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We explore the reflected entropy and the Markov gap between two modes of a free fermionic field as
observed by accelerating observers. This is done for both a bipartite system, which is described by the Bell
state, and tripartite systems, which are represented by the Werner and Greenberger-Horne-Zeilinger states.
The reflected entropy of the fermionic modes degrades monotonically as a result of the Unruh effect,
eventually reaching a nonzero minimum value in the limit of infinite acceleration. Furthermore, we show
that the Markov gap exhibits monotonic behavior with regard to acceleration in all three cases. In addition,
we suggest a function for reflected entropy which decreases monotonically with decreasing Unruh
temperature for all states. Finally, we confirm that the reflected entropy for our system does reduce under
the partial tracing of the degrees of freedom for our states.
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I. INTRODUCTION

Entanglement has emerged as a central issue in diverse
areas of theoretical and experimental physics from con-
densed matter physics to quantum theory of gravity. It has
served as a resource of several nonlocal observables for
quantum information tasks and quantum communications.
A large part of entanglement studies consists of non-
relativistic systems. More recently, the understanding of
entanglement has been extended in relativistic settings
and has been explored in different directions. It is believed
to be important from a fundamental point of view and for
applications. Various experiments in quantum information
theory involve observers with relativistic velocities which
demand a rich theoretical understanding of the character-
istics of entanglement in noninertial frames. It is known
that entanglement between observers in an inertial frame
remains constant. On the other hand, when relativistic
noninertial motion is involved, the quantum information
becomes observer dependent. A simple system to study this
phenomenon is to consider the entanglement of a non-
interacting massless field from the point of view of an
observer who is uniformly accelerated [1]. One may
assume in the inertial frame a maximally entangled pure

state, whose modes are obtained from a massless scalar
field, as the solution of the Klein-Gordon equation in
Minkowski coordinates. To describe the state from the
point of view of noninertial observers, the massless scalar
field should be now considered in Rindler spacetime.
A Bogoliubov transformation on the former solution in
Minkowski space leads to the latter one in the Rindler
spacetime [2]. An immediate consequence is that a pure
state described by inertial observers becomes mixed for
the uniformly accelerated observers. Following this
approach, it has been found that noninertial observers
see a degradation of the entanglement compared to the
inertial ones. The studies have been extended to the
fermionic systems [3] following a similar methodology
with the solution and their transformation of the Dirac
equation in different spacetimes, eventually obtaining the
same qualitative results.
The ground state of a given mode for inertial observers

becomes a two-mode state for accelerated observers, each
one corresponding to the field observed in the two causally
disconnected Rindler regions. This is due to the fact that
now the state is thermal, where an information loss appears
for an observer in one of the regions, since he/she needs to
trace over the other region [4,5]. So far, we have reported
the results of the various entanglement measures in the
system under study. Nevertheless, a more appropriate,
richer measure can be used for the investigation of the
correlation of these types of mixed states. In the context of
quantum information theory, bipartite entanglement has
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been studied widely to understand the entanglement struc-
ture of any system. Several attempts have been made to
explore the multipartite entanglement. This type of corre-
lation has a wide range of applications in various quantum
phenomena ranging from quantum gravity to quantum
computation. Despite its importance, multipartite entangle-
ment measure is still a challenging field of research in
quantum information theory (see [6–9] and reference
therein for recent progress).
More recently, the so-called reflected entropy has been

proposed as a crucial tool to investigate the correlation
of a mixed state [10]. This measure involves a canonical
purification of a mixed state which is easier to obtain
compared to the purification considered in the computation
of the entanglement of purification. The computation of
reflected entropy was introduced for a conformal field
theory (CFT) based on a specific replica technique. The
reflected entropy has been studied extensively in several
theories and systems, for example, in [11–15] and refer-
ences therein. The entanglement wedge cross section has
been suggested as the holographic dual of reflected entropy
in the framework of AdS=CFT correspondence. Note that
the entanglement wedge cross section has also been
proposed to be dual to the entanglement of purification
in [16,17]. Furthermore, it was argued that the tripartite
entanglement is necessary for holographic CFT states in
order to respect the conjectures about the reflected entropy
or entanglement of purification involving the entanglement
wedge cross section [18]. These results indicate that the
reflected entropy inherits some information about the
multipartite entanglement by studying a two-party state.1

Following these developments, two non-negative measures
of tripartite entanglement named g and h have been
proposed in [8]. The measure g is defined as the difference
between the reflected entropy and the mutual information,
whereas for h, it is the difference between the double of
entanglement of purification and the mutual information.
Furthermore, the quantity g has been explored in [21]
from an information theoretic point of view where it was
related to a specific Markov recovery problem, and thus,
the name Markov gap was coined. A nonvanishing value of
the Markov gap precludes a perfect Markov recovery map.
It has been also demonstrated that the lower bound of the
Markov gap in a holographic CFT state is related to the
number of boundaries of the entanglement wedge cross
section. Despite the success of the reflected entropy in the
context of AdS=CFT duality, the monotonicity of this
measure under partial tracing, which is a requirement
of a good measure of correlation, has been questioned
very recently in [22]. For a qutrit-qutrit-qubit system, the

density matrix of a fine-tuned quantum state can violate
the monotonicity of the reflected entropy for the Renyi
index ξ∈ ð0; 2Þ.
These developments generate an intense interest to

