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The classical black hole spacetime is modified semiclassically, depending strongly on the choice of the
quantum states. In particular, for the Boulware state the spacetime often takes a wormhole structure
mimicking closely a spacetime with a horizon. In this paper, in the context of the two-dimensional dilaton
Russo-Susskind-Thorlacius model, we consider all possible important interplays between the Hartle-
Hawking, Unruh and Boulware quantum states. Special attention is given to the hybrid states made up of
quantum fields either in the Hartle-Hawking or Unruh states, and some nonphysical fields (with the wrong
sign in the kinetic term in the action) in the Boulware state. We present a detailed analysis of the
semiclassical geometry in all these cases paying attention to the presence or absence of horizons, curvature
singularities and to the geodesic completeness of the spacetime. In the space of parameters specifying the
generic quantum state, we find a wide domain (with dominating nonphysical fields) where the semiclassical
geometry represents a geodesically complete, asymptotically flat causal diamond, free of horizon or
curvature singularity. However, a distant observer still finds Hawking radiation at asymptotic infinity. In the
Unruh-Boulware hybrid state solution, we find that the energy flux at asymptotic infinity receives
important corrections from its thermal behavior, leading to information recovery as we go from early to late
retarded times. As a result, the corresponding entropy shows a typical Page curve behavior.
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I. INTRODUCTION

The information paradox, or problem of information loss
in black holes, presents a conflicting point between the
previsions of general relativity and the laws of quantum
mechanics. Historically, the information loss problem was
posed in the framework of semiclassical gravity where the
properties of quantum fields are studied on a classical
background geometry, and this is the framework where the
information problem is most concretely posed and has been
investigated the most. Even though the problem will be
fully solved only within a setup of quantum gravity, one can
still wonder whether the change in the classical geometry
due to the back-reacting quantum fields may have some-
thing illuminating to say about the information paradox.
A first order thought would seem to suggest that it is not

possible, not to mention the fact that such an approach is
perturbative by construction. However, such conclusions
turn out to be naive, and in fact, with certain conditions on
lower dimensional systems (and also in some higher
dimensional cases), the back-reacted spacetime solutions
can be understood as nonperturbative and complete. In two
dimensions, string inspired classical theories [1,2] were
indeed a subject of collaborative focus in the early to
midnineties which led to the study of quantum fields in
their background (for a review, see e.g. [3]). Various studies
of two-dimensional gravity systems have once again
resurfaced in the past few years (in the context of black
hole information paradox), and our present work can be
understood as an entry to this vast and unfolding topic. In
particular, we study a two-dimensional model of semi-
classical gravity, where quantum fields propagate on a
classical spacetime, thereby influencing its geometry in a
manner that reinstates unitary evolution of the black hole
system. We have already studied some aspects of this
model in [4], focusing on static solutions, and here we will
review these static solutions with a different coordinate
system, which will allow us to discuss dynamical situa-
tions. This paper was written in parallel to a shorter one [5]
which focuses on one of the most interesting scenarios
regarding the information paradox.
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The model we chose to study is the semiclassical Russo-
Susskind-Thorlacius (RST) model [6], which extends the
classical Callan-Giddings-Harvey-Strominger (CGHS)
model [7] by taking into account conformal anomalies.
The way to do this is unclear in four dimensions, but in two
dimensions it is done by adding the Polyakov action [8] to
the CGHS one. This additional term is nonlocal, and this
translates into some unfixed parameters when solving the
gravitational equations, which can be determined by choos-
ing a state for the quantummatter. The stateswe have already
discussed in previous publications are as follows:
The Hartle-Hawking state: It contains thermal radiation

at infinity, and the stress-energy tensor is regular at the
horizon. It describes a black hole in thermal equilibrium
with the Hawking radiation.
The Boulware state: The stress-energy tensor is vanish-

ing at infinity, and there is no radiation there. However,
considered on a classical black hole metric, it is singular at
the horizon.
In the present paper we will also focus on
The Unruh state: The stress-energy tensor is regular

only at the future horizon; it vanishes at past null infinity,
and there is a thermal flux of radiation at future null infinity.
The Unruh (U) state is usually considered to describe the
process of the black hole evaporation.
For physical quantum particles in equilibrium with the

classical black hole, the Hartle-Hawking (HH) state is the
most natural and suited one, as an observer at infinity should
detect the radiation due to these particles. The Boulware state
(B) is themost appropriate onewhen consideringnonphysical
particles, such are ghosts, in the spacetime. By ghosts in the
present paper wemean the particles whose kinetic terms have
a negative sign. Indeed an observer at infinity should not
detect these particles, and the Boulware state is the only one
with this property. The problem of ghosts in black hole
evaporation was discussed in e.g. [9–11]. As suggested
briefly in our previous paper, it is possible to consider a
hybrid quantum state where both physical and nonphysical
particles are present, each in its own quantum state (HH or U
for physical particles and B for nonphysical ones). In this
paperwe analyzewhat new ideas these hybrid states can bring
to the discussion of the information paradox.
Our aim here is to consider all the combinations and

complexities of these states. The usual approach, where a
classical black hole background and the Hawking radiation
are taken separately, is obviously fundamentally incom-
plete. That is why our primary goal is to address the issue of
the backreaction of the Hawking radiation on the spacetime
as a part of the self-consistent picture. The first principal
question here is whether the black hole horizon is still
present in the backreacted geometry. Previous studies have
shown that the answer to this question is sensitive to the
choice of the vacuum state for the quantum fields in
question. In the case of the Hartle-Hawking state the
horizon is still there rather similarly to the classical

spacetime, although the parameters of the spacetime
geometry receive certain corrections and the geometry is
deviated from the classical one (even leading to naked
singularities in some cases). On the other hand, the
situation is radically different when the Boulware state is
chosen. Our analysis here makes it fairly clear that the
classical horizon is no longer present in this case. Indeed,
the semiclassical geometry depends on the parameters
present in the theory, and quite generally, the following
possibility is realized: a timelike or a lightlike singularity or
a narrow throat is formed. The narrow throat represents a
black hole mimicker, a horizonless spacetime that models
rather closely the general properties of a black hole.
The main focus of the present paper is on the hybrid

quantum state. We identify a situation in which the back-
reacted spacetime is a complete diamond similar to the
Minkowski spacetime without an horizon or a singularity.
No information can be fundamentally lost in such a
spacetime. However, looking from a distance this space-
time behaves like a black hole during a relatively long
retarded time. A distant observer does detect a thermal
radiation similar to the Hawking radiation. So the usual
information problem would seem to arise for the observer
during this period of time. However at later retarded times
important deviations from thermality start to show up in the
asymptotic radiation and effectively lead to restoration of
the information and to the expected form of the Page curve
for the asymptotic radiation. When the hybrid state consists
of particles from the HH and B states, this is the picture
presented in [5]. In the present paper, we have filled in
certain technical details which we omitted in [5]. After-
ward, we generalize the discussion to the hybrid Unruh-
Boulware state that has more realistic properties compared
to the Hartle-Hawking counterpart, and represents a time
dependent, evolving situation. This investigation is new,
and it represents our main result in this paper. We expect
that the two-dimensional case discussed here is indicative
of what may happen in a more realistic four-dimensional
situation, that is less technically accessible (although we
refer to [12] as a step toward a realization of the present
program in four dimensions).
A brief outline of our present work is the following. We

start with a discussion of the (semi)classical CGHS (and
RST) models in Secs. II and III, which illustrates how the
relevance of the quantum state arises when going from the
classical to the semiclassical analysis. Afterward, in Sec. IV,
we start by reviewing the static and dynamical solutions for
the classical CGHSmodel and the RSTmodel with only one
type of particle in a single quantum state (namely HH or B).
The dynamical situations are obtained by sending in a shock
wave of classical matter into the static spacetimes, and this
analysis is done quite easily in the conformal gauge. In
Secs.VandVI,we then investigate howconsidering a hybrid
quantum state modifies the solutions. There are three
possible cases to consider, according to the kind of particles
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(physical or nonphysical) that predominate the backreaction
on the spacetime. As it turns out, the most interesting
situation is when the number of nonphysical particles
exceeds the number of physical particles, which is why it
was the focus of our shorter paper [5]. Notably, there we
explained that the static spacetime is completely regularwith
a geodesically complete, wormhole type structure, while in
the dynamical case an apparent horizon appears. The energy
balance in the asymptotic region is also interesting, and has
been studied for all cases in Sec. VII. For the hybrid case,
if the spacetime is static, a thermal radiation is detected at
infinity, while for the dynamical situation, the radiation
deviates from thermality as time passes. In this case the
change in entropy of radiation exhibits the behavior
expected from the Page curve [13,14]. The study of the
Page curves for black holes and the importance of wormhole
type structures have been a topic of recent investigation for
both two and higher dimensions, fueled by the new develop-
ments in the direction of quantum extremal surfaces (see for
example the reviews [15,16]. And for an application toward
a black hole firewall [17,18], see Ref. [19]). The references
above are of course far from complete, but for some
concluding remarks along this line, with an enumeration
of our results in various cases, see Sec. VIII.

II. THE CLASSICAL MODEL

We begin our discussion with the classical CGHS
model [7] whose action is

S0 ¼
1

2π

Z
M
d2x

ffiffiffiffiffiffi
−g

p n
e−2ϕ½Rþ 4ð∇ϕÞ2þ 4λ2�− 1

2
ð∇fÞ2

o
;

ð2:1Þ
where ϕ is the dilaton scalar field, f the matter field and λ2 a
cosmological constant. This model has origins in string
theory but is interesting in its own right as a toy model of
two-dimensional gravity. Note that the coupling strength is
given by eϕ.
As noted in [20] it is instructive to compare this model

with the action obtained by considering a spherically
symmetric metric in four-dimensional gravity:

ḡ ¼ gμνdxμdxν þ r2ðx0; x1Þðdθ2 þ sin2θdφ2Þ;
μ; ν ¼ 0; 1: ð2:2Þ

If we compute the Einstein-Hilbert action for this metric
and define ϕ ¼ − lnðλrÞ we get

SEH ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
R̄

¼ 1

2π

Z
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕ½Rþ 2ð∇ϕÞ2 þ 2λ2e2ϕ�;

κ ¼
�
2π

λ

�
2

; ð2:3Þ

which is similar to (2.1); therefore one can think of e−ϕ
λ as

the radius of a transverse sphere at ðx0; x1Þ. See also [21]
for more discussions on this effective 2D model of gravity.
This analogy can help us to find a condition for the
existence of apparent horizons in terms of the dilaton field
ϕ. Indeed an apparent horizon is defined as the outer
boundary of a region of trapped surfaces, i.e. surfaces
whose area decreases along any future direction. Using the
four-dimensional metric (2.2) we see that the area of a
transverse sphere at ðx0; x1Þ is 4π

λ2
e−2ϕ. In null coordinates

x� ¼ x0 � x1 this transverse sphere is trapped if its area is
decreasing in both null directions, i.e. if ∂�ϕ > 0. Going
back to the two-dimensional theory while using the
conformal gauge (see Appendix A 1) where the metric
takes the form

ds2 ¼ −e2ρdxþdx−; ð2:4Þ

there will be a region of trapped points where ∂�ϕ > 0.
Since ð∇ϕÞ2 ¼ −4e−2ρ∂þϕ∂−ϕ this implies that
ð∇ϕÞ2 < 0, which means that the vector field ∇ϕ is
timelike in this region. The corresponding apparent horizon
is the boundary of this region, where therefore ð∇ϕÞ2 ¼ 0.
However this condition is not enough to define an

apparent horizon as one also has to check that ð∇ϕÞ2
changes sign when crossing this boundary, it is positive
outside the horizon and negative inside. If ð∇ϕÞ2 vanishes
on an hypersurface but is positive on both sides then there
is no apparent horizon but what we will call a Type I
wormhole: the radius of the transverse sphere has a
minimum there, but it increases on both sides. To summa-
rize we have the following definitions:
Apparent horizon: hypersurface on which ð∇ϕÞ2 ¼ 0

with ð∇ϕÞ2 > 0 on one side (the outside of the horizon) and
ð∇ϕÞ2 < 0 on the other (the inside).
Type I wormhole: region containing a hypersurface

where ð∇ϕÞ2 ¼ 0 with ð∇ϕÞ2 > 0 on both sides. This
represents a local minimum of the dilaton function
ϕðxþ; x−Þ. Taking the analogy between the dilaton ϕ
and the radial coordinate r in the 4D picture, this definition
corresponds to a usual understanding of the wormhole.
Finally we define the following:
Type II wormhole following [22]: If the spacetime has a

timelike Killing vector field ξ, which we will normalize by
imposing that ξ ¼ ∂t in flat asymptotic coordinates ðt; xÞ,
and the ðttÞ metric function g ¼ −ξ2 has a minimum in
some region, then this region corresponds to the throat of a
wormhole, where time flows slowly with respect to the time
of an external observer. If this minimum of g is exponen-
tially small and the spacetime is asymptotically flat on both
sides (which in particular means it has to be singularity
free) then this is a black hole mimicker, as discussed
in [22]. Note that this definition can be used in the static
case and is only approximative in a dynamical situation.
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We note that this discussion is motivated by the earlier
study in four dimensions where the black hole mimicker is
represented by a spacetime in which wormhole structures
of both type I and II are present at the same spherical
surface. This is however not a necessary condition to have a
good black hole mimicker as the examples discussed in the
present paper show, so that a wider class of mimickers is
possible to exist.
Now we will review some results discussed in the

original CGHS article [7].

