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We examine the temporal evolution of the modular entropy and capacity (in particular, the fluctuation of
the entanglement entropy) for systems of time-dependent oscillators coupled by a (time-dependent)
parameter. Such models, through the discretization procedure, fit into field theory problems arising from
quench phenomena or nonstatic spacetimes. First, we compare the dynamics of the modular and Rényi
entropies and derive the form of the modular capacity for the single time-dependent oscillator as well as
chains with bipartite decompositions. In the latter case we analyze distinguished periodicities during the
evolution and the role of various boundary conditions. Next, we focus on the dynamics of the capacity
(fluctuation) of entanglement. We compare the results obtained with the predictions of quasiparticles
models; in particular, we obtain a theoretical value of the initial slope of the capacity for abrupt quenches.
We study also continuous protocols with the frequency that vanishes at plus (and minus) infinity, including
a model in which the frequency tends to the Dirac delta. All the above issues are discussed with the
emphasis on the analytical methods.
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I. INTRODUCTION

The notion of the entropy appears in many branches of
physics and thus various approaches and generalizations to
it have been proposed. The von Neumann (vN) entropy
plays the prominent role due to its applications in quantum
physics, especially in the study of the entanglement which,
in turn, is fundamental for quantum information processing
and technology. Obviously, the vN entropy provides only
an overall characterization of the state (in particular, the
entanglement of the state). In order to get more information
some other measures, such as the Rényi or Tsallis entro-
pies, were proposed. The motivation for various measures
of the entanglement arises also from attempts to understand
this notion in quantum field theory; this is challenging due
to divergences (and thus the necessity of a regularization
procedure, e.g., UV cutoff). However, the progress has
been made in the recent years, see, e.g., [1–3] for review.
One of the most intensively studied issues was the relation
between the entropy and area [4,5] emerging from black
holes physics (see [6,7] and references therein) and its
generalization in the context gauge/gravity duality (holo-
graphic entanglement entropy [8]).

An interesting view on the notion of entropy can be
obtained by considering a (semipositive) operator defined as
the minus logarithm of the density operator. Then, the vN
entropy becomes the expectation value of such an operator,
which is therefore called the entanglement (or modular)
Hamiltonian, see, among others, [9–13]. By having the
modular Hamiltonian we can apply thermodynamical
approach and construct thermodynamical quantities, in
particular the entropy and capacity. Such an approach leads
to new notions, the so-called modular entropy and modular
capacity [12,14]. Obviously, these notions will be useful if
they allow us to understand better the physical phenomena.
For themodular entropy such a situation appears in the study
of the relation between the geometry of spacetime and
strongly coupled field theories via the AdS=CFT correspon-
dence (in the Ryu-Takayanagi approach [8]). It turns out that
in some cases the modular entropy seems a natural gener-
alization of the vN entropy [14–16].
At the same time, the notion of the modular capacity

gained also some attention. Originally it appears in the
condensed mater physics [12] and recently in other contexts
(in particular, quantum gravitational effects) [17–24] (for
more references see [24]). It turns out that, for some
specified value of parameter the modular capacity reduces
to the variance of entropy, thereby it measures the fluc-
tuation of the entanglement entropy [25,26]. In this way the
capacity of the entanglement gives another qualitative
measure of the entanglement spectrum [27–30].
In this work we analyze and compare the modular

entropy and capacity with the special emphasis put on
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their dynamics. We will focus on the harmonic chains with
time-dependent parameters as examples of continuous-
variable quantum systems. Such systems are interesting
due to discretization procedure of various time-dependent
field models resulting from quench phenomena and non-
static spacetimes. We start by reviewing briefly the recent
results on this topic and outlining the plan of the paper.
Namely, the dynamics of the vN entanglement entropy of
time-dependent harmonic chains was analyzed in various
approaches, see [31–40]; despite this effort some misun-
derstanding appeared. We clarify these issues and then
extend them to the modular entropy and/or continuous
quenches, see Secs. III and IV.
On the other hand, the evolution of the capacity

(fluctuation) of the entanglement has been recently ana-
lyzed for infinite harmonic chains (and the abrupt protocol)
in Ref. [24]. Such a model corresponds to 1þ 1 dimen-
sional (conformal) field theory on the infinite line. In
particular, the problem of different slopes for the linear
growth of capacity and entropy has been indicated. In
Sec. V we consider these issues for the finite size systems
by considering various boundary conditions as well as the
quasiparticles approach. In Sec. VI we study the above
points for continuous quenches by means of some ana-
lytical examples.

II. PRELIMINARIES

The von Neumann (vN) entropy of the density matrix ρ

SvN ¼ S ¼ −trðρ lnðρÞÞ; ð2:1Þ

is one of the basic information-theoretic measures.
However, the vN entropy provides only a first characteri-
zation of ρ (e.g., entanglement), in order to get more
information some other measures were proposed. One of
them is the Rényi entropy defined as

Rα ¼
1

ð1 − αÞ lnðtrðρ
αÞÞ; ð2:2Þ

for which limα→1 Rα ¼ S holds. Another generalization,
motivated by the fact that trace of the power of density
matrix can be used to characterize its eigenvalues, is given
by the Tsallis entropy Tα ¼ ðtrðραÞ − 1Þ=ð1 − αÞ.
In order to get more insight into the notion of the entropy

let us consider the logarithm of the density matrix

K ¼ − lnðρÞ: ð2:3Þ

Then, the vN entropy is the expectation value of K,
S ¼ trðρKÞ ¼ hKi. Since K is semipositively defined,
K ≥ 0, it is called the modular Hamiltonian [due to the
relation ρ ¼ expð−KÞ]. For the density matrix describing a
part of a bipartite system (i.e., the reduced density) the vN
entropy becomes the basic measure of the entanglement;

thus sometimes the modular Hamiltonian is called the
entanglement Hamiltonian or entropy operator (such a
nomenclature appears especially in the context of the
condensed matter physics).
Following the above observation we can consider ana-

logues of thermodynamical quantities with respect to K; in
particular, the notion of entropy for K. To this end we
denote the inverse α ¼ 1=T of “temperature” T (we use α
instead of thermodynamical β index and the Boltzmann
constant is put one) and we define the partition function

Zα ¼ trðe−αKÞ ¼ trðραÞ; ð2:4Þ

as well as the corresponding free energy

F1
T
¼ Fα ¼ −

1

α
lnðZαÞ: ð2:5Þ

Then, following the standard thermodynamical approach
we construct the corresponding entropy

Sα ¼ −∂TF1
T
¼ α2∂αFα: ð2:6Þ

The new quantity Sα is called the modular entropy (due to
its relation to the modular HamiltonianK) and can be easily
compared with the Rényi entropy

Sα ¼ α2∂α

�
α − 1

α
Rα

�
¼ Rα þ αðα − 1Þ∂αRα: ð2:7Þ

Equivalently, it is the vN entropy of the modified density
operator ρα ¼ ρα=Zα, i.e., Sα ¼ hKiα where h·iα stands for
the expectation value at ρα. The last observation gives
immediately Sα ≥ 0 and limα→1 Sα ¼ SvN . Some more
properties of the modular entropy as well as its meaning
in the context of gravitational holography can be found in
Refs. [14–16].
The above thermodynamical analogy can be continued

by introducing the (modular) capacity Cα ¼ −T∂2TF1
T
¼

−α∂αSα. Then one gets

Cα ¼ α2∂2αðð1 − αÞRαÞ ¼ α2ðhK2iα − hKi2αÞ ≥ 0; ð2:8Þ

i.e., Cα measures the variance of the modular Hamiltonian
at ρα. Since for α ¼ 1 the modular entropy coincides with
the vN one (S1 ¼ SvN), the capacity reduces to the variance
of the modular Hamiltonian C≡ C1 ¼ hK2i − hKi2, see
[25–30]. In consequence, it gives the quantum fluctuation
with respect to the original state. For the reduced density
matrix C measures the entanglement entropy fluctuations.
The magnitude of the relative entanglement fluctuations is
defined as δK ¼ ffiffiffiffi

C
p

=S [17,25]. As a border between
strong and weak fluctuations the condition δK ¼ 1 can
be used, i.e., C ¼ S2. Similarly, for an arbitrary α we have

hKiα ¼ ∂αððα − 1ÞRαÞ; ð2:9Þ
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and we can also easily express δαK ¼ ffiffiffiffiffiffi
Cα

p
=ðαhKiαÞ by

means of the Rényi entropy.
Concluding, let us note that for a finite-dimensional

system and the density matrix proportional to the identity
(e.g. for the maximally entanglement states) all the entro-
pies S; Rα; Sα (for any α) coincide and Cα ¼ δαK ¼ 0. On
the other hand, the maximal value of the capacity appears
for partially mixed states [17,25]. For the continuous
variables systems the situation is more complicated and
will be discussed below.

