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Decades of analytic and computational work have demonstrated that a charge immersed in a hot plasma
is screened. For both Abelian and non-Abelian interactions, the characteristic screening length 1=mD is set
by the so-called Debye mass mD ∼ gsT, proportional to the plasma temperature T and the dimensionless
gauge coupling gs. One of the most interesting naturally occurring examples is the quark-gluon plasma
(QGP) that filled the early universe prior to the QCD confinement phase transition at tQCD ∼ 10−5 s. During
this early epoch, regimes of strong spacetime curvature are of significant cosmological interest, such as near
primordial black holes (PBHs). However, the typical description of Debye screening only applies within
Minkowski spacetime and is therefore insufficient to describe the dynamics of charged plasmas near PBHs
or other primordial features. We construct an effective field theory for soft modes of the gauge field Aa

μ to
give a full description of Debye screening in non-Abelian plasmas within arbitrary curved spacetimes,
recovering a temperature-dependent Debye mass that exhibits gravitational redshift. We then apply our
results to some scenarios of cosmological interest: an expanding Friedmann-Lemaître-Robertson-Walker
universe and the vicinity of a PBH immersed in a hot QGP.
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I. INTRODUCTION

The screening of charges in hot plasmas, for both
Abelian and non-Abelian interactions, has been a topic
of significant interest for decades. Upon resumming hard
thermal loops, the leading-order effects yield a character-
istic screening length λDðTÞ ¼ 1=mDðTÞ set by the Debye
mass mDðTÞ ∼ gsT, where gs is the dimensionless gauge
coupling strength and T is the temperature of the plasma.
(For reviews, see Refs. [1–4].)
The Debye mass mDðTÞ sets the characteristic scale

for dynamics of collective excitations within the plasma.
For example, collective oscillations of “soft” modes, with
momenta ksoft ∼mDðTÞ ≪ T, propagate with frequency set
by the plasma frequency ωp ≃mDðTÞ [5–17]. Moreover,
nontrivial spatial distributions of color charge among
the soft gluons can form, with typical length scale
1=mDðTÞ [18,19]. These effects have been studied exten-
sively in Minkowski spacetime, using both analytic tech-
niques and lattice simulations [1–4].
In this paper we consider Debye screening in hot

plasmas within curved spacetimes, with particular interest

in cosmological applications. For example, postinfla-
tion reheating typically yields a universe filled with
Standard Model particles in thermal equilibrium at a
temperature as high as T ∼Oð1014 GeVÞ ∼Oð1027 KÞ by
the time ttherm ∼Oð10−35 sÞ after the big bang [20,21].
Such temperatures are exponentially greater than the QCD
confinement scale ΛQCD ≃ 0.170 GeV. Hence at such early
times, the Universe was filled with a plasma of unconfined
quarks and gluons, subject to the non-Abelian dynamics
of QCD [22,23].
As the Universe expanded, the temperature of the plasma

fell adiabatically: TðtÞaðtÞ ≃ constant, where aðtÞ is the
scale factor of the Friedmann-Lemaître-Robertson-Walker
(FLRW) line element. During the radiation-dominated
phase, aðtÞ ¼ ðt=tthermÞ1=2. The QCD confinement transi-
tion, after which quarks and gluons remained bound in
color-neutral hadronic states, occurred at tQCD ≃ 10−5 s,
when TðtQCDÞ ≃ ΛQCD [22,23].
Within the range of times ttherm ≪ t ≪ tQCD, additional

phenomena of cosmological interest could have occurred.
For example, if a significant population of primordial
black holes formed at early times, with masses in the
range 1017 g ≤ MðtcÞ ≤ 1022 g, then they could account
for the entire abundance of dark matter today [24–27].
Given the dependence of the black holes’ masses on the
time of collapse tc, the black-hole mass range of interest to
account for the present dark-matter abundance corresponds
to formation times 10−21 s ≤ tc ≤ 10−16 s. At these early
times, the temperature of the plasma within which the
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primordial black holes formed would have been
105 GeV ≤ TðtcÞ ≤ 107 GeV, for which TðtcÞ ≫ TðtQCDÞ.
With such cosmological applications in mind, we study

Debye screening in hot non-Abelian plasmas within arbi-
trary curved spacetimes, including spacetimes that need not
be homogeneous and isotropic (such as in the vicinity of a
primordial black hole). In such general spacetimes, the
effective temperature of the plasma can develop spatial
gradients, T → TðxÞ, akin to the familiar Tolman temper-
ature [28–30]. We identify corrections to the induced
current jaμðxÞ and to the Debye mass mDðTðxÞÞ from
spacetime curvature. Much as in Minkowski spacetime,
the components Aa

0ðxÞ of the gauge field acquire an
effective mass in the plasma proportional to mDðTðxÞÞ,
whereas components Aa

i ðxÞ remain massless. (See, e.g.,
Refs. [31–39] on the behavior of Abelian plasmas within
curved spacetimes.)
In Sec. II, we introduce an effective theory for soft modes

within the plasma, generalizing the elegant formalism
reviewed in Refs. [1,2] for application to curved space-
times. In Sec. III we evaluate the induced current jaμðxÞ for
the soft modes that arises from interactions with high-
energy quarks and gluons in the plasma. Section IV
considers corrections to the usual expression for the
Debye mass mDðTÞ arising from spacetime curvature. In
Sec. V we apply these expressions for jaμðxÞ and mDðTðxÞÞ
to some scenarios of cosmological interest.
We restrict attention to (3þ 1) spacetime dimensions

and adopt the metric signature ð−;þ;þ;þÞ. Greek letters
μ; ν ¼ 0; 1; 2; 3 label spacetime indices, while Latin letters
i; j ¼ 1; 2; 3 label spatial indices. The color-charge indices
associated with the adjoint representation of the gauge
group SUðNcÞ range over a; b; c ¼ 1; 2;…; N2

c − 1 and are
raised and lowered with δab. The generators Ta of the Lie
algebra for SUðNcÞ satisfy ½Ta; Tb� ¼ ifabcTc, where fabc

are the totally antisymmetric structure constants, and
the generators are normalized such that 2TrðTaTbÞ¼ δab.
We adopt natural units in which c ¼ ℏ ¼ kB ¼ 1, in terms
of which the reduced Planck mass is given by Mpl ≡
1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.43 × 1018 GeV.

II. EFFECTIVE THEORY FOR SOFT MODES

At early times t ≪ tQCD, when the temperature of the
plasma filling the Universe satisfied T ≫ ΛQCD, the num-
ber density of gluon degrees of freedom likely dominated
those of quarks: gluons can radiate gluons at tree level, and
bosonic statistics allow gluon number densities per mode to
scale as nk ∼ 1=αs, where αs ≡ g2s=ð4πÞ and gs is the QCD
coupling constant [40]. Given the running of αs to lower
values at higher energies, the number density of gluons
could have greatly exceeded the number density of quarks
within the plasma at early times [1,4]. Similar behavior has
been observed in the plasmas that form immediately after
relativistic heavy-ion collisions [40,41]. Hence we expect

gluons to dominate the dynamics and consider the effective
action for a Yang-Mills model with gauge group SUðNcÞ
and field strength tensor

Fa
μν ¼ ∇μAa

ν −∇νAa
μ þ gsfabcAb

μAc
ν; ð1Þ

where ∇μ is the (spacetime) covariant derivative associated
with the metric gμνðxÞ.
Following the approach reviewed in Refs. [1,2], we

construct an effective theory for long-wavelength excita-
tions in the plasma within the high-temperature limit. In
particular, we consider the effective action for soft modes
Ãa
μ with typical momenta ksoft ∼ gsT. Thermal and quantum

corrections to the behavior of the soft modes are dominated
by quanta aaμ with momenta khard ∼ T. We therefore write
Aa
μ ¼ Ãa

μ þ aaμ, integrate out the high-momentum modes
aaμ, and drop the tilde on the soft modes Ãa

μ → Aa
μ.