understand the reflected entropy from the viewpoint of
quantum information theory. In this article, we extend these
studies of fermionic systems in noninertial frames. We
make use of the relationship between the Minkowski and
the Rindler annihilation and creation operators of fermions
with the Bogoliubov transformation in order to obtain our
results. The two leading protagonists are the reflected
entropy and the Markov gap considered for three different
scenarios. In the first case, we have two observers, one
stationary (Alice) and the other accelerating (Bob), who
shared a bipartite entangled fermionic mode described
by the Bell state in an inertial frame. In the second and
third scenarios, there are three observers, with Alice and
Charlie being stationary and Bob accelerating uniformly,
who initially shared a tripartite entangled fermionic
mode described by the Werner state (W state) and the
Greenberger-Horne-Zeilinger (GHZ) state. We study in
detail the reflected entropy for these states. To begin with,
we show that reflected entropy is monotonic under partial
trace for our states, which indicates that it is a good measure
of correlation at least for the states in question and the
acceleration of the observers we consider. Reflecting on
the recent developments, this is a necessary check. As a
relevant side exercise, we show that new states exist (with
no acceleration involved) in higher-dimensional Hilbert
spaces that violate the monotonicity of reflected entropy
confirming and extending the work of [22]. Getting back to
our system, we study the properties of the reflected entropy
for all our states. We find a degradation of correlation
between Alice and Bob due to the Unruh effect in all three
scenarios. In the limit of infinite acceleration, the reflected
entropy reaches a nonzero minimum value. Meanwhile, the
Markov gap between Alice and Bob exhibits a monotonic
behavior with respect to acceleration, and we notice that it
increases for the Bell and GHZ states, whereas it decreases
with acceleration for the W state. Furthermore, we define a
specific dimensionless function, which we call a σ function,
that depends on reflected entropy which, in all scenarios,
exhibits monotonic behavior with Unruh temperature and
shows interesting properties.
This paper is arranged as follows: In Sec. II, we explain

the setup, defining the states and the effect of acceleration
on them. These are the states we study later in this article. In
Sec. III, we present the results for reflected entropy and also
study its bounds in the noninertial frames. In Sec. IV, we
analyze the Markov gap which indicates a specific evolu-
tion of three-party correlation. Next in Sec. V, we discuss a
monotonic σ function based on reflected entropy. Finally, in
Sec. VI, we summarize our results and present some of the
future directions of our work. Our results of the main text
are supported by three appendixes.

1There are other entanglement measures, i.e., three tangle [19]
and π tangle [20], in the literature which are used frequently to
quantify tripartite entanglement.
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II. THE STATES AND THE NONINERTIAL
OBSERVERS

We consider a free Dirac field in (1þ 1)-dimensional
Minkowski space with coordinates xμ ¼ ðt; zÞ,

iγμ∂μψ −mψ ¼ 0; ð2:1Þ

wherem is the particle mass, ψ is the spinor wave function,
and γμ are the Dirac gamma matrices. This field may be
expanded in terms of positive (fermions) ψþ

k and negative
(antifermions) ψ−

k energy solutions as

ψ ¼
Z

dk
�
akψ

þ
k þ b†kψ

−
k

�
; ð2:2Þ

where k is the momentum. The Minkowski creation and
annihilation operators ða†k; b†kÞ and ðak; bkÞ for fermions
and antifermions satisfy the anticommutation relations

fai; a†jg ¼ fbi; b†jg ¼ δij ð2:3Þ

with all other anticommutators vanishing. The Minkowski
vacuum state is given as

j0i ¼
Y
kk0

j0kiþj0k0 i−; ð2:4Þ

where the fþ;−g superscript on the kets indicates the
fermion and antifermion vacua. Note that as ða†kÞ2 ¼
ðb†kÞ2 ¼ 0, there are only two allowed states for each mode,
j0kiþ and j1kiþ ¼ a†kj0kiþ for fermions, and j0ki− and
j1ki− ¼ b†kj0ki− for antifermions.
In our work, we consider three distinct scenarios. In the

first case, we consider two noninertial observers sharing an
initially entangled bipartite fermionic field mode described
by the Bell state, which is given as2

jBiAB ¼ αj0iAj0iB þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− α2

p
j1iAj1iB; α∈ ð0; 1Þ; ð2:5Þ

where the subscripts A and B indicate the modes associated
with the observers Alice and Bob, respectively. In the
second and third cases, we consider two tripartite entangled
fermionic field modes represented by the Werner and GHZ
states, which are given as

jWiABC ¼ αj1iAj0iBj0iC þ αj0iAj0iBj1iC
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2α2

p
j0iAj1iBj0iC; α∈

�
0;

1ffiffiffi
2

p
�

ð2:6Þ

and

jGHZiABC ¼ αj0iAj0iBj0iC þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
j1iAj1iBj1iC;

α∈ ð0; 1Þ; ð2:7Þ

where the subscripts A, B, and C indicate the modes
associated with the observers Alice, Bob, and Charlie.
At this stage, we need to choose which of the observers

is stationary and which is accelerating. For the case of
bipartite state Eq. (2.5), we choose the observer Alice to be
stationary carrying a detector sensitive only to mode jniA,
and Bob moves with uniform acceleration possessing a
detector that only detects mode jniB. As for the tripartite
states Eqs. (2.6) and (2.7), we choose Alice and Charlie
who detect mode jniA and mode jniC, respectively, to be
stationary, and the accelerating Bob who detects mode jniB.
Rindler coordinates ðτ; ξÞ are appropriate to describe an

observer moving with uniform acceleration in an inertial
plane described by Minkowski coordinates ðt; zÞ. To
describe the entire Minkowski space, two different sets
of Rindler coordinates are required, which differ from each
other by an overall change in sign. These sets of coor-
dinates define two causally disconnected Rindler regions
I and II that are defined as

t ¼ a−1eaξ sinh aτ; z ¼ a−1eaξ cosh aτ; region I;

t ¼ −a−1eaξ sinh aτ; z ¼ a−1eaξ cosh aτ; region II;