III. WARM-UP: TIME-DEPENDENT
OSCILLATOR

In this section we examine the temporal evolution of the
above quantities in a very simple case. Namely, let us take
the harmonic oscillator with the time-dependent frequency
ωðtÞ. It is described by the Hamiltonian

HðtÞ ¼ p2

2
þ 1

2
ω2ðtÞx2; ð3:1Þ

for which the equation of motion reads

ẍðtÞ ¼ −ω2ðtÞxðtÞ: ð3:2Þ

The time-dependent harmonic oscillator (TDHO) appears
in many physical models and has been studied in various
contexts. It turns out that Eq. (3.2) is equivalent to the so-
called Ermakov-Milne-Pinney (EMP) equation [41–43]

b̈ðtÞ þ ω2ðtÞbðtÞ ¼ c2

b3ðtÞ ; ð3:3Þ

where c is a constant (we assume c ≠ 0 to ensure the
nonvanishing of the function bðtÞ). At the quantum level,
the general solution to the Schrödinger equation of the
TDHO is a superposition of the following wave functions

ψnðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!bðtÞp ffiffiffi
c
π

4

r
e−icðnþ1=2ÞτðtÞHn

� ffiffiffi
c

p
x

bðtÞ
�

× e
− cx2

2b2ðtÞþ
iḃðtÞx2
2bðtÞ ; ð3:4Þ

where Hn for n ¼ 0; 1… denote the Hermite polynomials
and τðtÞ ¼ R b−2ðtÞ.
In physical considerations we usually assume that the

states (3.4) at initial time t ¼ t0 are eigenstates of
the instantaneous Hamiltonian Hðt0Þ. This holds for the
following initial conditions

c ¼ ωðt0Þ≡ ω0; bðt0Þ ¼ 1; ḃðt0Þ ¼ 0; ð3:5Þ

and will be assumed in what follows.

Then the density function of the state ψnðx; tÞ reads

ρnðx; tÞ ¼
1

2nn!bðtÞ
ffiffiffiffiffiffi
ω0

π

r
H2

n

�
x
ffiffiffiffiffiffi
ω0

p
bðtÞ

�
e
−ω0x

2

b2ðtÞ; ð3:6Þ

while the density of the Fourier transform of ψnðx; tÞ is
given by the formula

ρnðp; tÞ ¼
bðtÞ

2nn!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ b2ðtÞḃ2ðtÞ

q ffiffiffiffiffiffi
ω0

π

r
e
− ω0b

2ðtÞp2
ω2
0
þb2ðtÞḃ2ðtÞ

×H2
n

0
B@ ffiffiffiffiffiffi

ω0
p

bðtÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ b2ðtÞḃ2ðtÞ

q
1
CA: ð3:7Þ

We start with the coordinate Rényi entropy

Rα;x
n ðtÞ ¼ 1

1 − α
ln

�Z
ραnðx; tÞdx

�
; ð3:8Þ

as well as with their momentum counterpartRα;p
n ðtÞ. For the

TDHO they read respectively

Rx
α;nðtÞ ¼ ln

�
bðtÞffiffiffiffiffiffi
ω0

p
�
þ 1

1− α
lnðWα;nÞ;

Rp
α;nðtÞ ¼ 1

2
ln

�
ω2
0 þ b2ðtÞḃ2ðtÞ
ω2
0b

2ðtÞ
�
þ 1

1− α
lnðWα;nÞ; ð3:9Þ

where Wα;n ¼
R
∞
−∞

�
H2

nðyÞffiffi
π

p
2nn!

�
α
e−αy

2

dy is the so-called

entropic moment of the Hermite polynomials [44]. For
lower states the latter quantities can be given explicitly

Wα;0 ¼
ffiffiffiffiffiffiffiffiffi
π1−α

α

r
; Wα;1 ¼

2α

πα=2ααþ1=2 Γðαþ 1=2Þ; ð3:10Þ

for higher n they are a more complicated combination of
the Bell polynomials [44]. By virtue of Eq. (2.7) we
conclude that the coordinate modular entropy is given by

Sxα;nðtÞ ¼ Rx
α;nðtÞ þ

α

α− 1
lnðWα;nÞ− α∂α lnðWα;nÞ; ð3:11Þ

and analogously for the momentum case. From Eq. (3.11)
we see that the time dependence of the modular entropies
Sα;n is the same as for the Rényi ones; in particular, the
increase of the modular entropy for an arbitrary state ψn
does not depend on n, e.g., Sxα;nðtÞ − Sxα;nðt0Þ ¼ lnðbðtÞÞ ¼
Rx
α;nðtÞ − Rx

α;nðt0Þ (obviously it vanishes for the ordinary
harmonic oscillator, bðtÞ ¼ 1). In summary, for the states
ψnðtÞ both kinds of entropies differ by a constant (depend-
ing on α and n) only.
Now, let us pass to the notion of the modular capacity.

By virtue of Eq. (2.8) we have

Cx
α;nðtÞ ¼ Cp

α;nðtÞ ¼ α2∂2α lnðWα;nÞ≡ Cα;nðtÞ; ð3:12Þ
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thus the capacity is time-independent (and bounded for
fixed α and n). For the lowest (initial) state we have for
any α

Cα;0ðtÞ ¼
1

2
; ð3:13Þ

while for the excited state the α-dependence emerges

Cα;1ðtÞ ¼
1

2
− αþ α2ϒ1

�
αþ 1

2

�
; ð3:14Þ

where ϒ1 is trigamma function (the first derivative of
the digamma function). For the most interesting case
α ¼ 1 (corresponding to the fluctuation of the vN entropy)
we have

C1;1ðtÞ ¼
1

2
ðπ2 − 9Þ: ð3:15Þ

For n ≥ 2 only numerical results can be obtained. Finally,
let us note that the above considerations can be extended to
the TDHO driven by an external time-dependent force, i.e.

ẍðtÞ ¼ −ω2ðtÞxðtÞ þ fðtÞ: ð3:16Þ

Namely, after direct calculations, we find that all the
entropies reduce to the ones for the force-free case.
In summary, in this section we showed that the dynamics

of the modular entropy of the basic solutions of the TDHO
is the same as for the Rényi entropy. This supports the point
of view that the modular entropy can be considered as
another candidate for a generalization of the vN entropy.
Moreover, we showed that the capacity (fluctuation) of the
vN entropy for such solutions of the TDHO is time-
independent and we found its form. In the next section
we will see that the situation changes when we consider
more complicated systems consisting of more oscillators
and reduced densities.

IV. TIME-DEPENDENT COUPLED OSCILLATORS

In this section we investigate the notion of the modular
entropy and the capacity in the context of entanglement of
the systems. To this end we consider the system of TDHO
coupled by a time-dependent parameter and next we
analyze various bipartite decompositions and correspond-
ing reduced density operators.