A. Equations of motion

As we work in two dimensions, the Einstein tensor is
identically zero so the equations of motion for the metric
are given by the vanishing of the stress-energy tensor, i.e.,

Tð0Þ
μν ≡ −

2ffiffiffiffiffiffi−gp δS0

δgμν

¼ 2

π
e−2ϕf−∇μ∇νϕþ gμν½□ϕ − ð∇ϕÞ2 þ λ2�g

−
1

4π
gμνð∇fÞ2 þ 1

2π
∂μf∂νf

¼ 0: ð2:5Þ

Note that we use the same normalization of the stress-
energy tensor as in [4]. There is also the equation of motion
for the dilaton, given by

Rþ 4f□ϕ − ð∇ϕÞ2 þ λ2g ¼ 0; ð2:6Þ

and the one for the matter,

□f ¼ 0: ð2:7Þ

The trace of the stress-energy tensor is

gμνTð0Þ
μν ¼ 2

π
e−2ϕf□ϕ − 2ð∇ϕÞ2 þ 2λ2g ¼ 0; ð2:8Þ

and combining this with the dilaton equation (2.6) leads to

Rþ 2□ϕ ¼ 0: ð2:9Þ

B. Killing vector

Let us define the vector field ξ by

λξμ ≡ ϵμ
ν∇νϕ; ð2:10Þ

where ϵ is the Levi-Civita tensor defined by ϵ01 ¼ ffiffiffiffiffiffi−gp
and

ϵμν ¼ −ϵνμ. The normalization in (2.10) is chosen so that
ξ ¼ ∂t asymptotically. Using the equations of motion for
the metric (2.5) and the dilaton (2.6) we obtain that

∇μ∇νϕ ¼ −
1

4
Rgμν −

e2ϕ

2

�
1

4
gμνð∇fÞ2 − 1

2
∂μf∂νf

�
;

ð2:11Þ

so

λð∇μξν þ∇νξμÞ ¼ ϵν
ρ∇μ∇ρϕþ ϵμ

ρ∇ν∇ρϕ

¼ −
1

4

�
Rþ e2ϕ

2
ð∇fÞ2

�
ðϵνμ þ ϵμνÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0

þ e2ϕ

4
ðϵνρ∂μf þ ϵμ

ρ
∂νfÞ∂ρf

¼ e2ϕ

4
ðϵνρ∂μf þ ϵμ

ρ
∂νfÞ∂ρf: ð2:12Þ

Therefore if there is no classical matter (f ¼ 0) ξ is a
Killing vector, and its norm is given by

ð∇ξÞ2 ¼ −
1

λ2
ð∇ϕÞ2: ð2:13Þ

The vanishing of ξ2 will indicate the presence of a Killing
horizon; in this classical model it corresponds to the
vanishing of ð∇ϕÞ2 so that it coincides with the apparent
horizon condition defined previously, provided that the
norm of ξ changes sign when crossing this horizon.

C. Conformal gauge

Since we work in two dimensions we can put the metric
under the conformal form (see Appendix A 1),

ds2 ¼ −e2ρdxþdx−; ð2:14Þ

and in these coordinates the equations of motion become8<
:Tð0Þ

�� ¼ 1
π e

−2ϕð4∂�ρ∂�ϕ − 2∂2�ϕÞ þ 1
2π ð∂�fÞ2 ¼ 0;

Tð0Þ
þ− ¼ 1

π e
−2ϕð2∂þ∂−ϕ − 4∂þϕ∂−ϕ − λ2e2ρÞ ¼ 0;

ð2:15Þ

while the dilaton and matter equations respectively
become

−4∂þ∂−ϕþ 4∂þϕ∂−ϕþ 2∂þ∂−ρþ λ2e2ρ ¼ 0; ð2:16Þ

and

∂þ∂−f ¼ 0: ð2:17Þ

Finally the trace condition (2.9) gives

∂þ∂−ðρ − ϕÞ ¼ 0; ð2:18Þ
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and this allows us to write 2ρ ¼ 2ϕþ j where j satisfies
∂þ∂−j ¼ 0, which means that it is takes the form

j ¼ jþðxþÞ þ j−ðx−Þ: ð2:19Þ

By changing the coordinates to

x̃�ðx�Þ ¼
Z

x�

ej�ðuÞdu; ð2:20Þ

we get

ds2 ¼ −e2ϕdx̃þdx̃−; ð2:21Þ

which means that we can set j ¼ 0 and ρ ¼ ϕ.
In this new system of coordinates the Tð0Þ

þ− equation
becomes

e−2ϕð2∂þ∂−ϕ − 4∂þϕ∂−ϕÞ ¼ λ2; ð2:22Þ

i.e.

∂þ∂−e−2ϕ ¼ −λ2; ð2:23Þ

and we can integrate this equation 2 times with respect to
xþ and x− to get that

e−2ϕ ¼ u − λ2xþx−; ð2:24Þ

where

u ¼ uþðxþÞ þ u−ðx−Þ: ð2:25Þ

The matter equation is immediately integrated to get that

f ¼ fþðxþÞ þ f−ðx−Þ: ð2:26Þ

Now we can insert all this into the equations Tð0Þ
�� ¼ 0. This

gives, for Tð0Þ
þþ,

e−2ϕf4ð∂þϕÞ2 − 2∂2þϕg þ
1

2
ð∂þfÞ2 ¼ 0; ð2:27Þ

i.e.

∂
2þðe−2ϕÞ þ

1

2
ð∂þfÞ2 ¼ 0; ð2:28Þ

so that u� has to satisfy

u00� ¼ −
1

2
ð∂�fÞ2: ð2:29Þ

D. Solution without classical matter

If there is no matter (f ¼ 0) then u� is a linear function
of x� so

u ¼ λ2ðcþxþ þ c−x−Þ þ C; c�; C∈R; ð2:30Þ

and

e−2ϕ ¼ C − λ2ðxþx− − cþxþ − c−x−Þ: ð2:31Þ

We can then translate the coordinates by defining x̃� ≡
x� − c∓ and set Cþ λ2cþc− ≡ M

λ to finally obtain

e−2ϕ ¼ M
λ
− λ2xþx−: ð2:32Þ

Therefore the metric is given by

ds2 ¼ −
dxþdx−

M
λ − λ2xþx−

; M ≥ 0; ð2:33Þ

which is the well-known solution for the CGHS model. The
parameter M corresponds to the Arnowitt-Deser-Misner
(ADM) mass of the spacetime so we takeM ≥ 0. Note that
e−2ϕ > 0 so that the spacetime corresponds at most to the
region xþx− < M

λ3
. We can compute the components of the

Killing vector field ξ defined by (2.10), and we get

ξ ¼ λðxþ∂þ − x−∂−Þ: ð2:34Þ

E. Minkowski spacetime

Let us check that taking M ¼ 0 in (2.32) gives the
Minkowski spacetime. In this case we have e−2ϕ ¼
−λ2xþx− > 0, so that the spacetime corresponds to the
region xþx− < 0, and the metric is

ds2 ¼ dxþdx−

λ2xþx−
: ð2:35Þ

There are two distinct regions where xþx− < 0, namely
fxþ > 0; x− < 0g and fxþ < 0; x− > 0g which are caus-
ally disconnected and separated by a coordinate singularity
at ðxþ; x−Þ ¼ ð0; 0Þ. These two regions are the same as xþ
and x− are symmetric in the solution (2.35), so let us study
the right diamond fxþ > 0; x− < 0g. There we define the
new coordinates

σ� ≡� 1

λ
lnð�λx�Þ; −∞ < σ� < þ∞; ð2:36Þ

such that the metric becomes ds2 ¼ −dσþdσ−, which is
simply the flat Minkowski metric in null coordinates.
Therefore we have indeed recovered the Minkowski space-
time by taking M ¼ 0 in the CGHS solution (2.32). Note
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that in these σ� coordinates the Killing vector ξ is given by
ξ ¼ ∂þ þ ∂−, so that if we define the usual Cartesian
coordinates ðt; xÞ by σ� ¼ t� x we get ξ ¼ ∂t, recovering
the timelike Killing vector field of the Minkowski
spacetime.

F. Classical black hole

Let us now study the solution (2.32) for a positive mass
M > 0, which corresponds to the well-known classical
black hole of the CGHS model.
Horizon: As f ¼ 0 here, ξ is a Killing vector, and there

is a Killing horizon where ξ2 ¼ 0. Since

ξ2 ¼ −
1

λ2
ð∇ϕÞ2 ¼ λ2xþx−

M
λ − λ2xþx−

; ð2:37Þ

this horizon corresponds to the two axes x� ¼ 0. The sign
of ξ2 changes when crossing the horizon, so it is also an
apparent horizon, ξ is timelike outside and spacelike inside.
This is the CGHS black hole event horizon.
Singularity: The scalar curvature is given by

R ¼ 4Mλ2

M − λ3xþx−
; ð2:38Þ

so there is a curvature singularity located on the curve
ðxþs ; x−s Þ defined by

xþs x−s ¼ M
λ3

; ð2:39Þ

which corresponds to the boundary of the region e−2ϕ > 0.
Note that, as one should expect, the scalar curvature is
everywhere zero for M ¼ 0 which, as we have seen
previously, corresponds to the flat Minkowski spacetime.
Using the criteria established in Appendix C with
Fðxþ; x−Þ ¼ xþx− − M

λ3
we get

∂þF
∂−F

¼ x−

xþ
¼ M

λ3ðxþÞ2 > 0; ð2:40Þ

which means that this singularity is spacelike.
Geodesic (in)completeness: Now let us check whether

geodesics are complete when approaching the singularity.
To do this (see Appendix B) we first take a null geodesic
defined by xþ ¼ xþ0 > 0 and look at the integral

Δχ ¼
Z

x−

x−
0

dx̃− e2ϕðx
þ
0
;x̃−Þ; ð2:41Þ

in the limit x− → M
λ3xþ

0

. We have

Δχ ¼
Z

x−

x−
0

λdx̃−

M − λ3xþ0 x̃
− ¼ −

1

λ2xþ0
½lnðM − λ3xþ0 x̃

−Þ�x−x−
0
;

ð2:42Þ

which diverges when x− → M
λ3xþ

0

. Therefore null geodesics

are complete when approaching the singularity of the
CGHS black hole.
For timelike geodesics we use static coordinates (see

Appendixes A 2 and B 2) where for a timelike geodesic
going from ϕ0 to ϕ the change in proper time τ is

Δτ ¼
Z

ϕ

ϕ0

dϕ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðϕ̃Þ

E2 − gðϕ̃Þ

s
; E∈R; ð2:43Þ

with

gðϕÞ¼ e2ϕZðϕÞ; hðϕÞ¼ 1

2λ
Z0ðϕÞ; ZðϕÞ¼ e−2ϕþM

λ
:

ð2:44Þ

The singularity is located at ϕ → þ∞, and it is easy to
check that this integral is convergent in this limit, which
means that timelike geodesics are incomplete when
approaching the singularity (the geodesic incompleteness
in Dilaton gravity models has been studied in the past.
See e.g. [23]).
Asymptotic flatness: At spatial and null infinity we have

x� → �∞, and using (2.38) we get that the scalar curvature
R → 0 in this limit, so the spacetime is asymptotically flat.
We actually recover the Minkowski spacetime asymptoti-
cally as in this limit we have e−2ϕ ∼ −λ2xþx− which was
the solution for M ¼ 0. We can define the asymptotic
coordinates σ� ¼ 1

λ lnð�λx�Þ to put the metric under the
flat form ds2 ¼ −dσþdσ− at infinity. This spacetime is
represented in Fig. 1.

G. Perturbed classical black hole

Now that we have studied the static solution for the
CGHS model we would like to know what happens when it
is perturbed by infalling classical matter. Equation (2.29)
can be integrated twice to get that, up to constant trans-
lations of x� and of the matter distribution ∂�f,

u�ðx�Þ ¼ C� −
1

2

Z
x�

−∞
du

Z
u

−∞
dvð∂�fðvÞÞ2; C�∈R:

ð2:45Þ

For simplicity let us consider a pulse of mass m traveling
along a null geodesic xþ ¼ xþ0 in the x− direction. The
corresponding stress-energy tensor is
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1

2
ð∂þfÞ2 ¼

m
λxþ0

δðxþ − xþ0 Þ: ð2:46Þ

This normalization guarantees that the mass of the space-
time will increase by the mass m of the shock wave.
Therefore u− ¼ C− is simply a constant while

uþðxþÞ ¼ Cþ −
m
λxþ0

Z
xþ

−∞
du

Z
u

−∞
dv δðv − xþ0 Þ; ð2:47Þ

where Z
u

−∞
dv δðv − xþ0 Þ ¼ θðu − xþ0 Þ; ð2:48Þ

with θ the Heaviside function. Therefore

uþðxþÞ ¼ Cþ −
m
λxþ0

ðxþ − xþ0 Þθðxþ − xþ0 Þ: ð2:49Þ

Hence, defining M
λ ≡ Cþ þ C− to recover the previous

solution for xþ < xþ0 , the solution is given by

e−2ϕ ¼ M
λ
− λ2xþx− −

m
λxþ0

ðxþ − xþ0 Þθðxþ − xþ0 Þ: ð2:50Þ

The spacetime before the shock wave (xþ < xþ0 ) is the
static CGHS solution, with a singularity hidden behind
an horizon. After the shock wave (xþ > xþ0 ), the solution
becomes

e−2ϕ ¼ M þm
λ

− λ2xþ
�
x− þ m

λ3xþ0

�
; ð2:51Þ

which is exactly the same as (2.33) with total mass M þm
and a translation x− → x− − m

λ3xþ
0

. The event horizon is

shifted from x− ¼ 0 to x− ¼ − m
λ3xþ

0

, and the singularity lies

on the curve ðxþs ; x−s Þ defined by

xþs

�
x−s þ m

λ3xþ0

�
¼ M þm

λ3
; ð2:52Þ

so the trajectory of the singularity is continuous at
xþ ¼ xþ0 , but its derivative is not. This dynamical space-
time is represented in Fig. 2.

III. THE RST MODEL

The RST model [6] is an extension of the CGHS model
discussed previously. It takes into account the backreaction
of conformal matter on the geometry of spacetime by
including the quantum conformal anomaly in the action.
Since the respective theory is nonlocal one has to specify
certain boundary conditions. This effectively reduces to a
choice of the quantum state. We reserve the possibility
to have a situation when different quantum fields are in
different quantum states, as was discussed in the
Introduction. We consider the following action:

S ¼ S0 þ S1 þ S2; ð3:1Þ

FIG. 2. CGHS spacetime perturbed by a shock wave of
classical matter sent in at xþ ¼ xþ0 . It changes the trajectory of
the singularity, which remains spacelike, and the position of the
horizon. As for the static solution this picture also applies to the
perturbed Hartle-Hawking spacetime of the RST model.

