectory jniT, and the angle θ formed by the trajectories jniT
and jmiT. The radial coordinate r�m corresponding to jmiT is fixed
to be r�m ¼ 4M.
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and excited frequencies rescaled by the greybody factors
and weighted with the product Λij

nm.
These coherences arise from the properties of the field

state jωi; niF after the excitation of the detector. The
perturbations left on the field that correspond to transitions
to different energy levels of the detector and different
trajectories are not always fully distinguishable. When these
perturbations overlap, the product Λij

nm is nonzero, and the
off-diagonal terms appear. This occurs because, when the
compared states of the field are not fully distinguishable, no
full entanglement is created between the excited states of the
detector and the field due to the interaction. Therefore,
tracingout the field does not introduce full decoherence in the
state of the detector.

Provided that the condition (16) is satisfied, the value
of the product depends only on the radial distances rn and
rm of the trajectories, the angle θ between them, and the
value of qin ¼ ωi=αn. In the following subsections, we
will separately discuss the functional dependence of σin and
Λij
nm for Hartle-Hawking and Unruh states.

A. Hartle-Hawking state

Let us begin by considering the Hartle-Hawking state.
First, we visualize in Fig. 1 the dependence of σin on the
radial distance rn of the trajectory jniT and on the energy of
the excitationωi. We plot the value of σin as a function of the
tortoise coordinate r�n¼ rnþ2M lnð rn

2M−1Þ, corresponding

FIG. 3. The absolute value of the normalized product jΛij
nmj, for the initial state of the field being the Hartle-Hawking state, as a

function of the tortoise coordinate r�n corresponding to the trajectory jniT, and the radar distance ξnm between trajectories jniT and jmiT.
The angle between the trajectories is fixed to be θ ¼ 0.
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to the trajectoryn, and the energyof the excitation rescaled by
the blueshift factor qin ¼ ωi=αn. We see that the value of σin
grows both with r�n and qin.
Now, let us analyze the functional dependence of the

factors Λij
nm on the trajectories n and m. In Fig. 2 we plot

the absolute value jΛij
nmj for fixed tortoise coordinate

r�m ¼ 4M corresponding to the trajectory m, and variables
the tortoise coordinate r�n corresponding to the trajectory n,
and angle θ between the trajectories. The maximum value
of 1 is reached at only one point, r�n ¼ 4M and θ ¼ 0,
corresponding to the coincidence of the trajectories and,
because of the condition (16), the coincidence of the excited
states. For q large enough, it decays quickly in all directions
with oscillatory behavior in r�n and θ. The oscillatory
behavior becomes more prominent as the value of qin
increases. Let us highlight the relatively large coherence
on the antipodes appearing for larger values of qin.
The plots in Fig. 3 show how the value of Λij

nm changes
when we fix the angle between the trajectories θ ¼ 0 and
variate the radial positions of both trajectories. We make the
plots of jΛij

nmj as a function of the tortoise coordinate r�n and
a radar distance ξnm ¼ 2ðr�m − r�nÞ=αn. The meaning of the
radar distance ξnm is the following: it is the time in which
light travels from trajectory n to trajectory m back and
forth, measured by an observer following the trajectory n.
We see that the behavior of Λij

nm is asymmetric in ξnm,
although for larger values of qin and small values of ξnm the
difference between in and out directions becomes less
prominent. Moreover, if we consider qin large enough, we
observe oscillations of the value of jΛij

nmj when we range
away from the horizon.
Let us discuss the physical interpretation of the results

for the Hartle-Hawking state. This state is perceived by a
static observer as a thermal bath of particles, and the
excitation of the detector is caused (according to such an
observer) by the absorption of a particle from the bath. In
this sense, the situation is analogous to the one con-
sidered in [16], where the Unruh effect for detectors in a

FIG. 4. The value of the total greybody factor for the Unruh state,
r2nσin, as a function of the tortoise coordinate r�n and the energy of
the excitation rescaled by appropriate blueshift factor qin.