A. Two coupled oscillators

Let us consider the Hamiltonian of the form

HðtÞ ¼ 1

2
ðp2

1 þ p2
2Þ þ

1

2
ω2ðtÞððx1Þ2 þ ðx2Þ2Þ

þ 1

2
kðtÞðx1 − x2Þ2: ð4:1Þ

By means of the transformation x ¼ Ry where R is the
2-dimensional rotation matrix with the rotation angle π=4,
we transform the Hamiltonian (4.1) into the following one

HyðtÞ ¼
1

2
ðp2

1þp2
2Þþ

1

2
ðω2

1ðtÞðy1Þ2þω2
2ðtÞðy2Þ2Þ; ð4:2Þ

where now p’s denote the canonical momenta associated
with y’s and ω2

1ðtÞ ¼ ω2ðtÞ þ 2kðtÞ, ω2
2ðtÞ ¼ ω2ðtÞ. The

frequencies ω1;2ðtÞ determine the parameters of the initial
Hamiltonian (4.1) as follows

ωðtÞ ¼ ω2ðtÞ; kðtÞ ¼ 1

2
ðω2

1ðtÞ − ω2
2ðtÞÞ: ð4:3Þ

The evolution ψ0ðx; tÞ of the ground state ψ0ðx; t0Þ of the
Hamiltonian operator Hðt0Þ as well as the reduced density
matrix ρred0 ðx1; x̃1; tÞ ¼ R ψ0ðx1; x2; tÞψ�

0ðx̃1; x2; tÞdx2 can
be easily computed when we take into account the form of
the Hamiltonian (4.2) and then return to the x ¼ ðx1; x2Þ
variable. The final result reads [34]

ρred0 ðx1; x̃1; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðζðtÞ − χðtÞÞ

π

r

× eχðtÞx1x̃1þiððx1Þ2−ðx̃1Þ2ÞφðtÞ−ζðtÞ
2
ððx1Þ2þðx̃1Þ2Þ;

ð4:4Þ
where

φðtÞ ¼ ḃ1ðtÞ
4b1ðtÞ

þ ḃ2ðtÞ
4b2ðtÞ

−
c1

b2
1
ðtÞ −

c2
b2
2
ðtÞ

c1
b2
1
ðtÞ þ c2

b2
2
ðtÞ

�
ḃ1ðtÞ
4b1ðtÞ

−
ḃ2ðtÞ
4b2ðtÞ

�
;

ð4:5Þ
and ζðtÞ > χðtÞ ≥ 0 are given by

ζðtÞ ¼
�

c1
b2
1
ðtÞ þ c2

b2
2
ðtÞ
�
2 þ 4 c1c2

b2
1
ðtÞb2

2
ðtÞ þ

�
ḃ1ðtÞ
b2
1
ðtÞ −

ḃ2ðtÞ
b2
2
ðtÞ
�
2

4
�

c1
b2
1
ðtÞ þ c2

b2
2
ðtÞ
� ;

χðtÞ ¼
�

c1
b2
1
ðtÞ −

c2
b2
2
ðtÞ
�
2 þ

�
ḃ1ðtÞ
b2
1
ðtÞ −

ḃ2ðtÞ
b2
2
ðtÞ
�
2

4
�

c1
b2
1
ðtÞ þ c2

b2
2
ðtÞ
� ; ð4:6Þ

while the functions b1;2ðtÞ satisfy the EMP equation (3.3)

with the frequencies ω1;2ðtÞ and the constants c1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ðt0Þ þ 2kðt0Þ

p
and c2 ¼ ωðt0Þ, respectively. In conse-

quence, the Rényi entropy and the vN entropy of the
reduced density ρred0 can be easily found, see Ref. [34]

RαðtÞ ¼
1

1 − α
ln
ð1 − ξðtÞÞα
1 − ξαðtÞ ;

SðtÞ ¼ − lnð1 − ξðtÞÞ − ξðtÞ
1 − ξðtÞ ln ξðtÞ; ð4:7Þ

where ξðtÞ ¼ χðtÞ
ζðtÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2ðtÞ−χ2ðtÞ

p .
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Now, we are in the position to find the modular entropy
and capacity. First, the straightforward computations give

SαðtÞ ¼ − lnð1 − ξαðtÞÞ − ξαðtÞ
1 − ξαðtÞ lnðξ

αðtÞÞ; ð4:8Þ

i.e., Sα is obtained by the replacement ξðtÞ → ξαðtÞ in the
vN entropy, cf. Eq. (4.7) (this can be also seen from the fact
the spectrum of ρred0 consists of the powers of ξ). Moreover,
we have the following relation

SαðtÞ¼RαðtÞþ
α

α−1

�
ln

1−ξðtÞ
1−ξαðtÞþ

ð1−αÞξαðtÞ lnðξðtÞÞ
1−ξαðtÞ

�
;

ð4:9Þ

thus, in contrast to the single TDHO, the dynamics of the
modular entropy for the coupled oscillators is different
from the Rényi one.
Similarly, for the capacity we get

CαðtÞ ¼
ξαðtÞln2ðξαðtÞÞ
ð1 − ξαðtÞÞ2 ; ð4:10Þ

in consequence, we have 0 ≤ CαðtÞ ≤ 1. In particular, the
capacity (fluctuation) of the entanglement is given by the
formula

CðtÞ ¼ C1ðtÞ ¼
ξðtÞ ln2ðξðtÞÞ
ð1 − ξðtÞÞ2 : ð4:11Þ

From the above we see that the discussed quantities are
determined by the solutions of the two EMP equations with
the frequencies ω1;2ðtÞ, respectively.
In order to analyze the above results, let us start with

the simplest case, namely constant both the coupling
kðtÞ ¼ k and the frequency ωðtÞ ¼ ω in the Hamiltonian
(4.1). Then b1ðtÞ ¼ b2ðtÞ ¼ 1 and ξðtÞ ¼ ξ is a constant
which can be easily expressed as a function of the ratio
k=ω2 (the same concerns Sα, Cα); in particular, ξ → 1 for
k → ∞. In this case, the reduced matrix ρred0 is equivalent
to the thermal density operator for a single harmonic
oscillator specified by the frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − χ2

p
and temper-

ature T ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − χ2

p
= lnðξÞ. The modular entropy is also

the vN entropy of the harmonic oscillator providedwe define
the temperature T¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2−χ2

p
=ðα lnðξÞÞ. Moreover, the

capacity becomes the ordinary heat capacity of a quantum
harmonic oscillator. Thus when ξ tends to one (k to infinity)
the entanglement fluctuations are close to one while the
entanglement entropy tends to infinity; this is in contrast with
the finite-dimensional case where the capacity vanishes for
the maximally entanglement states.
For more coupled oscillators the reduced matrix is not

(in general) equivalent to a thermal density matrix for a
system of oscillators [5]. In what follows we will consider

such systems in the more general time-dependent case.
Then all entropies are time-dependent and measure the
evolution of entanglement (nonlocal correlations). This
is interesting from the thermodynamical point of view
since such models can be considered as many-body non-
equilibrium systems. Although the unqualified definition of
the entropy for nonequilibrium systems is still problematic
[45] such information can give some insight into how
thermodynamics arises in isolated quantum systems as well
as probe thermalization processes, see e.g., [46–48] and
[49] for experimental analysis. Moreover, this is relevant
for quantum information processing and technology and
leads to some universal scaling properties as for the
correlations functions in the Kibble-Zurek scenario [50].
A typical example of such a situation are many-body
quantum quench phenomena characterized by sudden
(fast) changes of global parameters of the Hamiltonian.
Then it turns out that the entanglement entropy starts to
grow linearly in time. Next it is saturated to a volume-law
behavior suggesting in this way the thermalization of the
subsystem, see [10,51] and references therein. A deeper
analysis of such a scenario (see e.g. [52–54]) implies that
the resulting reduced density matrix for a subsystem
relaxes to the Gibbs ensemble or in the case of integrable
systems, a generalized Gibbs ensemble. Moreover, the
other approaches to this problem are also related to the
entanglement entropy. For example, holographic consid-
erations presented in Ref. [55] suggest that entanglement
entropy can be treated also as a kind of coarse-grained
entropy for time-dependent system. Similar conclusions,
but in a different approach [56], appear for the cosmologi-
cal spacetimes and nonequilibrium processes.