As described in Refs. [1,2], the soft modes Aa
μ have large

occupation numbers per mode and hence behave as
effectively classical fields. The behavior of the soft modes
therefore yields the mean-field dynamics for the system on
length scales λ ≥ 1=ksoft ∼ 1=ðgsTÞ. We follow the back-
ground-field method of Ref. [1], whereby we choose to
decompose the action of the gauge symmetry on aaμ and Aa

μ

in such a way that leaves the soft modes Aa
μ unchanged. One

example is to use a generalized Coulomb-type gauge-fixing
term in the full theory, ∇iaia − gsfabcAb

i a
i
c [1]. No addi-

tional gauge-fixing terms or ghosts are then required in the
effective action for the soft modes.
For long length scales λ ≥ 1=ksoft ≫ 1=khard ∼ 1=T, the

dynamics may be described by the effective action

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

pl

2
R−

1

4
Fa
μνF

μν
a − jaμA

μ
aþLfluid

�
; ð2Þ

where jaμðxÞ is the induced current generated by (non-
Abelian) self-interactions with the high-momentum modes
aaμðxÞ; the induced current jaμ also includes contributions
from high-momentum quarks. The term Lfluid represents
the contributions to the evolution of the spacetime curva-
ture from constituents other than the soft modes. For
example, the high-momentum modes in the plasma
(coarse-grained over a length scale λ ≫ 1=khard) behave
as a neutral fluid with a radiation-dominated equation of
state, and thereby contribute to the time evolution of the
scale factor aðtÞ in an FLRW background, while massesM
of compact objects, such as black holes, influence the
spacetime curvature in their vicinity. Each of these con-
tributions affects gμνðxÞ and hence impacts the dynamics of
the soft modes Aa

μðxÞ.
Varying Seff with respect to Aa

μ yields the equations
of motion
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DμFa
μν ¼ jaν ; ð3Þ

where the covariant derivative Dμ acting on a spacetime
tensor that transforms in the adjoint representation of
SUðNcÞ, Xa

ν1���νn , is defined as

DμXa
ν1���νn ≡∇μXa

ν1���νn þ gsfabcAb
μXc

ν1���νn : ð4Þ

The left-hand side of Eq. (3) can be expanded as

DμFa
μν ¼ ∇μFa

μν þ gsfabcA
μ
bF

c
μν

¼ DμDμAa
ν − gsfabcA

μ
b∇νAc

μ − RμνA
μ
a; ð5Þ

where Rμν is the Ricci tensor for the background spacetime.
The equations of motion imply that the induced current jaμ
must be covariantly conserved with respect to both the
spacetime curvature and the SUðNcÞ gauge group:

DμjaμðxÞ ¼ 0; ð6Þ

for each color a.
The contribution to the energy-momentum tensor from

the Yang-Mills field is given, as usual, by

TðAÞ
μν ¼ Fa

μλF
a λ
ν −

1

4
gμνFλσ

a Fa
λσ; ð7Þ

while the additional fluid contributes

Tfluid
μν ¼ −

2ffiffiffiffiffiffi−gp δLfluid

δgμν
: ð8Þ

These terms satisfy the usual covariant conservation
equations

∇μT
μν
ðAÞ ¼ jaμF

μν
a ;

∇μT
μν
fluid ¼ 0 ð9Þ

in the presence of the induced current jaμ.

III. INDUCED CURRENT

The induced current jaμðxÞ for the soft modes Aa
μðxÞ arises

from interactions with high-momentum quarks and gluons
in the plasma. Lattice simulations have confirmed the
analytic expectation that for temperatures T ≫ TQCD,
high-energy quarks and gluons attain an equilibrium
equation of state akin to that of a gas of noninteracting
massless particles. In particular, the so-called “trace
anomaly,” ðρ − 3PÞ=T4, where ρ is the energy density
and P the pressure of particles in the plasma, tends rapidly
toward zero for T ≫ TQCD, and therefore ρ ≈ 3P. (See, e.g.,
Refs. [42–45].)

At high temperatures, the soft quantum fields of the
plasma are well approximated by classical fields, due to
their large occupation numbers per mode. Furthermore,
the hard (high-momentum) modes can be approximated
by an ensemble of classical point particles to leading order
in the coupling gs, since they are weakly interacting.
Specifically, the effects of the high-momentum particles
on the soft modes within the plasma are dominated by
processes involving “hard thermal loops”: one-loop dia-
grams with arbitrary numbers of low-momentum external
legs (with ksoft ∼ gsT) and hard internal momenta (with
khard ∼ T) [10,11,46–48]. These effects can be analyzed
within a mean-field approximation of the (truncated)
Schwinger-Dyson equations [1,12,13,15–17], or by
simply adopting classical transport equations for high-
momentum particles [2,17,49–51]. In this section we adapt
the latter approach to arbitrary curved spacetimes. (See
also Ref. [52].)
The equations of motion for a classical point particle

with color charge in a soft gauge-field background are well
known [50,52–54]:

dxμ

dλ
¼ Pμ;

dPμ

dλ
¼ −

1

2

∂gαβ

∂xμ
PαPβ − gsQaFa

μνPν;

dQa

dλ
¼ −gsfabcAb

μQcPμ: ð10Þ

Here xμ is the position of the particle, Pμ ¼ dxμ=dλ its
kinetic 4-momentum, λ an affine parameter, and Qa its
SUðNcÞ charge. We take advantage of the freedom to
linearly rescale the affine parameter λ so that dxμ=dλ has
units of energy. (We do not explicitly rescale by the particle
mass m so that our formalism can be applied to massless
particles.) Notice that, due to non-Abelian self-interactions,
the charges Qa are dynamical, unlike in electromagnetism.
The induced current jμaðxÞ, summed over all hard

particles, is given by [1,2]

jμaðxÞ ¼ gs

Z
dQdω

dxμ

dλ
Qaδfðx; p;QÞ; ð11Þ

where δfðx; p;QÞ represents the deviation from equilib-
rium of the distribution function for the high-momentum
charge-carrying particles. The integration measure includes
the momentum volume form dω and the measure for the
space of color charges dQ, subject to the physical con-
straints of on-shell mass condition, positivity of energy, and
conservation of the Nc − 1 group Casimirs. The momen-
tum measure is given below, in Eq. (36). The phase-space
structure for the color-charge degrees of freedom is
unaffected by the spacetime structure, so we may use
the now-standard parametrization developed for previous
studies within Minkowski spacetime, as reviewed, e.g., in
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Ref. [2]; an explicit construction for the cases SU(2) and
SU(3) is available in Sec. III of Ref. [50]. In particular, for
the gauge group SU(2) the color-space measure is

dQ ¼ d3QcRδðQaQa − q2Þ; ð12Þ

and for the gauge group SU(3) we have

dQ ¼ d8QcRδðQaQa − q2ÞδðdabcQaQbQc − q3Þ: ð13Þ

For the SU(3) case, the dabc are the totally symmetric
constants given by dabc ¼ 2TrðfTa; Tbg; TcÞ. The repre-
sentation-dependent constant cR is fixed by the normali-
zation