FIG. 5. The absolute value of the normalized product jΛij
nmj, for

the initial state of the field being the Unruh state, as a function
of the tortoise coordinate r�n corresponding to the trajectory jniT,
and the angle θ formed by the trajectories jniT and jmiT. The radial
coordinate r�m corresponding to jmiT is fixed to be r�m ¼ 4M.
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superposition of accelerations was analyzed. First, the long
time of the interaction between the field and the detector
implies that the dispersion in the energy of the excitation
must be tiny, which is expressed by the condition (16).
Second, the dependence of jΛij

nmj on θ and r�n for fixed r�m
(Fig. 2) can be interpreted as providing a notion of spatial
localization of the absorbed particle. We see that the
particles are completely delocalized for small values of
qin, but become well localized with growing qin. In view of
this interpretation, the peaks of jΛij

nmj on the antipodes are
particularly interesting, although we do not have any
particular explanation for such a phenomenon.

B. Unruh state

Now, let us analyze the results for the Unruh state of the
field. We expect that the behavior of both σin and Λij

nm will
be different than in the case of the Hartle-Hawking state,
since in contrast to the Hartle-Hawking state corresponding
to the thermal bath of particles, the Unruh state of the field
is perceived by a static observer as a state of outgoing
radiation escaping to the asymptotic region.
We begin by analyzing the factors σin. Let us notice that

in the case of the Unruh state of the field, they are closely
related to the greybody factors, as they characterize the
deviation of the emission spectrum from a pure black-body

FIG. 6. The absolute value of the normalized product jΛij
nmj, for the initial state of the field being Unruh state, as a function of the

tortoise coordinate r�n corresponding to the trajectory jniT, and the radar distance ξnm between trajectories jniT and jmiT. The angle
between the trajectories is fixed to be θ ¼ 0.
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spectrum. However, they are not the greybody factors
themselves. First of all, since they represent the dependence
on the radial distance of the diagonal elements of the
density matrix, simple radiation dispersion implies that
they shall decay approximately as 1=r2n, the approximation
being better for large rn. Moreover, the greybody factors
are defined for each angular momentum separately, while in
the definition of σin we sum over all angular momenta.
Finally, the greybody factors are defined in the asymptotic
region, while we consider σin at finite distances from the
black hole. Therefore, the quantity r2nσin should correspond
to a “total greybody factor” for rn → ∞. The word “total”
refers here to the inclusion of all angular momenta at once.
In Fig. 4 we plot the quantity r2nσin as a function of r�n

and qin. We notice that its value increases with growing r�n,
but tends to finite value both at the horizon and in the
asymptotic region. On the other hand, in the qin direction
we observe some oscillations around a decreasing value
and with decreasing amplitude.
Now, we consider the plots for Λij

nm. We begin with
Fig. 5, where we fix the radial distance of the trajectory,
r�m ¼ 4M, and plot jΛij

nmj as a function of the tortoise
coordinate r�n and the angle between the trajectories θ.
Again, the absolute value of Λij

nm reaches the maximum
value of 1 only for r�n ¼ 4M and θ ¼ 0.
The functional dependence is of course even in θ, but

not in r�n—it decays to zero when we approach the horizon
but tends to the finite value (different for each θ) when we
move away from it. For qin large enough, we see an
oscillatory behavior in the θ direction and small oscillations
in the r�n direction. Again, quite remarkable is the presence
of the relatively large coherence on the antipodes (θ ¼ �π)
occurring for significantly large qin. It is also worth
noticing that the side peaks are shifted in the r direction
with respect to the central one.
The plots in Fig. 6 show how the value of Λij

nm changes
when we fix the angle between the trajectories θ ¼ 0 and
variate the radial positions of both trajectories. We make the
plots of jΛij

nmj as a function of the tortoise coordinate r�n and
a radar distance ξnm as defined in the previous subsections.
We see that the behavior of Λij