FIG. 1. Static CGHS spacetime for f ¼ 0 and positive mass
M > 0. Both singularities are spacelike and hidden behind a
Killing apparent horizon. The spacetime is asymptotically flat
and not geodesically complete. This picture also applies to the
spacetime for the Hartle-Hawking state in the RST model.
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where S0 is the CGHS action (2.1) and

S1 ¼ −
X2
i¼1

κi
2π

Z
d2x

ffiffiffiffiffiffi
−g

p �
1

2
ð∇ψ iÞ2 þ ψ iR

�
; ð3:2Þ

S2 ¼ −
κ1 þ κ2
2π

Z
d2x

ffiffiffiffiffiffi
−g

p
ϕR: ð3:3Þ

S1 is the Polyakov action written under its local form with
two auxiliary fields ψ1 and ψ2 so that we can study
situations where two different types of particles are present,
each having different boundary conditions. The constants
κ1 and κ2 are the central charges associated with ψ1 and ψ2,
respectively. The central charge is taken to be positive for
physical particles and negative for nonphysical ones (such
as ghosts). In order to recover the usual RST model one
simply has to take κ2 ¼ 0. First we will compute a general
solution, before studying various particular cases.

A. Equations of motion

For each action term Si we define the associated stress-
energy tensor by

TðiÞ
μν ≡ −

2ffiffiffiffiffijgjp δSi

δgμν
; ð3:4Þ

and as this is a two-dimensional gravity model the total
stress-energy tensor must vanish, i.e.

Tμν ≡ Tð0Þ
μν þ Tð1Þ

μν þ Tð2Þ
μν ¼ 0: ð3:5Þ

Of course Tð0Þ
μν is the same as in the CGHS model

Tð0Þ
μν ¼ 2

π
e−2ϕf−∇μ∇νϕþ gμν½□ϕ − ð∇ϕÞ2 þ λ2�g

−
1

4π
gμνð∇fÞ2 þ 1

2π
∂μf∂νf; ð3:6Þ

while for S1 and S2 we get

Tð1Þ
μν ¼ 1

π

X2
κ¼1

κi

�
1

2
∂μψ i∂νψ i −∇μ∇νψ i

þ gμν

�
□ψ i −

1

4
ð∇ψ iÞ2

��
; ð3:7Þ

and

Tð2Þ
μν ¼ 1

π
ðκ1 þ κ2Þðgμν□ϕ −∇μ∇νϕÞ: ð3:8Þ

Each auxiliary field ψ i satisfies

□ψ i ¼ R; i ¼ 1; 2; ð3:9Þ

so that by plugging this into (3.2) one gets the usual
Polyakov action. The equation for the dilaton becomes

R

�
1þκ1þκ2

2
e2ϕ

�
þ4f□ϕ−ð∇ϕÞ2þλ2g¼0; ð3:10Þ

and the equation for the matter is unchanged,

□f ¼ 0: ð3:11Þ
Finally the trace of the stress-energy tensor is

gμνTμν ¼
2

π
e−2ϕf□ϕ − 2ð∇ϕÞ2 þ 2λ2g

þ 1

π

X2
i¼1

κi□ðψ i þ ϕÞ ¼ 0; ð3:12Þ

and using (3.9) to combine this with (3.10) so as to
eliminate the terms containing ð∇ϕÞ2 we get that

ðRþ 2□ϕÞðκ1 þ κ2 − 2e−2ϕÞ ¼ 0: ð3:13Þ

This implies that, for a nonconstant dilaton,

Rþ 2□ϕ ¼ 0; ð3:14Þ

which is the same condition as in the CGHS model (2.9).
The other possible solution to (3.14) is to have a constant

dilaton field ϕ ¼ − 1
2
lnðκ1þκ2

2
Þ. It corresponds to a 2D

spacetime with constant curvature R ¼ −2λ2. We do not
consider this solution here.

B. Conformal gauge

Just like in the CGHS model, the condition (3.14)
expressed in the conformal gauge imposes that

∂þ∂−ðρ − ϕÞ ¼ 0; ð3:15Þ

so

2ρ ¼ 2ϕþ j; j ¼ jþðxþÞ þ j−ðx−Þ; ð3:16Þ

and once again we can perform a change of coordinates
defined by

x̃� ¼
Z

ej�ðx�Þdx�; ð3:17Þ

to set ρ ¼ ϕ. In these new coordinates the components of
the stress-energy tensor are given by (2.15) and8<
:Tð1Þ

�� ¼ 1
π

P
2
i¼1 κi

n
1
2
ð∂�ψ iÞ2 − ∂

2
�ψ i þ 2∂�ϕ∂�ψ i

o
;

Tð1Þ
þ− ¼ 1

π

P
2
i¼1 κi∂þ∂−ψ i;

ð3:18Þ
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and (
Tð2Þ
�� ¼ 1

π ðκ1 þ κ2Þf2ð∂�ϕÞ2 − ∂
2
�ϕg;

Tð2Þ
þ− ¼ 1

π ðκ1 þ κ2Þ∂þ∂−ϕ:
ð3:19Þ

Combining equations (3.9) and (3.14)we obtain that□ðψ þ
2ϕÞ ¼ 0 so each auxiliary field ψ i can be expressed as

ψ i ¼ −2ϕþ wi; ð3:20Þ

with □wi ¼ 0, i.e.

wi ¼ wiþðxþÞ þ wi−ðx−Þ: ð3:21Þ
The functions wi will be determined by the boundary
conditions of each auxiliary field ψ i. Using this the

components of Tð1Þ
μν become

(
Tð1Þ
�� ¼ 2

π

P
2
i¼1 κif∂2�ϕ − ð∂�ϕÞ2 − ti�g;

Tð1Þ
þ− ¼ − 2

π ðκ1 þ κ2Þ∂þ∂−ϕ;
ð3:22Þ

where we have defined

ti� ≡ 1

2
w00
i� −

1

4
ðw0

i�Þ2: ð3:23Þ

Wealso defineTð12Þ
μν ≡ Tð1Þ

μν þ Tð2Þ
μν , whichwe consider as the

stress-energy tensor of the quantummatter, while Tð0Þ
μν is the

purely geometrical part. It is given by

(
Tð12Þ
�� ¼ 1

π

P
2
i¼1 κif∂2�ϕ − 2ti�g;

Tð12Þ
þ− ¼ − 1

π ðκ1 þ κ2Þ∂þ∂−ϕ:
ð3:24Þ

The �� component of the total stress energy tensor is now

T�� ¼ 1

π
e−2ϕf4ð∂�ϕÞ2 − 2∂2�ϕg þ

1

π

X2
i¼1

κið∂2�ϕ − 2ti�Þ

þ 1

2π
ð∂�fÞ2 ¼ 0; ð3:25Þ

and the þ− component gives

Tþ−¼
1

π
ð2e−2ϕ−κ1−κ2Þ∂þ∂−ϕ−

4

π
e−2ϕ∂þϕ∂−ϕ−

λ2

π
¼0:

ð3:26Þ
We define the new variable

ΩðϕÞ≡ ðκ1 þ κ2Þϕþ e−2ϕ; ð3:27Þ

and we get that

πT�� ¼ ∂
2
�Ω − 2

X2
i¼1

κiti� þ 1

2
ð∂�fÞ2 ¼ 0; ð3:28Þ

and

πTþ− ¼ −∂þ∂−Ω − λ2 ¼ 0: ð3:29Þ

Hence Ω can be expressed as

Ω ¼ −λ2xþx− þ uþðxþÞ þ u−ðx−Þ: ð3:30Þ

Inserting this into the equation for T�� gives

u00� ¼ 2
X2
i¼1

κiti� −
1

2
ð∂�fÞ2: ð3:31Þ

Note that, defining Ω0 ≡ dΩ
dϕ, the curvature can be expressed

in terms of Ω as

R ¼ 8e−2ϕ

Ω0

�
∂þ∂−Ω −

Ω00

Ω02 ∂þΩ∂−Ω
�
; ð3:32Þ

so we will have to look for possible curvature singularities
where Ω0 vanishes. We also have

ð∇ϕÞ2 ¼ −4e−2ϕ∂þϕ∂−ϕ; ð3:33Þ

and ∂�ϕ ¼ 1
Ω0 ∂�Ω, so the condition ð∇ϕÞ2 ¼ 0 is satisfied if

∂�Ω ¼ 0. This means that we will have to look for possible
apparent horizons or wormhole throats where ∂�Ω ¼ 0.

C. Static solution

For a vector field ξ ¼ ξþ∂þ þ ξ−∂− the Killing equations
give

�
∂þξ− ¼ 0 ¼ ∂−ξ

þ;

∂þðξþe2ϕÞ þ ∂−ðξ−e2ϕÞ ¼ 0:
ð3:34Þ

Assume that ϕðxþ; x−Þ ¼ ϕ̃ðxþx−Þ. We can show that this
situation corresponds to a static solution. Indeed in this case
the second Killing equation becomes

∂þξþ þ ∂−ξ
− þ ðx−ξþ þ xþξ−Þϕ̃0 ¼ 0; ð3:35Þ

so the vector ξ ¼ λðxþ∂þ − x−∂−Þ is a Killing vector. Note
that this is the same expression as we had found for the
Killing vector of the CGHS spacetime (2.34). As we will
see soon, this normalization guarantees that ξ ¼ ∂t in
asymptotically flat coordinates at infinity. Its norm is

ξ2 ¼ gμνξμξν ¼ λ2e2ρxþx−; ð3:36Þ
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so ξ is timelike where xþx− < 0 and spacelike where
xþx− > 0, and there is a Killing horizon where xþx− ¼ 0.
For such a static solution, Ω is also a function of the

product xþx−, and we must have

uþðxþÞ þ u−ðx−Þ ¼ ũðxþx−Þ; ð3:37Þ

which means that, for a solution without matter (f ¼ 0),

u�ðx�Þ¼2ðκ1P1þκ2P2Þlnðλjx�jÞþC�; P1;2;C�∈R:

ð3:38Þ

Therefore

Ω ¼ −λ2xþx− þ 2ðκ1P1 þ κ2P2Þ ln jλ2xþx−j þ
M
λ
;

M ≥ 0: ð3:39Þ

Taking κ1 ¼ κ2 ¼ 0 we must recover the CGHS
solution (2.32) where the parameter M corresponds to
the ADM mass of the spacetime so we take it as non-
negative. SinceΩ diverges when xþx− → 0we can expect a
coordinate singularity there, so let us study this solution on
one of the four quadrants delimited by the two axes x� ¼ 0.
Wewant the Killing vector ξ to be timelike at infinity, so we
choose the region fxþ > 0; x− < 0g (which by symmetry
is equivalent to the region fxþ < 0; x− > 0g). Then

Ω ¼ −λ2xþx− þ 2ðκ1P1 þ κ2P2Þ lnð−λ2xþx−Þ þ
M
λ
:

ð3:40Þ

We can recover the solution of the CGHS model (2.32)
by taking κ1 ¼ κ2 ¼ 0, while if we take ðP1; P2;MÞ ¼
ð− 1

4
;− 1

4
; 0Þ then

κϕþ e−2ϕ ¼ −λ2xþx− −
κ

2
lnð−λ2xþx−Þ; ð3:41Þ

and the solution for this equation is e−2ϕ ¼ −λ2xþx− which
is the flat Minkowski spacetime, as discussed in Sec. II E.
Taking the limit xþx− → −∞ with ϕ → −∞ in (3.40) we
get that e−2ϕ ∼ −λ2xþx−, which means that asymptotically
this static solution is also the Minkowski spacetime. Using
the asymptotic coordinates σ� ¼ � 1

λ lnð�x�Þ the metric
takes the flat form ds2 ¼ −dσþdσ−, and the Killing vector ξ
becomes ξ ¼ ∂þ þ ∂− ¼ ∂t. We can check explicitly that
the curvature goes to zero in this limit by using the
formula (3.32) with

Ω ∼ e−2ϕ ∼ −λ2xþx−; Ω0 ∼ −2e−2ϕ; Ω00 ¼ 4e−2ϕ;

ð3:42Þ

and

∂�Ω¼−λ2x∓þ2
κ1P1þκ2P2

x�
∼−λ2x∓; ∂þ∂−Ω¼−λ2

ð3:43Þ

to get

R → −4ð−λ2 þ λ2Þ ¼ 0: ð3:44Þ

Finally, inserting (3.40) into the T�� equations gives

u00� ¼ −
2ðκ1P1 þ κ2P2Þ

ðx�Þ2 ¼ 2ðκ1t1� þ κ2t2�Þ; ð3:45Þ

therefore we can take for a general pair ðκ1; κ2Þ

ti� ¼ −
Pi

ðx�Þ2 : ð3:46Þ

The value of the constants Pi depends on the quantum state
in which the particles described by the auxiliary fields ψ i
are, as we will discuss soon.

D. Perturbed solution

Just as in the CGHS model, let us now consider the static
solution for the RST model seen previously perturbed by a
pulse of classical matter of mass m traveling along a null
geodesic in the x− direction. The corresponding stress-
energy tensor is once again

1

2
ð∂þfÞ2 ¼

m
λxþ0

δðxþ − xþ0 Þ; ð3:47Þ

and we need to integrate (3.31), using (3.46). Imposing that
for xþ < xþ0 the solution should be identical to the static
situation described by (3.40) we get

Ω ¼ −λ2xþx− þ 2ðκ1P1 þ κ2P2Þ lnð−λ2xþx−Þ
þM

λ
−

m
λxþ0

ðxþ − xþ0 Þθðxþ − xþ0 Þ: ð3:48Þ

After the shock, xþ > xþ0 , we have

Ω ¼ −λ2xþ
�
x− þ m

λ3xþ0

�
þ 2ðκ1P1 þ κ2P2Þ lnð−λ2xþx−Þ

þM þm
λ

; ð3:49Þ

which is no longer static as Ω cannot be written as a
function of the product xþx−. We will later study the effect
of this shock wave on the spacetime, according to the
quantum states of particles.
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E. Quantum states

Now we would like to determine which quantum states
correspond to which values of the constants Pi in (3.46). To
do this we consider the usual RST model, that is to say with
only one auxiliary field ψ ¼ ψ1 of central charge κ ¼ κ1
and we take κ2 ¼ 0. Then (3.40) becomes

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− þ 2κP lnð−λ2xþx−Þ þM
λ
:

ð3:50Þ

We need to compute the energy density detected by an
observer at infinity, the quantum part of the stress-energy
tensor being

8<
:Tð12Þ

�� ¼ κ
π

n
∂
2
�ϕþ 2 P

ðx�Þ2
o
;

Tð12Þ
þ− ¼ − κ

π ∂þ∂−ϕ:
ð3:51Þ

Therefore let us study these quantities when xþx− → −∞
with ϕ → −∞. In this limit e−2ϕ ∼ −λ2xþx− and a careful
analysis shows that

∂
2
�ϕ ∼

1

2ðx�Þ2 ; ∂þ∂−ϕ ∼ −
κP

λ2ðxþx−Þ2 ; ð3:52Þ

which leads directly to

8<
:

Tð12Þ
�� ∼ κ

π
1þ4P
2ðx�Þ2 ;

Tð12Þ
þ− ∼ κ2P

πλ2ðxþx−Þ2 :
ð3:53Þ

Then we need to compute these components in the
coordinates σ� ¼ � 1

λ lnð�λx�Þ in which the metric is
asymptotically flat, and we get

8<
: T̃ð12Þ

�� ¼
�
dx�
dσ�

	
2
Tð12Þ
�� ∼ λ2κ

2π ð1þ 4PÞ;

T̃ð12Þ
þ− ¼ dxþ

dσþ
dx−
dσ− T

ð12Þ
þ− ∼ − κ2P

πxþx− → 0:
ð3:54Þ

Thus the radiation detected by an observer at infinity will
be zero only for P ¼ − 1

4
, which therefore corresponds to

the Boulware state. Note that the Minkowski spacetime,
for which P ¼ − 1

4
and M ¼ 0 as discussed previously, is

simply the Boulware state with zero mass. This was to be
expected as there should obviously be no radiation in
Minkowski spacetime.
Then for P ¼ 0 we get Tð12;σÞ

�� → λ2κ
2π which is the energy

density of a thermal gas with temperature T ¼ λ
2π.

