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In this paper, the massless Nambu–Jona-Lasinio model extended by the diquark interaction channel is
considered. We study its phase structure at zero temperature and in the presence of baryon μB, isospin μI ,
chiral μ5, and chiral isospin μI5 chemical potentials in the mean-field approximation. It is shown that the
model thermodynamic potential, which depends on three order parameters, M, π1, and Δ (where M, π1,
and Δ are, respectively, the chiral, charged pion, and diquark condensates of the model), is symmetric with
respect to the (dual) transformation whenM ↔ π1 and simultaneously μI ↔ μI5. As a result, on the mean-
field phase portrait of the model, the chiral symmetry breaking (CSB) and charged pion condensation (PC)
phases turn out to be dually conjugate with each other, which greatly simplifies the study of the phase
portrait of the model. In particular, the duality between CSB and charged PC phases means that in the
ðμI ; μI5Þ-phase portrait these phases are mirror symmetrical with respect to the line μI ¼ μI5, which at the
same time is the symmetry axis of the color superconducting (CSC) phase. Moreover, it follows from our
analysis that chiral μ5 chemical potential promotes the formation of CSC phase in dense quark matter. And
together with μI5, it can generate the charged PC phase even at μI ¼ 0.
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I. INTRODUCTION

It is well known that QCD is the theoretical basis for the
study of strongly interacting matter. However, to consider
the properties of dense quark (baryonic) matter, which can
exist in the cores of compact stars or arise in collisions of
heavy ions, perturbative QCD methods are inapplicable,
since the coupling constant of strong interactions is
quite large. In this case, effective QCD-like models,
including the simplest Nambu–Jona-Lasinio (NJL) model
which describes four-fermion interaction of u and d
quarks [1–4], are often used to study dense baryonic
medium composed of u and d quarks.
Extending this model by the terms with baryon μB and

isospin μI chemical potentials, one can investigate the
properties of quark matter with nonzero baryon nB and
nonzero isospin nI densities (which is typical for neutron
stars) [5–10]. More recently, it has become clear that chiral
asymmetry (or chiral imbalance), i.e., unequal densities nL
and nR of all left- and all right-handed quarks, is also one

of the properties of dense quark matter. Usually, the chiral
asymmetry is characterized by the quantity n5, called the
chiral density, n5 ≡ nR − nL. It can be generated dynami-
cally at high temperatures, such as in a fireball after a
heavy ion collision, due to the Adler-Bell-Jackiw anomaly
and the interaction of quarks with gauge (gluon) field
configurations with nontrivial topology, called sphalerons.
However, in the most general case, the chiral densities
of u and d quarks, i.e., the values nu5 ≡ nuR − nuL and
nd5 ≡ ndR − ndL, are not equal, and the quantity nI5 ≡
nu5 − nd5 is also nonzero (it is the so-called chiral isospin
density of quark matter). As it was discussed in Ref. [11],
the nonzero nI5 can be created in dense quark matter in the
presence of rather strong magnetic fields and even not so
large values of temperature; i.e., chiral isospin density can
be observed in magnetars. As a result, we see that baryon
medium composed of u and d quarks can be characterized,
in addition to temperature, by four more physical param-
eters, i.e., by densities nB, nI, n5, and nI5. Its thermody-
namics can be studied, in particular, on the basis of the
simplest NJL model extended with four chemical poten-
tials μB, μI , μ5, and μI5, which are thermodynamically
conjugated to the corresponding densities.
In the mean-field approximation, the ðμB; μI; μ5; μI5Þ-

phase portrait of this massless NJL model has been
investigated in the papers [12,13], where it was shown that
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only two nontrivial phases are allowed for dense quark
matter: (i) the chiral symmetry breaking (CSB) phase and
(ii) the charged pion condensation (PC) one. Moreover, it
was established that CSB and charged PC phases are
dually conjugated to each other. It means that at fixed μB
and μ5 these phases are arranged mirror-symmetrically
with respect to the line μI ¼ μI5 on the mean-field
ðμI; μI5Þ-phase portrait of the model, and so on. A more
detailed influence of this dual symmetry on the phase
structure of quark matter considered in the framework of
the simplest massless NJL model has been investigated in
Refs. [4,12–15]. As a result, it became clear that duality
greatly simplifies the study of the phase structure of quark
matter, especially when it is under the influence of several
external factors (chemical potentials). However, it must be
borne in mind that the duality between CSB and charged
PC is exact (in the large-Nc or mean-field approximations)
only in the chiral limit, i.e., when the bare quark mass m is
zero. At m ≠ 0, the duality between CSB and charged PC
is only approximative [15]. Nevertheless, the NJL analysis
at the physical point and observed approximative duality
between these phases are in fairly good agreement with
lattice QCD. In addition, it is important to be aware that
duality has been proven only within the framework of the
simplest NJL model, which is equivalent effectively to
QCD only in the region of rather small baryon densities,
i.e., at μB < 1 GeV. At higher energies or values of
chemical potentials, a more complicated NJL model,
whose Lagrangians contain other quark interaction chan-
nels, should be taken into account. As a result, the set of
possible ground states of dense quark matter can be
expanded, which (in the absence of dual symmetry
between some phases of matter) leads to significant
difficulties in studying the phase structure of real quark
matter, especially in the presence of four chemical poten-
tials. The solution of the task could be greatly simplified if
we had confidence in the existence of duality between
some phases of matter even at rather large values of μB, i.e.,
in the framework of a more complex NJL models, which
have a rather diverse structure of four-quark interactions.
The proposed work is devoted to the consideration of this
problem.
An illustration of the above can be the situation with

quark matter inside neutron stars, whose baryon density is
several times greater than the density of ordinary nuclear
matter, i.e., in this case μB ≳ 1 GeV. Moreover, there exist
an evident isospin and chiral asymmetries. Under such
extreme conditions, not only the quark-antiquark pairing,
but also the formation of diquark pairs, as well as their
condensation, is possible. It means that for large values of
μB the phenomenon of color superconductivity (CSC) can
be observed in the system. Therefore, to make it a more
adequate investigation of quark matter properties, an
extension of the standard NJL model with the help of
four-fermion terms responsible for the diquark interaction

channel is usually used [see, e.g., the reviews [3,16] or
Eq. (1) below]. The main goal of the present paper is to
show that in this case, despite the complication of the
model, its thermodynamic potential as a function of order
parameters and the four above-mentioned chemical poten-
tials has in the mean-field approximation a dual symmetry
between the CSB and the charged PC phases. Thereby, the
study of the phase structure of the model is simplified, and
it is possible to shed new light on the role of both isospin
and chiral (isospin) asymmetries in the formation of
diquark condensation. Moreover, our results can serve
as an argument in favor of the fact that duality is a
characteristic feature of the QCD itself, and not only of its
different effective models.
The paper is organized as follows. In Sec. II, a (3þ 1)-

dimensional NJL model with two massless quark flavors
(u and d quarks) that includes four kinds of chemical
potentials, μB; μI; μI5; μ5, is introduced. In addition to usual
quark-antiquark channels, the model contains the diquark
interaction one and is intended to describe the phenomenon
of color superconductivity in a dense quark medium.
Furthermore, the symmetries of the model are discussed,
and its thermodynamic potential (TDP) is presented in the
mean-field approximation. In Sec. III, the definition of the
dual symmetry of the TDP is given. It means that TDP is
invariant under some interchange of chemical potentials as
well as, in some cases, simultaneous interchange of con-
densates. In particular, it was established, and this is one of
the main results of the paper, that in the mean-field
approximation the TDP of the model is invariant under
the following two simultaneous transformations: μI ↔ μI5
and the chiral condensate ↔ charged PC one. As a result, in
the different ðμI; μI5Þ-phase portraits of the model, CSB and
charged PC phases are dually conjugated to each other;
i.e., they locate mirror symmetrically with respect to the line
μI ¼ μI5. In Sec. IV, a summary and conclusions are given.
Some technical details are relegated to Appendixes A and B.