B. Many coupled oscillators

The system of N coupled time-dependent oscillators
(with the nearest neighbor interaction) is described by the
Hamiltonian

HðtÞ ¼ 1

2

XN
l¼1

ðp2
l þ ω2ðtÞðxlÞ2Þ þ 1

2
kðtÞ

XN
l¼0

ðxl − xlþ1Þ2:

ð4:12Þ

Imposing boundary conditions the Hamiltonian can be
rewritten in the form

HðtÞ ¼ 1

2

XN
j¼1

p2
j þ

1

2
xTΛðtÞx; ð4:13Þ

where x ¼ ðx1;…; xNÞ and ΛðtÞ is a symmetric N × N
matrix with the eigenvalues λjðtÞ, for j ¼ 1;…; N.
The most popular boundary conditions are the follow-
ing three:
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(i) The periodic boundary conditions (PBC) defined
by x0 ¼ x1 and xNþ1 ¼ x0. Then the eigen-
values of ΛðtÞ are of the form λjðtÞ ¼ ω2ðtÞ þ
4kðtÞsin2ðjπNÞ, j ¼ 1;…; N.

(ii) The Neaumann boundary conditions (NBC) given
by x0 ¼ x1 and xNþ1 ¼ xN (corresponding to the
system of coupled pendulums in small-angle appro-
ximation); then the eigenvalues read λjðtÞ ¼ ω2ðtÞþ
4kðtÞsin2ð jπ

2NÞ, j ¼ 0;…; N − 1 (for N ¼ 2 we ob-
tain the previous case, see Sec. IVA).

(iii) Finally, we can impose the Dirichlet boundary con-
ditions (DBC), x0 ¼ xNþ1 ¼ 0, then λjðtÞ ¼ ω2ðtÞ þ
4kðtÞcos2ð jπ

2ðNþ1ÞÞ, j ¼ 1;…; N.
As in the case of two oscillators, we can easily find the

evolution of the density matrix of the ground state of the
instantaneous Hamiltonian Hðt0Þ. However, in contrast to
the case of two oscillators, the reduced density for more
oscillators is substantial more complicated and some
inconsistency appeared in the literature. In view of this,
first, we discuss this problem.
We start with the (time-dependent) density matrix of the

whole system, see, e.g., [34,57]

ρðx; x0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΩðtÞ=πÞ

p
exp

�
ixTBðtÞx − ix0TBðtÞx0

−
1

2
xTΩðtÞx − 1

2
x0TΩðtÞx0

�
; ð4:14Þ

where x ¼ ðx1;…; xNÞ and ΩðtÞ ¼ UT
ffiffiffiffiffiffiffiffiffi
Λ̃ðtÞ

q
U, B ¼

UTB̃ðtÞU where B̃ðtÞ; Λ̃ðtÞ are diagonal matrices with
elements ðΛ̃ðtÞÞij ¼ λiðt0Þ=b4i ðtÞδij and ðB̃ðtÞÞij ¼ ḃiðtÞ=
ð2biðtÞÞδij, respectively, while bjðtÞ are the solutions of the
EMP equations with the frequencies λjðtÞ

b̈jðtÞ þ λjðtÞbjðtÞ ¼
λjðt0Þ
b3jðtÞ

; j ¼ 1;…; N; ð4:15Þ

and, finally, U is a time-independent matrix diagonalizing
ΛðtÞ:

UΛðtÞUT ¼ Diagðλ1ðtÞ;…; λNðtÞÞ: ð4:16Þ

Next, we split the whole system into two parts: the first one
A consisting of n first oscillators ðx1;…; xnÞ and the
second one B consisting of the remaining N − n ones
described by x ¼ ðxnþ1;…; xNÞ and rewrite Ω and B in
the form1

Ω ¼
�Ω1 Ω2

ΩT
2 Ω3

�
; B ¼

�
B1 B2

BT
2 B3

�
; ð4:17Þ

where Ω1, B1 are n × n matrices.
Tracing (integrating) over the subsystemAwe obtain the

reduced density of the subsystem B. Namely, after straight-
forward computations we arrive at the formula

ρBðx;x0; tÞ ¼ A exp

�
ixTZx − ix0TZx0 −

1

2
xTϒx

−
1

2
x0Tϒx0 þ xTΔx0

�
; ð4:18Þ

where Z, ϒ, Δ are ðN − nÞ × ðN − nÞ matrices given by

Z ¼ B3 − BT
2Ω−1

1 Ω2; ð4:19Þ

ϒ ¼ Ω3 −
1

2
ΩT

2Ω−1
1 Ω2 þ 2BT

2Ω−1
1 B2; ð4:20Þ

Δ ¼ 1

2
ΩT

2Ω−1
1 Ω2 þ 2BT

2Ω−1
1 B2 þ iΘ; ð4:21Þ

with Θ ¼ ΩT
2Ω−1

1 B2 − BT
2Ω−1

1 Ω2. Such a form of the
reduced density coincides with the one obtained in
Ref. [57]. The matrices Ω1, B1 are real and symmetric thus
Θ is skew-symmetric. In consequence, for N ¼ 2 (and
n ¼ 1) Θ vanishes and we obtain the results from previous
section for two oscillators. However, for higher N (and n) Δ
is a complex (but Hermitian) matrix. In consequence, we
cannot directly apply methods from Ref. [5] to obtain the
spectrum of ρB (i.e., simultaneously diagonalize bothϒ and
Δ by means of an orthogonal matrix). The term with Θ has
been missed in Refs. [34,39] leading to some problems, e.g.,
despite the fact the initial state is pure the corresponding
entropies SA and SB were not equal (this is also in contrast to
results of Ref. [38]). For similar reasons an approach in
Ref. [31] seems also to miss something; namely, in our
notation the matrix E therein takes the form ϒ−1Δ and thus
has a real (not complex as in [31]) spectrum [in fact the same
as the Hermitian matrix Δ̃ below, Eq. (4.24)]; moreover, the
matrices E and its complex conjugate are, in general, not
simultaneously diagonalizable and thus an extension of the
reasoning from Ref. [58] is more involved. The problem of
the spectrum of the density operator in the case of Hermitian,
but not real, Δ has been recently discussed, in the context of
squeezed state, in Ref. [59]. Here we adopt essential results
and for more details we refer to [59].
Namely, it turns out that the spectrum of the reduced

density matrix with Hermitian Δ is of the form

ð1 − ξ1Þð1 − ξ2Þ…ð1 − ξN−nÞξm1

1 ξm2

2 …ξmN−n
N−n ; ð4:22Þ

where ξ’s are the inverse of the eigenvalues (larger than
one) of the following matrix

1For simplicity of notation we omit the time parameter t in the
matrices when it does not cause ambiguity.
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�
2Δ̃−1 −Δ̃−1Δ̃T

I 0

�
; ð4:23Þ

where

Δ̃ ¼ ðϒ̃Þ−1=2ΠΔΠTðϒ̃Þ−1=2; ð4:24Þ

while Π is an orthogonal matrix diagonalizing ϒ, i.e.
ΠϒΠT ¼ ϒ̃; let us note that Δ̃ is a Hermitian matrix.
Obviously, such an approach involves the invertibility of
the matrix Δ thus we can consider the subsystem B
provided N − n ≤ n, in the other case we should take
the subsystem A and use the fact that for the pure state the
spectrum of ρB is equivalent (up to irrelevant zeros) to the
spectrum of ρA, see also the discussion in [59]; later on,
using a different approach, we will avoid this technical
problem. Now, from (4.22) we can immediately find the
Rényi entropies