ð2:8Þ

where a denotes the proper acceleration of the observer
Bob. The Rindler spacetime, the observers, and the regions
are depicted in Fig. 1. The Rindler regions I and II are
causally disconnected, and the accelerating observer in
either region has no access to the other, which leads to the
detection of a thermal mixed state. Henceforth, we will
refer the observer in region I as Bob (B) and the observer in
region II as anti-Bob (B̄).
The Minkowski and Rindler creation and annihilation

operators are related to each other through the Bogoliubov
transformation as [3,23–27]

�
ak

b†−k

�
¼

�
cos r −e−iϕ sin r

eiϕ sin r cos r

��
cIk

dII†−k

�
; ð2:9Þ

where ðcIk; dIkÞ and ðcI†k ; dI†k Þ are annihilation and creation
operators for the fermion and antifermion, respectively, in
Rindler region I. In Eq. (2.9), r ¼ tan−1 expð− πω

a Þ is the
acceleration parameter ranging from 0 ≤ r < π=4 corre-
sponding to 0 ≤ a < ∞, and ω indicates the Rindler mode
frequency as measured by the observer Bob with proper
acceleration a. The phase ϕ in Eq. (2.9) is unimportant,
and it can be absorbed in the definition of operators. The
corresponding annihilation and creation operators in

2From now on, we will only consider the fermionic field
modes, and we will also omit the superscript fþg and subscript k
on the kets.
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region II are ðcIIk ; cII†k Þ and ðdIIk ; dII†k Þ, respectively.
Similarly, the Bogoliubov transformation that mixes anti-
fermion modes in region I to fermion modes in region II is
given as follows:

�
bk

a†−k

�
¼

�
cos r e−iϕ sin r

−e−iϕ sin r cos r

��
dIk

cII†−k

�
: ð2:10Þ

By quantizing the fermionic field in the Minkowski and
Rindler frames, respectively, one can relate the Minkowski

particle vacuum for Bob’s modes in terms of Rindler Fock
states through the Bogoliubov transformations as [2,3]3

j0iB ¼ cos rj0iBj0iB̄ þ sin rj1iBj1iB̄; ð2:11Þ

and the excited state j1iB is given as

j1iB ¼ j1iBj0iB̄: ð2:12Þ

Note that as Bob accelerates through the Minkowski
vacuum j0i, his detector detects a number of particle
given by

h0jcI†k cIkj0iB ¼ 1

1þ eℏω=ðkBTÞ
; ð2:13Þ

where the Unruh temperature T is related to the proper
acceleration a as

T ¼ a
2π

: ð2:14Þ

A. Bell state

The bipartite fermionic field modes described by the
Bell state (2.5) may be expressed by employing Eqs. (2.11)
and (2.12) as

jBiABB̄ ¼ α cos rj000iABB̄ þ α sin rj011iABB̄
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
j110iABB̄; ð2:15Þ

where we have denoted jliAjmiBjniB̄ ¼ jlmniABB̄, and for
simplicity, we will henceforth denote jlmniABB̄ as jlmni.
The mixed density matrices for Alice-Bob ðABÞ,
Alice–anti-Bob ðAB̄Þ, and Bob–anti-Bob ðBB̄Þ are given
as follows:

ρðBÞAB ¼ α2 cos2 rj00ih00j þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
cos rðj00ih11j þ j11ih00jÞ þ α2 sin2 rj01ih01j þ ð1 − α2Þj11ih11j;

ρðBÞAB̄ ¼ α2 cos2 rj00ih00j þ α2 sin2 rj01ih01j þ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
sin rðj01ih10j þ j10ih01jÞ þ ð1 − α2Þj10ih10j;

ρðBÞBB̄ ¼ α2 cos2 rj00ih00j þ α2 cos r sin rðj00ih11j þ j11ih00jÞ þ ð1 − α2Þj10ih10j þ α2 sin2 rj11ih11j; ð2:16Þ

where the superscript refers to the state, in this case the Bell state. Similarly, the density matrices for Alice, Bob, and anti-

Bob, respectively, are ρðBÞA , ρðBÞB , and ρðBÞB̄ . They can be found as

ρðBÞA ¼ α2j0ih0j þ ð1 − α2Þj1ih1j;
ρðBÞB ¼ α2 cos2 rj0ih0j þ ð1 − α2 cos2 rÞj1ih1j;
ρðBÞB̄ ¼ ð1 − α2 sin2 rÞj0ih0j þ α2 sin2 rj1ih1j: ð2:17Þ

FIG. 1. Rindler spacetime diagram: The accelerating observer
Bob (B) in region I and anti-Bob B̄ in region II travel through a
constant ξ hyperbola (red solid), and τ ¼ const are lines (blue
dashed) that pass through the origin. Note that time τ flows in the
upward direction in region I, whereas it runs in the opposite
direction in region II. The stationary observer Charlie (C) follows
a similar path as Alice (A). The horizons H� are lines corre-
sponds to τ ¼ �∞.