nm is asymmetric in ξnm—it
decreases noticeably faster when we approach the black
hole. For large values of qin, we observe oscillations of the
value of jΛij

nmj when we approach the horizon—this is in
agreement with the plots in Fig. 5.
Having discussed the functional dependence of Λij

nm, we
can deliberate on its physical meaning. Any static observer
will perceive the Unruh state of the field as the radiation
emitted by the black hole. According to such an observer,
the detector excites when it absorbs a radiation particle.
Since we assume that the detector interacts with the field
for a very long time (6), the dispersion in the frequency of
the excited state must be tiny—hence the condition (16)
imposing the equality of the excitation energies as perceived
by a static observer. The dependence of the scalar product
Λij
nm on the angle θ for fixed r�n and r�m can be interpreted as

the angular distribution of the emitted particle. Interestingly,
for a fixed value of r�m and θ, and r�n → ∞, the absolute value
of Λij

nm does not vanish, but tends to a finite value instead.
Thus, it seems that the distance at which the detector absorbs
a radiation particle does not have a huge impact on the final
state of the field. Notice that this is not true if the detector
absorbs the particle close to the horizon since Λij

nm vanishes
then. Moreover, the importance of the position at which the
particle is absorbed for the final state of the field grows with
the increasing value of qin.
Finally, let us notice an interesting detail about the plots in

Figs. 2 and 5—the number of peaks along the angular
coordinate is the same in both Unruh and Hartle-Hawking
state—the plots fromFig. 5 resemble in appearance the plots
from Fig. 2, but stretched in the radial direction. It looks like
the particleswith the same distribution around the black hole
are either moving away from it (in the case of the Unruh
state) or swaying around some fixed distance (in the case of
the Hartle-Hawking state). This suggests that the angular
distribution of a scalar particle does not depend on the state
of the field, but rather is a property of spacetime.

V. CONCLUSIONS

We have studied the excitation of a particle detector
following a quantum superposition of static trajectories
in the vicinity of a Schwarzschild black hole due to
Hawking radiation. We have found that the interaction
with the field does not necessarily lead to total decoherence
in the final state of the detector, and we have analyzed the
dependence of the coherences left in the detector’s state on
the trajectories followed by the detector, the energy of its
excitation, and the vacuum state of the field. Based on the
analysis of the coherences in the final state of the detector,
we have drawn conclusions regarding the properties of
scalar particles in the vicinity of a static black hole.
The considerations and results in this work are in many

aspects analogous to those in [16], where superpositions
of uniformly accelerating trajectories were analyzed, but
obtained in the significantly different scenario of the
Hawking radiation in a Schwarzschild black hole. We also
notice that coherences in [16] appeared only when con-
sidering highly fine-tuned hyperbolic trajectories sharing
almost exactly the same Rindler wedge. In contrast, in
the present work coherences appear for the much more
natural setting of superpositions of static trajectories out-
side a black hole. Therefore, while in both cases the
superposition requires the same order of fine-tuning, in
the second scenario such fine-tuning appears much more
reasonable to achieve.
Several possibilities for further research in the direction

set by this work naturally arise. First of all, it would be
relevant to interpret our results within the framework of the
quantum reference frames [22,23]. In this framework, one
associates a reference frame to a physical system, which
can have quantum features. For example, if we consider a
reference frame in which a classical observer perceives a
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quantum system to be in a superposition, we can associate
another reference frame with the quantum system, in which
the “classical” observer will be in a superposition, and the
quantum system will follow a well-defined trajectory. From
that perspective, an observer following a quantum super-
position of trajectories in Schwarzschild spacetime would
consider himself to be static near a black hole in a
superposition of locations. It would be relevant to also
analyze in detail the interplay between these results, based
on the maintenance of the coherence between different
positions of the detector, with recent results on decoherence
effects by black holes [24,25].
Another idea would be to consider other types of trajec-