RαðtÞ ¼
XN
j¼nþ1

Rα½ξjðtÞ�; ð4:25Þ

where Rα½ξjðtÞ� has the form as in (4.7).
In consequence, the modular entropy as well as the

capacity read

SαðtÞ ¼
XN
j¼nþ1

Sα½ξjðtÞ�; CαðtÞ ¼
XN
j¼nþ1

Cα½ξjðtÞ�; ð4:26Þ

where Sα½ξjðtÞ�; Cα½ξjðtÞ� are of the form (4.8) and (4.10)
[i.e., with the replacement ξðtÞ → ξjðtÞ]. In particular, we
immediately obtain the formula for entanglement fluc-
tuation CðtÞ≡ C1ðtÞ of the system.
In what follows we will use another approach based on

the correlation matrix and symplectic spectrum; it avoids a
direct computation of the spectrum and has been success-
fully applied in the study of the entanglement entropy and
abrupt quenches, see, e.g., [32,33,38]. First, we define the
time-dependent correlations (covariance) matrix

Γ ¼
�

Q R

RT P

�
; ð4:27Þ

where Qij ¼ hxixji, Pij ¼ hpipji, Rij ¼ 1=2hfxi; pjgi are
real and symmetric N × N matrices. Using the results of
Sec. III we obtain, after straightforward computations, that

Q ¼ UTQ̃U; P ¼ UTP̃U; R ¼ UTR̃U; ð4:28Þ

where U is defined as in (4.16) and Q̃; P̃; R̃ are diagonal
matrices with the following diagonal elements

Q̃kk ¼
b2k

2
ffiffiffiffiffiffiffiffiffiffiffiffi
λkðt0Þ

p ; P̃kk ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
λkðt0Þ

p
b2k

þ ḃ2kffiffiffiffiffiffiffiffiffiffiffiffi
λkðt0Þ

p �
;

R̃kk ¼
bkḃk

2
ffiffiffiffiffiffiffiffiffiffiffiffi
λkðt0Þ

p ; ð4:29Þ

for k ¼ 1;…; N. Since the matrix Θ is skew-symmetric the
covariance matrix of the reduced density of the system B is
given by the restriction of the initial one to the subsystem B

ΓB ¼
�
QB RB

RT
B PB

�
; ð4:30Þ

where ðQBÞkl ¼ Qkl, ðRBÞkl ¼ Rkl and ðPBÞkl ¼ Pkl for
k; l ¼ nþ 1;…; N. Next, following the procedure based on
the symplectic transformation, see, e.g., Refs. [33,38,60],
we construct the matrix Γ̃B ¼ iJΓB, where J is given by

J ¼
�

0 I

−I 0

�
; ð4:31Þ

and I is ðN − nÞ × ðN − nÞ identity matrix. Now, the
spectrum of the matrix Γ̃B consists of elements �γk, k ¼
nþ 1;…; N and the Rényi entropies take the form

Rα ¼
1

α − 1

XN
k¼nþ1

ln ððγk þ 1=2Þα − ðγk − 1=2ÞαÞ: ð4:32Þ

By means of (4.32) we can easily find the modular entropy
and capacity; for example, the entanglement fluctuation
reads

C≡ C1 ¼
XN

k¼nþ1

�
γ2k −

1

4

�
ðlnðγk þ 1=2Þ − lnðγk − 1=2ÞÞ2:

ð4:33Þ
In view of this and Eqs. (4.28), (4.29) the temporal evolution
of the modular entropy and capacity is algebraically deter-
mined by the solutions (and their derivatives) of the EMP
equations. Moreover, the quantities obtained in this way
coincide with the formulas (4.25) and (4.26) after the
identification

2γk ¼
1þ ξk
1 − ξk

: ð4:34Þ

Finally, let us note that 0 ≤ CðtÞ ≤ N − n. Moreover, the
state is pure thus0 ≤ CðtÞ ≤ n. In consequence, for the initial
ground state the capacity remains bounded

0 ≤ CðtÞ ≤ minðn;N − nÞ: ð4:35Þ

Concluding, Eq. (4.8) forN ¼ 2 and (4.26) [equivalently
(4.32) and (4.33)] for higher N enable us to analyze the
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evolution more explicitly provided we have solutions bjðtÞ
to the EMP equation. Such a situation holds for some
special forms of frequencies. In what follows wewill discus
both abrupt and continuous examples and concentrate on
the entanglement fluctuation and its relation to the vN
entropy; this completes the results for the finite-dimen-
sional spaces and fit into the field theory problems.

C. Frequency and coupling jumps

Although the general dynamics of the entropy and
capacity in the quench phenomena is complicated, some
qualitative description can be obtained if we know the
explicit form of the solutions to the EMP equations. To see
this let us consider the abrupt change. Namely, let us
analyze this evolution for the model (4.12) with a sudden
quench, i.e. where ωðtÞ, kðtÞ change, at time t0 ¼ 0, from
constant values ðωðiÞ; kðiÞÞ to another constant values
ðωðfÞ; kðfÞÞ. For the abrupt quench the solutions of the
EMP equations (4.15) with the initial conditions (3.5) read

bjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj cosð2t

ffiffiffiffiffiffiffiffiffiffiffi
λjðfÞ

q
Þ þ sj

r
; ð4:36Þ

where λjðiÞ; λjðfÞ are the eigenvalues of Λ before and after
quench and rj ¼ ðλjðfÞ− λjðiÞÞ=ð2λjðfÞÞ, sj ¼ ðλjðfÞ þ
λjðiÞÞ=ð2λjðfÞÞ.
Both the entanglement and capacity are functions of

bðtÞ’s and their derivatives. Thus, due to the formula (4.36),
we expect some distinguished periodicities in the temporal
evolution.
For the PBC the last frequency λNðfÞ ¼ ω2ðfÞ is

distinguished. Indeed, it tends to zero as ωðfÞ is small,
in contrast to the previous frequency λN−1ðfÞ ¼ ω2ðfÞ þ
4kðfÞsin2ððN − 1Þπ=NÞ when kðfÞ ≫ ω2ðfÞ. Under these
assumptions rN , sN tend to infinity as ωðfÞ is close to zero;
thus due to Eq. (4.36) we expect the distinguished
periodicity T ¼ π=ωðfÞ (in particular, it does not depend

on kðfÞ). This situation is presented in Fig. 1, where N ¼ 4
and ωðfÞ ¼ 0.01 (i.e. T ≃ 314). Let us note that for the
capacity (which is bounded) this is less evident, especially,
as we pointed out above, for small kðfÞ, see the right panel
in Fig. 1. Finally, it is worth to notice that for N → ∞ the
situation changes: λN is not distinguished, and the above
reasoning breaks down; we return to this issue in the next
sections.
For the DBC the situation is quite different. Namely, for

ωðfÞ ¼ 0 the λ’s remain nonzero. However, for large N the
frequency λN tends to zero implying that the distinguished
periodicity should be of the form

T ¼ π

2
ffiffiffiffiffiffiffiffiffi
kðfÞp

cosðπN=ð2ðN þ 1ÞÞÞ ; ð4:37Þ

thus it depends on kðfÞ (and does not depend on kðiÞ; in
particular, we can put kðiÞ ¼ kðfÞ ¼ k). For example, for
N ¼ 100 and kðfÞ ¼ 1 we have T ≃ 100 while for kðfÞ ¼
9 we obtain T ≃ 33; see Fig. 4 and 5 in the Sec. V B 1. In
general, we have T ≃ Nffiffi

k
p for large N, thus for k ¼ 1 (lattice

approximation) we have T ≃ N, see the next section.