3Note that we have employed the single-mode approximation as described in [3].
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B. Werner state

The tripartite entangled fermionic mode described by the W state in Eq. (2.6) may be express as follows by employing
Eqs. (2.11) and (2.12):

jWiABC ¼ α cos rj1000iABB̄C þ α sin rj1110iABB̄C þ α cos rj0001iABB̄C þ α sin rj0111iABB̄C
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2α2

p
j0100iABB̄C: ð2:18Þ

The density matrices of AB, AB̄, and BB̄ are given as

ρðWÞ
AB ¼ α2 cos2 rj00ih00j þ ðð1 − 2α2Þ þ α2 sin2 rÞj01ih01j þ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2α2

p
cos rðj10ih01j þ j01ih10jÞ

þ α2 cos2 rj10ih10j þ α2 sin2 rj11ih11j;
ρðWÞ
AB̄ ¼ ðð1 − 2α2Þ þ α2 cos2 rÞj00ih00j þ α2 sin2 rj01ih01j þ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2α2

p
sin rðj00ih11j þ j11ih00jÞj

þ α2 cos2 rj10ih10j þ α2 sin2 rj11ih11j;
ρðWÞ
BB̄ ¼ 2α2 cos2 rj00ih00j þ 2α2 cos r sin rðj00ih11j þ j11ih00jÞ þ 2α2 sin2 rj11ih11j þ ð1 − 2α2Þj10ih10j; ð2:19Þ

while the density matrices of A, B, and B̄ are

ρðWÞ
A ¼ ð1 − α2Þj0ih0j þ α2j1ih1j;

ρðWÞ
B ¼ 2α2 cos2 rj0ih0j þ ð1 − 2α2 cos2 rÞj1ih1j;

ρðWÞ
B̄ ¼ ð1 − 2α2 sin2 rÞj0ih0j þ 2α2 sin2 rj1ih1j: ð2:20Þ

C. Greenberger-Horne-Zeilinger state

By employing Eqs. (2.11) and (2.12), the GHZ state Eq. (2.7) may further be expressed as

jGHZiABC ¼ α cos rj0000iABB̄C þ α sin rj0110iABB̄C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
j1101iABB̄C: ð2:21Þ

The density matrices of AB, AB̄, and BB̄ are as follows:

ρðGHZÞAB ¼ α2 cos2 rj00ih00j þ α2 sin2 rj01ih01j þ ð1 − α2Þj11ih11j;
ρðGHZÞAB̄ ¼ α2 cos2 rj00ih00j þ α2 sin2 rj01ih01j þ ð1 − α2Þj10ih10j;
ρðGHZÞBB̄ ¼ α2 cos2 rj00ih00j þ α2 cos r sin rðj00ih11j þ j11ih00jÞ þ ð1 − α2Þj10ih10j þ α2 sin2 rj11ih11j; ð2:22Þ

while the density matrices of A, B, and B̄ read

ρðGHZÞA ¼ α2j0ih0j þ ð1 − α2Þj1ih1j;
ρðGHZÞB ¼ α2 cos2 rj0ih0j þ ð1 − α2 cos2 rÞj1ih1j;
ρðGHZÞB̄ ¼ ð1 − α2 sin2 rÞj0ih0j þ α2 sin2 rj1ih1j: ð2:23Þ

III. REFLECTED ENTROPY

In this section, we study the reflected entropy between
the observers Alice-Bob ðABÞ, Alice–anti-Bob ðAB̄Þ, and
Bob–anti-Bob ðBB̄Þ for the Bell state given by Eq. (2.15),
W state given by Eq. (2.18), and GHZ state given by

Eq. (2.21), respectively. Before delving into the details of
the computation, we briefly review reflected entropy in
quantum information theory. To begin with, we consider a
bipartite density matrix ρAB in a Hilbert space HA ⊗ HB,
where HA and HB are Hilbert spaces associated with the
subsystems A and B, respectively. The entanglement
entropy of the subsystem A is defined as the von
Neumann entropy of the reduced density matrix ρA ¼
TrBρAB as

SðAÞ ¼ −TrðρA log ρAÞ: ð3:1Þ

The mutual information, which measures the total corre-
lation between the subsystems A and B, is defined as
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IðA∶BÞ ¼ SðAÞ þ SðBÞ − SðABÞ; ð3:2Þ
which is symmetric in A and B. As mentioned in the
Introduction, for mixed states the entanglement entropy is
not the most appropriate entanglement measure, and other
mixed state entanglement measures are to be used. Note
that any mixed state ρAB in quantum information theory
may be expressed as a sum of pure states

ρAB ¼
X
a

paρ
ðaÞ
AB; ρðaÞAB ¼ jϕaihϕaj; ð3:3Þ

where jϕai is an orthonormal basis of HA ⊗ HB, and
eigenvalues pa are non-negative 0 ≤ pa ≤ 1. We construct
the Schmidt decomposition of jϕai by choosing appropriate
bases jiaiA ∈HA and jibiB ∈Hb as

jϕai ¼
X
i

ffiffiffiffi
lia

q
jiaiAjiaiB; ð3:4Þ

where lia is a non-negative quantity with the normalizationP
i l

i
a ¼ 1. By using Eq. (3.4), the density matrix Eq. (3.3)

may be expressed as

ρAB ¼
X
a;i;j

pa

ffiffiffiffiffiffiffiffi
lial

j
a

q
jiaiAjiaiBhjajAhjajB: ð3:5Þ

We now interpret hjajA and hjajB as states jjaiA⋆ and jjaiB⋆

on Hilbert spaces H⋆
A and H⋆

B , respectively, and define a
pure state j ffiffiffiffiffiffiffi

ρAB
p i∈HA ⊗ HB ⊗ H⋆

A ⊗ H⋆
B as

j ffiffiffiffiffiffiffi
ρAB

p i ¼
X
a;i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
palial

j
a

q
jiaiAjiaiBjjaiA⋆ jjaiB⋆ : ð3:6Þ

This state j ffiffiffiffiffiffiffi
ρAB

p i is known as the purification of the state
ρAB. The reflected entropy between A and B for ρAB is
defined as the von Neumann entropy of ρAA⋆ ¼
TrBB⋆ j ffiffiffiffiffiffiffi