tories beyond the static ones considered in this work. Based
on the paper [11], we think that it should be relatively
straightforward to treat circular trajectories, as it requires
only minor modifications in our calculations. Yet another
thing to do could be to consider detectors following super-
positions of trajectories in other spacetimes. Based on [12]
one can consider the analogous problem on the Bañados-
Teitelboim-Zanelli black hole. Considering other spacetimes
like Kerr or Reissner-Nordström would probably require
much more effort, but should also be achievable. The scalar
field treatment in these spacetimeswas given in [26] forKerr,
and in [27] for the Reissner-Nordström metric.
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APPENDIX: COMPUTATION OF THE SCALAR
PRODUCTS OF THE STATES OF THE FIELD

In this appendix, we provide a detailed computation of
the scalar product hωi; njωj; miF. Let us explicitly write the
state jωi; niF by including the form of the interaction
Hamiltonian (4) in the formula for the state of the field (11)

jωi; niF ¼ ðεζiÞ−1hωijDhnjTŜIj0iDjΩiFjniT
¼ ðεζiÞ−1hωijDhnjTε

Z
∞

−∞
dτχðτÞm̂ðτÞϕ̂ðx̂ðτÞÞj0iDjΩiFjniT

¼
Z

∞

−∞
dτχðτÞζ−1i hωijm̂ðτÞj0iDϕ̂ðxÞjΩiF

¼
Z

∞

−∞
dτχðτÞeiωiτϕ̂ðxÞjΩiF: ðA1Þ

Equipped with this formula, we can write the product hωi; njωj; miF in the compact form

hωi; njωj; miF ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχðτ0Þe−iðωiτ−ωjτ

0ÞWðxn; xmÞ ðA2Þ

with

xn ¼

0
B@ τffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
rn

q ; rn; 0; 0

1
CA≡ ðαnτ; rn; 0; 0Þ;

xm ¼

0
B@ τffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
rm

q ; rm; θ; 0

1
CA≡ ðαmτ0; rm; θ; 0Þ; ðA3Þ

being the trajectories corresponding to jniT and jmiT, respectively. Without loss of generality, we have fixed to zero the
azimuthal angle of both trajectories and the polar angle of the first trajectory—we can do that because of the spherical
symmetry of the metric (1). The quantity Wðxn; xmÞ is the Wightman function, defined by

Wðxn; xmÞ≡ hΩjϕ̂ðxnÞϕ̂ðxmÞjΩiF; ðA4Þ
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and it clearly depends on the initial state of the field jΩiF. The Wightman function has already been computed in the
literature for jΩiF being either the Unruh, or the Hartle-Hawking state [11]. It is given by

WUðxn; xmÞ ¼
X∞
l¼0

Xþl

μ¼−l

Z
∞

0

dω

�
e4πMω−iωΔtYlμð0; 0ÞY�

lμðθ; 0ÞΦup
ωlðrnÞΦup�

ωl ðrmÞ
8πω sinhð4πMωÞ

þ e−4πMωþiωΔtY�
lμð0; 0ÞYlμðθ; 0ÞΦup�

ωl ðrnÞΦup
ωlðrmÞ

8πω sinhð4πMωÞ

þ e−iωΔtYlμð0; 0ÞY�
lμðθ; 0ÞΦin

ωlðrnÞΦin�
ωlðrmÞ

4πω

�
ðA5Þ

if the initial state of the field is the Unruh state, and by

WHðxn; xmÞ ¼
X∞
l¼0

Xþl

μ¼−l

Z
∞

0

dω
1

8πω sinhð4πMωÞ
× ½e4πMω−iωΔtYlμð0; 0ÞY�

lμðθ; 0ÞðΦup
ωlðrnÞΦup�

ωl ðrmÞ þΦin
ωlðrnÞΦin�

ωlðrmÞÞ
þ e−4πMωþiωΔtY�

lμð0; 0ÞYlμðθ; 0ÞðΦup�
ωl ðrnÞΦup

ωlðrmÞ þΦin�
ωlðrnÞΦin

ωlðrmÞÞ� ðA6Þ

if the initial state of the field is the Hartle-Hawking state. Here Δt ¼ αnτ − αmτ
0, the functions Ylμ are the spherical