V. FLUCTUATION OF ENTANGLEMENT
AND FIELD THEORY

In this section we consider larger values of N. This is
interesting due to the lattice approximation to quantum
fields, e.g., a time-dependent bosonic scalar field ϕ.
Namely, we discretize the field Hamiltonian, in general
with time-dependent mass mðtÞ,

H ¼ 1

2

Z
dxðπ2 þ ð∇ϕÞ2 þm2ðtÞϕ2Þ; ð5:1Þ

into a chain of harmonic oscillators by imposing a UV
cutoff ϵ and IR cutoff Nϵ. Then we obtain a model
described by the Hamiltonian (4.12) with k ¼ 1 and

FIG. 1. Abrupt quench–temporal evolution: N ¼ 4, n ¼ 1 and PBC (ωðiÞ ¼ 3, ωðfÞ ¼ 0.01). Lines: blue—entropy, red—capacity.
The left panel kðfÞ ¼ 10. The right panel kðfÞ ¼ 0.5.
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ω2ðtÞ ¼ m2ðtÞϵ2. To complete the discretization procedure
we need boundary conditions; we take the PBC for the
spacetime cylinder; the other choices are the DBC or NBC.

A. Constant frequency

For start we consider the constant mass, which can be
realized as a special case of the abrupt quench with
ωðiÞ ¼ ωðfÞ ¼ ω ¼ const. We will focus on more subtle
case when ω → 0 which is related to the 2-dimensional
CFT. In this case the PBC (or NBC) leads to zero modes
which cause the divergence of the entanglement entropy.
For the DBC there are no zero modes and no infrared
divergences arise when setting ω equals zero (the diver-
gence is in the limit N → ∞ only). For the entanglement
capacity the situation is quite different. Namely, as we
noted above the entanglement capacity is bounded thus for
ω ¼ 0 we expect a finite value.
Using methods of the 2-dimensional CFT it has been

shown [24] that at the leading order of the UV cutoff
parameter ϵ the capacity and entropy are equal to each
other. Namely, for the PBC (circle of the length L) we have

S ¼ 1

3
ln

�
L
πϵ

sin

�
πl
L

��
þOð1Þ ¼ C: ð5:2Þ

In particular, for the infinite length L → ∞ we obtain
S ¼ 1

3
lnðl=ϵÞ þOð1Þ ¼ C; such a behavior has been con-

firmed in Ref. [24] by considering the infinite harmonic
chain. Here, we analyze this problem for L finite: L ¼ Nϵ
(and l ¼ nϵ). For the DBC instead of Eq. (5.2) we expect
the relation S ¼ 1

6
ln ðLπϵ sinðπlLÞÞ þOð1Þ ¼ C. In the former

case we take ω ¼ 0.001 and next analyze the limit as
ω → 0, in the Dirichlet case we can put directly ω ¼ 0 from
very beginning.
The results for the PBC are presented in the left panel of

Fig. 2 (for N ¼ 100). We see that the entropy and capacity

coincide with Eq. (5.2) (represented here by green and
yellow lines, respectively). For the small ratio n=N ¼ l=L
this formula exhibits a logarithmic scaling, i.e., it diverges,
in contrast to the area law. Moreover, for the PBC the
entropy increases (for fixed n andN) as ω tends to zero as is
presented in the right panel of Fig. 2, in contrast to the
capacity which is bounded [cf. Eq. (4.35)].
For the DBC we can put directly ω ¼ 0, then both

entropy and capacity are finite and their behavior agrees
with the above theoretical prediction [i.e., Eq. (5.2) with
1=3 replaced by 1=6].

B. Quenches

Now, let us pass to the case of oscillatory chains with
time-dependent ωðtÞ. Such models can approximate
quench protocols in the field theory where the mass varies
in time or in expanding spacetimes. We will focus on the
more interesting case where the final theory is massless.
Due to zero modes we will consider the DBC and PBC
separately; in the latter case, the final frequency will be
small but not equal to zero.

1. Abrupt quench

First, we consider the abrupt quenches; namely, we start
with some ωðiÞ and at time t0 ¼ 0 then there is a sudden
change of the frequency to a small or zero value. Such a
situation is motivated by the CFT methods developed in the
study of the temporal evolution of the Rényi entropies. For
the global quench and the subsystem which is an interval on
the infinite line the field approach yields [24]

S ¼ constþ
�
aSt t < t�;

bSn t > t�;
C ¼ constþ

�
aCt t < t�;

bCn t > t�;

ð5:3Þ

FIG. 2. N ¼ 100 and PBC (ω ¼ 0.001 and k ¼ 1). The left panel: entropy—blue data points [green line corresponds to (5.2)],
capacity—red data points [yellow line corresponds to (5.2)]. The right panel: omega dependence, entropy—blue data points, capacity—
red data points.
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with some constants aS, bS, aC, bC and t� ¼ n=2; more-
over, the relation aS ¼ aC holds. However, the analysis
performed in [24] suggests that the situation is more subtle
and the slopes aC and aS are not equal (and, consequently,
the saturation values too). Here, using the results presented
in Sec. IV, we analyze this problem in the finite case and
various boundary conditions; in particular, we obtain some
theoretical predictions for these constants.
We start with temporal evolution of the entropy and

capacity for various n and PBC. In Fig. 3 (top panels), we

see that there is indeed the linear growth of the both quantities
(more precisely, just after the quench there is paraboliclike
growth); however, as in Ref. [24], we observe that the slopes
aS and aC are, in general, not equal; it depends on the initial
frequency.Approximately, after time t > n=2 and for lowern
there is a logarithmic-type growth instead of the constant
value (both for the entropy and capacity); this can be related
to zeromodes appearing for the PBC, see, e.g., the discussion
in [33] and references therein. Next, both quantities oscillate;
after longer time these oscillations are around saturation

FIG. 3. Abrupt quench–temporal evolution: N ¼ 100 and PBC (ωðiÞ ¼ 3, ωðfÞ ¼ 0.01, and k ¼ 1). Lines: black n ¼ 6, blue n ¼ 10,
green n ¼ 20, yellow n ¼ 36, red n ¼ 50. The left panels are entropy. The right panels are capacity.

K. ANDRZEJEWSKI PHYS. REV. D 108, 125013 (2023)

125013-10



values (bottom panels in Fig. 3). Note that the values of both
the entropy and capacity increase with n (l); namely, for n <
N=2 they are less than for n ¼ N=2 (for n > N=2 they
coincidewith the ones forN − n). Finally, let us note that the
dynamics of capacity is bounded as in Eq. (4.35).
Let us compare these results with the ones for the DBC.

In this case we can put the final frequency zero ωðfÞ ¼ 0

(the entropy is finite). Then, in agreement with the
discussion presented in Sec. IV C, we observe the distin-
guished periodicity T ≃ N=

ffiffiffi
k

p
for large N; namely, for k ¼

1 (N ¼ 100) we have T ≃ 100, see Fig. 5, while for k ¼ 9 it
gives T ≃ 33, see Fig. 4. This special periodicity is related
to local minima, such that the quaintness coincide for all n
(especially when the initial frequency is not too large, see

FIG. 4. Abrupt quench–temporal evolution: N ¼ 100 and DBC (ωðiÞ ¼ 3, ωðfÞ ¼ 0, and k ¼ 9). Lines: black n ¼ 6, blue n ¼ 10,
green n ¼ 20, yellow n ¼ 36, red n ¼ 50. The left panels are entropy. The right panels are capacity.

FIG. 5. Abrupt quench–temporal evolution: N ¼ 100 and DBC (ωðiÞ ¼ 3, ωðfÞ ¼ 0, and k ¼ 1). Lines: black n ¼ 6, blue n ¼ 10,
green n ¼ 20, yellow n ¼ 36, red n ¼ 50. The left panels are entropy. The right panels are capacity.
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see Fig. 4), thus at these points we can observe the area law
(n0). In contrast to this, at local maxima or for further times
the area law is broken. Moreover, the initial linear growth is
up to the first maximumwhich, see Sec. IV C, depends on k
(in contrast to the PBC case), it is around the half of the
period T , i.e., t ¼ N=2 (in agreement with the maximal
linear growth resulting from the field approach, i.e.,
t ¼ n ¼ N=2). For small n the dynamics exhibits plateaus
(instead of maxima) and finally oscillates around saturation
values.
These results can be confirmed by considering time-

fixed slices, see Fig. 6. Then just after the quench the
behavior of the entropy and capacity resembles the one for
the finite mass, i.e. it is constant with respect to n; the area
law holds. For larger time the entropy (capacity) behaves
linearly for more n; however, around n ¼ N=2 this behav-
ior changes. This is related to the finite size of the whole
system; instead of the linear growth rather sinðπn=NÞ
appears (see green data points in Fig. 6). Moreover, the
symmetry n → N − n is preserved for entropy and capacity.