Besides for P ¼ 0 the solution (3.50) is regular at xþx− ¼ 0
and can be extended throughout the whole plane
f−∞ < x� < þ∞g. Therefore there is a Killing horizon

where xþx− ¼ 0 and P ¼ 0 corresponds to the Hartle-
Hawking state.
Note that these values of the constant P for the Hartle-

Hawking and Boulware quantum states are consistent with
what was found in [4] (see Appendix A 2 for a detailed
discussion).

IV. SINGLE QUANTUM STATES

In this section we will consider the usual RST model,
that is to say when all the particles, described by a single
auxiliary field ψ and with central charge κ, are in the same
quantum state. Therefore we use the solution (3.50), taking
P ¼ 0 for the Hartle-Hawking state and P ¼ − 1

4
for the

Boulware state. As noted in Sec. III C the static solutions
thus obtained will all be asymptotically flat. The dynamical
solutions will be obtained by taking (3.49) with ðκ1; P1Þ ¼
ðκ; PÞ and κ2 ¼ 0.

A. Hartle-Hawking state

We start by examining the case where the particles are in
the Hartle-Hawking state (P ¼ 0) [24], meaning in par-
ticular that thermal radiation can be detected at infinity.
Since nonphysical particles should not be observed at
infinity we will only consider physical particles here, so
we take κ > 0.

1. Static solution

In this situation the static solution (3.50) becomes

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− þM
λ
; M ≥ 0; ð4:1Þ

and it is valid on the whole plane f−∞ < x� < þ∞g. Let
us study the structure of this spacetime.
Horizon: As discussed while defining the Hartle-

Hawking state in Sec. III E this spacetime has a Killing
horizon where x� ¼ 0 which coincides with the apparent
horizon condition ∂�Ω ¼ 0 since ∂�Ω ¼ −λ2x∓ here.
Singularity: Since κ > 0 here Ω0 ¼ κ − 2e−2ϕ vanishes

at ϕ ¼ ϕcr ≡ − 1
2
ln κ

2
where Ω takes the value

Ωcr ≡ΩðϕcrÞ ¼
κ

2

�
1 − ln

κ

2

�
: ð4:2Þ

Therefore, according to (3.32) there is a curvature singu-
larity on the curve ðxþs ; x−s Þ defined byΩðxþs ; x−s Þ ¼ Ωcr, i.e.

xþs x−s ¼ M
λ3

−
κ

2λ2

�
1 − ln

κ

2

�
: ð4:3Þ

This singularity is located behind the horizon xþx− ¼ 0 if
and only if the right-hand side of this equation is positive, i.e.
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M > Mcr ≡ λκ

2

�
1 − ln

κ

2

�
: ð4:4Þ

If this is the case then the singularity is spacelike, as in the
classical black hole. As for the CGHS solution, we can study
whether null geodesics are complete near the singularity by
considering the integral

Δχ ¼
Z

x−s ðxþ0 Þ

x−
0

dx̃− e2ϕðx
þ
0
x̃−Þ; ð4:5Þ

where x−s ðxþ0 Þ defined by (4.3) is the point where the
geodesic meets the singularity. Since at this point e−2ϕ

takes the finite value e−2ϕcr ¼ κ
2
this integral is convergent, so

the geodesic is incomplete. Note that this is a differencewith
the classical CGHS singularity for which null geodesics
were complete. The finite value of ϕ on the singularity also
means that the change in proper time for timelike geodesics
is finite, so that they are also incomplete.
Two-branch spacetime. The above mentioned incom-

pleteness of null geodesics may have the following inter-
esting interpretation. As it was suggested in [24] the dilaton
ϕ is a twofold function of xþx−. The one branch is valid for
values ϕ > ϕcr and asymptotically approaches the classical
CGHS black hole solution. The other branch is for ϕ < ϕcr.
The second branch is also asymptotically flat, and it
contains a Killing horizon. The two branches are glued
together at ϕ ¼ ϕcr, where the metric is of the C1 class.
(Notice that the classical CGHS metric is not even of C0

class at the singularity.) This means that the geodesics may
not end at the singularity but go further and re-emerge in
the second branch, so that the full two-branch spacetime
would be geodesically complete. The RST model can
be viewed as a one-loop effective action. It was speculated
in [24] that taking into account the higher loops would
smoothen the classical singularity even more so that the
two-branch spacetime would be regular but keeping the
discussed twofold structure (see also [25] for some related
work on two-loop effects extending the RST model).
Considering the spacetime that corresponds to the single

branch ϕ > ϕcr we see that the picture of the Hartle-
Hawking spacetime for M > Mcr is thus pretty much
identical to the CGHS solution represented in Fig. 1.
For M ¼ Mcr the singularity coincides with the horizon
at xþx− ¼ 0 while for M < Mcr there is a naked
singularity.

2. Dynamical solution

The dynamical solution for the Hartle-Hawking state
(P ¼ 0) is given by

Ω¼ κϕþe−2ϕ ¼−λ2xþx−þM
λ
−

m
λxþ0

ðxþ−xþ0 Þθðxþ−xþ0 Þ;

M≥ 0; ð4:6Þ

where we also only consider the case κ > 0. After the shock
wave (xþ > xþ0 ) the solution can be written as

Ω ¼ −λ2xþx̃− þM þm
λ

; x̃− ≡ x− þ m
λ3xþ0

: ð4:7Þ

This is the same as (4.1) with an increase of mass bym and
a translation by − m

λ3xþ
0

in the x− direction. Therefore the

structure is essentially the same, the only differences being
that the x− ¼ 0 horizon is displaced to x−h ¼ − m

λ3xþ
0

and the

singularity lies on the curve ðxþs ; x−s Þ defined by

xþs

�
x−s þ m

λ3xþ0

�
¼ M þm

λ3
−

κ

2λ2

�
1 − ln

κ

2

�
: ð4:8Þ

If the initial mass M is bigger than the critical mass Mcr
defined in (4.4) then the singularity will remain hidden
behind an horizon and spacelike. As for the static case the
picture of the spacetime for M > Mcr is identical to the
dynamical CGHS solution represented in Fig. 2.

B. Boulware state: Nonphysical particles

We will now study the Boulware state (P ¼ − 1
4
) for

which there is no radiation at spatial infinity. A limited
number of aspects for Boulware in the context of the RST
model was studied in the past in [26]. This state is
particularly adapted to the nonphysical particles (κ < 0),
which should not be detected at infinity, so we will study
this situation here.

1. Static solution

Taking P ¼ − 1
4
in (3.40) we get

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− −
κ

2
lnð−λ2xþx−Þ þM

λ
;

κ < 0; ð4:9Þ

and we analyze the structure of this solution on the region
fxþ > 0; x− < 0g, following similar steps to what we have
done for the Hartle-Hawking state previously.
Singularity: Since κ < 0 we have Ω0 ¼ κ − 2e−2ϕ < 0,

so it never vanishes. Therefore, according to (3.32), the
only possible curvature singularity is on the border of the
region of interest, i.e. where xþx− ¼ 0. Let us therefore
study the curvature (3.32) in the limit xþx− → 0. In this
limit Ω → −∞ which implies that ϕ → þ∞. Thus

κϕþ κ

2
lnð−λ2xþx−Þ−M

λ
¼−e−2ϕ− λ2xþx− → 0; ð4:10Þ

so

eκϕ ∼ eM=λð−λ2xþx−Þκ=2; ð4:11Þ
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and

e−2ϕ ∼ e−2M=λκð−λ2xþx−Þ → 0: ð4:12Þ

Note that the behavior or e−2ϕ in this limit will be useful
when discussing geodesic completeness. Besides

∂þΩ∂−Ω ¼ 1

xþx−

�
−λ2xþx− −

κ

2

�
2

∼
κ2

4xþx−
;

∂þ∂−Ω ¼ −λ2; ð4:13Þ

and

Ω0 ¼ κ − 2e−2ϕ → κ; Ω00 ¼ 4e−2ϕ: ð4:14Þ

Plugging all this into (3.32) we get that R → 0 in this limit.
Hence there is no curvature singularity on the border
xþx− ¼ 0 but spacetime is asymptotically flat there.
Geodesic completeness: Now that we know that the

region fxþ > 0; x− < 0g is singularity free let us study
whether it is geodesically complete. For null geodesics (see
Appendix B) we have to look at the integral

Δχ ¼
Z

0

x−
0

dx− e2ϕðx
þ
0
;x−Þ; ð4:15Þ

but since e2ϕðx
þ
0
;x−Þ ∼ e2M=λκ

−λ2xþ
0
x− when x− → 0 this integral is

divergent and null geodesics are complete. Conducting the
analysis in static coordinates one can show that timelike
geodesics are also complete. Therefore this spacetime is
asymptotically flat and geodesically complete at both
ends ϕ → �∞.
Horizon: The apparent horizon condition ∂�Ωðxþh ;

x−h Þ ¼ 0 gives the equation

xþh x
−
h ¼ −

κ

2λ2
> 0; ð4:16Þ

but this is outside of the region of interest, which thus does not
contain any horizon.
Wormhole structure: Since this spacetime is singularity

free and asymptotically flat we can study whether it has the
structure of a type II wormhole, as defined at the beginning
of Sec. II. In order to do this we study the metric function
gðxþx−Þ ¼ −ξ2 ¼ λ2e2ϕxþx− to see if it has a minimum for
some value of xþx−. Since κ < 0 the function ΩðϕÞ is
monotonous, and so is Ωðxþx−Þ, meaning that for each
value of xþx− there is a single corresponding value of ϕ.
Then one can check that g → 1 from below when
xþx− → −∞, and using (4.12) we get g → e2M=λκ < 1
(as κ < 0) when xþx− → 0. Therefore the function g does
not necessarily have a minimum, and if we impose the
conditions ∂�g ¼ 0 we get x�∂�ϕ ¼ − 1

2
, which, inserted

into the differentiated master equation (4.9) gives

e−2ϕ ¼ −λ2xþx−. But this is only true in the limit
xþx− → −∞, so the function g has no minimum, and
the spacetime does not have the structure of a black hole
mimicker.

2. Dynamical solution

The corresponding dynamical solution is given by

Ω¼ κϕþ e−2ϕ

¼ −λ2xþx− −
κ

2
lnð−λ2xþx−Þ

þM
λ
−

m
λxþ0

ðxþ − xþ0 Þθðxþ − xþ0 Þ; κ < 0; ð4:17Þ

which for xþ > xþ0 becomes

Ω ¼ −λ2xþx̃− −
κ

2
lnð−λ2xþx−Þ þM þm

λ
;

x̃− ¼ x− þ m
λ3xþ0

: ð4:18Þ

The limit x� → 0 is essentially the same as in the static
case, so the region fxþ > 0; x− < 0g is still singularity
free. The only difference is the appearance of an apparent
horizon as the condition ∂þΩðxþh ; x−h Þ ¼ 0 now gives

xþh

�
x−h þ m

λ3xþ0

�
¼ −

κ

2λ2
; ð4:19Þ

and this equation defines a curve which is partially
contained in the region fxþ > 0; x− < 0g and across which
the sign of ð∇ϕÞ2 changes.
Therefore the Boulware solution for nonphysical par-

ticles is always singularity free, and sending in a shock
wave of matter creates an apparent horizon which is absent
in the static solution. This spacetime is represented
in Fig. 3.

C. Boulware state: Physical particles

Let us now study the Boulware state (P ¼ − 1
4
) for

physical particles (κ > 0) which can also be a plausible
scenario.