ρAB
p ih ffiffiffiffiffiffiffi

ρAB
p j, which is given as [10,28–31]

SRðA∶BÞ ¼ −TrAA⋆ ½ρAA⋆ log ρAA⋆ �: ð3:7Þ

It is interesting to note that the reflected entropy is upper
bounded by minf2SA; 2SBg and lower bounded by the
mutual information IðA∶BÞ as

minf2SA; 2SBg ≥ SRðA∶BÞ ≥ IðA∶BÞ: ð3:8Þ

For any tripartite pure state, the reflected entropy satisfies
the polygamy inequality (see Appendix B for details),
which is given as

SRðA∶BÞ þ SRðA∶CÞ ≥ SRðA∶BCÞ: ð3:9Þ

Apart from these, reflected entropy can also distinguish
isospectral density matrices [32]. One example of such
density matrices is

ρ1 ¼
1

3

0
BBB@

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

1
CCCA; ρ2 ¼

1

3

0
BBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

1
CCCA;

ð3:10Þ

where ρ1 and ρ2 can be written in the basis fj00i; j01i; j10i;
j11ig by tracing out one party from a W state jWiABC ¼
1ffiffi
3

p ðj100i þ j010i þ j001iÞ and GHZ state jGHZiABC ¼
1ffiffi
3

p ðj000i þ ffiffiffi
2

p j111iÞ, respectively. For example, in this

case one can compute SRðρ1Þ ¼ 1.49 and SRðρ2Þ ¼ 0.92,
which clearly distinguishes these two isospectral density
matrices.
We now turn to the computation of reflected entropy for

the bipartite and tripartite fermionic field mode as described
in Eqs. (2.5)–(2.7). To compute reflected entropy SRðA∶BÞ,
SRðA∶B̄Þ, and SRðB∶B̄Þ between AB, AB̄, and BB̄, we first
construct the canonically purified states j ffiffiffiffiffiffiffi

ρAB
p i, j ffiffiffiffiffiffiffi

ρAB̄
p i,

and j ffiffiffiffiffiffiffiffi
ρBB̄

p i by doubling the Hilbert space as mentioned in
Eq. (3.6). Now the reflected entropies SRðA∶BÞ, SRðA∶B̄Þ,
and SRðB∶B̄Þ are obtained by using Eq. (3.7) for the Bell,
W, and GHZ states (see Appendix A for details).
Note that in the inertial frame r ¼ 0 and α ¼ 1ffiffi

2
p

correspond to the case of the maximally entangled Bell
and GHZ state, and α ¼ 1ffiffi

3
p for the maximally entangled W

state. In Figs. 2(a)–2(c), we plot SRðA∶BÞ, SRðA∶B̄Þ, and
SRðB∶B̄Þ as a function of the acceleration r for fixed α for
the Bell, W, and GHZ states, respectively. We notice that
SRðA∶BÞ decreases, whereas SRðA∶B̄Þ increases due to the
Unruh effect for all three cases. Furthermore, in the infinite
acceleration limit they both reach the same nonvanishing
final value, which indicates that the observers B and B̄
become indistinguishable at this limit. We notice that as
the correlation between AB decreases, the correlation
between AB̄ grows, which is due to the correlation sharing.
Indeed, this phenomenon has also been observed for
other entanglement measures as well, e.g., entanglement
negativity [3]. On the other hand, SRðB∶B̄Þ increases
monotonically starting from zero at r ¼ 0 culminating to
a final nonzero value in the infinite acceleration limit
where r ¼ π

4
.

Let us now briefly discuss some of the recent develop-
ments which raised a concern on the generic validity and
applicability of the reflected entropy as a correlation mea-
sure in quantum information theory. It has been recently
noticed [22] that in a qutrit-qutrit-qubit system there exist
quantum states which violate the monotonicity of reflected
entropy under the operation of partial trace. Nevertheless, it
remains an important quantity in the context of holography
where the entanglement wedge cross section is considered a
bulk dual of reflected entropy [10]. Therefore, utilizing the
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nesting property of the entanglement wedge, it can be argued
that reflected entropy in holographic CFT does not suffer
from nonmonotonicity [10,33]. However, for our states in
this work it is essential to confirm that the reflected entropy
does reduce under the partial tracing of the degrees of
freedom.
As a side development to this task, we confirm and

extend the work of [22] by showing that there exists another
three-party state in the Hilbert space HA ⊗ HB ⊗ HC ¼
C4 ⊗ C3 ⊗ C2 which violates the monotonicity of the ξth
Renyi reflected entropy in the domain ξ∈ ð0; 2Þ,

ρABC ¼ 1

6aþ 2b
½aðj000ih000j þ j110ih110j þ j200ih000j

þ j210ih110j þ j300ih000j þ j310ih110jÞ
þ bðj020ih020j þ j121ih121jÞ�: ð3:11Þ

In the above expression, a and b are two parameters which
can be treated as classical probabilities. Using this state in