II. MODEL AND ITS THERMODYNAMIC
POTENTIAL

Our investigation is based on the NJL type model with
two quark flavors. Its Lagrangian describes the interaction
in the quark-antiquark as well as scalar diquark channels,

L ¼ q̄½γνi∂ν −m�qþG½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2�
þH

X
A¼2;5;7

½qciγ5τ2λAq�½qiγ5τ2λAqc�; ð1Þ

where the quark field q≡ qiα is a flavor doublet (i ¼ 1, 2;
alternatively, we use the notations q1 ¼ u and q2 ¼ d) and
color triplet (α ¼ 1, 2, 3 or α ¼ r, g, b) as well as a four-
component Dirac spinor; qc ¼ Cq̄T and qc ¼ qTC are
charge-conjugated spinors, and C ¼ iγ2γ0 is the charge
conjugation matrix (the symbol T denotes the transposition
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operation). It is supposed that u and d quarks have an equal
current (bare) mass m. In Eq. (1) and below, τa stands for
Pauli matrices, and λA for Gell-Mann matrices in flavor and
color space, respectively. Clearly, the Lagrangian L is
invariant under transformations from color SUð3Þc as well
as baryon Uð1ÞB groups. In addition, at m ¼ 0, this
Lagrangian is invariant under the chiral SUð2ÞL ×
SUð2ÞR group. At m ≠ 0, the chiral symmetry is broken
to the diagonal isospin subgroup SUð2ÞI with the generators
Ik ¼ τk=2 (k ¼ 1, 2, 3). Moreover, in our system, the
electric and baryonic charges are conserved quantities, too,
since Q ¼ I3 þ B=2, where I3 is the third generator of the
isospin group SUð2ÞI , Q is the electric charge generator,
and B is the baryon charge generator (evidently, these quan-
tities are unit matrices in color space, but in flavor space,
they are Q ¼ diagð2=3;−1=3Þ, I3 ¼ diagð1=2;−1=2Þ, and
B ¼ diagð1=3; 1=3Þ). If the Lagrangian (1) is obtained from
the QCD one-gluon exchange approximation, then the
quantity H=G should not differ too much from the value
of 0.75 [3,16].
Note that the Lagrangian (1) describes physical processes

in vacuum. To use the model (1) to study properties of dense
quark medium, it is necessary to modify Lagrangian (1) by
adding terms with chemical potentials,

Ldense ¼ Lþ qMγ0q

≡ Lþ q̄

�
μB
3
þ μI

2
τ3 þ

μI5
2

γ5τ3 þ μ5γ
5

�
γ0q; ð2Þ

where the chemical potential matrixM contains in the most
general case four different chemical potential terms respon-
sible for the description of quark matter with nonzero
baryon (μB), isospin (μI), chiral (μ5), and chiral isospin
(μI5) densities, respectively.
If all chemical potentials in (2) are nonzero quantities,

then SUð2ÞI at m ≠ 0 is not the symmetry group of this
Lagrangian. Instead, due to the μI term, it is symmetric under
the flavor Uð1ÞI3 group, q → expðiατ3=2Þq. Note, however,
that in the chiral limit (m ¼ 0) an additional symmetry of the
Lagrangian (2) appears, Uð1ÞAI3∶ q → expðiαγ5τ3Þq.
To study the phase diagram of the system (2), we need to

get its thermodynamic potential (in the mean-field approxi-
mation). For this purpose, let us consider the linearized
version L of Lagrangian (2) that contains auxiliary bosonic
fields,

L¼ q̄½γνi∂νþMγ0−σ−m− iγ5π⃗ τ⃗�q− 1

4G
½σ2þπ2a�

−
1

4H
Δ�

AΔA−
Δ�

A

2
½qciγ5τ2λAq�−

ΔA0

2
½qiγ5τ2λA0qc�: ð3Þ

In Eq. (3) and later, a summation over repeated indices
a ¼ 1, 2, 3 and A; A0 ¼ 2, 5, 7 is implied. Clearly, the

Lagrangians (2) and (3) are equivalent, as can be seen by
using the equations of motion for bosonic fields, which take
the form

σðxÞ¼−2Gðq̄qÞ; πaðxÞ¼−2Gðq̄iγ5τaqÞ;
ΔAðxÞ¼−2Hðqciγ5τ2λAqÞ; Δ�

AðxÞ¼−2Hðqiγ5τ2λAqcÞ:
ð4Þ

It follows from (4) that the mesonic fields σðxÞ; πaðxÞ are
real quantities, i.e., ðσðxÞÞ† ¼ σðxÞ; ðπaðxÞÞ† ¼ πaðxÞ (the
superscript symbol † denotes the Hermitian conjugation),
but all diquark fields ΔAðxÞ are complex scalars, so
ðΔAðxÞÞ† ¼ Δ�

AðxÞ. Clearly, the real σðxÞ and πaðxÞ fields
are color singlets, whereas scalar diquarks ΔAðxÞ form a
color antitriplet 3̄c of the SUð3Þc group. Note that the
auxiliary bosonic field π3ðxÞ corresponds to real π0ðxÞ
meson, whereas the physical π�ðxÞ-meson fields are
the following combinations of the composite fields (4),
π�ðxÞ ¼ ðπ1ðxÞ ∓ iπ2ðxÞÞ=

ffiffiffi
2

p
. If some of the scalar

diquark fields have a nonzero ground-state expectation
value, i.e., hΔAðxÞi ≠ 0, the color symmetry of the
model (2) is spontaneously broken down.
In the one fermion-loop approximation (or in the mean-

field approximation) and in the presence of the dense quark
medium, the effective action Seffðσ; πa;ΔA;Δ�

A0 Þ of the
model (1) is expressed by means of the path integral over
quark fields,

expðiSeffðσ;πa;ΔA;Δ�
A0 ÞÞ ¼N0

Z
½dq̄�½dq�exp

�
i
Z

Ld4x
�
;