1. Static solution

The static solution is

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− −
κ

2
lnð−λ2xþx−Þ þM

λ
;

κ > 0: ð4:20Þ

Singularity: The noticeable difference with the non-
physical case (κ < 0) is that now Ω0 ¼ κ − 2e−2ϕ vanishes
at ϕ ¼ ϕcr ¼ − 1

2
ln κ

2
where Ω takes the value Ωcr defined
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by (4.2). This means there is a possible curvature singu-
larity on the curve ðxþs ; x−s Þ defined by

κ

2

�
1 − ln

κ

2

�
¼ −λ2xþs x−s − lnð−λ2xþs x−s Þ þ

M
λ
: ð4:21Þ

If we define

Zs ≡ −
2λ2

κ
xþs x−s ; ð4:22Þ

this equation can be rewritten as

WðZsÞ≡ Zs − lnZs ¼ 1 −
2M
λκ

: ð4:23Þ

For Zs > 0 the functionW has a minimum at Zs ¼ 1 which
is Wð1Þ ¼ 1 so for M > 0 this equation has no solution in
the region Zs > 0, and this singularity is not in the
region fxþ > 0; x− < 0g.
Therefore we need to look at what happens where

xþx− ¼ 0. As in the κ < 0 case, let us study the limit
x− → 0 for a fixed value of xþ. In this limit Ω → þ∞,
which corresponds to ϕ → �∞, but in order to get to
ϕ → þ∞ one would have to pass through the singularity at
ϕ ¼ ϕcr (as ϕ → −∞ at spatial infinity). Thus the relevant
limit is ϕ → −∞ as x− → 0 (at a fixed value of xþ). Let us
compute the curvature in this limit. First we have

Ω∼e−2ϕ∼−
κ

2
lnð−λ2xþx−Þ; Ω0∼−2e−2ϕ; Ω00 ¼4e−2ϕ;

ð4:24Þ

and

∂�Ω¼ −λ2x∓ −
κ

2x�
∼−

κ

2x�
; ∂þ∂−Ω¼ −λ2; ð4:25Þ

so in this limit the curvature (3.32) is

R ∼ 4

�
λ2 þ Ω00

Ω02 ∂þΩ∂−Ω
�
; ð4:26Þ

with

Ω00

Ω02 ∂þ∂−Ω ∼
κ2

4e−2ϕxþx−
∼

−κ
2xþx− lnð−λ2xþx−Þ → −∞;

ð4:27Þ

so there is a null singularity on the axes x� ¼ 0.
Geodesic completeness: We can check whether null

geodesics are complete when approaching this singularity
by considering the integral

Δχ ¼
Z

0

x−
0

dx− e2ϕðx
þ
0
;x−Þ: ð4:28Þ

This time we have e2ϕðx
þ
0
;x−Þ ∼ −2

κ lnð−λ2xþ
0
x−Þ → 0 when

x− → 0 so this integral is convergent, meaning null geo-
desics are incomplete. In static coordinates a careful
analysis shows that timelike geodesics are also incomplete
at this singularity.
Horizon vs type I wormhole: The conditions ∂�Ωðxþh ;

x−h Þ ¼ 0 give

xþh x
−
h ¼ −

κ

2λ2
< 0; ð4:29Þ

which defines a curve ðxþh ; x−h Þ contained in the region
fxþ > 0; x− < 0g, but the sign of ð∇ϕÞ2 does not change
when crossing this curve, meaning that this is not an
apparent horizon but rather the throat of a Type I wormhole.
On one side there is the null singularity and on the other an
asymptotically flat spacetime. This is what we had already
found in [4].
The static Boulware solution for physical particles thus

contains a singularity located behind the throat of a
wormhole; it is represented in Fig. 4.

FIG. 3. Boulware spacetime for nonphysical particles perturbed
by a shock wave of classical matter at xþ ¼ xþ0 which creates an
apparent horizon, but the solution remains singularity free.
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2. Dynamical solution

The corresponding dynamical solution is given by

Ω¼ κϕþe−2ϕ¼−λ2xþx−−
κ

2
lnð−λ2xþx−Þ

þM
λ
−

m
λxþ0

ðxþ−xþ0 Þθðxþ−xþ0 Þ; κ>0; ð4:30Þ

which for xþ > xþ0 becomes

Ω ¼ −λ2xþx̃− −
κ

2
lnð−λ2xþx−Þ þM þm

λ
;

x̃− ¼ x− þ m
λ3xþ0

: ð4:31Þ

Horizons: We notice that there are now two distinct
apparent horizons as(

∂−Ω ¼ 0 ⇔ xþx− ¼ − κ
2λ2

; ðH1Þ
∂þΩ ¼ 0 ⇔ xþðx− þ m

λ3xþ
0

Þ ¼ − κ
2λ2

; ðH2Þ ð4:32Þ

and the sign of ð∇ϕÞ2 changes sign when crossing these
two curves. The apparent horizonH1 is the continuation of
what was the wormhole throat before the shock wave, while
H2 is a new apparent horizon.
Singularities: As in the κ > 0 case the limit xþx− → 0

gives the same behavior as before the shock wave, so there
is still a singularity there. However we have to check
whether the singularity at ϕ ¼ ϕcr has moved into the
region fxþ > 0; x− < 0g. It is on the curve ðxþs ; x−s Þ
defined by

Fðxþs ; x−s Þ ¼ −λ2xþs
�
x−s þ m

λ3xþ0

�
−
κ

2
lnð−λ2xþs x−s Þ

þM þm
λ

−
κ

2

�
1 − ln

κ

2

�
¼ 0; ð4:33Þ

which can be rewritten as

WðZsÞ ¼ Zs − lnZs ¼ 1 −
2ðM þmÞ

λκ
þ 2m
λκxþ0

xþs ;

Zs ¼ −
2λ2

κ
xþs x−s : ð4:34Þ

For each value of xþs > xþm ≡ ð1þ M
mÞxþ0 the right-hand

side of this equation is greater than 1, so there are two
solutions, one on the branch Zs < 1, located behind the
horizon H1 (which can be defined by Z ¼ 1), and one on
the branch Zs > 1, located before this horizon.
Therefore a singularity appears at xþ ¼ xþm, and to see

whether it is spacelike or timelike we study the sign of

Sðxþs ; x−s Þ≡ ∂þF
∂−F

¼ x−s
xþs

�
1þ

2m
λκxþ

0

xþs

1þ 2λ2

κ xþs x−s

�

¼ x−s
xþs

�
1þ

2m
λκxþ

0

xþs
1 − Zs

�
: ð4:35Þ

On the branch Zs < 1 this quantity is always negative
(note that x−s

xþs
< 0) so that the singularity is timelike. For

the other branch Zs > 1 we have, in the limit Zs → 1þ,
Sðxþs ; x−s Þ → þ∞, and in the limit Zs → þ∞ we get
Sðxþs ; x−s Þ ∼ x−s

xþs
< 0. Therefore on this branch the singular-

ity is spacelike at first, and then it becomes timelike. The
point at which this happens is such that Sðxþs ; x−s Þ ¼ 0
which gives

1þ 2λ2

κ
xþs

�
x−s þ m

λ3xþ0

�
¼ 0: ð4:36Þ

This is actually the equation satisfied by the horizon
H2 (4.32), which means that the singularity collides with
this horizon and becomes timelike at a finite point ðxþc ; x−c Þ,
which is given by

�
xþc ¼ λκxþ

0

2m ðe2m=λκ − 1Þ;
x−c ¼ − m

λ3xþ
0

1
1−e−2m=λκ :

ð4:37Þ

Thus the singularity is naked for xþ > xþc . Note that
both the singularity and H2 have the same asymptote
x− ¼ − m

λ3xþ
0

when xþ → þ∞. This solution is represented

in Fig. 5.

FIG. 4. Static Boulware spacetime for physical particles; there
is a null singularity at xþx− ¼ 0 on the other side of a type I
wormhole throat. Geodesics are incomplete when approaching
the singularity.
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V. A HYBRID QUANTUM STATE

Now that we have studied in detail the various solutions
corresponding to the Hartle-Hawking and Boulware states
when all the particles are in the same state, let us focus on a
hybrid quantum state with two auxiliary fields ψ1 and ψ2,
with central charges κ1 and κ2 respectively. We will assume
that ψ1 describes physical particles in the Hartle-Hawking
state, so that κ1 > 0 and P1 ¼ 0, and that ψ2 describes
nonphysical particles in the Boulware state, meaning that
κ2 < 0 and P2 ¼ − 1

4
. This choice is motivated by the fact

that an observer at infinity should only detect the radiation
of physical particles. The static solution (3.40) then
becomes

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− −
κ2
2
lnð−λ2xþx−Þ þM

λ
;

κ ¼ κ1 þ κ2; ð5:1Þ

and the dynamical solution for xþ > xþ0 (3.49):

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþ
�
x− þ m

λ3xþ0

�
−
κ2
2
lnð−λ2xþx−Þ

þM þm
λ

: ð5:2Þ

We will study the three cases κ ¼ 0, κ > 0 and κ < 0
separately in the following.

A. Zero κ case

Let us assume that κ ¼ κ1 þ κ2 ¼ 0, meaning that the
contribution of nonphysical particles exactly compensates
for the physical particle’s. In this case Ω ¼ e−2ϕ > 0.

1. Static solution

The static solution takes the form

e−2ϕ ¼ −λ2xþx− −
κ2
2
lnð−λ2xþx−Þ þM

λ
; ð5:3Þ

which can be rewritten as

e−2ϕ¼hðZÞþM
λ
; Z¼−λ2xþx−; hðZÞ≡Z−

κ2
2
lnZ:

ð5:4Þ

Note that Z > 0 on the region fxþ > 0; x− < 0g. Since
e−2ϕ > 0 only the region hðZÞ > −M

λ is available, which
corresponds to Z > Zs where Zs is the only solution of
hðZÞ ¼ −M

λ (κ2 < 0 so the function h is increasing on
�0;þ∞½). Therefore the available spacetime is the region
xþx− < − Zs

λ2
.

Horizon: We have

∂�Ωðxþh ; x−h Þ ¼ 0 ⇔ xþh x
−
h ¼ −

κ2
2λ2

> 0; ð5:5Þ

so there is no horizon in the spacetime.
Singularity: The curvature (3.32) can be computed

explicitly in terms of ðxþ; x−Þ to get

R ¼ 4

�
λ2 þ e2ϕ

xþx−

�
λ2xþx− þ κ2

2

�
2
�
; ð5:6Þ

and it diverges when xþx− → − Zs
λ2

since Ω → 0 and

ϕ → þ∞ in this limit. Therefore the border xþx− ¼ − Zs
λ2

corresponds to a curvature singularity. Applying the criteria
from Appendix C we get that this singularity is timelike.
Geodesic completeness: Let us check whether geodesics

are complete when approaching this singularity. For null
geodesics we look at the integral

Δχ ¼
Z

−Zs=λ2x
þ
0

x−
0

dx− e2ϕðx
þ
0
;x−Þ: ð5:7Þ

As x− → − Z0

λ2xþ
0

we have e2ϕ ¼ Ω−1 ∼ ½f0ðZ0ÞðZ − Z0Þ�−1
so this integral diverges, and null geodesics are complete
in this direction. However, using static coordinates and the
fact that the function Z is finite at the singularity one
can show that timelike geodesics are incomplete there.
Therefore this spacetime contains a naked singularity and is
geodesically incomplete. It is represented in Fig. 6.

FIG. 5. Boulware spacetime for physical particles perturbed
by a shock wave of classical matter at xþ ¼ xþ0 . What was a
wormhole throat before the shock becomes an apparent horizon
H1, and a singularity appears. The upper branch of the singularity
is timelike, and the lower one is spacelike behind the horizonH2,
and it becomes timelike after they collide at a finite point.
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2. Dynamical solution

The dynamical solution is

e−2ϕ ¼ −λ2xþx− −
κ2
2
lnð−λ2xþx−Þ

þM
λ
−

m
λxþ0

ðxþ − xþ0 Þθðxþ − xþ0 Þ; ð5:8Þ

which, for xþ > xþ0 , becomes

e−2ϕ ¼ hðZÞ − m
λxþ0

xþ þM þm
λ

; Z ¼ −λ2xþx−;

hðZÞ ¼ Z −
κ2
2
lnZ: ð5:9Þ

Here the available spacetime is the region where
hðZÞ > m

λxþ
0

xþ − Mþm
λ . For a fixed xþ this corresponds

to Z > ZsðxþÞ where ZsðxþÞ is the only solution of
hðZÞ ¼ m

λxþ
0

xþ − Mþm
λ .

Horizon: Contrary to the static case, here an apparent
horizon appears as

∂þΩðxþh ; x−h Þ ¼ 0 ⇔ xþh

�
x−h þ m

λ3xþ0

�
¼ −

κ2
2λ2

; ð5:10Þ

and this equation has a solution in the studied region for

xþ ≥ − λκ2x
þ
0

2m . When xþh → þ∞ we have x−h → − m
λ3xþ

0

which

is therefore the asymptote of the horizon.

Singularity: Compared to the static case, the trajectory
of the curve ðxþs ; x−s Þ defined by Ωðx−s ; x−s Þ ¼ 0 is modified
as this gives

xþs x−s ¼ −
Zsðxþs Þ
λ2

: ð5:11Þ

As in the static case it corresponds to a singularity as the
curvature

R ¼ 4

�
λ2 þ e2ϕ

xþx−



λ2xþ

�
x− þ m

λ3xþ0

�
þ κ2

2

�

×

�
λ2xþx− þ κ2

2

��
ð5:12Þ

diverges when ϕ → þ∞ and x� go to finite values. On this
singularity curve we also have x−s → − m

λ3xþ
0

when xþs → ∞,

so the apparent horizon and the singularity have the same
asymptote. Let us study their relative behavior. We have

( x−h ðxþÞ ¼ κ1
2λ2xþ −

m
λ3xþ

0

;

x−s ðxþÞ ¼ κ1
2λ2xþ lnð−λ2xþx−s Þ þ Mþm

λ2xþ − m
λ3xþ

0

;
ð5:13Þ

so

x̃−s ðxþÞ − x̃−h ðxþÞ ¼
κ1

2λ2xþ
flnð−λ2xþx−s Þ − 1g þM þm

λ2xþ
;

ð5:14Þ

and this is positive for sufficiently large values of xþ so that
x−s > x−h . The point of intersection between these two
curves is at ðxþhs; x−hsÞ such that ∂þΩðxþhs; x−hsÞ ¼ 0 ¼
Ωðxþhs; x−hsÞ which leads to8>><

>>:
xþhs ¼ λxþ

0

m

�
κ1
2
þ e1−2ðMþmÞ=κ1

	
;

x−hs ¼ −m

λ3xþ
0

�
κ1
2
e−1þ2ðMþmÞ=κ1þ1

	 : ð5:15Þ

Besides, as Ωðxþs ; x−s Þ ¼ 0, we have

dx−s
dxþ

¼ −
∂þΩ
∂−Ω

; ð5:16Þ

so the maximum of the curve x−s ðxþÞ corresponds to the
intersection with the apparent horizon at ðxþhs; x−hsÞ. Since
∂−Ω ¼ −λ2x− − κ2

2xþ > 0 the nature of the singularity is
determined by the sign of ∂þΩ, i.e. by the position of the
singularity relative to the horizon (defined by ∂þΩ ¼ 0). At
first it is outside of the horizon, where ∂þΩ < 0, so it is
timelike. After the intersection with the horizon it is located
inside it, where ∂þΩ > 0, and it becomes spacelike. This
spacetime is represented in Fig. 7.