R
dQ ¼ 1, while the constants q2, q3 are further

fixed by the first and second Casimirs, respectively. Thus,
the integration over color charges serves to enforce the
conservation of the Casimir invariants [2,49,50].
We consider small departures from equilibrium, and

therefore work perturbatively in powers of the coupling gs,
so we may write the full distribution function as

fðx; p;QÞ ¼ fð0Þðx; pÞ þ gsfð1Þðx; p;QÞ þOðg2sÞ: ð14Þ

The relevant dynamics for the induced current jμaðxÞ
in Eq. (11) are captured to leading order by identify-
ing δfðx; p;QÞ ¼ gsfð1Þðx; p;QÞ, as demonstrated by
Refs. [49,50]. The dynamical evolution of δfðx; p;QÞ is
governed by the collisionless Boltzmann equation for the
full distribution function fðx; p;QÞ, which in the frame-
work of Hamiltonian mechanics corresponds to the con-
servation of fðx; p;QÞ along dynamical trajectories
(Hamiltonian flow) in phase space.
To solve the Boltzmann equation, it will be convenient to

have an explicit Hamiltonian formulation of the dynamics
of the high-momentum particles. To this end, we first
construct an action which yields the correct equations of
motion, Eq. (10). This is nontrivial because there is no such
action involving the charges Qa directly as dynamical
variables. To bypass this problem, following Refs. [54–56],
we introduce new dynamical variables qa which, like Qa,
transform under the adjoint representation of SUðNcÞ, but
which are anticommuting (Grassmann-valued). These new
variables qa are useful as an intermediate step, in terms of
which we may construct the charges Qa as

Qa ¼ −
i
2
fabcqbqc: ð15Þ

An action for a single high-momentum particle that yields
the appropriate equations of motion may then be written in
terms of the dynamical variables xμ and qa as

S1p ¼
Z

dλ

�
1

2
gμν

dxμ

dλ
dxν

dλ
þ i
2
qa

dqa

dλ

−
i
2
gsfabcAa

μqbqc
dxμ

dλ

�
: ð16Þ

The corresponding Hamiltonian is simply

H ¼ 1

2
gμνPμPν: ð17Þ

The kinetic momentum Pμ ≡ dxμ=dλ is related to the
canonical momentum pμ, conjugate to xμ, by

Pμ ¼ pμ − gsQaAa
μ: ð18Þ

Then Hamilton’s equations are Eq. (10), as desired.
Dynamical evolution in phase space is generated by the
Liouville vector field XH:

XH ≡ d
dλ

¼ dxμ

dλ
∂

∂xμ
þ dpμ

dλ
∂

∂pμ
þ dQa

dλ
∂

∂Qa

¼ Pμ ∂

∂xμ

����
P
−
1

2

∂gαβ

∂xμ

����
P
PαPβ

∂

∂Pμ
− gsQaPμFa

μν
∂

∂Pν

− gsfabcAb
μQcPμ ∂

∂Qa

����
P
; ð19Þ

where, in the second line, we have written the vector field in
noncanonical coordinates fxμ; Pμ; Qag, and we have noted
explicitly which derivatives are taken keeping Pμ fixed, as
opposed to pμ.
The collisionless Boltzmann equation for the distribution

function fðx; p;QÞ can be written in terms of the Liouville
vector field as XH½f� ¼ 0 and is equivalently known as the
Liouville equation. Given the expansion in Eq. (14), we
require that the Liouville equation be satisfied order by
order in gs:

Pμ ∂f
ð0Þ

∂xμ

����
P
−
1

2

∂gαβ

∂xμ

����
P
PαPβ

∂fð0Þ

∂Pμ
¼ 0 ð20Þ

and

Pμ ∂f
ð1Þ

∂xμ

����
P
−
1

2

∂gαβ

∂xμ

����
P
PαPβ

∂fð1Þ

∂Pμ
¼ QaPμFa

μν
∂fð0Þ

∂Pν
: ð21Þ

We assume that all dependence of fðx; p;QÞ on the charges
Qa can only appear at OðgsÞ or above, and therefore,
∂fð0Þ=∂Qa ¼ 0. Notice that, as emphasized in Ref. [51], the
non-Abelian terms in XH, proportional to gsfabc, make no
contribution to the evolution of fð1Þ, given our perturbative
expansion in gs.
We are free to choose any distribution function for our

fluid, as long as it solves the Boltzmann equation, and its
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physical meaning is compatible with small deviations from
thermal equilibrium. For this reason, we aim to find a
solution of the collisionless Boltzmann equation XH½f� ¼ 0
such that the zeroth order in gs is of the usual form for a
canonical ensemble, fð0Þ ∼ exp½−βE�, for a constant β and a
quantity E that may be interpreted as an energy. The
equation XH½f� ¼ 0 is typically solved to OðgsÞ by
employing Green’s function techniques [1,2,51]. We will
instead show that one can further exploit the Hamiltonian
formalism to solve efficiently for the distribution function
to the same order. The two approaches are equivalent up to
OðgsÞ, because quantum corrections to the classical equa-
tions of motion in Eq. (10) only arise at Oðg2sÞ and above.
It is a classic result that Hamiltonian mechanics in the

fully covariant phase space fxμ; pμ; Qag with evolution
parametrized by an affine λ and generated by the
Hamiltonian in Eq. (17) is equivalent to Hamiltonian
mechanics in the reduced phase space fxi; pi; Qag with
evolution parametrized by coordinate time t≡ x0 and
generated by the reduced Hamiltonian

H̄ ≡ −p0ðt; xi; pi; Qa; hÞ: ð22Þ

This means that both formalisms yield the same equations
of motion. This is possible thanks to the redundancy in the
choice of affine parameter λ, as well as the conservation of
Hðxμ; pμ; QÞ along phase space trajectories, in the covar-
iant formalism. In Eq. (22) we have solved for p0 in terms
of ft; xi; pi; Qa; hg using Hðxμ; pμ; QÞ≡ h, with h a
constant. In the covariant formalism, the conservation of
Hðxμ; pμ; QÞ follows from Eq. (10) and the fact that H
cannot depend explicitly on λ. The reduced phase-space
formalism does not yield the conservation of
Hðxμ; pμ; QaÞ, so we must impose it by hand. For details
of the proof, see Sections 44 and 45 in Chapter 9
of Ref. [57].
If the reduced Hamiltonian H̄ from Eq. (22) does not

depend explicitly on t, then it is also conserved along
phase-space trajectories, XH½H̄� ¼ 0, so we may exploit H̄
to construct a distribution function. That is, we may use the
fact that any scalar function of H̄ will solve the collisionless
Boltzmann equation to devise a valid distribution function
for our fluid. We therefore introduce a quasistationary
approximation: we consider only scenarios in which ∂tgμν
and ∂tAa