Eq. (3.11), one can compute ξth Renyi reflected entropy
and check the monotonicity under partial trace. It is observed
that for some fixed range of parameters a and b, the quan-
tity SξRðA∶BCÞ − SξRðA∶BÞ becomes negative [Fig. 3(a)].
It is easy to check the conditions numerically, which yields
that a should be larger than b. Similar to [22], increasing
the value of a

b pushes the region of violation toward ξ ¼ 2.
Furthermore, for a fixed value of ξ, it can be observed in
Fig. 3(b) that the violation of monotonicity occurs at
different values of the ratio p ¼ a

b. The state Eq. (3.11)
can be generalized for Hilbert space with arbitrary dimen-
sions, i.e., HA ⊗ HB ⊗ HC ¼ Cnþ1 ⊗ Cmþ1 ⊗ C2 where
violation of monotonicity is observed for Rényi reflected
entropy as we show in Appendix C. For the states
considered in this study, we are able to confirm that the
reflected entropy does reduce under the partial tracing of
the degrees of freedom. We include some representative
results in Appendix C. Consequently, we argue that reflec-
ted entropy is a good correlation measure for our states and
the noninertial observers in our setup.
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FIG. 2. Reflected entropy for the Bell, Werner, and GHZ states is plotted as a function of the acceleration. (a) Bell state: SRðA∶BÞ (blue
solid curve), SRðA∶B̄Þ (orange dashed curve), and SRðB∶B̄Þ (red dot-dashed curve). In all plots that follow for the Bell state, α is fixed to
its maximally entangled value for the state unless otherwise stated. (b) W state: SRðA∶BÞ (blue solid curve), SRðA∶B̄Þ (orange dashed
curve), and SRðB∶B̄Þ (red dot-dashed curve). In all plots that follow for W state, α is fixed to its maximally entangled value for the state
unless otherwise stated. (c) GHZ state: SRðA∶BÞ (blue solid curve), SRðA∶B̄Þ (orange dashed curve), and SRðB∶B̄Þ (red dot-dashed
curve). In all plots that follow for the GHZ state, α is fixed to its maximally entangled value for the state unless otherwise stated.
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A. Bounds of reflected entropy

In Figs. 4–6, we provide an illustrative representation of
the upper and lower bounds followed by SRðA∶BÞ as
mentioned in Eq. (3.8) for the Bell, Werner, and GHZ
states, respectively. For the case of the Bell state, the
density matrix ρAB at r ¼ 0 is pure and entangled; hence,
reflected entropy SRðA∶BÞ saturates both upper and lower
bounds. Interestingly, increasing r induces tripartite entan-
glement into the system, which leads to the nonsaturation
of the bound depicted in Fig. 4(a). In Fig. 4(b), we observe
that for α ¼ 0 and α ¼ 1 both the bounds are saturated as
expected, and near α ¼ 0, SRðA∶BÞ (blue solid curve)
follows closer to IðA∶BÞ (red dot-dashed curve), whereas
close to α ¼ 1, it follows closer to minf2SA; 2SBg (orange
dashed curve). We notice the clear shift of dominance
between minf2SA; 2SBg (orange dashed curve) close to α ≃
0.8 from 2SA to 2SB, where the exact value α where this
happens depends on the parameters we choose for the state.
On the other hand, for the W state, ρAB at r ¼ 0 is mixed

and entangled, and as a result, none of the bounds are

saturated, indicating the existence of tripartite entanglement
which increases with r Fig. 5(a). In Fig. 5(b), we see that
for α ¼ 0 both bounds are saturated, and at α ¼ 1 only the
lower bound is saturated. We also observe that, unlike the
behavior of the Bell state, the W state's SRðA∶BÞ (blue solid
curve) near α¼ 0 follows close the minf2SA; 2SBg (orange
dashed curve) whereas close to α ¼ 1=

ffiffiffi
2

p
, it comes closer

to the IðA∶BÞ (red dot-dashed curve). Furthermore, we
observe a change of dominance in minf2SA; 2SBg from
2SA to 2SB near α ≃ :6, as in the previous case. As for the
GHZ state, at r ¼ 0 the density matrix ρAB is mixed and
separable; hence, only the lower bound is saturated. With
increasing r, the reflected entropy SRðA∶BÞ (blue solid
curve) decreases, and none of the bounds are saturated at
large r, as can be seen in Fig. 6(a). This refers to the existence
of the tripartite entanglement at finite r. When SRðA∶BÞ is
plotted as a function of α at a fixed r, we observe that
both bounds are saturated at α ¼ 0 and α ¼ 1 presented in
Fig. 6(b). Notice the clear change of dominance of minf2SA;
2SBg (orange dashed) near α ≃ 0.8 from 2SA to 2SB.
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FIG. 4. (a) Reflected entropy SRðA∶BÞ for the maximally entangled Bell state as function of r is compared with its upper and lower
bounds. (b) Reflected entropy SRðA∶BÞ as a function of α for r ¼ π

4
is compared with its upper and lower bounds. (a) SRðA∶BÞ (blue

solid curve), minf2SA; 2SBg (orange dashed curve), IðA∶BÞ (red dot-dashed). (b) SRðA∶BÞ (blue solid curve), minf2SA; 2SBg (orange
dashed curve), IðA∶BÞ (red dot-dashed).
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FIG. 3. Monotonicity of Renyi reflected entropy under partial tracing for the state in Eq. (3.11). (a) SξRðA∶BCÞ − SξRðA∶BÞ vs ξ. Here,
a ¼ 0:5 (blue), a ¼ 0:75 (orange), a ¼ 1 (green), a ¼ 1.5 (red), and b ¼ 0:5. (b) SξRðA∶BCÞ − SξRðA∶BÞ vs p. Here, ξ ¼ 0.1 (blue),
ξ ¼ 0.5 (orange), ξ ¼ 1 (red), and ξ ¼ 2 (violet).
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IV. MARKOV GAP