ð5Þ

where

Seffðσ; πa;ΔA;Δ�
A0 Þ ¼ −

Z
d4x

�
σ2 þ π2a
4G

þ ΔAΔ�
A

4H

�
þ S̃eff

ð6Þ

and N0 is a normalization constant. The quark contribution
to the effective action, i.e., the term S̃eff in (6), is

expðiS̃effÞ¼N0
Z

½dq̄�½dq�exp
�
i
Z �

q̄Dq−
Δ�

A

2
½qciγ5τ2λAq�

−
ΔA0

2
½qiγ5τ2λA0qc�

�
d4x

�
; ð7Þ

where we have used the notation

D ¼ ðγνi∂ν þMγ0 − σðxÞ −m − iγ5π⃗ðxÞτ⃗Þ · 1I3c ; ð8Þ

where 1I3c is the unit operator in the tree-dimensional color
space. Starting from Eqs. (6) and (7), one can define the
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TDP Ωðσ; πa;ΔA;Δ�
A0 Þ of the model (1). Indeed, this

quantity is defined by the following relation,

Seff jσ;πa;ΔA;Δ�
A0¼const ¼ −Ωðσ; πa;ΔA;Δ�

A0 Þ
Z

d4x: ð9Þ

The ground-state expectation values (mean values)
hσðxÞi; hπaðxÞi; hΔAðxÞi; hΔ�

A0 ðxÞi of the auxiliary bosonic
fields (4) are solutions of the gap equations for the TDP
Ωðσ; πa;ΔA;Δ�

A0 Þ (in our approach, all ground-state expect-
ation values do not depend on coordinates x),1

∂Ω
∂πa

¼ 0;
∂Ω
∂σ

¼ 0;
∂Ω
∂ΔA

¼ 0;
∂Ω
∂Δ�

A0
¼ 0; ð10Þ

and usually they are the coordinates of the global minimum
point (GMP) of Ω vs σ; πa;ΔA;Δ�

A0 . Note that at nonzero
bare quark mass m ≠ 0, the quantity hσðxÞi, called chiral
condensate, is always nonzero. However, in the chiral limit,
m ¼ 0, there can exists a region of chemical potentials in
which hσðxÞi ¼ 0. In this case, it is the chiral symmetric
phase of the model. In contrast, at m ¼ 0, the region with
hσðxÞi ≠ 0 is called the chiral symmetry breaking phase.
Moreover, at both m ¼ 0 and m ≠ 0, the GMP of the TDP
with hπ�ðxÞi ≠ 0 corresponds to the so-called charged pion
condensation phase. But in the case when one of the scalar
diquark fields has a nonzero ground-state expectation
value, hΔAðxÞi ≠ 0, we have a phase with spontaneously
broken color SUð3Þc symmetry. It is called the color
superconducting one.
Recall that both the Lagrangian (2) and the effective

action (6) are invariant under the color SUð3Þc group. As a
consequence of this fact, all ΔA and Δ�

A0 dependence of the
TDP Ωðσ; πa;ΔA;Δ�

A0 Þ (9) is shown in its form depending
on the combination Δ2Δ�

2 þ Δ5Δ�
5 þ Δ7Δ�

7 ≡ Δ2, where Δ
is a real quantity. Let us note also that in the chiral limit
[due to a UI3ð1Þ × UAI3ð1Þ invariance of the model (2)] the
TDP Ω (9) depends effectively only on the combinations
σ2 þ π23 and π21 þ π22 (in addition to Δ). So, at m ¼ 0, one
can put π3 ¼ 0 and π2 ¼ 0 without loss of generality,
whereas at the physical point (i.e., at m ≠ 0), it depends
effectively on the combination π21 þ π22 as well as on σ and
π3. Since in this case the relations hσðxÞi ≠ 0 and
hπ3ðxÞi ¼ 0 are always satisfied in the NJL model (2) at
H ¼ 0,2 at m ≠ 0, one can made a rather plausible
assumption that in Eq. (9) π2 ¼ π3 ¼ 0 is also valid and
study this TDP as a function of only three variables, σ, π1,
and Δ, i.e., Ω≡ Ωðσ; π1;ΔÞ. It is clear that in order to
calculate Ωðσ; π1;ΔÞ it is enough to suppose that in

Eqs. (6) and (7) Δ2 ¼ Δ�
2 ¼ Δ, Δ5 ¼ Δ7 ¼ 0, and

π2 ¼ π3 ¼ 0 (note that in the following we also suppose
that all auxiliary bosonic fields do not depend on space
coordinate x). Since

λ2 ¼

0B@ 0; −i; 0

i; 0; 0

0; 0; 0

1CA ¼
�
σ2; 0

0; 0

�
;

where σ2 is the corresponding Pauli matrix acting in
the two-dimensional fundamental representation of the
SUð2Þc subgroup of the SUð3Þc, it is clear that under
this assumption the contribution of the blue qb quarks in
the expression (7) is factorized. Then,

expðiS̃effÞ ¼ N0
Z

½dq̄b�½dqb� exp
�
i
Z

½q̄bDþqb�
�

×
Z

½dQ̄�½dQ� exp
�
i
Z

½Q̄ðDþ · 1I2cÞQ

−
Δ
2
½Qciγ5τ2σ2Q� − Δ

2
½Qiγ5τ2σ2Qc��d4x

�
;

ð11Þ
where qb is the flavor doublet of the blue quarks and Q is
the flavor (u and d) and color (red and green) quark
doublet. Moreover, here, we use the notation Dþ for the
operator that is in the round brackets of Eq. (8) at π2 ¼
π3 ¼ 0 [see below in Eq. (14)] and 1I2c is the unit operator
in the two-dimensional color space. Performing in Eq. (11)
the functional integrations over qb (which is a trivial one)
and over Q (see Appendix A), we find

expðiS̃effÞ ¼ N0 detDþ · det1=2ðZÞ; ð12Þ

where

Z ¼
�
Dþ · 1I2c ; −K
−K; D− · 1I2c

�
; ð13Þ

and

Dþ ¼ iγν∂ν −mþMγ0 − Σ; Σ ¼ σ þ iγ5π1τ1;

D− ¼ iγν∂ν −m − γ0M − Σ; K ¼ iΔγ5τ2σ2: ð14Þ

Note that matrix elements of the matrix Z (13) are the
operators in two-dimensional color and flavor spaces as
well as in four-dimensional spinor and coordinate spaces.
Then, it follows from Eqs. (6) and (12) that

SeffðM; π1;ΔÞ ¼ −
Z

d4x

�ðM −mÞ2 þ π21
4G

þ Δ2

4H

�
−
i
2
ln detðZÞ − i ln detðDþÞ; ð15Þ

1In thermodynamics, the quantities hσðxÞi;… are usually
called order parameters, which determine, in essence, the phase
structure of the system.