harmonics, and Φup
ωl and Φin

ωl stand for the normalized solutions of the differential equation

ϕ00
ωlðrÞ þ

2ðr −MÞ
rðr − 2MÞϕ

0
ωlðrÞ þ

�
ω2r2

ðr − 2MÞ2 −
lðlþ 1Þ
rðr − 2MÞ

�
ϕωlðrÞ ¼ 0 ðA7Þ

with specified asymptotic behavior at infinity and at the horizon, respectively. Equation (A7) cannot be solved analytically.
The numerical procedure for computing Φup

ωl and Φin
ωl is described in detail in [11].

1. Hartle-Hawking state

Inserting (A6) to (A2) and making use of the fact that Ylμð0; 0Þ ¼
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
δμ0 (see [29]), we get

hωi; njωj; miF ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχðτ0Þe−iðωiτ−ωjτ

0Þ X∞
l¼0

Z
∞

0

dω
1

8πω sinhð4πMωÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
½e4πMω−iωΔtY�

lμðθ; 0ÞðΦup
ωlðrnÞΦup�

ωl ðrmÞ þΦin
ωlðrnÞΦin�

ωlðrmÞÞ
þ e−4πMωþiωΔtYlμðθ; 0ÞðΦup�

ωl ðrnÞΦup
ωlðrmÞ þΦin�

ωlðrnÞΦin
ωlðrmÞÞ�: ðA8Þ

This can be further simplified, if we recall that Yl0ðθ; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ

4π

q
Plðcos θÞ, where PlðxÞ is the Legendre polynomial.

With this formula at hand, we rewrite (A8) as

hωi; njωj; miF ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχðτ0Þe−iðωiτ−ωjτ

0Þ X∞
l¼0

Z
∞

0

dω
Plðcos θÞ

8πω sinhð4πMωÞ

×
2lþ 1

4π
½e4πMω−iωΔtðΦup

ωlðrnÞΦup�
ωl ðrmÞ þΦin

ωlðrnÞΦin�
ωlðrmÞÞ

þ e−4πMωþiωΔtðΦup�
ωl ðrnÞΦup

ωlðrmÞ þΦin�
ωlðrnÞΦin

ωlðrmÞÞ�: ðA9Þ

Let us notice that the only τ, and τ0 dependence in the big bracket comes from the factors e�iωΔt, therefore the integrals over
τ and τ0 can be performed. Indeed, we can define
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Z
∞

−∞
dτχðτÞeiΩτ ¼ ð8πÞ14Te−Ω2T2 ≕ χ̃ðΩÞ; ðA10Þ

where χ̃ðΩÞ denotes the Fourier transform of χðτÞ. Hence,
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχðτ0Þeiðωjτ

0−ωiτÞe�iωΔt ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχðτ0Þeiðωjτ

0−ωiτÞe�iωðαnτ−αmτ0Þ

¼
Z

∞

−∞
dτχðτÞe−iðωi∓ωαnÞτ

Z
∞

−∞
dτ0χðτ0Þeiðωj∓αmωÞτ0

¼ χ̃ð−ωi � ωαnÞχ̃ðωj ∓ ωαmÞ ¼ χ̃ðωi ∓ ωαnÞχ̃ðωj ∓ ωαmÞ; ðA11Þ

where in the first step we used the definition of Δt, and in
the last one we made use of the fact that χ̃ð−ΩÞ ¼ χ̃ðΩÞ.
Now, we can make use of the adiabaticity condition (6).