In consequence, the entropy and capacity of the subsystems
A and B coincide (the state is pure). Finally in order to
compare better the dynamics of the entropy and capacity we
plot the magnitude of relative quantum entanglement fluc-
tuations δK ¼ ffiffiffiffi

C
p

=S, see Sec. II. In Fig. 7 we see that after
some initial time the relative entanglement fluctuations are
small and exhibit some revival time;moreover, they are larger
for lower n (for the DBC the maxima are related to the
distinguished periodicities discussed above).
Now, let us return to the field theory picture. Based on

the quasiparticles considerations we expect the relation
(5.3) to hold (at least for small n). To this end let us
compute the initial slope of SðtÞ − Sð0Þ as well as CðtÞ −
Cð0Þ with respect to ωðiÞ ≥ 0.1 for the DBC and PBC (in
the latter case ωðfÞ ¼ 0.01 is fixed). The results are
presented in Fig. 8. First, we see that the slope coefficient
behaves linearly for 0.1 ≤ ωðiÞ < 1 and it is smaller for the
entropy than for the capacity. However, for the capacity
which is slowly increasing, the linearity is broken earlier;
thus to analyze it we restrict ourselves to the interval

FIG. 6. Abrupt quench–time slices, N ¼ 100 and DBC (k ¼ 1, ωðfÞ ¼ 0), and t ¼ 10150. Date points: blue—entropy, red—capacity.
Left panel ωðiÞ ¼ 1 and green data points: 10 sinðπn=100Þ þ 0.1. The right panel ωðiÞ ¼ 10.

FIG. 7. Abrupt quench—temporal evolution of relative fluctuations,N ¼ 100 (k ¼ 1). Lines: black n ¼ 6, blue n ¼ 10, green n ¼ 20,
yellow n ¼ 36, red n ¼ 50. The left panel: PBC (ωðiÞ ¼ 3, ωðfÞ ¼ 0.01). The right panel: DBC (ωðiÞ ¼ 3, ωðfÞ ¼ 0).
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0.1 ≤ ωðiÞ ≤ 0.5. More preciously, the dashed lines in
Fig. 8 for the PBC are given by 0.575ωðiÞ þ 0.003 and
0.657ωðiÞ þ 0.0004 for the entropy and capacity, respec-
tively; while for the DBC we have 0.287ωðiÞ þ 0.001 and
0.329ωðiÞ þ 0.0004, respectively. In view of this the slope

aS ¼ 0.575 for the entropy and PBC is two times greater
than for the DBC (2aS ¼ 0.574) and agrees with theoretical
prediction atS ¼ ðπ − 2Þ=2 ≃ 0.571 presented in [33]; for
the capacity we have also the same relation (0.657 and
2aC ¼ 0.658). Even more in the non-linear region the slope

FIG. 8. The initial slope for the abrupt quench, N ¼ 100. Lines: blue—entropy, red—capacity. Left panel: PBC (ωðfÞ ¼ 0.01); right
panel: DBC (ωðfÞ ¼ 0).

FIG. 9. Abrupt quench—temporal evolution: N ¼ 100 (ωðiÞ ¼ 0.5 and k ¼ 1). The top panels PBC (ωðfÞ ¼ 0.01). The bottom
panels DBC (ωðfÞ ¼ 0). The left panels are entropy. The right panels are capacity. Lines: black n ¼ 4, blue n ¼ 8, green n ¼ 12, yellow
n ¼ 16. Dashed lines correspond to Eq. (5.3) with the theoretical parameters atS; a

t
C.
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for the PBC is twice the one for the DBC (both for the
entropy and capacity), cf. the left and right panels in Fig. 8.
Next, as ωðiÞ becomes greater than one the linearity is more
and more broken and both slopes meet; then the entropy
increases while capacity stabilizes. In consequence, for
large ωðiÞ the entropy slope is greater than for the capacity.
Let us return to the slope of the capacity. Using the

considerations from Ref. [33] (basing on the quasiparticles
approach [61]) and formula (2.8) we find the initial slope
for the capacity and the PBC:

atC ¼ ∂
2
αðα − cotðπ=4αÞÞð1Þ ¼ π

�
1 −

π

4

�
≃ 0.674; ð5:4Þ

thus it quitewell agreeswith the above numerical resultaC ¼
0.657 obtained by the lattice approximation. It remains to
analyze the behavior for further time; then for the PBCbS,bC
we should have bS ¼ aS=2 and bC ¼ aC=2 while for the
DBC bS ¼ aS and bC ¼ aC. In Fig. 9 we present this
situation using atS and atC coefficients (for the PBC and
DBC, respectively). Let us stress that these theoretical
predictions match quite well only for some range of the
initial frequencies, i.e. around ωðiÞ ¼ 1 for the entropy and
ωðiÞ ¼ 0.5 for the capacity, see Fig. 9 forωðiÞ ¼ 0.5; such a
restriction is related to the validity of lattice approximation
(ωðiÞ should benot too small or large, see, e.g., the discussion
in Refs. [32,33]) and the fact the quasiparticlesmodel gives a
qualitative description. A further investigation of the field
theoretical considerations presented recently in Refs. [24,40]
can give more insight into this problem.
Summarizing, for the abrupt quench and small n the

relation (5.3) approximates the dynamics of the entropy and
capacity. More precisely, we have a linear initial growth
and for further times the oscillations are about saturation
values (up to logarithmic period for the PBC); however, the
initial slope coefficients are different for the entropy and
capacity. For some range of initial frequencies the capacity
slope can be also obtained by means of the quasiparticles
picture.

VI. CONTINUOUS PROTOCOLS

In this section we analyze the aforementioned issues in
the case of continuous protocols. To this end we consider
two examples which enable us more analytic considera-
tions. The first one with a continuous frequency change at
time t0 ¼ 0 such that it asymptotically tends to zero. In the
second case we consider the situation when at minus and
plus infinities the frequency is zero (the massless field). For
better transparency we describe the DBC and we mention
only the necessary changes for the PBC or NBC.
To this end we put k ¼ 1 and take

ω2ðtÞ ¼ 2

ε2 cosh2ðt=εÞ ; ð6:1Þ

in the Hamiltonian (4.12). Then ωðtÞ is a bell shaped
function with the maximum at t ¼ 0 and tending to zero at
infinities. In particular, we obtain the Dirac delta limit

lim
ε→0

ωðtÞ ¼ π
ffiffiffi
2

p
δðtÞ: ð6:2Þ

In order to obtain a continuous (differentiable) quench
protocol we take

ω̃2ðtÞ ¼
�
ω2ðiÞ≡ 2=ε2 for t ≤ 0;

ω2ðtÞ for 0 < t:
ð6:3Þ

Then the initial frequency ωðiÞ is quenched to zero at
infinity. To analyze such a model we need the solutions of
the EMP equations (4.15) with

λjðtÞ ¼ ω̃2ðtÞ þ aj; ð6:4Þ

where, for the DBC, aj ¼ 4kcos2ð jπ
2ðNþ1ÞÞ > 0, j ¼ 1;…; N.