2See, e.g., the gap equations (13) and (14) of Ref. [17], which
at m ≠ 0 have single solution hσðxÞi ≠ 0 and hπ3ðxÞi ¼ 0.
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where we have introduced the gap M ≡ σ þm. The last
term of Eq. (15), which does not depend on Δ, was
calculated in our recent paper [12] [see there Eqs. (16)–(21)],

i ln detðDþÞ ¼ i
Z

d4p
ð2πÞ4 ln½ðη

4 − 2aþη2 þ bþηþ cþÞ

× ðη4 − 2a−η2 þ b−ηþ c−Þ�
Z

d4x; ð16Þ

where η ¼ p0 þ μ, jp⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3

p
and

a� ¼ M2 þ π21 þ ðjp⃗j � μ5Þ2 þ ν2 þ ν25;

b� ¼ �8ðjp⃗j � μ5Þνν5;
c� ¼ a2� − 4ν2ðM2 þ ðjp⃗j � μ5Þ2Þ

− 4ν25ðπ21 þ ðjp⃗j � μ5Þ2Þ − 4ν2ν25 ð17Þ

[we also use in Eq. (17) and below the notations μ ¼ μB=3,
ν ¼ μI=2, and ν5 ¼ μI5=2]. The next undefined term of
Eq. (15) is

i
2
ln detðZÞ ¼ i

Z
d4p
ð2πÞ4 ln detLðpÞ

Z
d4x; ð18Þ

where LðpÞ is given by Eq. (A20); i.e., it is the 4 × 4 matrix
in spinor space. Taking into account the relations (15)–(18)
as well as the definition (9), it is easy to get the TDP of the
model in the mean-field approximation,

ΩðM; π1;ΔÞ ¼
�ðM −mÞ2 þ π21

4G
þ Δ2

4H

�
þ i

Z
d4p
ð2πÞ4 ln detLðpÞ

þ i
Z

d4p
ð2πÞ4 ln½ðη

4 − 2aþη2 þ bþηþ cþÞ

× ðη4 − 2a−η2 þ b−ηþ c−Þ�: ð19Þ

In what follows, when performing numerical calculations or
finding symmetry properties of the TDP ΩðM; π1;ΔÞ, it is
very convenient to represent detLðpÞ in Eq. (19) as a
production of four eigenvalues of the matrix LðpÞ,

detLðpÞ ¼ λ̃1ðpÞλ̃2ðpÞλ̃3ðpÞλ̃4ðpÞ: ð20Þ

Here,

λ̃1;2ðpÞ ¼ λ1;2ðpÞjjp⃗j→jp⃗j−μ5 ; λ̃3;4ðpÞ ¼ λ3;4ðpÞjjp⃗j→jp⃗jþμ5
;

ð21Þ

and

λ1;2ðpÞ ¼ N1 � 4
ffiffiffiffiffiffi
K1

p
; λ3;4ðpÞ ¼ N2 � 4

ffiffiffiffiffiffi
K2

p
; ð22Þ

where

N2 ¼ N1 þ 16μνν5jp⃗j; K2 ¼ K1 þ 8μνν5jp⃗jp4
0 − 8μνν5jp⃗jp2

0ðM2 þ π21 þ jΔj2 þ jp⃗j2 þ μ2 þ ν2 − ν25Þ; ð23Þ

K1 ¼ ν25p
6
0 − p4

0½2ν25ðjΔj2 þ π21 þM2 þ jp⃗j2 þ ν2 þ μ2 − ν25Þ þ 4μνν5jp⃗j� þ p2
0fν65 þ 2ν45ðM2 − jΔj2 − π21

− ν2 − μ2 − jp⃗j2Þ þ 4μ2ν2ðM2 þ jp⃗j2Þ þ 4jp⃗jμνν5ðjΔj2 þ π21 þM2 þ jp⃗j2 þ ν2 þ μ2 − ν25Þ
þ ν25½ðjΔj2 þ π21 þ jp⃗j2 þ ν2 þ μ2Þ2 þ 2jp⃗j2M2 þM4 þ 2M2ðjΔj2 − ν2 þ π21 − μ2Þ�g; ð24Þ

N1 ¼ p4
0 − 2p2

0½jΔj2 þ π21 þM2 þ jp⃗j2 þ ν2 þ μ2 − 3ν25� þ ν45 − 2ν25½jΔj2 þ π21 þ jp⃗j2 þ ν2 þ μ2 −M2�
− 8μνν5jp⃗j þ ðjp⃗j2 þM2 þ π21 þ jΔj2 − μ2 − ν2Þ2 − 4ðμ2ν2 − π21ν

2 − jΔj2μ2Þ: ð25Þ

Exact expressions for the eigenvalues λ̃iðpÞ were obtained earlier in the study of the phase structure of the two-color QCD
(see, e.g., Sec. III of Ref. [18]). We are now ready to discuss in the chiral limit, i.e., at m ¼ 0, the dual properties of the NJL
model (1) in the mean-field approximation.
Throughout the paper, we use in numerical investigations of the TDP (19) the soft cutoff regularization scheme when

d4p≡ dp0d3p⃗ → dp0d3p⃗fΛðp⃗Þ. Here, the cutoff function is

fΛðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2N

Λ2N þ jp⃗j2N

s
; ð26Þ

and the parameter fit used is G ¼ 4.79 GeV−2, Λ ¼ 638.8 MeV, and N ¼ 5.
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III. DUAL SYMMETRIES OF THE TDP (19)
AND PHASE PORTRAITS OF THE MODEL

First of all, we note once again that in order to find the
phase structure of the NJL model (2) it is necessary to study
its TDP (19) as a function of three variablesM; π1;Δ for an
absolute minimum and then see how the properties of its
GMP change depending on the values of chemical poten-
tials μ; ν; νI5; μ5.
In this regard, we remark that in the chiral limit, m ¼ 0,

for sufficiently low values of the chemical potentials
(say, at μ; ν; ν5; μ5 < 1 GeV) at the GMP ðM; π1;ΔÞ of
the TDP (19) there can be no more than one nonzero
coordinates. (This conclusion can be done based on the
arguments presented earlier in our papers [12,18].)
Therefore, with such a restriction on chemical potentials,
in the chiral limit, only four different phases can be realized
in the system:
(1) If GMP has the form ðM ≠ 0; π1 ¼ 0;Δ ¼ 0Þ, then

the CSB phase appears in the model.
(2) If it has the form ðM ¼ 0; π1 ≠ 0;Δ ¼ 0Þ, the

charged PC phase is realized.
(3) When the GMP looks like ðM ¼ 0; π1 ¼ 0;Δ ≠ 0Þ,

it corresponds to the CSC or diquark condensa-
tion phase.

(4) The GMP of the form ðM ¼ 0; π1 ¼ 0;Δ ¼ 0Þ
corresponds to a symmetrical phase with all zero
condensates.