FIG. 6. Static spacetime for the Hybrid RST model with κ ¼ 0
and κ > 0. The singularity is timelike and naked, and geodesics
are incomplete when approaching it.
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B. Positive κ case

Let us now consider the case where κ > 0. Then Ω has a
minimum at ϕ ¼ ϕcr ¼ − 1

2
ln κ

2
and takes the value

Ωcr ¼ κ
2
ð1 − ln κ

2
Þ. Therefore the situation is essentially

the same as in the previous case (κ ¼ 0), the only difference
being that the minimal value of Ω is now reached at a finite
value of ϕ. As we will see the global structure will thus be
almost the same.

1. Static solution

The static solution can be written as

Ω ¼ κϕþ e−2ϕ ¼ hðZÞ þM
λ
; Z ¼ −λ2xþx−;

hðZÞ ¼ Z −
κ2
2
lnZ; ð5:17Þ

and only the region fðZÞ > Ωcr − M
λ is available. This

corresponds to Z > Zs where Zs is the only solution of
hðZÞ ¼ Ωcr − M

λ . Therefore the available spacetime is the

region xþx− < − Zs
λ2
.

Horizon: As in the κ ¼ 0 case the apparent horizon
condition gives

∂�Ωðxþh ; x−h Þ ¼ 0 ⇔ xþh x
−
h ¼ −

κ2
2λ2

> 0; ð5:18Þ

so there is no apparent horizon in the spacetime.

Singularity: The curvature is

R ¼ 8e−2ϕ

Ω0

�
−λ2 −

4e−2ϕ

Ω02xþx−

�
λ2xþx− þ κ2

2

�
2
�
; ð5:19Þ

and it diverges when xþx− → − Zs
λ2

since ϕ → ϕcr

and Ω0 → 0 in this limit which means that the border
xþx− ¼ − Zs

λ2
corresponds to a timelike singularity.

Geodesic completeness: We can see that these null
geodesics are incomplete when approaching this singularity
by looking at the integral

Δχ ¼
Z

−Z0=λ2x
þ
0

x−
0

dx− e2ϕðx
þ
0
;x−Þ; ð5:20Þ

which is convergent since ϕðxþ0 ; x−Þ → ϕcr when
x− → − Z0

λ2xþ
0

. As in the κ ¼ 0 case timelike geodesics are

also incomplete there, as Z goes to a finite value. The
spacetime therefore has the same structure as in the κ ¼ 0
case, with the only difference being that timelike geodesics
are incomplete near the singularity.

2. Dynamical solution

As in the static case the dynamical spacetime for κ > 0
has the same structure as for κ ¼ 0.

C. Negative κ case

Finally let us consider the case κ < 0, meaning the
number of nonphysical particles exceeds the number of
physical particles. The properties of this solution were
already described in [5], so we will recall the most
interesting ones.

1. Static solution

Here the static solution is given by

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− −
κ2
2
lnð−λ2xþx−Þ þM

λ
;

κ < 0: ð5:21Þ

Singularity: First, since Ω0 ¼ κ − 2e−2ϕ < 0 never van-
ishes, there is no associated singularity. Then it appears that
Ω diverges when x� → 0, so let us study the curvature as
x− → 0 for a fixed value of xþ (by symmetry the result
will also be valid for xþ → 0). Since κ2 < 0, Ω → −∞ so
ϕ → þ∞ and we get

Ω∼−
κ2
2
lnð−λ2xþx−Þ∼ κϕ; Ω0 ∼ κ; Ω00 ¼ 4e−2ϕ;

ð5:22Þ

and

FIG. 7. Dynamical spacetime for the Hybrid RST model with
κ ¼ 0. At first the singularity is naked and timelike, but it goes
behind the apparent horizon at a finite point and becomes
spacelike. This picture also applies to the case κ > 0.
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∂þΩ→−
κ2
2xþ

; ∂−Ω∼−
κ2
2x−

→�∞; ∂þ∂−Ω¼−λ2:

ð5:23Þ

The first curvature term in (3.32) goes to zero as e−2ϕ, so we
have to compute the behavior of the second term,

R−Oðe−2ϕÞ¼−
8e−2ϕΩ00

Ω03 ∂þΩ∂−Ω∼−
8κ22
κ3

e−4ϕ

xþx−
: ð5:24Þ

To do this we use the fact that

−κϕ−
κ2
2
lnð−λ2xþx−ÞþM

λ
¼ λ2xþx−þe−2ϕ→0; ð5:25Þ

so

−λ2xþx− ∼ e2M=λκ2e−2κϕ=κ2 ; ð5:26Þ

and

R −Oðe−2ϕÞ ∼ 8λ2κ22
k3

e−2M=λκ2e−2ð2−κ=κ2Þϕ: ð5:27Þ

Since 0 > κ > κ2 so κ
κ2
< 1 and 2 − κ

κ2
> 0 which means

that R → 0, so there is no curvature singularity when
x� → 0. Therefore the region fxþ > 0; x− < 0g is singu-
larity free.
Geodesic completeness: Let us see if null geodesics are

complete when xþx− → 0 by considering the integral

Δχ ¼
Z

0

x−
0

dx− e2ϕðx
þ
0
;x−Þ: ð5:28Þ

According to (5.26) when x− → 0 we have

e2ϕ ∼ e2M=λκð−λ2xþx−Þ−κ2=κ; ð5:29Þ

where κ2=κ > 1 so that the integral is divergent and the
geodesic is complete. For timelike geodesics we use static
coordinates and (5.26) which can be rewritten as

ZðϕÞ ¼ Oðe−2κϕ=κ2Þ: ð5:30Þ

Then we have to compute the integral (B10) where, when
ϕ → þ∞, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ðϕÞ
E2 − gðϕÞ

s
¼ Oðe2ð1−κ=κ2ÞϕÞ → þ∞; ð5:31Þ

since 0 < κ=κ2 < 1. Thus the integral is divergent, and
timelike geodesics are also complete when xþx− → 0.
Therefore the region fxþ > 0; x− < 0g is geodesically
complete. We can also check this by performing a change
of coordinates. Let us define

y� ≡�λ−κ2=κeM=λκ κ

κ1

1

ð�x�Þ−κ1=κ ; ð5:32Þ

such that

ds2 ∼ −dyþdy−; ð5:33Þ

when x� → 0�, so the metric is regular in this limit which
corresponds to y� →∓∞. In these coordinates the metric
is given by

ds2 ¼ −e2M=λke−2ϕð−λ2xþx−Þ−κ2=kdyþdy−: ð5:34Þ

In the limit x� → 0� we have y� →∓ ∞ so the geodesics
are complete in these directions.
Horizon: The apparent horizon condition ∂�Ω ¼

0ðxþh ; x−h Þ gives

xþh x
−
h ¼ −

κ2
2λ2

> 0; ð5:35Þ

so there is no apparent horizon in this spacetime. It is
represented in Fig. 8, where we used the variable r ¼ e−ϕ

which can be seen as a radius.
Type II wormhole structure (black hole mimicker): As

explained in [5] this solution is a type II wormhole, i.e. a
black hole mimicker as suggested in [22] with a throat
where time flows slowly compared to an external observer.

FIG. 8. Static spacetime for the Hybrid RST model with κ < 0.
There is no singularity and no horizon, and it is geodesically
complete. We have used the variable r ¼ e−ϕ which can be seen
as a radius.
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2. Dynamical solution

Let us now consider the dynamical solution for this
κ < 0 case. For xþ > xþ0 we get

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþ
�
x− þ m

λ3xþ0

�
−
κ2
2
lnð−λ2xþx−Þ

þM þm
λ

: ð5:36Þ

Horizon: An apparent horizon appears because of the
shock wave since the apparent horizon condition now
gives

∂þΩðxþh ; x−h Þ ¼ 0 ⇔ xþh

�
x−h þ m

λ3xþ0

�
¼ −

κ2
2λ2

ðHÞ;

ð5:37Þ

and this is the equation of a curve H partially contained
in the region fxþ > 0; x− < 0g, which corresponds to an
apparent horizon. Its asymptote when xþ → þ∞ is
x−h ¼ − m

λ3xþ
0

.

Singularity: The limit x− → 0 is essentially the same as
in the static case, and a similar computation shows that the
curvature goes to zero there. We can also check what
happens for the curvature at future null infinity, i.e. when
xþ → þ∞ for a fixed value of x−. We have to distinguish
according to the sign of x̃− ¼ x− − x−h , that is to say
according to the position relative to the asymptote of the
apparent horizon H.
(1) Inside the horizon x− > x−h : here Ω → −∞ so

ϕ → þ∞, and we get that R → 0.
(2) Outside the horizon x− < x−h : we have Ω → þ∞ so

ϕ → −∞, and it is easy to check that R → 0.
(3) Along the horizon x− ¼ x−h : here we also have

Ω → þ∞ and ϕ → −∞, but computation of the
limit shows that R → 4λ2, which means that there
seems to be a curvature discontinuity along the
future null infinity at point C, which is defined by
xþ → þ∞ for x− ¼ − m

λ3xþ
0

.

This curvature discontinuity deserves a bit more analysis.
Let us study the behavior of timelike geodesics in the limit
xþ → þ∞ and outside of the horizon (x− < x−h ). The
geodesic equation for xþ is

d2xþ

dτ2
þ 2∂þϕ

�
dxþ

dτ

�
2

¼ 0; ð5:38Þ

where τ denotes the proper time along the geodesic. When
xþ goes to infinity we have ∂þϕ ∼ − 1

2xþ, and we can solve
the geodesic equation perturbatively to get that

xþ ≃ eατ; α > 0: ð5:39Þ

Inserting this into the timelike geodesic condition

�
ds
dτ

�
2

¼ −e2ϕ
dxþ

dτ
dx−

dτ
¼ −1; ð5:40Þ

and solving for x̃− ¼ x− − x−h one gets that

x̃− ≃ −e−λ2

α τ: ð5:41Þ

Note that we have xþx̃− ≃ −eαð1−
λ2

α2
Þτ, so for the first term to

be dominating in the right-hand-side of (5.36) we have to
take α > λ. From this we can say two things. First note that
the proper time τ can take arbitrarily large values, meaning
that timelike geodesics are complete when xþ goes to
infinity, and then taking the limit τ → þ∞ we see that
ðxþ; x̃−Þ → ðþ∞; 0Þ, which corresponds exactly to the
coordinates of the point C. This means that, at the right-
future null infinity, all timelike geodesics go to this point,
although they need an infinite amount of proper time to
reach it.
We can study the limit of the scalar curvature along one

of these timelike geodesics, and it turns out that it goes to
zero, so an observer will not observe any curvature
discontinuity at infinity.
Note that the spacetime is still singularity free, as in the

static case. It is represented in Fig. 9.

FIG. 9. Dynamical spacetime for the Hybrid RST model with
κ < 0. There is no singularity, but an apparent horizon appears.
The coordinate r ¼ e−ϕ is the usual radius.
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VI. THE HYBRID UNRUH STATE

A. Definition

In Sec. III E we defined the Hartle-Hawking and
Boulware state by imposing energy conditions at infinity.
In the Hartle-Hawking state there is thermal radiation at
both past and future null infinity, while particles in the
Boulware state do not emit any radiation at infinity.
Now in order to get a somewhat more realistic picture
of a black hole formation and evaporation we would like to
have no radiation at past infinity and thermal radiation of
physical particles at future infinity. This situation defines
the so-called Unruh state. In appropriate asymptotic
coordinates ðσþðxþÞ; σ−ðx−ÞÞ these energy conditions
translate into

T̃ð12Þ
þþ ¼

�
dxþ

dσþ

�
Tð12Þ
þþ ⟶

x−→−∞
0; ð6:1Þ

at past infinity, and

T̃ð12Þ
−− ¼

�
dx−

dσ−

�
Tð12Þ
−− ⟶

xþ→þ∞

λ2κ1
2π

; ð6:2Þ

at future infinity. Note that only the physical particles are in
the Unruh state, as the nonphysical ones should not emit
radiation at past or future infinity they are still in the
Boulware state. Also the Unruh state inevitably leads to a
nonstatic solution as it breaks the xþ ↔ x− symmetry.

B. Boundary conditions

In order to get a solution which satisfies (6.1) and (6.2)
we have to modify the boundary conditions of physical
particles, that is to say the functions t1�ðx�Þ defined by
(3.23) and which appear in the stress-energy tensor Tð12Þ
defined by (3.24). Let us recall that the classical static
solution is given by

e−2ϕ ¼ −λ2xþx− þM
λ
: ð6:3Þ

At null infinity (x� → �∞) the metric is asymptotically
flat as is seen by passing to the coordinates σ� ¼
� 1

λ lnð�λx�Þ in which the metric takes the form
ds2 ∼ −dσþdσ−. In these coordinates the energy fluxes are

T̃ð12Þ
�� ¼ λ2ðx�Þ2Tð12Þ

�� ¼ λ2ðx�Þ2
π

X2
i¼1

κið∂2�ϕ−2ti�Þ: ð6:4Þ

From (6.3) we can easily compute the asymptotic behavior
of ∂2�ϕ to get

8<
:

∂
2þϕ ∼

x−→−∞
1

2ðxþÞ2 ;

∂
2
−ϕ ∼

xþ→þ∞
1

2ðx−Þ2 ;
ð6:5Þ

so that the simplest choice for the functions ti� to satisfy the
asymptotic energy conditions (6.1) and (6.2) is, for physical
particles

t1þðxþÞ ¼
1

4ðxþÞ2 ; t1−ðx−Þ ¼ 0; ð6:6Þ

and for nonphysical particles

t2�ðx�Þ ¼
1

4ðx�Þ2 : ð6:7Þ

Note that this last equation simply corresponds to the
Boulware state. Of course we will have to check once we
have the complete solution that the energy conditions (6.1)
and (6.2) are indeed satisfied. The energy fluxes then take
the form

8<
:

Tð12Þ
þþ ¼ κ

π

�
∂
2þϕ − 1

2ðxþÞ2
	

Tð12Þ
−− ¼ κ

π

�
∂
2
−ϕ − κ2

2κðx−Þ2
	
:

ð6:8Þ

Using null static coordinates ðu; vÞ (see Appendix A 2) one
can check that, on the classical black hole background, this

leads to an energy flux at the future horizon Tð12Þ
vv ¼ − λ2κ

2π

and at future null infinity Tð12Þ
uu ¼ λ2κ1

2π . This is in agreement
with the Unruh state mentioned in [27], with the addition
here of nonphysical particles.