μ remain subdominant. This approximation is
appropriate, since we are interested in the behavior of
the high-momentum particles, whose dynamics are gov-
erned by the timescale 1=khard ∼ 1=T, whereas we expect
the soft modes Aa

μðxÞ to evolve on timescales set by
1=ksoft ≫ 1=khard. Likewise, our effective description can
only resolve dynamics up to scales set by 1=ksoft, which
bounds how sharply the background spacetime can evolve
within our self-consistent expansion as well. In particular, if
we allowed H̄ to have an explicit dependence on t, then

XH½H̄� ¼ 1

2
∂tgμνPμPν − gsQaPμ

∂tAa
μ; ð23Þ

and thus a distribution function constructed from H̄ would
yield self-consistent dynamics as long as

j∂tgμνj;
j∂tAa

μj
jAa

μj
≪ ksoft: ð24Þ

Equation (24) involves coordinate-dependent quantities.
However, any change in xμ would be accompanied by
changes in the conjugate momenta pμ, such that Eq. (24)
remains meaningful, given that ksoft is a momentum scale.
This follows from the invariance of the phase-space volume
under coordinate transformations. As we will see in Sec. V,
this quasistationary approximation is easily satisfied in
many cosmological applications of interest.
We choose a distribution function f ¼ exp½−βTH̄�,

where βT is a constant [58]. As explained just above, this
satisfies the collisionless Boltzmann equation by construc-
tion. We will see in the next section that the zeroth-order
term fð0Þ in the gs expansion corresponds to a canonical
ensemble (for fluid undergoing normal flow with respect to
coordinate time t), so it is a physically reasonable choice
because it represents thermal equilibrium. This term is

fð0Þ ¼ eβTP0 : ð25Þ

Given fð0Þ, we may evaluate the equilibrium occupation
numbers per mode in the usual way,

nð0ÞB;F ≡
P

nieniβTP0P
eniβTP0

; ð26Þ

where the sums run from ni ¼ 0 to ni ¼ ∞ for bosons and
to ni ¼ 1 for fermions. Thus we obtain the Bose-Einstein
and Fermi-Dirac distributions at zeroth-order:

nð0ÞB;F ¼
1

e−βTP0 ∓ 1
: ð27Þ

Substituting into Eq. (21) yields

nð1ÞB;F ¼ QaAa
0

∂nð0ÞB;F

∂P0

¼ −βT
e−βTP0

ðe−βTP0 ∓ 1Þ2 Q
aAa

0 ð28Þ

for bosons and fermions, respectively. Summing over

species and helicities, we have δf ¼ gSð2nð1ÞB þ 4Nfn
ð1Þ
F Þ

in Eq. (11).
To evaluate jμaðxÞwe first perform theQ integral with the

measure in Eq. (13), which yields factors proportional to
the index of the representation:

R
dQQaQb ¼ CB;Fδ

a
b, with
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CB ¼ Nc for bosons and CF ¼ 1=2 for fermions. Then the
current becomes

jμaðxÞ ¼ g2s

Z
dQdωð2nð1ÞB þ 4Nfn

ð1Þ
F ÞQaPμ

¼ g2sAa
0ðxÞ

Z
dωN ðx; PÞPμ; ð29Þ

where we have defined

N ðx;PÞ≡2Nc
∂nð0ÞB

∂P0

þ2Nf
∂nð0ÞF

∂P0

¼−2βT
�
Nc

e−βTP0

ðe−βTP0 −1Þ2þNf
e−βTP0

ðe−βTP0 þ1Þ2
�
:

ð30Þ

Equation (29) includes contributions from two polarization
states for each effectively massless particle, and 2Nf

fermion species (Nf each for quarks and antiquarks).
Note that, as in Minkowski spacetime [1], jμaðxÞ is propor-
tional to Aa

0ðxÞ.

IV. DEBYE MASS

In Minkowski spacetime, the induced current reduces (in
the static limit) to jaμðxÞ ¼ m2

DA
a
0δ

0
μ, effectively giving a

constant mass to the soft gluon components Aa
0 , which is

responsible for Debye screening [1–4]. In this section, we
evaluate the induced current jμaðxÞ of Eq. (29) and find that
in spacetimes of interest, it is proportional to the square of
an effective mass, m2

DðxÞ, which has spatial dependence.
For any (3þ 1)-dimensional globally hyperbolic space-

time, we can choose coordinates xμ to put the metric in the
Arnowitt-Deser-Misner form (see, e.g., Ref. [59])

ds2 ¼ −N2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ
¼ −ðN2 − βiβ

iÞdt2 þ 2βidtdxi þ γijdxidxj; ð31Þ

where x0 ¼ t is a global time function, NðxÞ is the lapse
function, and βiðxÞ the shift vector, whose indices are raised
and lowered with γij, i.e., βi ¼ γijβ

j. Hypersurfaces of
constant time t are Cauchy surfaces by construction, with
induced metric γμν ¼ gμν þ nμnν, where

nμ ¼ −ðdtÞμ ¼ ð−N; 0Þ: ð32Þ

We normalize t such that N2 → 1 on the spatial (possibly
asymptotic) boundary. The components of the inverse
metric are given by

g00 ¼ −
1

N2
; g0i ¼ βi

N2
; gij ¼ γij −

βiβj

N2
: ð33Þ

In these coordinates, the kinetic momentum takes the form

Pμ ¼ð−NkþβiPi;PiÞ; Pμ ¼
�
k
N
;γijPj−

k
N
βi
	
; ð34Þ

where

k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γμνPμPν

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijPiPj

q
ð35Þ

is the magnitude of the momentum projected on constant-t
hypersurfaces.
The spacetime metric gμν induces a metric in all of phase

space, known as the Sasaki metric [60–62], such that the
invariant momentum volume form is

dω ¼ d4p
ð2πÞ3 ffiffiffiffiffiffi−gp : ð36Þ

We restrict to the mass shell by integrating over
2δðP2ÞΘðP0Þ. To lowest order in gs, the kinetic and
canonical momenta coincide, Pμ → pμ, so

d4p
ð2πÞ3 ffiffiffiffiffiffi−gp →

d3pðiÞ
ð2πÞ3p0N

ffiffiffi
γ

p ; ð37Þ

where the last step follows upon noting that
ffiffiffiffiffiffi−gp ¼ N

ffiffiffi
γ

p
.