The corresponding functions b̃jðtÞ can be given explicitly.
Indeed, by means of the results of Ref. [62], we obtain

b̃jðtÞ ¼
�
1 for t ≤ 0;

bjðtÞ for 0 < t;
ð6:5Þ

where bjðtÞ, for j ¼ 1;…; N, are of the form

b2jðtÞ¼
�
1þ tanh2ðt=εÞ

a2jε
2

� 
1−

sin2ðajtþ tan−1ðtanhðt=εÞajε
ÞÞ

ð1þa2jε
2Þ2

!
:

ð6:6Þ

Note that for the PBC we have aN ¼ 0 and thus we have to
modify bN as follows

b2NðtÞ ¼
�
1 −

t
ε
tanhðt=εÞ

�
2

þ 2 tanh2ðt=εÞ: ð6:7Þ

Now, using the results of Sec. IV we will analyze the
entropy and capacity of the entanglement. To make contact
with our previous considerations we take ε ¼ ffiffiffi

2
p

=3 which
corresponds to the initial frequency ωðiÞ ¼ 3. Let us
compare it with the abrupt case. First, we should note that
ωðtÞ tends (is not equal) to zero at infinity, so we cannot use
the argument presented in Sec. IV C. In consequence, it is
more difficult to identify a distinguished periodicity and the
temporal evolution is more complicated as shown in
Figs. 10 and 11. Despite the identical initial conditions
the values of the capacity are smaller than those for the
abrupt quench; moreover, the transition from the linear to
the oscillatory regime is much smoother and occurs earlier
compared to the abrupt quench. However, there are minima
where the area law approximately holds (especially for
smaller ωðiÞ, i.e., large ε). For larger times, we observe the
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oscillations about a saturation value similarly to the
abrupt case.
The second interesting case is given by the initial

conditions (3.5) imposed at t0 ¼ −∞, i.e., when the

frequency is given directly by eq. (6.1). Then, we start
and end with massless (in the field theory picture) case with
the peak 2=ε2 at time t ¼ 0. In this case the functions bjðtÞ
are given by

FIG. 11. (6.3) quench–temporal evolution: N ¼ 100 and DBC (ωðiÞ ¼ 3 and k ¼ 1). Lines: black n ¼ 6, blue n ¼ 10, green n ¼ 20,
yellow n ¼ 36, red n ¼ 50. The left panels are entropy. The right panels are capacity.

FIG. 10. (6.3) quench–temporal evolution: N ¼ 100 and DBC (ωðiÞ ¼ 3 and k ¼ 1). Lines: black n ¼ 6, blue n ¼ 10, green n ¼ 20,
yellow n ¼ 36, red n ¼ 50. The left panel is entropy. The right panel is capacity.

FIG. 12. (6.1) quench with ε ¼ 5—temporal evolution: N ¼ 100 and DBC (k ¼ 1). Lines: black n ¼ 6, blue n ¼ 10, green n ¼ 20,
yellow n ¼ 36, red n ¼ 50. The left panel is entropy. The right panel is capacity.
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b2jðtÞ ¼
a2jε

2 þ tanh2ðt=εÞ
1þ a2jε

2
; ð6:8Þ

for j ¼ 1;…; N. A remarkable property of the functions
(6.8) is that they satisfy the condition (3.5) also at t ¼ ∞;
there is no oscillatory behavior for aj > 0 at plus infinity
(independently of the value of parameter ε). Such a
property implies that we observe only a peak in both the
entropy and capacity, see Fig. 12. More insight can be
obtained when we consider the time-fixed slices. For
sufficiently large (positive and negative) time the behavior
of both the entropy and capacity coincide with the ones
presented in Sec. VA. However, near t ¼ 0 this behavior
becomes disordered, as depicted in the left panel Fig. 13. At
t ¼ 0 it resembles the massless case again, see the right
panel in Fig. 13.
Finally, as ε → 0 the frequency tends to the Dirac delta.

Then the numerical results for ε ¼ 0.0001 and t ≠ 0 give

the entropy and capacity as in Sec. VA, while for t ¼ 0 we
obtain the similar behavior; however, with different param-
eters. Namely, instead of the factor 1=6 (see Sec. VA) we
have N-dependent parameter; e.g. for N ¼ 100 we have
0.77 for entropy and 0.2 for capacity, respectively; the
suitable curves are depicted in Fig. 14.

VII. SUMMARY AND FINAL DISCUSSION

In this work we have studied the notion of the modular
entropy and capacity (in particular the fluctuations of the
entanglement entropy) in more detail. This is motivated by
the recent investigations of both the quantities in various
physical contexts; e.g., quantum gravitational effects. To
this end we considered systems of oscillators with the time-
dependent frequency coupled by a parameter. Such models,
due to the discretization procedure, can be used to analyze
field theory problems resulting from quench phenomena or
nonstatic gravitational metrics. First, we showed that the
modular and Rényi entropies have the same dynamics for
the basic solutions of the single TDHO. Moreover, in this
case the capacity is time-independent and we found its form
[Eqs. (3.12)–(3.15)].
Next, we studied the aforementioned notions for a finite

number of the TDHO and various bipartite decompositions.
As a result we obtained analytic formulas for them; in
contrast to the single oscillator case the dynamics of the
modular entropy is different from the Rényi one and the
capacity becomes time-dependent [Eqs. (4.8) and (4.10)].
Next, we focused on the capacity (fluctuation) of the
entanglement, which has recently gained increasing atten-
tion. In addition to the work [24] we considered various
boundary conditions related to the approximation of the
finite size system (in field theory picture). Taking n ≪ N
and the abrupt quenches they coincide with the observations
made in Ref. [24]. Obviously, we observed (for n ∼ N=2)
some differences due to finite-size assumption (e.g., oscil-
lations, in general nonlinear behavior with respect to
the subsystem size, and local area laws), see Figs. 3–7.

FIG. 13. (6.1) quench with ε ¼ 5—time slices, N ¼ 100 and DBC (k ¼ 1). Lines: blue—entropy, red—capacity. The left panel t ¼ 1.
The right panel t ¼ 0.

FIG. 14. (6.1) quench with ε ¼ 0.0001 (Dirac delta limit)—
time slices t ¼ 0, N ¼ 100 and DBC (k ¼ 1). Date points:
blue—entropy, red—capacity. Green line: 0.77 lnðð100=πÞ×
sinðπn=100ÞÞþ1.3, yellow line: 0.2 lnðð100=πÞsinðπn=100ÞÞ þ
0.95.
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We confirmed, in agreement with general theory, that the
capacity (as the entropy) is symmetric with respect to both
subsystems; moreover, for fixed time they increase with n
(for n < N=2). We analyzed also the relative fluctuation of
entanglement and, in Sec. IV C, some conditions which give
rise to distinguished periodicities. Special attention has been
paid to the theoretical prediction resulting from the quasi-
particles model; the initial slope coefficients, obtained in this
way, are different for the entropy and capacity and agreewith
the ones from lattice approximation (at least for some range
of parameters).
Finally, we studied some of the above issues in the case

of continuous protocols. To this end, in Sec. VI, we
considered frequencies which vanish at plus (and minus)
infinity. In particular, we examined the model in which the
frequency tends to the Dirac delta. In such a case the
behavior of the entropy and capacity, except one point (time
zero), coincide with the CFT results (see Sec. VA); fairly
surprisingly, at time zero we obtain similar behavior,
however, with N-dependent coefficient, see Fig. 14.
All the above issues have been discussed in the analytical

manner, due to the explicit forms (given by elementary

functions) of the solutions of the EMP equations (numerical
computations were used, for higher N, to the standard
matrix algebra only).
Turning to possible further developments, it would be

interesting to extend the above considerations to the
transition from the DBC to NBC (such a a scenario can
be used to simulate the dynamical Casimir effect [39]) and/
or multiply quenched harmonic chains [36]. The other
states can be also considered, e.g., the coherent or squeezed
ones, [59,63]. Additionally, some extensions to larger
dimensions are also interesting (see [33,64] and references
therein) or higher derivative theories [65]. In this context,
particularly interesting are applications in field theory in
expanding spacetimes [66,67]. Finally, basing on the
methods presented in Refs. [40,68], a deeper analysis of
the capacity (fluctuations of the entropy) would be
worthwhile.
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