Since we assume that the switching time T is very large
compared to other timescales appearing in the problem
(T ≫ 1=ω1 ≥ 1=ωi), the function χ̃ðΩÞ is very sharp.
Therefore, the product χ̃ðΩ1Þχ̃ðΩ2Þ is non-negligible only
for Ω1 ≈Ω2. In our case, this leads to the condition

ωi

αn
≈
ωj

αm
; ðA12Þ

meaning that the excitation energies divided by the blue-
shift factors must be the same on both trajectories.
Assuming that the above equality holds to order ε and
denoting qin ≔

ωi
αn
, we rewrite (A11) in the form

χ̃ðωi ∓ ωαnÞχ̃ðωj ∓ ωαmÞ ¼ χ̃ðαnðqin ∓ ωÞÞχ̃ðαmðqin ∓ ωÞÞ ¼
ffiffiffiffiffiffi
8π

p
T2e−ðω∓qinÞ2ðα2nþα2mÞT2

: ðA13Þ

Introducing this result in (A9) we get

hωi; njωj; miF ¼ T2
X∞
l¼0

2lþ 1

4π
Plðcos θÞ

Z
∞

0

dω
1

2
ffiffiffiffiffiffi
2π

p
ω sinhð4πMωÞ

× ½e−ðωþqinÞ2ðα2nþα2mÞT2þ4πMωðΦup
ωlðrnÞΦup�

ωl ðrmÞ þΦin
ωlðrnÞΦin�

ωlðrmÞÞ
þ e−ðω−qinÞ2ðα2nþα2mÞT2−4πMωðΦup�

ωl ðrnÞΦup
ωlðrmÞ þΦin�

ωlðrnÞΦin
ωlðrmÞÞ�: ðA14Þ

Once again, we can use the fact that T is large to perform the integral over ω. Laplace’s method tells us that for a positive
function hðωÞ, a large number N → ∞, and a twice-differentiable function gðωÞ with a unique global maximum at
ω0 ∈ ða; bÞ, the integral can be approximated as

Z
b

a
hðωÞeNgðωÞdω ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Njg00ðω0Þj

s
hðω0ÞeNgðω0Þ: ðA15Þ

In the integrals in (A14) N ¼ ðα2n þ α2mÞT2, and gðωÞ ¼ −ðω� qinÞ2. Notice that gðωÞ has a unique global maximum at
ω0 ¼ ∓ qin, which is in the range of integration ða;bÞ¼ ð0;∞Þ only for gðωÞ ¼ −ðω − qinÞ2 (recall that qin ¼ ωi=αn > 0).
Thus, the terms with gðωÞ ¼ −ðωþ qinÞ2 vanish, and we are left with

hωi; njωj; miF ¼ T

qin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα2n þ α2mÞ

p 1

eqin=TH − 1

X∞
l¼0

2lþ 1

4π
Plðcos θÞðΦup�

qinl
ðrnÞΦup

qinl
ðrmÞ þΦin�

qinl
ðrnÞΦin

qinl
ðrmÞÞ; ðA16Þ

where TH is the Hawking temperature (15).
In order to compute the diagonal terms (n ¼ m, and ωi ¼ ωj), we set θ ¼ 0, r ¼ rm, and αn ¼ αm. After introducing this

in (A16), we get

hωi; njωi; niF ¼ T
8πqinαn

1

eqin=TH − 1

X∞
l¼0

ð2lþ 1ÞðjΦup
qinl

ðrnÞj2 þ jΦin
qinl

ðrnÞj2Þ≡ T
2π

σinωi

eqin=TH − 1
; ðA17Þ
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where we defined

σin ≔
2π

ωiT
ðeqin=TH − 1Þhωi; njωi; niF ¼ 1

4ω2
i

X∞
l¼0

ð2lþ 1ÞðjΦup
qinl

ðrnÞj2 þ jΦin
qinl

ðrnÞj2Þ: ðA18Þ

Finally, the inner product between normalized states of the field is given by

Λij
nm ≔

hωi; njωj; miFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihωi; njωi; niFhωj; mjωj; miF
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 αnαm
ðα2nþα2mÞ