Then, a phase portrait of the model is no more than a one-to-
one correspondence between any point ðμ; ν; ν5; μ5Þ of the
four-dimensional space of chemical potentials and possible
model phases (CSB, charged PC, CSC, and symmetric
phase). However, it is clear that this four-dimensional phase
portrait (diagram) is quite bulky, and it is rather hard to
imagine it as a whole. So, to obtain a deeper understanding
of the phase diagram as well as to get a greater visibility of
it, it is very convenient to consider different low-dimen-
sional cross sections of this general ðμ; μ5; ν; ν5Þ-phase
portrait, defined by the constraints of the form μ ¼ const,
μ5 ¼ const, etc.
In addition, note that the study of the phase structure of

any model is greatly simplified if the so-called dual
symmetries of its TDP is taken into account. Recall that
by dual symmetry of the TDP we understand its symmetry
(invariance) with respect to any discrete transformations as
order parameters (in our case, these are M, π1, and Δ
condensates) and free external parameters of the system
(these may be chemical potentials, coupling constants, etc).
The presence of the dual symmetry of the model TDP
means that in its phase portrait there is some symmetry
between phases with respect to the transformation of
external parameters. And this circumstance can simplify
the construction of the full phase diagram of the system.
For example, taking into account the Eqs. (17)–(25),

it is possible to establish the invariance of the TDP (19)
with respect to each of the following six transformations,

in each of which two chemical potentials change
their sign simultaneously: (i) fν → −ν; ν5 → −ν5g,
(ii) fν → −ν; μ5 → −μ5g, (iii) fν5 → −ν5; μ5 → −μ5g,
(iv) fμ → −μ; μ5 → −μ5g, (v) fμ → −μ; ν → −νg, and
(vi) fμ → −μ; ν5 → −ν5g. The invariance of the
TDP (19) under the transformations (i)–(vi) is one of
the simplest examples of its dual symmetries that can help
us to simplify the analysis of the phase portrait of the
model. In particular, due to the symmetry of the TDP (19)
under transformations (i)–(vi), it is sufficient to study the
phase structure of the NJL model (2) only, e.g., in the case
when arbitrary three of the four chemical potentials have
positive signs, whereas the sign of the rest chemical
potential is not fixed. For example, let us assume that
the phase portrait of the model is already established in the
region R, in which μ ≥ 0, ν ≥ 0, ν5 ≥ 0, but the sign of μ5
is not fixed. In this case, one can be sure that the phase
structure of the model is also established at arbitrary point
Pðμ; ν; ν5; μ5Þ of the chemical potential space. Indeed, by
applying one or more of the transformations (i)–(iv) to this
point, one can transfer it to some point Pr of the above
mentioned region R, at each point of which the structure of
the ground state of the system is known. And due to the
symmetry of the TDP (19) with respect to transformations
(i)–(iv), the ground state of the model at the initial point
Pðμ; ν; ν5; μ5Þ should have the same structure as at the
point Pr ∈R.
Another and more nontrivial example of the dual

symmetry of the TDP ΩðM; π1;ΔÞ (19) is its invariance
under the two discrete transformations D,

D∶ ν ↔ ν5;M ↔ π1; ð27Þ

in the chiral limit. The invariance of the last term of Eq. (19)
under the transformation D follows directly from Eqs. (16)
and (17). However, checking the D invariance of its
detLðpÞ term (11) is not such a simple task. However,
this is true, since this fact is easy to establish taking into
account the relations (21)–(25) and using any program of
analytical calculations.
To understand the physical meaning of the dual sym-

metry (27), let us suppose that m ¼ 0 and that at the point
ðμ ¼ a; ν ¼ b; ν5 ¼ c; μ5 ¼ dÞ of the mean-field phase
portrait the GMP of the TDP (19) lies, e.g., at the point
of the condensate space of the form (M ¼ A, π1 ¼ B,
Δ ¼ C). Then, due to a dual symmetry (27) of the TDP, at
the dually D-conjugated point of the phase portrait, i.e.,
at the point ðμ ¼ a; ν ¼ c; ν5 ¼ b; μ5 ¼ dÞ, the dually
D-conjugated phase should be located. Its condensate
structure has the form ðM ¼ B; π1 ¼ A;Δ ¼ CÞ. Hence,
we see that if, e.g., M ¼ A ¼ 0, π1 ¼ B ≠ 0, Δ ¼ C ¼ 0,
then the CSB phase corresponding to a GMP of the form
M ¼ B ≠ 0, π1 ¼ A ¼ 0, Δ ¼ C ¼ 0 should be dually
conjugated to the initial charged PC phase, and vice versa.
But if at the original point there is symmetric or CSC
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phase, then it is also realized at the dually conjugated
point. Thus, knowing the phase of the model, which is
realized at some point of its ðμ; ν; ν5; μ5Þ-phase portrait, we
can predict which phases are arranged at the dually
conjugated points of this phase diagram. Moreover, the
order parameter of the initial CSB phase of the point
(μ ¼ a, ν ¼ b, ν5 ¼ c, μ5 ¼ d), i.e., the quantityM ¼ A, is
equal to the order parameter π1 ¼ A of the D-dually
conjugated charged PC phase of the point (μ ¼ a,
ν ¼ c, ν5 ¼ b, μ5 ¼ d) of the model phase portrait.
As a consequence, we see that at some fixed values of μ

and μ5, in the ðν; ν5Þ-phase portrait of the model the CSB
and charged PC phases should be mirror-symmetrical to
each other with respect to the ν ¼ ν5 line. And each of the
remaining phases, i.e., the symmetric or CSC one, must
occupy an area symmetrical about this line. This fact is
well illustrated by four ðν; ν5Þ-phase portraits depicted in
Figs. 1 and 2 at μ ¼ 0.3 GeV and different values of μ5.
Moreover, it is clear from Fig. 1 (left panel) that at μ5 ¼ 0
and at rather small values of ν and ν5 the CSC phase is
absent. But when μ5 is nonzero, this phase appears in a
small neighborhood of the point ν ¼ 0, ν5 ¼ 0 (see other
phase diagrams of Figs. 1 and 2). Thus, chiral μ5 chemical
potential promotes the formation of the CSC phase in a
dense baryonic medium. In addition, the phase diagram of
Fig. 2 (right panel) confirms one more interesting property
of μ5 (as well as of ν5 chemical potential) noted earlier in
the framework of the ordinary NJL model [12] (see there
Figs. 10 and 11): If μ5 is nonzero, then the chiral isospin ν5
chemical potential generates charged pion condensation in
dense quark matter (it is the PC phase in the right panel of
Fig. 2) even if isospin ν chemical potential equals zero (see
also Figs. 10 and 11 of Ref. [12]). We emphasize once

again that, in order for this generation to take place, one
needs to have nonzero chiral chemical potential μ5. In
contrast, as it was discussed in Ref. [13], this generation
requires nonzero values of ν in the case of μ5 ¼ 0. Hence,
in the ν ¼ 0 case, chiral μ5 chemical potential can take the
role of ν and allow this generation to happen.
Finally, we would like to draw attention to the fact that at

m ¼ 0 the duality transformation D (27) of the TDP (19)
can also be applied to a mean-field phase portrait of the
model as a whole. Namely, in this case, i.e., when acting on
the phase diagram, it is necessary to rename both the
diagram axes and phases in such a way that ν ↔ ν5 and
CSB ↔ charged PC. At the same time, the μ and μ5 axes
and CSC and symmetrical phases should not change their
names and positions. It is evident that after such D
transformation the full ðμ; ν; ν5; μ5Þ-phase diagram is
mapped to itself; i.e., the most general ðμ; ν; ν5; μ5Þ-phase
portrait of the model is self-D-dual. In a similar way, it is
clear that various ðν; ν5Þ-phase diagrams at fixed μ and μ5
values are transformed into themselves after applying to
them the dual operation (27); i.e., they are also self-D-dual
(see, e.g., Figs. 1 and 2). But other cross sections of the full
mean-field ðμ; ν; ν5; μ5Þ-phase diagram, e.g., the ðμ; νÞ-
phase portrait at some fixed values of ν5 and μ5, are not
invariant, in general, under the action of dual transforma-
tion D. As a result, a completely different phase portrait
can be obtained. Hence, based on this mechanism, it is
possible, having a well-known cross section of the full
phase diagram of the model, to obtain its phase portrait in a
less studied range of values of chemical potentials. For
example, in Fig. 3 (left panel), one can see the ðμ; νÞ-phase
portrait at fixed ν5 ¼ 0.05 GeV and μ5 ¼ −0.05 GeV.
Applying to it the dual operation D according to the rule