C. Solution

Having defined the Unruh state using the classical black
hole background, we can now study how the backreaction
modifies the geometry of the spacetime. In the absence of
matter (f ¼ 0) the choice (6.6) and (6.7) for ti� leads to�

uþðxþÞ ¼ − κ
2
lnðλxþÞ þ αþxþ þ βþ;

u−ðx−Þ ¼ − κ2
2
lnð−λx−Þ þ α−x− þ β−;

ð6:9Þ

where α� and β� are integration constants. The master
equation becomes

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− −
κ2
2
lnð−λ2xþx−Þ

−
κ1
2
lnðλxþÞ þ αþxþ þ α−x− þM

λ
; ð6:10Þ

where we have set βþ þ β− ≡ M
λ . Note that because of the

logarithmic terms we cannot freely translate x� without
changing the solution, so the constants α� cannot be set to

HYBRID QUANTUM STATES IN 2D DILATON GRAVITY PHYS. REV. D 108, 125012 (2023)

125012-21



zero arbitrarily. However, as we have seen previously,
adding a linear in x� to the solution corresponds to a
perturbation caused by a pulse of classical matter, so the
solution for a nonperturbed spacetime is given by

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx− −
κ2
2
lnð−λ2xþx−Þ

−
κ1
2
lnðλxþÞ þM

λ
: ð6:11Þ

When perturbed by a pulse of classical matter along a null
geodesic xþ ¼ xþ0 with energy

1

2
ð∂þfÞ2 ¼

m
λxþ0

δðxþ − xþ0 Þ; ð6:12Þ

the solution after the pulse (xþ > xþ0 ) becomes

Ω ¼ κϕþ e−2ϕ ¼ −λ2xþx̃− −
κ2
2
lnð−λ2xþx−Þ

−
κ1
2
lnðλxþÞ þM þm

λ
; ð6:13Þ

where we use the notation x̃− ¼ x− þ m
λ3xþ

0

.

In the hybrid Hartle-Hawking/Boulware state discussed
previously, the most interesting situation was when the total
central charge κ ¼ κ1 þ κ2 was negative. As such we will
only discuss the Unruh state for κ < 0. Note that what we
call Unruh state here is really a hybrid quantum state as
only the physical particles are in the Unruh state, while the
nonphysical particles are still in the Boulware state.

D. Unperturbed hybrid Unruh state solution

The unperturbed solution for the Unruh state is therefore
given by (6.11).
Horizon: We have

�
∂þΩ ¼ 0 ⇔ xþx− ¼ − κ

2λ2
> 0;

∂−Ω ¼ 0 ⇔ xþx− ¼ − κ2
2λ2

> 0;
ð6:14Þ

so there is no horizon in this spacetime.
Asymptotic behavior: Let us recall the expression for the

scalar curvature

R ¼ 8e−2ϕ

Ω0

�
∂þ∂−Ω −

Ω00

Ω02 ∂þΩ∂−Ω
�
; ð6:15Þ

with ∂þ∂−Ω ¼ −λ2. Since Ω0 ¼ κ − 2e−2ϕ < 0 does not
vanish the only possible curvature singularities are on the
border of the region fxþ > 0; x− < 0g so we need to study
the asymptotic behavior of the curvature on each compo-
nent of this border.
(1) Right future null infinity (xþ → þ∞): Here careful

analysis shows that the curvature R goes to zero.

This can also be proved by noting that e−2ϕ∼
−λ2xþx−, which corresponds to a flat metric.

(2) Right past null infinity (x− → −∞): Again e−2ϕ∼
−λ2xþx− and R → 0.

(3) Left past null infinity (xþ → 0): The analysis shows
that

e−2ϕ ∼ α2ðλxþÞð−λx−Þκ2κ ; α≡ e−
M
λκ > 0; ð6:16Þ

and note that κ2
κ > 1. Let us define the asymptotic

coordinates σ�ðx�Þ by
8<
:

λσþ ¼ 1
α lnðλxþÞ

λσ− ¼ 1

αðκ2κ −1Þð−λx−Þ
κ2
κ −1

;
ð6:17Þ

the metric becomes asymptotically flat, ds2∼
−dσþdσ−, at xþ → 0. One can check by a direct
computation that R → 0 in this limit.

(4) Left future null infinity (x− → 0): Here the behavior
of e−2ϕ is the same as in the previous case, namely
xþ → 0, meaning that the metric is asymptotically
flat there with the same asymptotic coordinates.

To summarize, this spacetime is singularity and horizon
free, and is asymptotically flat.

E. Perturbed hybrid Unruh state solution

Let us now study what happens when the solution for the
Unruh state is perturbed by a pulse of classical matter sent
at xþ ¼ xþ0 . Before this shock wave the solution is the same
as in the previous section, and after it is given by (6.13).
Horizon: There is no horizon before the shock wave,

as seen for the unperturbed solution, and after the pulse
we have

�
∂þΩ ¼ 0 ⇔ xþx̃− ¼ − κ

2λ2
> 0 ðHÞ;

∂−Ω ¼ 0 ⇔ xþx− ¼ − κ2
2λ2

> 0:
ð6:18Þ

The curve ðHÞ is partially contained in the region fxþ > 0;
x− < 0g, and it corresponds to an apparent horizon, as
ð∇ϕÞ2 changes sign when crossing it. The asymptote of this
horizon when xþ → þ∞ is x− ¼ x−h ≡ − m

λ3xþ
0

.

Asymptotic behavior: As in the previous case let us
study the asymptotic behavior of the metric and curvature.
First note that before the shock the spacetime is identical to
the unperturbed solution, so it asymptotically flat. Let us
study the other infinities (for xþ > xþ0 ) now.
(1) Right future null infinity (xþ → þ∞):

(a) Before the horizon (x̃− < 0): In this case e−2ϕ ∼
−λ2xþx̃− so the metric is asymptotically flat.

(b) Behind the horizon (x̃− > 0): This limit is a bit
more involved as
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e−2ϕ∼α2e2
λ2

κ x
þx̃−ðλxþÞð−λx−Þκ2=κ; α¼e−

Mþm
λκ ;

ð6:19Þ

and it is not obvious how to find asymptotically
flat coordinates. However a direct computation
shows that

R ∼ −
8λ2

κ
e−2ϕ → 0; ð6:20Þ

so spacetime is also flat there.
(2) Right past null infinity (x− → −∞): There e−2ϕ ∼

−λ2xþx−, so actually nothing changes compared to
the unperturbed solution; the metric is still flat.

(3) Left past null infinity (xþ → 0): Since this border is
located before the shock the perturbation does not
change anything, and spacetime is also flat.

(4) Left future null infinity (x− → 0): Here the situa-
tion is almost the same as for the unperturbed
case, as

e−2ϕ∼α2e−2
λ2

κ x
þx−h ðλxþÞð−λx−Þκ2κ ; α≡e−ðMþmÞ=λκ:

ð6:21Þ

This is similar to the unperturbed situation, and one
can check that the curvature indeed goes to zero.

As far as spacetime geometry is concerned we can see that
the hybrid Unruh state gives a very similar solution to the
one studied previously for the hybrid Hartle-Hawking/
Boulware state. The only notable difference is that the
unperturbed solution is no longer static, because of
the inherent nature of the Unruh state. But of course the
main motivation behind the Unruh state is to determine
whether the energy fluxes are consistent with what we
wanted to observe, namely radiation at future infinity
without radiation at past infinity. This is what we will
discuss now.

VII. ENERGY FLUXES

In this section we will compute the energy fluxes on the
spacetime border of the hybrid Hartle-Hawking/Boulware
and the hybrid Unruh states for both the unperturbed and
perturbed cases. To reduce the amount of computation one
can study these fluxes in the perturbed case, and then take
the limit m → 0 to get the corresponding flux in the
unperturbed situation. Note that the apparent horizon
disappears in this limit. On each border component we
are interested in computing the outgoing or ingoing flux

T̃ð12Þ
�� in asymptotically flat coordinates.

A. Energy for the hybrid
Hartle-Hawking/Boulware state

Let us go back to the hybrid Hartle-Hawking/Boulware
state discussed earlier and compute the outgoing or ingoing
energy flux at each border. See Fig. 10 for an illustration of
spacetime in this case.
(1) Right future null infinity (xþ → þ∞)

(a) Before the horizon (x̃− < 0): Here e−2ϕ ∼
−λ2xþx̃−, so we have the asymptotically flat
coordinates σþ ¼ 1

λ e
λxþ and σ− ¼ − 1

λ e
−λx̃− . The

outgoing energy flux is then

T̃ð12Þ
−− ¼ 1

π

�
dx−

dσ−

�
2
�
∂
2
−ϕ −

κ2
2ðx−Þ2

�

→
λ2

2π

�
κ −

ðx̃−Þ2
ðx−Þ2 κ2

�
: ð7:1Þ

We discussed this result in [5], arguing that one
could define a radiation entropy and recover a
Page curve, meaning the whole information is
recovered.
Taking the limit m → 0, i.e. x̃− ¼ x−, we

obtain that in the unperturbed solution without

horizon there is still radiation as Tð12Þ
−− → λ2κ1

2π for
all values of x−.

(b) Behind the horizon (x̃− > 0): Since

e−2ϕ ∼ α2e
2λ2

κ xþx̃−ð−λ2xþx−Þκ2=κ; ð7:2Þ

the asymptotic coordinates on this border are far
from obvious. However it is rather straight-
forward to show that Tð12Þ

−− → 0 there, so we
can consider that there is no outgoing flux
behind the horizon.

(2) Right past null infinity (x− → −∞): With and with-
out perturbation we have e−2ϕ ∼ −λ2xþx−, so we can
define the asymptotically flat coordinates σ� ¼
� 1

λ e
�λx� and get that the incoming energy flux is

T̃ð12Þ
þþ ¼ 1

π

�
dxþ

dσþ

�
2
�
∂
2þϕ−

κ2
2ðxþÞ2

�
→

λ2κ1
2π

: ð7:3Þ

This energy flux does not appear to have a physical
reason to exist, hence the need to define the Unruh
state where it is absent.

(3) Left past null infinity (xþ → 0): As this is before
the pulse it has no influence. We have e−2ϕ ∼
α2ð−λ2xþx−Þκ2=κ so we can find asymptotic coor-
dinates such that

dσ�

dx�
¼ 1

αð�λx�Þκ2=κ ; ð7:4Þ
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and obtain that T̃ð12Þ
−− → 0, meaning that there is no

incoming energy.
(4) Left future null infinity (x− → 0): A similar reason-

ing to the previous limit leads to T̃ð12Þ
þþ , so there is no

outgoing radiation there.

B. Energy for the hybrid Unruh state

We can follow the same procedure for the Unruh state,
and the results will be the same except for one important
difference which is that there is no incoming radiation at the
right past infinity, i.e.

T̃ð12Þ
þþ → 0; ð7:5Þ

when x− → −∞. This is in accordance with the definition
of the Unruh state. Note that on the right future infinity,
before the horizon, we still have

T̃ð12Þ
−− →

λ2

2π

�
κ −

ðx̃−Þ2
ðx−Þ2 κ2

�
; ð7:6Þ

so once again, as done in [5] for the Hartle-Hawking/
Boulware state, one can define an entropy radiation and
show that it exhibits the Page curve. Therefore with the
Unruh state we have a completely regular solution with an
apparent horizon and where the only energy flux is an
outgoing one corresponding to Hawking radiation. This is
presented in Fig. 11.
We also note that the spacetime corresponding to a

Unruh state is nonstatic, so that the energy is not conserved.
This is seen in our energy analysis: zero incoming energy at

past null infinity is transformed to a nonvanishing flux of
energy at the right future infinity. This flux is thermal for
earlier retarded times while it gets the important corrections
as in (7.6) for later times. These corrections are responsible
for the restoration of the initially seemingly lost informa-
tion that is manifested in the declining branch in the Page
curve for the entropy of the asymptotic radiation.

C. Entropy of asymptotic radiation

Here we present a discussion of the entropy of the
asymptotic radiation as is seen at the right future infinity.
We notice that in the context of the Page curve one usually
computes the entanglement entropy. In the RST model
it is given by value of the field ψ at the horizon; see
Refs. [28,29]. Instead, we present here an analysis of the
thermal entropy in asymptotic infinity. This analysis is
common both for the hybrid Hartle-Hawking and the
Unruh quantum states.
In [5] we studied the asymptotic energy radiation at the

right future null infinity, and we suggested that the radiation
entropy could be defined by the equation

∂−S ¼ 2πð−x−ÞTð12Þ
−− ; ð7:7Þ

where Tð12Þ
−− , defined by (3.24), is expressed here as

πTð12Þ
−− ¼ κ∂2−ϕ −

κ2
2ðx−Þ2 : ð7:8Þ

As is seen from the asymptotic values of the energy
densities (7.1) and (7.6), the energy flux is positive for
earlier values of x− and changes sign for x− > x−m with

FIG. 10. Spacetime for the hybrid Hartle-Hawking/Boulware
state perturbed by a pulse of classical matter. An apparent horizon
is created and there is radiation at both past and future infinity.
Note that without the pulse the horizon disappears, but there is
still thermal radiation.