In this section, we will study the Markov gap h which is
proposed as a measure of tripartite entanglement [8]. For
a bipartite system A ∪ B, it is defined as the difference
between reflected entropy and mutual information [6,21,34]

hðA∶BÞ ¼ SRðA∶BÞ − IðA∶BÞ: ð4:1Þ
This quantity is identified with conditional mutual infor-
mation [10]

hðA∶BÞ ¼ IðA∶B⋆jBÞ ¼ IðB∶A⋆jAÞ; ð4:2Þ

where the conditional mutual information is defined in
terms of the linear combination of entanglement entropies
as follows:

IðA∶CjBÞ ¼ SðABÞ þ SðBCÞ − SðABCÞ − SðBÞ
¼ IðA∶BCÞ − IðA∶BÞ: ð4:3Þ

The fidelity of a Markov recovery process is related to the
conditional mutual information as [35]

max
RB→BC

FðρABC;RB→BCðρABÞÞ ≥ exp−IðA∶CjBÞ : ð4:4Þ

Here the Markov recovery process is understood as a
technique to obtain the state ρABC from any of its bipartite
reduced states using Markov recovery map RB→BC.

4 The
quantity F in Eq. (4.4) is known as quantum fidelity, which
for two density matrices ρ and σ is defined as

Fðρ; σÞ ¼
h
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pq i
2
: ð4:5Þ

Note that it is symmetric in its arguments which lie in the
range 0 ≤ Fðρ; σÞ ≤ 1. Utilizing the canonically purified
state ρABA⋆B⋆ , an inequality can be proposed as [21]
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FIG. 6. (a) The reflected entropy SRðA∶BÞ for the maximally entangled GHZ state as function of r is compared with its upper and
lower bounds. (b) Reflected entropy SRðA∶BÞ as a function of α for r ¼ π

4
is compared with its upper and lower bounds. SRðA∶BÞ (blue

solid curve), minf2SA; 2SBg (orange dashed curve), IðA∶BÞ (red dot-dashed curve). SRðA∶BÞ (blue solid curve), minf2SA; 2SBg
(orange dashed curve), IðA∶BÞ (red dot-dashed curve).
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FIG. 5. (a) The reflected entropy SRðA∶BÞ for the maximally entangled W state as function of r is compared with its upper and lower
bounds. (b) Reflected entropy SRðA∶BÞ as a function of α for r ¼ π

8
is compared with its upper and lower bounds. SRðA∶BÞ (blue solid

curve), minf2SA; 2SBg (orange dashed curve), IðA∶BÞ (red dot-dashed curve). SRðA∶BÞ (blue solid curve), minf2SA; 2SBg (orange
dashed curve), IðA∶BÞ (red dot-dashed curve).

4The Markov recovery map essentially is a quantum channel
which produces a bipartite system from a single-party system.
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hðA∶BÞ ≥ − max
RB→BB⋆

logFðρABB⋆ ;RB→BB⋆ðρABÞÞ; ð4:6Þ

where Eqs. (4.2) and (4.4) are used to obtain the above
equation.
Markov gap can be studied in the present setup of

this article where we investigate three-party (Alice-Bob–
anti-Bob) entanglement for the Bell, Werner, and GHZ
states in noninertial frame. The characteristic behavior
of the Markov gap hðA∶BÞ, hðA∶B̄Þ, and hðB∶B̄Þ as a
function of the acceleration r for a constant α is depicted in
Fig. 7. Interestingly, we observe that the Markov gap for all
three cases increases monotonically for the Bell state
[Fig. 7(a)] and GHZ state [Fig. 7(c)], whereas for the W
state, hðA∶BÞ decreases but hðA∶B̄Þ and hðB∶B̄Þ increase
monotonically [Fig. 7(b)].
These figures indicate a few characteristics of multipar-

tite entanglement in these three states. For the Bell state,
the entanglement is purely bipartite at r ¼ 0, and con-
sequently the Markov gap vanishes. Anti-Bob ðB̄Þ evolves
with increasing acceleration which creates tripartite corre-
lation in the system. As a result, the Markov gaps hðA∶BÞ,

hðA∶B̄Þ, and hðB∶B̄Þ increase with the acceleration.
Interestingly, the authors in [3] studied the evolution of
three-party correlation by exploring a measure named
residual tangle [19]. Their system under consideration
was the same as the first case in this article, i.e., the
Bell state with accelerating Bob. It was found that the
residual tangle is zero for any value of acceleration. This
result was interpreted as the absence of tripartite correlation
where all the entanglement present in the system is bipartite
in nature. As the Markov gap is sensitive toward the
tripartite entanglement, our results can be interpreted as
the presence of three-party entanglement in the Bell state
under acceleration even if the residual tangle vanishes. This
behavior of the Markov gap suggests that it might be able to
serve as a fine probe of multipartite entanglement.
Interestingly, on the other hand, the W state has tripartite

entanglement between Alice, Bob, and anti-Bob in the
inertial frame (r ¼ 0), which is indicated by the nonzero
initial value of hðA∶BÞ. Furthermore, anti-Bob does not
exist in the inertial frame where the Markov gap related to
him is zero. The Markov gap hðA∶BÞ shows a monotonic
decreasing behavior because of the entanglement sharing