The current jμaðxÞ in Eq. (29) may then be written

jμaðxÞ¼ g2s
ð2πÞ3

Aa
0

N

×
Z

d3pðiÞffiffiffi
γ

p N ðx;pÞ
�
δμ0þδμi

�
βi−

N
k
γijpj

	�
: ð38Þ

We next consider a change in momentum coordinates
k̃i ≡ ðγ1=2Þijpj, where ðγ1=2Þij is the square matrix that

satisfies ðγ1=2Þmiγ
ijðγ1=2Þjl ¼ δml. Then d3pðiÞ ¼ ffiffiffi

γ
p

d3k̃ðiÞ,
and k2 ¼ k̃2 ¼ δijk̃

ik̃j, which is even in the components k̃i.
One could perform an additional coordinate transformation
as in Ref. [52], p0

i ¼ pi − βip0=g00, to aid in evaluating the
integral in Eq. (38). For the applications of interest to us, we
will instead restrict attention to spacetimes in which the
shift vector vanishes, βi ¼ 0. Then the integration in
Eq. (38) may be performed exactly. In such cases, we find

j0aðxÞ ¼
g2s

ð2πÞ3
Aa
0

N

Z
d3k̃ðiÞN ðx; k̃Þ; ð39Þ

jiaðxÞ ¼ −
g2s

ð2πÞ3 A
a
0ðγ1=2Þijδjl

Z
d3k̃ðiÞN ðx; k̃Þ k̃

l

k
: ð40Þ

The quantity N ðx; k̃Þ is even in the components k̃i, so
that jiaðxÞ vanishes identically. We further note that the
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momentum coordinates k̃i are Cartesian, so j0aðxÞ is
equivalent to

j0aðxÞ ¼
g2s
2π2

Aa
0

N

Z
∞

0

dk̃ k̃2N ðx; k̃Þ

¼ −
m2

DðxÞ
N2ðxÞ A

a
0ðxÞ þOðg3sÞ; ð41Þ

with

m2
DðxÞ≡ 1

6
ð2Nc þ NfÞ

g2s
ðβTNðxÞÞ2 : ð42Þ

Equation (41) corresponds to

jaμðxÞ ¼ m2
DðxÞAa

0δ
0
μ þOðg3sÞ. ð43Þ

The induced current in Eq. (43) is equivalent to inserting an
effective mass mDðxÞ for the Aa

0 soft gluon components
within the effective action of Eq. (2).
The expression for mDðxÞ in Eq. (42) reduces to the

usual expression in Minkowski spacetime upon setting
NðxÞ → 1 and identifying 1=βT ¼ T with the temperature
of the plasma [1–4,8,16,17,63–66]. In our case, the
Boltzmann factor for the high-momentum particles is
exp½−βTH̄ð0Þ� ¼ exp½βTNðxÞkðxÞ�, since we are consider-
ing spacetimes in which βi ¼ 0. This is exactly what one
would expect for particles in a fluid that is undergoing
normal flow, with four-velocity nμðxÞ and therefore local
energy per particle E≡ −nμpμ ¼ k, if we identify TðxÞ≡
1=ðβTNðxÞÞ with the local temperature. We may therefore
identify the constant βT ≡ 1=T0 and write

TðxÞ ¼ T0

NðxÞ : ð44Þ

Given that we have normalized t such that NðxÞ → 1 on the
spatial (possibly asymptotic) boundary, T0 is the temper-
ature associated with time t on the spatial boundary. We
have thus recovered the familiar Tolman temperature
gradient in a curved spacetime [28–30]. The Debye mass
then takes the form

m2
DðxÞ ¼

1

6
ð2Nc þ NfÞg2sT2ðxÞ; ð45Þ

with the local temperature TðxÞ given by Eq. (44).

V. COSMOLOGICAL APPLICATIONS

In this section we consider a few specific examples. We
begin with the familiar case of Debye screening of a non-
Abelian plasma in Minkowski spacetime, to identify
several regimes of interest. Next we generalize to the case
of a spatially flat FLRW spacetime, which introduces a new
scale (compared to the Minkowski case), set by the Hubble

radius. In the last subsection, we examine Debye screening
in the vicinity of a primordial black hole.

A. Debye screening in Minkowski spacetime

We first consider the behavior of soft gluon modes Aa
μðxÞ

within a hot plasma in Minkowski spacetime, to clarify
notation and identify several physical regimes of interest. In
that case, the lapse function becomes trivial, NðxÞ ¼ 1,
and the shift vector vanishes, βi ¼ 0. In the static limit,
∂0Aa

μðxÞ ¼ 0, the exact equations of motion of Eq. (5)
reduce to

δ0νf∂iFa
i0 þ gsfabcAb

i F
c
i0g

þ δiνf∂kFa
ki þ gsfabcðAb

0F
c
i0 þ Ab

kF
c
kiÞg ¼ jaν ; ð46Þ

where repeated indices are summed and we have adopted
Cartesian coordinates for the spatial sections. The induced
current of Eq. (43) reduces to

jaνðxÞ ¼ m2
DA

a
0ðxÞδ 0

ν þOðg3sÞ: ð47Þ

A generic feature of non-Abelian field theories, which
has been well studied for the case of self-interacting gauge
fields in Minkowski spacetime, is the existence of monop-
olelike solutions among the spatial components Aa

i ðxÞ.
Such solutions can be found in simplest form for SU(2)
[1,67–69], and have been generalized to monopoles
charged under various three-dimensional subgroups of
SUðNcÞ [70–72]. Moreover, it is well known that self-
consistent static solutions to the non-Abelian equations of
motion in Minkowski spacetime generically include a
Yukawa-like screened behavior for the component Aa

0ðxÞ
combined with the Wu-Yang monopole solution for the
components Aa

i ðxÞ [1,69]. Such solutions underscore the
important physical point that only the components Aa

0ðxÞ
acquire a nonzero mass within a medium in the state
described in Sec. IV—as indicated by the form of the
induced current jaμðxÞ in Eq. (47)—and hence only those
components undergo screening, with amplitude propor-
tional to exp½−mDr�.
Our aim in this section is to examine how well-known

field configurations in Minkowski spacetime generalize to
various curved spacetimes of interest, in which additional
length scales become relevant. We therefore begin by
considering an exact solution to Eq. (46) that consists of
a superposition of a screened component Aa

0 with a Wu-
Yang monopole solution for the components Aa

i . For the
case of SU(2), the solution takes the form [1,67–69]

Aa
0ðxÞ ¼ −

Qa
0e

−mDr

r
; Aa

i ðxÞ ¼
ϵaijx̂j

gsr
; ð48Þ

where Qa
0 ¼ Q0x̂a, Q0 is a constant, x̂j ≡ xj=r is a unit

vector, and ϵijk is the usual Levi-Civita symbol. Note that
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the solution mixes spatial indices and color-space indices,
which is straightforward for SU(2), since both i; j ¼ 1; 2; 3
and a; b ¼ 1; 2; 3. (To confirm that Aa

μðxÞ in Eq. (48)
satisfies Eq. (46), it is helpful to construct the projection
operator Pa

b ¼ δab − x̂ax̂b, noting that x̂aPa
b ¼ 0 ¼ x̂bPa

b
and ∂jx̂i ¼ r−1Pi

j.) For SU(3), exact monopole solutions
have been found for subgroups such as Uð1Þ × Uð1Þ and
U(2), for which the components Aa

i have comparable
asymptotic behavior to the solution in Eq. (48) [70–72].
The solution for Aa