q P∞
l¼0ð2lþ 1ÞPlðcos θÞðΦup�

qinl
ðrnÞΦup

qinl
ðrmÞ þΦin�

qinl
ðrnÞΦin

qinl
ðrmÞÞ

½P∞
l;l0¼0

ð2lþ 1Þð2l0 þ 1ÞðjΦup
qinl

ðrnÞj2 þ jΦin
qinl

ðrnÞj2ÞðjΦup
qinl0

ðrmÞj2 þ jΦin
qinl0

ðrmÞj2Þ�1=2
: ðA19Þ

2. Unruh state

In the case of the Unruh state, the procedure is analogous. Inserting (A5) to (A2), and using Ylμð0; 0Þ ¼
ffiffiffiffiffiffiffiffi
2lþ1
4π

q
δμ0 and

Yl0ðθ; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ

4π

q
Plðcos θÞ, we get

hωi; njωj; miF ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0χðτÞχðτ0Þe−iðωiτ−ωjτ

0ÞX∞
l¼0

Z
∞

0

dωPlðcos θÞ
2lþ 1

4π

×

�
e4πMω−iωΔtΦup

ωlðrnÞΦup�
ωl ðrmÞ

8πω sinhð4πMωÞ þ e−4πMωþiωΔtΦup�
ωl ðrnÞΦup

ωlðrmÞ
8πω sinhð4πMωÞ þ e−iωΔtΦin

ωlðrnÞΦin�
ωlðrmÞ

4πω

�
: ðA20Þ

We perform the integrals over τ and τ0 like in the case of the Hartle-Hawking state, and obtain

hωi; njωj; miF ¼ T2
X∞
l¼0

2lþ 1

4π
Plðcos θÞ

Z
∞

0

dω

�
e−ðωþqÞ2ðα2nþα2mÞT2þ4πMωΦup

ωlðrnÞΦup�
ωl ðrmÞ

2
ffiffiffiffiffiffi
2π

p
ω sinhð4πMωÞ

þ e−ðω−qÞ2ðα2nþα2mÞT2−4πMωΦup�
ωl ðrnÞΦup

ωlðrmÞ
2

ffiffiffiffiffiffi
2π

p
ω sinhð4πMωÞ þ e−ðωþqÞ2ðα2nþα2mÞT2Φin

ωlðrnÞΦin�
ωlðrmÞffiffiffiffiffiffi

2π
p

ω

�
: ðA21Þ

Again, we use Laplace’s method to perform the integral over ω. This gives us

hωi; njωj; miF ¼
T

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα2n þ α2mÞ

p 1

eq=TH − 1

X∞
l¼0

2lþ 1

4π
Plðcos θÞΦup�

ql ðrnÞΦup
qlðrmÞ: ðA22Þ

For the diagonal terms we get

hωi; njωi; niF ¼ T
8πqαn

1

eq=TH − 1

X∞
l¼0

ð2lþ 1ÞjΦup
qlðrnÞj2 ≡ T

2π

σinωi

eq=TH − 1
; ðA23Þ

with

σin ¼
1

4ω2
i

X∞
l¼0

ð2lþ 1ÞjΦup
qlðrnÞj2: ðA24Þ

Now, the inner product between the normalized states of the field reads

Λij
nm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αnαm

ðα2n þ α2mÞ

s P∞
l¼0ð2lþ 1ÞPlðcos θÞΦup�

ql ðrnÞΦup
qlðrmÞ

ðP∞
l;l0¼0

ð2lþ 1Þð2l0 þ 1ÞjΦup
qlðrnÞΦup

ql0 ðrmÞj2Þ1=2
: ðA25Þ
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3. Computing the up-modes and in-modes

In this section we briefly describe the procedure for
computing the modes Φup

ωl and Φin
ωl given in detail in [11].