FIG. 1. Some ðν; ν5Þ-phase diagrams of the model at H ¼ 0.75G. Left panel: the case of μ ¼ 0.3 GeV and μ5 ¼ 0. Right panel: the
case of μ ¼ 0.3 GeV and μ5 ¼ 0.15 GeV. Here, PC denotes the charged pion condensation phase; CSB and CSC mean, respectively, the
chiral symmetry breaking and color superconducting phases; and “sym” is the symmetric phase.

DUAL PROPERTIES OF DENSE QUARK MATTER WITH COLOR … PHYS. REV. D 108, 125011 (2023)

125011-7



described above, one can obtain (without any numerical
calculations) its dual conjugation, i.e. the ðμ; ν5Þ-phase
portrait at fixed ν ¼ 0.05 GeV and μ5 ¼ −0.05 GeV (see
the right panel of Fig. 3).

IV. SUMMARY AND CONCLUSIONS

In this paper, the phase structure of the generalized
massless NJL model (1), which describes interactions both
in quark-antiquark and diquark channels, is discussed at
zero temperature and in the presence of four chemical
potentials, baryon μB ¼ 3μ, isospin μI ¼ 2ν, chiral isospin
μI5 ¼ 2ν5, and chiral μ5 chemical potentials, in the mean-
field approximation. The model is intended to be a
theoretical basis for considering the properties of dense
quark matter, the ground state of which can be realized as
one of the following phases: CSB, charged PC, CSC, and
symmetric phase. To find out which of the phases is

implemented in the model, we have considered its thermo-
dynamic potential in the mean field approximation (19).
But it is obvious that even in this approximation the study
of this TDP to an absolute minimum is a rather difficult
problem, especially in the presence of the four above-
mentioned chemical potentials. [By the way, we note that
these chemical potentials are thermodynamically conju-
gated with the real physical characteristics of dense quark
matter that can exist in the cores of neutron stars (see the
Introduction).]
Previously, a similar problem arose when studying the

phase structure of the simplest NJL model (without taking
into account the diquark interaction channel) with the same
four chemical potentials [12,13]. However, it turns out that
in the latter case the TDP of the model in the mean-field
approximation has (i) a more simple form since it is a
function of only two order parameters and (ii) it is invariant

FIG. 2. Some ðν; ν5Þ-phase diagrams of the model at H ¼ 0.75G. Left panel: the case of μ ¼ 0.3 GeV and μ5 ¼ −0.1 GeV. Right
panel: the case of μ ¼ 0.3 GeV and μ5 ¼ −0.3 GeV. All the notations are the same as in Fig. 1.

FIG. 3. Left panel: ðμ; νÞ-phase portrait at H ¼ 0.75G. The case μ5 ¼ −0.05 GeV and ν5 ¼ 0.05 GeV. Right panel: ðμ; ν5Þ-phase
portrait at H ¼ 0.75G. The case μ5 ¼ −0.05 GeV and ν ¼ 0.05 GeV. All the notations are the same as in Fig. 1.
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under the so-called dual transformationD [its form is given
by Eq. (27)]. Because of these circumstances, and in
particular the property (ii), the solution of the problem is
greatly simplified.
In the present work, we show that in the more complex

four-fermion NJL model (1) the thermodynamic potential
in the chiral limit and in the mean-field approximation also
has dual discrete symmetryD (27), which greatly simplifies
the study of the phase structure of the model. And it is the
main result of the paper. This dual symmetry between the
CSB and the charged PC phases is especially clearly
manifested in the so-called ðν; ν5Þ-phase diagrams by the
mirror-symmetric arrangement of these phases relative to
the line ν ¼ ν5. At the same time, the symmetric and CSC
phases in these diagrams are symmetrical with respect to
the same line (see Figs. 1 and 2). In addition, acting by the
dual transformationD on more well-known phase portraits,
one can get an idea of the phase structure of the model in
the region of less-studied values of chemical potentials
(compare the two diagrams in Fig. 3).
Hence, we see that in two qualitatively different QCD-

like NJL models there is a duality between CSB and
charged PC phases in the mean-field approximation. The
conclusion suggests itself that the dual symmetry D is not
only inherent in these models in the mean-field approxi-
mation but is also a characteristic property of both their
microscopic Lagrangians and their full thermodynamic
potentials. Moreover, we believe that the full massless
two-flavor QCD Lagrangian also has a dual symmetry

between CSB and charged PC phenomena. In the future,
these issues will be discussed in more detail.
We hope that our results might shed some new light on

phase structure of dense quark matter with isospin and
chiral (isospin) imbalances and hence could be important
for describing physics, for example, in an interior of the
compact stars.

APPENDIX A: DERIVATION OF EXPRESSIONS
(12) AND (18)

Here, we perform a functional integration over flavor and
color quark-doublet fields Q in Eq. (11). First, let us
consider the half of the quantity Q̄ðDþ · 1I2cÞQ,

1

2
Q̄ðDþ · 1I2cÞQ ¼ 1

2
Q̄½ðib∂ −mþMγ0 − σ

− iγ5τ1π1Þ · 1I2c �Q; ðA1Þ

and try to rewrite it in terms of charge conjugated quark
fields Qc and Qc using the well-known relations, Q ¼
ðQcÞTC and Q ¼ CðQcÞT . Now, let us apply to the
expression (A1) the well-known linear algebra relation,
xαOαβyβ ¼ �yβOT

βαxα, where the signþð−Þ corresponds to
the case when the quantities xα and yβ commute (anti-
commute). Therefore, since Qc and Qc are anticommuting
fields, it can be transformed to the following one:

1

2
QðDþ · 1I2cÞQ ¼ −

1

2
QcfCDþCgT · 1I2cQ

c ¼ 1

2
QcfCDþC−1gT · 1I2cQ

c

¼ 1

2
Qcf−iðγμÞT∂μ −m − CMC−1ðγ0ÞT − σ − iγ5τ⃗1π1gT · 1I2cQ

c

¼ 1

2
Qcfiγμ∂μ −m − γ0M − σ − iγ5τ1π1g · 1I2cQc ≡ 1

2
QcðD− · 1I2cÞQc: ðA2Þ

It is clear from Eq. (A2) that

D−≡ iγμ∂μ−m−γ0M−σ− iγ5τ1π1¼fCDþC−1gT: ðA3Þ

Note also that the transpose operation presented in Eq. (A2)
means both transposition of matrices in color, flavor, and
spinor spaces and transposition of the differentiation
operator, ∂Tν ¼ −∂ν. Moreover, we also have used there
the following relations: C−1 ¼ CT ¼ −C, CγνC−1 ¼
−ðγνÞT , Cγ5C−1 ¼ ðγ5ÞT ¼ γ5, CMC−1 ¼ M, and
MT ¼ M. Another half of the quantity Q̄ðDþ · 1I2cÞQ
we still consider unchanged. So,

Q̄ðDþ ·1I2cÞQ¼1

2
Q̄ðDþ ·1I2cÞQþ1

2
QcðD− ·1I2cÞQc: ðA4Þ

In the following, it is very convenient to use the Nambu-
Gorkov formalism, in which Q quarks are composed into a
bispinor Ψ such that

Ψ¼
�

Q

Qc

�
; ΨT ¼ ðQT;QCTÞ;

Ψ̄¼ ðQ̄;QcÞ ¼ ðQ;QTCÞ ¼ΨT

�
0; C

C; 0

�
≡ΨTY: ðA5Þ

Now, taking into account the Eq. (A4) and introducing the
matrix-valued operator Z [see in Eq. (13)], one can rewrite
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the functional Gaussian integral over Q and Q̄ in (11) in terms of Ψ and Z and then evaluate it as (clearly, in this case
½dQ̄�½dQ� ¼ ½dQc�½dQ� ¼ ½dΨ�)Z

½dQ̄�½dQ� exp
�
i
Z

½Q̄ðDþ · 1I2cÞQ −
Δ
2
½Qciγ5τ2σ2Q� − Δ

2
½Qiγ5τ2σ2Qc��d4xÞ

¼
Z

½dΨ� exp
�
i
2

Z
Ψ̄ZΨd4x

�
¼

Z
½dΨ� exp

�
i
2

Z
ΨTðYZÞΨd4x

�
¼ det1=2ðYZÞ ¼ det1=2ðZÞ; ðA6Þ

where the last equality is valid due to the evident relation detY ¼ 1. Now, using a general formula

det

�
A; B

C; D

�
¼ det½−CBþ CAC−1D� ¼ det½DA −DBD−1C�; ðA7Þ

it is possible to find that [the notations used below are introduced in Eqs. (13) and (14)]

detðZÞ ¼ det

�
Dþ · 1I2c ; −K
−K; D− · 1I2c

�
¼ det½ð−KK þ KDþK−1D−Þ · 1I2c � ðA8Þ

¼ det½Δ2 · 1I2c þ ð−ib∂ −m − fMγ0 − σ þ iγ5τ1π1Þðib∂ −m − γ0M − σ − iγ5τ1π1Þ · 1I2c �; ðA9Þ

where we use the notations b∂ ¼ γα∂α, μ ¼ μB=3; ν ¼ μI=2;
ν5 ¼ μI5=2, and

fM ¼ μþ μ5γ
5 − ντ3 − ν5γ

5τ3: ðA10Þ

In the particular case when Δ ¼ 0 [in this case, the
diquark channel of the NJL model (1) is ignored], it is clear
from Eq. (A8) that

detðZÞ ¼ det½γ5τ2Dþγ5τ2D− · 1I2c � ¼ det2½DþD−�
¼ det4ðDþÞ: ðA11Þ

The last equality in this expression follows from Eq. (A3),
which means that detðD−Þ ¼ detðDþÞ. Taking into account
in Eq. (15) the relation (A11), we see that at Δ ¼ 0 the
quark contribution to the effective action (15) is equal to
−3i ln detðDþÞ, i.e., coincides with a corresponding expres-
sion for the effective action of the NJL model (1) with
Nc ¼ 3 and H ¼ 0 (see Ref. [12]).
Since b∂b∂ ¼ ∂

2, we have from Eq. (A9)

detðZÞ ¼ det½ðΔ2 þ ∂
2 þ ib∂Aþ Bib∂ − BAÞ · 1I2c �; ðA12Þ

where

A ¼ mþ σ þ γ0Mþ iγ5τ1π1;

B ¼ −m − σ − fMγ0 þ iγ5τ1π1: ðA13Þ

Note that the expression in the square brackets of Eq. (A12)
is proportional to a unit operator in the two-dimentional
(i.e., Nc ¼ 2 below) color space, so it follows from
Eq. (A12) that

detðZÞ≡ detNcD ¼ detNc

�
D11; D12

D21; D22

�
; ðA14Þ

where D is the 2 × 2 matrix in the two-dimensional flavor
space [its matrix elementsDkl are the nontrivial operators in
the four-dimensional spinor and in the (3þ 1)-dimensional
coordinate spaces]. To get the exact expressions of the
matrix elements Dkl, we need to bear in mind that

ib∂Aþ Bib∂ ¼ ib∂γ0M − fMγ0ib∂ ¼ ðμþ μ5γ
5Þ½ib∂γ0 − γ0ib∂� þ ðνþ ν5γ

5Þ½ib∂γ0 þ γ0ib∂�τ3;
−BA ¼ π21 þ ðmþ σ þ fMγ0Þðmþ σ þ γ0MÞ − iγ5τ1π1γ0Mþ fMγ0iγ5τ1π1

¼ π21 þ ðmþ σÞ2 þ 2ðmþ σÞγ0ðμþ ν5γ
5τ3Þ þ fMM − iγ5τ1π1γ0Mþ fMγ0iγ5τ1π1: ðA15Þ
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Note also that fMM ¼ ðμþ μ5γ
5Þ2 − ðνþ ν5γ

5Þ2;
−iγ5τ1π1γ0M ¼ iðμ − μ5γ

5 − ντ3 þ ν5γ
5τ3Þγ0γ5τ1π1;

ifMγ0γ5τ1π1 ¼ iðμþ μ5γ
5 − ντ3 − ν5γ

5τ3Þγ0γ5τ1π1;
−iγ5τ1π1γ0Mþ ifMγ0γ5τ1π1 ¼ 2iðμ − ντ3Þγ0γ5τ1π1 ¼ 2iμγ0γ5τ1π1 þ 2νγ0γ5τ2π1: ðA16Þ

Now, taking into account the relations (A12)–(A16), we are ready to present the expressions for the matrix elements Dkl of
the 2 × 2 matrix D from Eq. (A14),

D11 ¼ Δ2 þ ∂
2 þ ðμþ μ5γ

5Þ½ib∂γ0 − γ0ib∂� þ ðνþ ν5γ
5Þ½ib∂γ0 þ γ0ib∂� þ π21 þ ðmþ σÞ2

þ 2ðmþ σÞγ0ðμþ ν5γ
5Þ þ ðμþ μ5γ

5Þ2 − ðνþ ν5γ
5Þ2;