μðxÞ in Eq. (48) carries both chromo-
electric charge Q and chromomagnetic charge P. We
consider the quasilocal charges defined in terms of the
chromoelectric and chromomagnetic fields, Ea

i ≡ Fa
0i and

Ba
i ≡ − 1

2
ϵijkF

jk
a , respectively. Specifically, we identify

charges via the relations

Ea
i E

a
i ¼

Q2ðrÞ
r4

; Ba
i B

a
i ¼

P2ðrÞ
r4

; ð49Þ

where the spatial and color indices are summed over. Note
that the fields Ea

i and Ba
i transform covariantly in color

space under gauge transformations, and therefore the
bilinear combinations in Eq. (49) are gauge invariant.
For the solution given in Eq. (48), the charges are

QðrÞ ¼ Q0ð1þmDrÞe−mDr; PðrÞ ¼ 1

gs
; ð50Þ

where Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Qa

0Q
a
0

p
is the chromoelectric charge mea-

sured at the origin. Because of screening, the value ofQðrÞ
measured at a finite distance from the origin will be reduced
compared to Q0. The chromomagnetic charge, on the other
hand, is not screened, and hence P ¼ 1=gs everywhere.
Whereas the magnitude of the chromomagnetic charge P

is fixed by 1=gs, the chromoelectric charge Q0 at the origin
is a free parameter and can be arbitrarily larger than 1=gs.
Such a scenario would be compatible with a collection of
test charges at the origin such that the energy associated
with the charges does not backreact on the spacetime itself.
In that case, there will exist a self-consistent regime,
0 ≤ r ≤ rabel, within which jAa

0ðxÞj ≫ jAa
i ðxÞj, with rabel

given by

rabel ≡ 1

mD
ln ½gsQ0�: ð51Þ

For 0 ≤ r ≤ rabel, the system is quasi-Abelian, with
Aa
μðxÞ ≃ Aa

0ðxÞδ 0
μ , and hence non-Abelian contributions

of the form fabcAa
μAb

ν remain subdominant. Within this
regime, one may solve the exact equations of motion of
Eqs. (46)–(47) with the ansatz Aa

μðxÞ ¼ Aa
0ðxÞδ0μ. The

solution for Aa
μðxÞ is then of the form in Eq. (48), but

with Aa
i ðxÞ ¼ 0 and Qa

0 an arbitrary constant vector in
color space.

B. Debye screening in an FLRW spacetime

We next consider Debye screening within a hot quark-
gluon plasma in an expanding FLRW spacetime at early
times, prior to the QCD confinement transition
(t < tQCD ∼ 10−5 s). The line element for a spatially flat
FLRW universe may be written

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2dΩ2
ð2Þ�; ð52Þ

where aðtÞ is the scale factor and r is a comoving radial
coordinate. The Hubble parameter is given by HðtÞ≡ ȧ=a,
where overdots denote derivatives with respect to cosmic
time t, and the Hubble radius is rH ¼ 1=H. The presence of
rH introduces a new scale compared to Minkowski space-
time, so now we must consider H as well as khard and ksoft.
Note also that in these coordinates the lapse function is
NðxÞ ¼ 1, so the temperature has no spatial gradients.
The term Lfluid in the effective action of Eq. (2) includes

contributions from the high-momentum quarks and gluons
in the quark-gluon plasma, which, as noted in Sec. III,
behave to leading order as a gas of noninteracting particles
with a radiation-dominated equation of state. We assume
that the (coarse-grained) energy density ρ and pressure P
associated with the high-momentum particles dominate
Tμν, so that the Friedmann equation takes the form

H2 ¼ 1

3M2
pl

�
π2

30
g�T4

	
ð53Þ

corresponding to a fluid of g� effectively massless degrees
of freedom in equilibrium at temperature T; for the
Standard Model at temperatures much greater than the
top-quark mass (mt ¼ 173 GeV), g� ¼ 106.75 [22,23].
During the radiation-dominated phase, aðtÞ ∝ t1=2, so we
have HðtÞ ¼ 1=ð2tÞ and

TðtÞ ¼
�

90

π2g�

	
1=4

�
Mpl

2t

	
1=2

; ð54Þ

consistent with adiabatic expansion, TðtÞaðtÞ ¼ constant.
The equations of motion from Eq. (5) are

jaν ¼
1

a2
δ0νf∂iFa

i0 þ gsfabcAb
i F

c
i0g

þ δiν

�
HFa

i0 þ ∂0Fa
i0 þ

1

a2
∂kFa

ki

þ gsfabc
�
Ab
0F

c
i0 þ

1

a2
Ab
kF

c
ki

	�
; ð55Þ

where repeated indices are summed. The Hubble parameter
HðtÞ ¼ ȧ=a sets the timescale over which we expect
cosmological dynamics to be relevant. Notice that the
terms that make Eq. (55) differ from Eq. (46) [up to factors
of aðtÞ] are either proportional to HðtÞ or include a time
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derivative Ȧc
μ. We consider an ansatz for Ac

μðxÞ in which
the only time dependence arises from the scale factor aðtÞ.
By the chain rule, dAc

μ=dt ¼ ȧ∂Ac
μ=∂a ¼ H∂Ac

μ=∂ ln a.
Therefore any term with a time derivative Ȧc

μ will be
proportional to H. If H ≪ k2soft=khard ∼ g2sT, then all terms
proportional to H, which include those with time deriva-
tives Ȧc

μ, will be subleading compared to jcν ∼m2
DA

c
0 ∼

k2softkhard.
If the hierarchy H ≪ g2sT is satisfied at early times, then

it will be even more easily satisfied at later times, since
H ∼ T2=Mpl from Eq. (54) and T=Mpl decreases as the
Universe cools down, while gs gradually runs to larger
values. Now we proceed to show that H ≪ g2sT holds at
early times of interest.
Consider, as an example, dynamics at the time

tc ∼ 10−21 s, the earliest time that a population of primor-
dial black holes (PBHs) could have formed, if the PBHs are
to constitute all of dark matter today [24–27]. At such early
times, the Hubble scale HðtcÞ ¼ 3.0 × 10−4 GeV and the
fluid filling the FLRW spacetime had a temperature
TðtcÞ ¼ 107 GeV. At such high energy scales, we must
take into account the running of the strong coupling
αs ≡ g2s=ð4πÞ. To two-loop order, the running with energy
scale μ is given by [4]

dαsðμÞ
d ln μ

¼ −2αs
�
b0

αs
4π

þ b1

�
αs
4π

	
2
�
; ð56Þ

with

b0 ¼
11

3
Nc −

2

3
Nf;

b1 ¼
32

3
N2

c −
10

3
NcNf −

�
N2

c − 1

Nc

	
Nf: ð57Þ

Upon normalizing αsðmZÞ ¼ 0.118 at the Z boson mass
(mZ ¼ 91.2 GeV), we find αs ¼ 0.046 at the energy scale
μ ¼ TðtcÞ ¼ 107 GeV. This yields a ratio g2sT=H ∼ 109.
Hence we may self-consistently neglect H ≪ g2sT when
considering the dynamics of the gluon modes on length
scales λD, even at very early times in cosmic history.
In other words, the FLRW spacetime is consistent
with our quasistationary approximation from Eq. (24),
since j∂tgμνj ∼H ≪ gsksoft < ksoft.
Having shown that we may neglect cosmological

dynamics, the scale factor aðtÞ will be approximately
constant in regimes of interest. We may therefore rescale
the spatial coordinates as xi → xi=a, and thus recover
identical equations of motion to those in the Minkowski
background, Eq. (46). A solution is the superposition of a
screened component Aa

0 with a Wu-Yang monopole for the
components Aa

i , which in the case of SU(2) takes a similar
form to Eq. (48),

Aa
0ðxÞ ¼ −

Qa
0e

−mDar

ar
; Aa

i ðxÞ ¼
ϵaijx̂j

gsar
; ð58Þ

where we have rescaled the spatial coordinates back so that
r is the comoving radial coordinate from Eq. (52). The
solution for Aa

μðxÞ in Eq. (58) remains consistent with the
quasistationary approximation of Eq. (24) for λD ≤ r ≪ rH.