FIG. 11. Spacetime for the hybrid Unruh/Boulware state
perturbed by a pulse of classical matter. An apparent horizon
is created, and there is Hawking radiation at future infinity with
modifications at later retarded times.
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x−m ¼
�
1 −

ffiffiffiffi
κ
κ2

q �
−1
x−h . So, the entropy defined by (7.7)

grows for x− < x−h and becomes decreasing for times
x− > x−m. This is precisely the behavior expected for the
Page curve in an information preserving scenario.
We can compute the variation of the radiation entropy

along the right future null infinity by computing, for a finite
value of xþ,

ΔS ¼ 2π

Z
−ε

−L
dx−ð−x−ÞTð12Þ

−− ; ð7:9Þ

where ε; L > 0 are two regulators designed to regularize
the possible divergences at x− → 0 and x− → −∞ respec-
tively. Then wewill take the limits ε → 0 and L → þ∞ and
finally xþ → þ∞. Note that we can assume −ε > x−h and
−L < x−h . The result of this computation was presented
in [5], and we will present the important steps here.
Replacing Tð12Þ

−− by its expression and performing an
integration by parts leads to

ΔS ¼ ½κ2 lnð−x−Þ þ 2κðϕ − x−∂−ϕÞ�x−¼−ε
x−¼−L ≡ ½sðx−Þ�x−¼−ε

x−¼−L;

ð7:10Þ

so we need to compute the behavior of the quantity sðx−Þ
for x− ¼ −ε → 0 and x− ¼ −L → −∞. Note that for the
moment we work with a finite value of xþ.
(1) For x− ¼ −ε → 0 we have (we recall that κ ¼ κ1 þ

κ2 < 0 and κ2 < 0)

Ω ¼ κϕþ e−2ϕ ¼ λ2xþε −
κ2
2
ln εþ C; ð7:11Þ

where C is a constant, which depends on xþ,
given by

C ¼ λ2xþx−h −
κ2
2
lnðλ2xþÞ þM þm

λ
: ð7:12Þ

Therefore Ω → −∞ when ε → 0, and hence one has
that ϕ → þ∞. Thus

κϕ ¼ −
κ2
2
ln εþ CþOðϵÞ: ð7:13Þ

Then differentiating (7.11) it is straightforward to
show that

κε∂−ϕ →
κ2
2
; ð7:14Þ

when x− ¼ −ϵ → 0, which leads to

sð−εÞ ¼ 2Cþ κ2; ε → 0: ð7:15Þ

(2) Let us now consider the limit x− ¼ −L → −∞. We
have

Ω ¼ κϕþ e−2ϕ ¼ λ2xþL −
κ2
2
lnLþ C; ð7:16Þ

where C is the same constant as in (7.12). Since
Ω ∼ λ2xþL → þ∞ we have that ϕ → −∞ with
e−2ϕ ∼ λ2xþL, meaning that ϕ ∼ − 1

2
lnL for large

L. Inserting this into (7.16) gives

e−2ϕ ¼ λ2xþLþ κ1
2
lnLþ CþOð1=LÞ: ð7:17Þ

Then it is once again easy to show that

L∂−ϕ →
1

2
; ð7:18Þ

in the limit −x− ¼ L → ∞, which leads to

sð−LÞ ¼ −κ1 lnLþ κð1 − lnðλ2xþÞÞ ð7:19Þ

in this limit. Now we can write the change in entropy
between x− ¼ −L and x− ¼ −ε for a fixed value
of xþ as

ΔS ¼ sð−εÞ − sð−LÞ ¼ κ1 lnðλ2xþL=eÞ

þ 2M
λ

þ 2m
λ

�
1 −

xþ

xþ0

�
; ð7:20Þ

using the expression (7.12) for the constantC as well
as that x−h ¼ − m

λ3xþ
0

. This is indeed the result pre-

sented in [5]. As was discussed in [5] the first term in
the above equation represents the entropy of thermal
radiation (at the Hawking temperature TH ¼ λ=2π)
that is seen by passing to the asymptotic coordinates
ðσþ; σ−Þ. The second term represents the entropy of
the classical black hole of mass M while the third
term is decreasing in xþ, and it represents the
contribution due to the classical matter perturbation.
The other observation is that the sum of the two last
terms in (7.20) is in fact the classical Wald’s entropy
SW ¼ 2e−2ϕ computed for the perturbed classical
solution (2.51) at the unperturbed horizon x− ¼ 0.
This is so at least for relatively small values of xþ.
The significance of this observation is not clear at
the present point and perhaps deserves further study.
We also note that the change in the entropy (7.20)
does not depend on the parameter κ2 due to the non-
physical particles.
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VIII. CONCLUDING REMARKS

We have summarized the main properties of every static
solution to the RST model studied in this paper in Table I.
When a singularity and (or) a horizon are present, sending
in a shock wave of classical matter to get a dynamical
spacetime modifies their trajectory, while for solutions
containing neither of these two things the shock has the
effect of creating a horizon. Our analysis reveals that as
soon as at least one (physical or nonphysical) particle in
the multiplet of fields is in the Boulware quantum state, the
horizon disappears in the backreacted geometry. Instead, the
norm of the Killing vector may have either a minimum that
signals a wormhole structure which mimics a black hole
horizon, or be monotonically decreasing with the spacetime
ending at either a timelike or lightlike singularity. The global
structure of the backreacted spacetime would be quite
radically different from the classical CGHS black hole.
We expect that a similar behavior should be valid in the four-
dimensional situation when the backreaction is taken into
account in a self-consistent manner. The respective analysis
is of course much more complicated due to the increasing
technical difficulties, although performing this analysis
becomes urgent and practical given the potential possibility
of seeing the deviations from the classical black hole
structure in the gravitational wave experiments.
As explained here and in [5], the most interesting

scenario is the hybrid state when there are more nonphysi-
cal particles than physical ones (κ < 0). Note that this
solution is similar to the Boulware solution for nonphysical
particles, the differences being that it is geodesically
complete, has the structure of a black hole mimicker
suggested in [22], and contains the thermal radiation due
to physical particles (as only physical particles radiate
energy at infinity; see Ref. [5] for more details about energy
radiation). The fact that one can recover the Page curve for
the change in entropy of radiation could suggest that this is
a possible realization of an object which mimics a black
hole without allowing any information loss. An interpre-
tation in terms of creation of physical and nonphysical
particle pairs was proposed in [5] to try to understand this
result conceptually. In the future, it will be interesting to
study these aspects more closely and investigate the

connection of our work with the recent and ongoing studies
on quantum extremal surfaces.
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APPENDIX A: COORDINATE CHOICE

1. Conformal coordinates

In a two-dimensional spacetime one can always perform
a change of coordinates to put the metric under the
conformal form (see for instance [30])

ds2 ¼ e2ρð−dt2 þ dx2Þ ¼ −e2ρdxþdx−; ρ¼ ρðxþ; x−Þ;
ðA1Þ

where the light-cone coordinates x� are defined by

x� ¼ t� x: ðA2Þ

The nonvanishing metric coefficients are therefore

gþ− ¼ −
1

2
e2ρ; gþ− ¼ −2e−2ρ; ðA3Þ

which give the Christoffel symbols,

Γþþþ ¼ 2∂þρ; Γ−
−− ¼ 2∂−ρ; ðA4Þ

and the Ricci scalar is given by

R ¼ 2

g
Rþ−þ− ¼ 8e−2ρ∂þ∂−ρ: ðA5Þ

Note that since we are working in two dimensions, Rþ−þ−
is the only independent component of the Riemann tensor,
and the spacetime is flat if and only if R ¼ 0. For a scalar
function f we have

ð∇fÞ2 ¼ −4e−2ρ∂þf∂−f; ðA6Þ

TABLE I. Main properties of the static solutions of each case studied. Hy stands for for Hybrid. WH stands for wormhole.

State HH B (nonphysical) B (physical) Hy (κ ¼ 0) Hy (κ > 0) Hy (κ < 0)

ðκ1; κ2Þ ð>0;¼ 0Þ ð<0;¼ 0Þ ð>0;¼ 0Þ ð>0; <0Þ ð>0; <0Þ ð>0; <0Þ
Horizon Killing None None None None None

Singularity Spacelike None Null Timelike Timelike None

Geodesics Incomplete Complete Incomplete Incomplete Incomplete Complete

WH Type I No No Yes No No No

WH Type II No No No No No Yes
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and

□f ¼ −4e−2ρ∂þ∂−f: ðA7Þ
A s explained in detail in the main text these conformal
coordinates are well suited when treating solutions per-
turbed by an incoming pulse of energy.

2. Static coordinates

In [4] we had exclusively worked in static coordinates
ðt;ϕÞ in which the metric is written as

ds2 ¼ −gðϕÞdt2 þ h2ðϕÞ
gðϕÞ dϕ2; ðA8Þ

where the coordinate ϕ corresponds to the value of the
dilaton field ϕ. By definition these coordinates are only
suited to describe static solutions and are therefore not
adapted to discuss the dynamical situations considered
in this paper. However, for static solutions, the study of
geodesic completeness is rather easy with this metric, as we
will see in the following.
For now let us discuss how to transition from the

conformal coordinates to the static ones for the solution
(3.50). In [4] we found that the functions gðϕÞ and hðϕÞ,
which determine the static metric (A8), could be written as

gðϕÞ ¼ e2ϕZðϕÞ; hðϕÞ ¼ 1

2λ
e2ϕZ0ðϕÞ; ðA9Þ

with the function ZðϕÞ determined by the equation

ΩðϕÞ ¼ κϕþ e−2ϕ ¼ ZðϕÞ þ A lnZðϕÞ þ a; a∈R;

ðA10Þ
where

A ¼ κ

8λ2
CðCþ 4λÞ; C∈R: ðA11Þ

Note that this solution and the following discussion are
easily extended to the hybrid case where there are two
constants ðA1; A2Þ for each of the two types of particles
considered.
Let us define

yðϕÞ≡ 1

2λ
lnZðϕÞ; ðA12Þ

such that the static metric takes the form

ds2 ¼ e2ϕe2λyð−dt2 þ dy2Þ; ðA13Þ

and

Ω ¼ κϕþ e−2ϕ ¼ e2λy þ 2λAyþ a: ðA14Þ

Then we define the null coordinates

σþ ≡ tþ y;

σ− ≡ t − y; ðA15Þ

and we get

ds2 ¼ −e2ϕeλðσþ−σ−Þdσþdσ−: ðA16Þ
Finally let us define

x� ≡� 1

λ
e�λσþ ; ðA17Þ

so that the metric becomes

ds2 ¼ −e2ϕdxþdx−; ðA18Þ

and

Ω¼ κϕþe−2ϕ¼−λ2xþx−þA lnð−λ2xþx−Þþa; ðA19Þ

Z ¼ e2λy ¼ −λ2xþx−: ðA20Þ

This suggests that the constants P and M in (3.50) are
related to the constants A and a by

P ¼ A
2κ

¼ CðCþ 4λÞ
16λ2

; a ¼ M
λ
: ðA21Þ

In [4] we found that the Hartle-Hawking state corresponds
to A ¼ 0, i.e. P ¼ 0, and the Boulware state to A ¼ − κ

2
,

i.e. P ¼ − 1
4
. This is consistent with what we found here in

Sec. III E.

APPENDIX B: GEODESICS

In this section we will explain how one can study
geodesic completeness of the various solutions presented
in this paper. In order to do this one needs to determine
whether the affine parameter associated to each geodesic
can take arbitrary large values, in which case the spacetime
is geodesically complete. Otherwise it is incomplete. It
turns out that null geodesics are easily studied in the
conformal metric (A1) while for timelike geodesics the
most adapted coordinates are the static ones (A8). Note
that timelike geodesics are therefore difficult to study in
dynamical solutions, where we cannot use static coordi-
nates, and can only be solved perturbatively in some cases.

1. Null geodesics

Let us use the conformal coordinates ðxþ; x−Þ where the
metric is given by (A1). The geodesic equations are, for an
affine parameter χ,

d2x�

dχ2
þ 2∂�ρ

�
dx�

dχ

�
2

¼ 0: ðB1Þ
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Note that we consider a general situation when spacetime is
not necessarily static and a generic function ρðxþ; x−Þ. For
timelike geodesics these equations are not easy to solve,
which is the reason why it is preferable to use static
coordinates, as will be explained later on. However null
geodesics, which satisfy ds2 ¼ −e2ρdxþdx− ¼ 0, are
curves of constant xþ or constant x− so that the geodesic
equations are greatly simplified and can be solved analyti-
cally. Let us consider a null geodesic defined by xþ ¼ xþ0
and parametrized by an affine parameter χ (of course the
following discussion is easily adapted to a geodesic defined
by x− ¼ x−0 ). Then

dxþ
dχ ¼ 0 along this lightlike geodesic

which means that

dρ
dχ

¼ dx−

dχ
∂−ρ; ðB2Þ

so the geodesic equation for x− becomes�
dx−

dχ

�
−1 d2x−

dχ2
¼ −2

dρ
dχ

; ðB3Þ

and this can be integrated into

ln
dx−

dχ
¼ −2ρþ c; c∈R; ðB4Þ

where we chose dx−
dχ > 0, which corresponds to a future-

oriented geodesic. Redefining the affine parameter χ by
χ → ecχ this leads to

dχ ¼ e2ρdx−; ðB5Þ

so for a geodesic of constant xþ ¼ xþ0 going from x−0 to
some value of x− the variation of the affine parameter χ is
given by the integral

Δχ ¼
Z

x−

x−
0

du e2ρðx
þ
0
;uÞ: ðB6Þ

This geodesic is complete if and only if this integral is
divergent for limiting values of x−. Of course there is the
analog integral for geodesics of constant x− ¼ x−0 .

2. Timelike geodesics

As mentioned previously it is rather difficult to study
timelike geodesics in the conformal metric (A1). Since we
have seen how to transition between conformal and static
coordinates let us use the static metric given by (A8). The
nonvanishing Christoffel symbols are

Γt
tϕ ¼ g0

2g
; Γϕ

tt ¼
gg0

2h2
; Γϕ

ϕϕ ¼ h0

h
−

g0

2g
; ðB7Þ

so the geodesic equation for the time coordinate t is

g
d2t
dτ2

þ g0
dϕ
dτ

dt
dτ

¼ d
dτ

�
g
dt
dτ

�
¼ 0; ðB8Þ

which means that g dt
dτ ¼ E is a constant of motion for the

geodesic. Note that we denote the affine parameter by τ as it
corresponds to the proper time along timelike geodesics.
Then we can use the condition ðdsdτÞ2 ¼ −1 to get

�
dϕ
dτ

�
2

¼ E2 − g
h2

: ðB9Þ

The variation of the proper time τ is then given by

Δτ ¼
Z

ϕ

ϕ0

dϕ̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðϕ̃Þ

E2 − gðϕ̃Þ

s
: ðB10Þ

We can thus study the completeness of timelike geodesics
by examining whether this integral is convergent or
divergent for limiting values of ϕ. However note once
again that this is only possible for static solutions, as
dynamical spacetimes require using conformal coordinates
in which timelike geodesics are not easily determined.

APPENDIX C: TANGENT VECTORS OF
IMPLICIT CURVES

When discussing the nature of singularities or horizons,
that is whether they are timelike, null or spacelike, it is
useful to have a concrete criteria. Thus let us consider
an implicit curve defined by Fðxþ; x−Þ ¼ 0. A tangent
vector ζ is

ðζþ; ζ−Þ ¼ e−ϕ
�
1;−

∂þF
∂−F

�
; ðC1Þ

and its norm is

ζ2 ¼ ∂þF
∂−F

: ðC2Þ

Therefore the singularity is timelike if ∂þF
∂−F

< 0 and space-

like if ∂þF
∂−F

> 0. We use this useful criteria several times in
the main text.
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