D22 ¼ Δ2 þ ∂
2 þ ðμþ μ5γ

5Þ½ib∂γ0 − γ0ib∂� − ðνþ ν5γ
5Þ½ib∂γ0 þ γ0ib∂� þ π21 þ ðmþ σÞ2

þ 2ðmþ σÞγ0ðμ − ν5γ
5Þ þ ðμþ μ5γ

5Þ2 − ðνþ ν5γ
5Þ2;

D12 ¼ 2iγ0γ5ðμ − νÞπ1; D21 ¼ 2iγ0γ5ðνþ μÞπ1: ðA17Þ

Because of a rather general formula detO ¼ expTr lnO, we see from Eq. (15) that indeed, in order to calculate an effective
action, we should evaluate only the quantity Tr lnZ. Then, taking into account the general relations (B4) and (B5) as well as
Eq. (A14), one can obtain

Tr lnZ ¼ Nc ln detD ¼ NcTr lnD ¼ Nc

Z
d4p
ð2πÞ4 tr ln D̄ðpÞ

Z
d4x

¼ Nc

Z
d4p
ð2πÞ4 ln det D̄ðpÞ

Z
d4x; ðA18Þ

where Tr means the trace of an operator both in the coordinate and internal spaces, whereas tr is the trace only in internal
space. Moreover, D̄ðpÞ is the 2 × 2matrix, which is the momentum space representation of the matrixD from Eq. (A14). Its
matrix elements D̄klðpÞ can be obtained from the relations (A17) by simple replacements, ib∂ → p̂ and ∂

2 → −p2. So, we
have from (A17)

D̄11ðpÞ ¼ Δ2 − p2 þ ðμþ μ5γ
5Þ½p̂γ0 − γ0p̂� þ ðνþ ν5γ

5Þ½p̂γ0 þ γ0p̂� þ π21 þ ðmþ σÞ2
þ 2ðmþ σÞγ0ðμþ ν5γ

5Þ þ ðμþ μ5γ
5Þ2 − ðνþ ν5γ

5Þ2;
D̄22ðpÞ ¼ Δ2 − p2 þ ðμþ μ5γ

5Þ½p̂γ0 − γ0p̂� − ðνþ ν5γ
5Þ½p̂γ0 þ γ0p̂� þ π21 þ ðmþ σÞ2

þ 2ðmþ σÞγ0ðμ − ν5γ
5Þ þ ðμþ μ5γ

5Þ2 − ðνþ ν5γ
5Þ2;

D̄12ðpÞ ¼ 2iγ0γ5ðμ − νÞπ1; D̄21ðpÞ ¼ 2iγ0γ5ðνþ μÞπ1: ðA19Þ

In Eq. (A18), we should evaluate the determinant of the operator D̄ðpÞ, which is a 2 × 2 matrix in flavor space and 4 × 4
matrix in spinor space. It is a rather difficult task. But due to a general relation (A7), we have

det D̄ðpÞ≡ det

�
D̄11ðpÞ; D̄12ðpÞ
D̄21ðpÞ; D̄22ðpÞ

�
¼ det½−D̄21ðpÞD̄12ðpÞ þ D̄21ðpÞD̄11ðpÞðD̄21ðpÞÞ−1D̄22ðpÞ�≡ detLðpÞ; ðA20Þ

where the matrix LðpÞ, i.e., the expression/matrix in square brackets of Eq. (A20), is indeed a 4 × 4 matrix in four-
dimensional spinor space only, which is composed of 4 × 4 matrices D̄ijðpÞ [see Eq. (A19)]. So, since indeed Nc ¼ 2,

ln detZ ¼ Tr lnZ ¼ 2

Z
d4p
ð2πÞ4 ln detLðpÞ

Z
d4x: ðA21Þ
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APPENDIX B: TRACES OF OPERATORS
AND THEIR PRODUCTS

Let Â; B̂;… be some operators in the Hilbert space
H of functions fðxÞ depending on four real variables,
x≡ ðx0; x1; x2; x3Þ. In the coordinate representation, their
matrix elements are Aðx; yÞ; Bðx; yÞ;…, correspondingly,
so that

ðÂfÞðxÞ≡
Z

d4yAðx; yÞfðyÞ;

ðÂ · B̂Þðx; yÞ≡
Z

d4zAðx; zÞBðz; yÞ; etc:

By definition,

TrÂ≡
Z

d4xAðx; xÞ;

TrðÂ · B̂Þ≡
Z

d4xd4yAðx; yÞBðy; xÞ; etc: ðB1Þ

Now, suppose that Aðx; yÞ≡ Aðx − yÞ, Bðx; yÞ≡ Bðx − yÞ,
i.e., that Â; B̂ are translationally invariant operators. Then,
introducing the Fourier transformations of their matrix
elements, i.e.

ĀðpÞ¼
Z

d4zAðzÞeipz; AðzÞ¼
Z

d4p
ð2πÞ4 ĀðpÞe

−ipz; etc:;

ðB2Þ
where z ¼ x − y, it is possible to obtain from the above
formulas

TrÂ ¼ Að0Þ
Z

d4x ¼
Z

d4p
ð2πÞ4 ĀðpÞ

Z
d4x: ðB3Þ

If there is an operator function FðÂÞ, where Â is a
translationally invariant operator, then in the coordinate

representation, its matrix elements depend on the difference
(x − y). Obviously, it is possible to define the Fourier
transformations FðAÞðpÞ of its matrix elements, and the
following relations are valid [ĀðpÞ is the Fourier trans-
formation (B2) for the matrix element Aðx − yÞ]:

FðAÞðpÞ ¼ FðĀðpÞÞ;

TrFðÂÞ ¼
Z

d4p
ð2πÞ4 FðĀðpÞÞ

Z
d4x: ðB4Þ

Finally, suppose that Â is an operator in some internal
n-dimensional vector space, in addition. Evidently, the
same is valid for the Fourier transformation ĀðpÞ, which is
now some n × n matrix. Let λiðpÞ be eigenvalues of the
n × n matrix ĀðpÞ, where i ¼ 1; 2;…; n. Then,

TrFðÂÞ ¼
Z

d4p
ð2πÞ4 trFðĀðpÞÞ

Z
d4x

¼
Xn
i¼1

Z
d4p
ð2πÞ4 FðλiðpÞÞ

Z
d4x: ðB5Þ

In this formula, we use the notation tr for the trace of any
operator in the internal n-dimensional vector space only,
whereas the symbol Tr means the trace of an operator in
both the coordinate and internal spaces. In particular, if
FðÂÞ ¼ lnðÂÞ, then it follows from (B5) that [here, we use
a well-known relation ln detðÂÞ ¼ Tr lnðÂÞ]

ln detðÂÞ ¼ Tr lnðÂÞ ¼
Xn
i¼1

Z
d4p
ð2πÞ4 lnðλiðpÞÞ

Z
d4x

¼
Z

d4p
ð2πÞ4 lnðdet ĀðpÞÞ

Z
d4x: ðB6Þ
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