These are the solutions of Eq. (A7) with specified behavior
at the boundary

Φup
ωlðrnÞ ∼

eiωr
�
n

r
for r → ∞;

Φin
ωlðrnÞ ∼

e−iωr
�
n

r
for r → 2M; ðA26Þ

where r�n is a tortoise coordinate

r�n ¼ rþ 2M logðr=2M − 1Þ: ðA27Þ

For the moment, let us work with arbitrary (not normalized)
modes ϕup

ωl, and ϕin
ωl, and impose the normalization at the

end. To obtain their value, we solve Eq. (A7) numerically,
setting appropriate boundary conditions for the up-modes
and in-modes.

a. Boundary conditions for the up-modes

For the ϕup
ωl modes, we fix the boundary conditions at

infinity:

ϕup
ωlðrinfÞ ¼

eiωr
�
n

r
evðrnÞj

r¼rinf
;

ϕup0
ωlðrinfÞ ¼

d
dr

�
eiωr

�
n

r
evðrnÞ

�
r¼rinf

; ðA28Þ

where rinf is a large distance representing infinity (we chose
rinf ¼ 15000M), and

vðrnÞ ≔
Xninf
n¼1

cn
rn

: ðA29Þ

Here ninf stands for the cutoff imposed on the sum (we
chose ninf ¼ 100; in principle, the sum over n should
extend to infinity).
Substituting the ansatz ϕup

ωlðrnÞ ¼ ðeiωr�n=rÞevðrnÞ to
Eq. (A7) leads to the condition which must be satisfied
by vðrnÞ:

r2ðr− 2MÞv00ðrnÞþ r2ðr− 2MÞðv0ðrnÞÞ2
þ 2rðMþ iωr2Þv0ðrnÞ− ðlðlþ 1Þrþ 2MÞ ¼ 0: ðA30Þ

Collecting the powers of r and demanding that the
coefficients multiplying each power vanish, we get the
values of consecutive cn.

b. Boundary conditions for the in-modes

We proceed similarly with the in-modes. We fix the
boundary conditions at the horizon,

ϕin
ωlðrHÞ ¼

e−iωr
�
n

r
wðrnÞj

r¼rH
;

ϕin0
ωlðrHÞ ¼

d
dr

�
e−iωr

�
n

r
wðrnÞ

�
r¼rH

; ðA31Þ

where rH represents the horizon [we chose rH ¼
ð20000001=10000000ÞM], and

wðrnÞ ≔
XnH
n¼0

bnðr − 2MÞn: ðA32Þ

Again, the sum should in principle extend to infinity, but
we imposed a numerical cutoff at nH ¼ 200.
Now, we substitute ϕup

ωlðrnÞ ¼ ðe−iωr�n=rÞwðrnÞ to
Eq. (A7), and obtain the condition for the function wðrnÞ:

r2ðr − 2MÞw00ðrnÞ þ 2rðM − iωr2Þw0ðrnÞ
− ðlðlþ 1Þrþ 2MÞwðrnÞ ¼ 0: ðA33Þ

Once again, we collect the powers of r and solve for the
coefficients bn.

c. Normalization

Following [11], we now impose normalization on the
modes. It is chosen in such a way that

Z
∞

−∞
dr�nRωlRω0l ¼ 2πδðω − ω0Þ; ðA34Þ

where Rωl ¼ rΦωl. It turns out that, to fulfill this con-
dition, we must have

Φup
ωlðrnÞ ¼Bωlϕ

up
ωlðrnÞ; Φin

ωlðrnÞ ¼Bωlϕ
in
ωlðrnÞ; ðA35Þ

where Bωl is defined by

Bωl ¼ 2iω
W½ρinωl; ρupωl�

;

W½ρinωl; ρupωl� ¼ ρinωlðr�nÞρup0ωlðr�nÞ − ρupωlðr�nÞρin0ωlðr�nÞ;
ρupωlðr�nÞ ¼ rϕup

ωlðrnÞ; ρinωlðr�nÞ ¼ rϕin
ωlðrnÞ: ðA36Þ

The quantity W½ρinωl; ρupωl� (Wronskian) is constant along r,
and can be computed at any point (we chose r ¼ rH).
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