C. Debye screening near a primordial black hole

Our final example concerns Debye screening within the
hot plasma surrounding a PBH that formed early in cosmic
history. PBHs form via direct gravitational collapse of
primordial overdensities, and their masses are typically
proportional to the Hubble mass MH at the time of
formation tc, where MHðtcÞ ¼ 4πM2

pl=HðtcÞ is the mass
contained within a Hubble radius H−1ðtcÞ. Such black
holes may therefore form with a huge range of masses,
depending on their time of formation [24–27].
Any PBHs that formed at times t < tQCD ¼ 10−5 s

would undergo collapse amid a hot plasma of unconfined
quarks and gluons. On long length scales at such early
times, λ ≫ 1=ksoft, we expect that the plasma would have
attained a charge-neutral equilibrium distribution. Yet on
shorter length scales, set by λD ¼ 1=mD ∼ 1=ksoft ∼
1=ðgsTÞ, spatial regions of nonvanishing net color charge
can form, within which the charges for most soft gluons
align in color space [18,19]. In such scenarios, the PBHs
would form by absorbing one or more net-color regions.
Depending on the ratio of the PBH radius (∼GMPBH) and
the Debye length (∼1=mD) at the time of formation, PBHs
therefore could form with net color charge Q0. Such a
scenario is distinct from the examples reviewed in
Refs. [73,74], which concern black hole solutions to the
Einstein-Yang-Mills equations in vacuum. In our case, the
PBHs are immersed in a hot active medium.
We consider a scenario in which a PBH forms with a

small net charge Q0; the case of larger Q0 is treated in
Ref. [75]. In particular, we consider the regime

Q2
0 ≪ GM2

PBH: ð59Þ

Within this regime, backreaction on spacetime from the
energy associated with the enclosed charge Q0 remains
subdominant, and we may consider the dynamics of soft
gluon modes Aa

μðxÞ within a fixed background geometry.
(For Q2

0 ∼GM2
PBH, one must solve the Einstein field

equations as well as the equations of motion for Aa
μðxÞ,

which we consider in separate work [76].)
We consider a spherically symmetric spacetime with a

black hole of mass MPBH at the origin surrounded by hot
plasma with a radiation-dominated equation of state. Our
formalism holds in a quasistatic limit, which requires that
MPBH not change appreciably over timescales set by 1=ksoft.
Two competing effects could change MPBH: evaporation
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due to Hawking radiation (which would reduce MPBH
over time) and accretion from the surrounding medium
(which would increase MPBH over time). For the regime of
interest, we find that both of these effects are negligible
over the relevant dynamical timescale, and hence we may
neglect ṀPBH.
Consider first evaporation from Hawking radiation.

Because we are considering PBHs with modest charge,
subject to the inequality of Eq. (59), we may approximate
the Hawking temperature based on that for an (uncharged)
Schwarzschild black hole of massMPBH. (Any net enclosed
charge would decrease the black hole’s surface gravity, and
hence its Hawking temperature, compared to the zero-
charge case, thus rendering evaporation even less efficient.)
The Hawking temperature for a Schwarzschild black hole is
given by [59]

TH ¼ M2
pl

MPBH
: ð60Þ

The typical mass for a PBH is set by the mass enclosed
within a Hubble volume MHðtcÞ at the time of collapse
tc [77–80]:

MPBHðtcÞ ¼ γMHðtcÞ ¼ 4γ

ffiffiffiffiffi
90

g�

s �
Mpl

Tc

	
2

Mpl; ð61Þ

where γ ≃ 0.2 and Tc is the temperature of the plasma
at the time tc. The values of MPBH relevant to account for
dark matter lie within the range 1017 g ≤ MPBH ≤ 1022 g
[24–27]; from Eq. (61), these correspond to plasma
temperatures 105 GeV ≤ Tc ≤ 107 GeV. Meanwhile, for
masses within the dark-matter range, Eq. (60) yields
10−9 GeV ≤ TH ≤ 10−4 GeV, exponentially lower than
the temperature of the surrounding plasma. Such PBHs
will therefore be net absorbers (rather than emitters) around
the time of their formation.
Next we may consider accretion. One might suppose that

if the fluid were moving with respect to the black hole,
MPBH would increase by absorbing some of the nearby
fluid. Nonetheless, even if the relative speed between the
fluid and the black hole approached the speed of light,
and the black hole absorbed all the fluid in its path, then
MPBH would only increase by a fraction ΔM=MPBH ∼
Oð1ÞRT=Mpl over an entire Hubble time, where R is the
ratio of the black hole radius to the Debye screening length
and T the temperature of the plasma. As in the previous
section, we are interested in early times at which the plasma
temperature could have been as high as T ∼ 107 GeV, in
which case T=Mpl ∼ 10−11. We consider black holes for
which the ratio R is not exponentially larger than one, so
that the PBH forms with some small residual color charge,
and therefore ΔM=M remains negligible. A more formal

calculation of the Bondi accretion rate for PBHs in this
scenario yields the same conclusion [81–84].
Within the regime indicated in Eq. (59), the spacetime

can be described by the McVittie line element, which
reduces to an ordinary Schwarzschild spacetime near the
origin and asymptotes to a spatially flat FLRW spacetime at
large distances [85–87]. A convenient parametrization may
be written [87]

ds2¼−fðt;rÞdt2þ
�
aðtÞfdrþHðtÞrdtgffiffiffiffiffiffiffiffiffiffiffiffi

fðt;rÞp −HðtÞaðtÞrdt
�
2

þa2ðtÞr2dΩ2
ð2Þ; ð62Þ

with

fðt; rÞ≡ 1 −
rs

aðtÞr ð63Þ

and rs ≡ 2GMPBH the usual Schwarzschild radius.
We found in Sec. V B that in cosmological scenarios of

interest, H ≪ mD, even at very early times. For the
remainder of this section, we will therefore set H ∼ 0,
for which aðtÞ ∼ constant (which we will scale to 1). In that
limit, the lapse function reduces to NðxÞ → ffiffiffiffiffiffiffiffiffi

fðrÞp
, with

fðrÞ ¼ 1 − rs=r, and the shift vector vanishes, βi → 0.
Next we consider an appropriate range for the enclosed

charge Q0, subject to the constraint in Eq. (59). The
shortest scales that can be resolved within our effective
field theory (EFT) are set by λD ¼ 1=mD, so we restrict
rs ≥ λD, which in turn requires MPBH ≥ 1=ð2GmDÞ. Then
Eq. (59) corresponds to the upper bound

Q0 ≪
1ffiffiffiffiffiffiffi
2αs

p Mpl

T
∼ 1012 ð64Þ

around tc ∼ 10−21 s. Meanwhile, as discussed around
Eq. (51), ifQ0 ≫ 1=gs, then the soft modes Aa

μ will assume
a quasi-Abelian form, with jAa

0j ≫ jAa
i j, for r < rabel. The

estimate of rabel in Eq. (51) holds in homogeneous space-
times, for which the temperature has no spatial gradients. In
the present case, given Eq. (44), mDðxÞ ∼ gsT0=

ffiffiffiffiffiffiffiffiffi
fðrÞp

.
Following the same steps that led to Eq. (51), we find

rabel
rs

¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2λ̃D
rs

ln½gsQ0�
	

2
s �

; ð65Þ

where λ̃D is the Debye length associated with the temper-
ature T0. For rs=λ̃D ¼ 3.5 and Q0 ∼ 104, this yields
rabel ∼ 3rs, while Q0 ∼ 1010 yields rabel ∼ 7rs.
The last departure to consider from the previous exam-

ples concerns the effect of the local temperature TðxÞ on the
coupling αs. Since the local temperature TðrÞ increases as r
approaches rs, the local QCD strength runs toward zero as
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one approaches the black hole event horizon: an example of
asymptotic freedom within an inhomogeneous spacetime.
To quantify the effect, we use Eq. (56) for the running
of αs with energy scale μ → TðrÞ. To resolve the behavior
of αs near rs, we adopt the “tortoise” radial coordinate,
r� ≡ rþ rs ln½ðr=rsÞ − 1�, for which r ¼ rs corresponds to
r� → −∞ [59]. See Fig. 1.
In the vicinity of a primordial black hole, the evolution of

the soft modes Aa
μðxÞ is therefore characterized by a

hierarchy of length scales:

λD < rs < rabel ≪ rH: ð66Þ

For rs ≤ r ≤ rabel, the soft modes will evolve as a quasi-
static quasi-Abelian system within a fixed background
spacetime. In that regime, Aa

μðxÞ ≃ Aa
0ðrÞδ0μ þOðr=rabelÞ,

and the equations of motion in Eq. (5) reduce to

∂
2
rAa

0ðrÞ þ
2

r
∂rAa

0ðrÞ −
m̃2

D

f2ðrÞA
a
0ðrÞ ¼ 0; ð67Þ

where m̃D ¼ 1=λ̃D is the Debye mass associated with the
temperature T0. Including the running of gs with r, we may
solve Eq. (67) numerically, with a typical example shown in
Fig. 2. The component Aa

0ðrÞ undergoes strong screening
for r≳ rs, since more plasma gathers near the event
horizon, yielding a higher density and temperature than
at locations r ≫ rs. Far from the black hole, Aa

0ðrÞ
asymptotes to similar behavior as found in Secs. VA
and V B, with Aa

0 ∼ exp½−mDr�=r. Note that an observer
at r≳ rs would measure an effective charge QðrÞ much
smaller than the chargeQ0 contained within the black hole.
Within our coordinate system, the Tolman temperature

gradient drives TðrÞ → ∞ as r → rs. The gradient is
physical, but the divergence is an artifact of our

fixed-background approximation; we have not allowed
the spacetime to backreact. To produce Fig. 2, we followed
the example of Refs. [88–90] and evaluated the field with a
boundary condition at a “stretched horizon,” rs þ ϵ, rather
than at rs, with ϵ=rs ¼ 10−6. In forthcoming work [76], we
address this limitation by solving the coupled Einstein field
equations and equation of motion for Aa

0ðxÞ within the
quasi-Abelian regime.

VI. DISCUSSION

We have generalized the description of Debye screening
of charges in hot plasmas to curved spacetime back-
grounds. For fluids undergoing normal flow in approx-
imately static spacetimes, we found that the characteristic
screening length λDðxÞ ¼ 1=mDðxÞ is set by a Debye mass
mDðxÞ ∼ gsTðxÞ given in Eq. (45), where gs is the
dimensionless gauge coupling. This Debye mass is the
natural generalization of the Minkowski result, upon
allowing the temperature to have spatial gradients due
to gravitational redshift, thereby reproducing Tolman’s
classic result [28–30].
To characterize Debye screening, we constructed an

effective theory for long-wavelength excitations in a hot
Yang-Mills plasma. We analyzed the dynamics of high-
momentum particles in the plasma (with momentum
khard ∼ T) by considering classical transport equations
and exploited the structure of Hamiltonian mechanics to
show that non-Abelian self-interactions induce an effective
local mass mDðxÞ for the Aa

0 components of the soft modes
(with momentum ksoft ∼ gsT).
We applied our results to solve for the gauge potential Aa

μ

in a few cases of interest. We recovered the well-known
Wu-Yang monopole solution in the Minkowski limit and
generalized it to FLRW spacetimes, demonstrating the self-
consistency of the quasistatic approximation in regimes of
interest, for which cosmological timescales may be
neglected compared to 1=ksoft.

FIG. 1. The QCD coupling strength αs ≡ g2s=ð4πÞ runs to lower
values near the event horizon of a black hole, as the temperature
of the surrounding plasma increases. Here r� is the tortoise radial
coordinate, r� ≡ rþ rs ln½ðr=rsÞ − 1�; r�=rs ¼ −36 corresponds
to r=rs ¼ 1þ 10−16. We have set T0 ¼ 107 GeV on the asymp-
totic boundary.

FIG. 2. The soft mode Aa
0ðrÞ (solid line) for rs=λ̃D ¼ 3.5 and

T0 ¼ 107 GeV. Given the greater density of plasma near the
black hole, Debye screening is particularly effective for r≳ rs.
For r ≫ rs, the behavior of Aa

0ðrÞ asymptotes to the expected
slope, exp½−mDr�=r (dashed line).
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Lastly, we analyzed Debye screening in the vicinity of a
primordial black hole immersed in a hot quark-gluon
plasma. Such black holes can form by absorbing regions
of the plasma with nonvanishing net color charge, with
characteristic size set by λD; hence the resulting primordial
black holes can have a residual net color charge. Building
on the examples involving homogeneous spacetimes, we
identified a regime in which the soft modes of the gauge
field outside the black hole exhibit quasi-Abelian behavior,
Aa
μðxÞ ≈ Aa

0ðrÞδ0μ. Given the Tolman temperature gradients,
the interaction strength αs runs to smaller values near the
event horizon. Incorporating this unusual example of
asymptotic freedom, we solved numerically for the soft-
mode gauge potential Aa

0ðrÞ, and found enhanced screening
of the charge enclosed within the black hole, due to an
increased density of the plasma near the event horizon.
Our examples have been restricted so far to fixed

background spacetimes. Future work will focus on exploit-
ing our EFT to study realistic cosmological scenarios
involving primordial black holes. This will require solving

the coupled Einstein-Yang-Mills equations for a black hole
in a hot non-Abelian plasma [76]. This formalism can also
be used to consider primordial black holes with substantial
QCD color charge, which could have formed at very early
times in cosmic history, well before the QCD confinement
transition [75].
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