0.2 0.4 0.6 0.8
r

0.1

0.2

0.3

0.4

0.5

0.6
h

0.2 0.4 0.6 0.8
r

0.1

0.2

0.3

0.4

0.5

h

0.2 0.4 0.6 0.8
r

0.1

0.2

0.3

0.4

0.5

0.6
h

FIG. 7. Markov gap for the Bell, Werner, and GHZ states are plotted as a function of the acceleration. (a) Bell state: hðA∶BÞ (blue solid
curve), hðA∶B̄Þ (orange dashed curve), and hðB∶B̄Þ (red dot-dashed curve). (b) Werner state: hðA∶BÞ (blue solid curve), hðA∶B̄Þ (orange
dashed curve), and hðB∶B̄Þ (red dot-dashed curve). (c) GHZ state: hðA∶BÞ (blue solid curve), hðA∶B̄Þ (orange dashed curve), and
hðB∶B̄Þ (red dot-dashed curve).
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between Alice, Bob, and anti-Bob with increasing accel-
eration. Note that at r ¼ π

4
, the Markov gap hðA∶BÞ

coincides with hðA∶B̄Þ similar to other findings in this
article and in [3]. Furthermore, for the GHZ states, hðA∶BÞ,
hðA∶B̄Þ, and hðB∶B̄Þ increase monotonically as function of
r starting from zero at r ¼ 0. The nature of the tripartite
entanglement computed by the Markov gap for the GHZ
state is similar to that of the Bell state with accelerating Bob
as depicted in Fig. 7(c).

V. A MONOTONIC FUNCTION FOR REFLECTED
ENTROPY

In this section, we will study a few properties of reflected
entropy in our setup by defining a specific function of
the temperature and frequency. Here we use the relation
between the acceleration and the Unruh temperature

r ¼ tan−1ðe− ω
2TÞ ð5:1Þ

to obtain the characteristics of reflected entropy with
respect to the Unruh temperature T. We find that for fixed
ω and increasing T all the maximally entangled states have
a monotonically decreasing behavior of SRðA∶BÞ and

IðA∶BÞ with T. We also notice that the dimensionless,
single parameter function σðTÞ, which we define as

σðTÞ ¼ 1

ω

∂SR
∂
�
1
T

� ; ð5:2Þ

where ω can be considered as the fixed scale, has
monotonic properties with respect to the increase of the
temperature. In Figs. 8(a)–8(c), we observe σðTÞ increases
monotonically with increasing Unruh temperature, mean-
ing that the entanglement measure SR we are interested in
decreases for increasing acceleration. The σ function tends
to zero for T → 0 and for T → ∞ saturates to fixed values
which are different for each state and independent of ω.
Notice that the σ function does not suffer from divergences,
and for our states, for two-party and three-party systems
having bipartite, W- and GHZ-type entanglement, the
generic behavior remains the same. We point out that the
definition of this function is partly motivated by the well-
known c function in terms of the entanglement entropy
proposed and further studied in [36–40]. By establish-
ing the monotonicity of the function, one may like to
question whether there exists a clear physically relevant
interpretation of the function in relation to the degrees
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FIG. 8. ω · σðTÞ as function of the Unruh temperature T. (a) Bell state: ω ¼ 10 (blue), ω ¼ 20 (orange), ω ¼ 30 (green), and ω ¼ 40
(red). (b) Werner state: ω ¼ 10 (blue), ω ¼ 20 (orange), ω ¼ 30 (green), and ω ¼ 40 (red). (c) GHZ state: ω ¼ 10 (blue), ω ¼ 20
(orange), ω ¼ 30 (green), and ω ¼ 40 (red).
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of freedom shared between the two parties. An initial
approach is that observers with higher accelerations are
further away from the origin, covering only a subspace of
the observers with lower accelerations and therefore should
be associated with fewer degrees of freedom. It is worthy to
be studied in even more complex setups in order to obtain a
more solid interpretation.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated the behavior of
reflected entropy between two modes of free fermionic
fields in a noninertial frame from the perspective of two
relatively accelerated observers. Alice and Bob, for a
bipartite system described by the Bell state, and we added
Charlie for the tripartite system represented by the Werner
and GHZ states. We have confirmed that for our three-qubit
and four-qubit states, Renyi reflected entropy is monotonic
under partial trace, allowing us to use reflected entropy as a
legitimate measure of correlation. This is an essential check
since recent developments raised concerns about the gene-
ric validity and applicability of the reflected entropy as a
correlation measure in quantum information theory [22] by
pointing out the existence of a fine-tuned state that violates
the desirable monotonicity. In fact, we have validated these
developments by showing that such fine-tuned states can
exist in higher-dimensional Hilbert spaces, and we have
explicitly presented a class of such states. Nevertheless,
getting back to our setup and our used states in this work,
we have confirmed that the reflected entropy does reduce
under the partial tracing of the degrees of freedom.
We have shown that the reflected entropy between Alice

and Bob degrades with acceleration due to the Unruh effect,
culminating in a nonvanishing minimum value. We have
also computed the reflected entropy between Alice and
anti-Bob (who is causally separated from the observer Bob
in region I) and Bob and anti-Bob. We have discovered that
the reflected entropy increases monotonically with accel-
eration in these two circumstances. Furthermore, we have
explored the Markov gap, which is a measure of tripartite
entanglement, between all three parties Alice-Bob, Alice–
anti-Bob, and Bob–anti-Bob. We have found that the
Markov gap increases monotonically with acceleration in
all three scenarios for the Bell and GHZ states, whereas for
the W state it declines for Alice-Bob but grows for Alice–
anti-Bob, and Bob–anti-Bob. In the Bell and GHZ states,
for vanishing acceleration, the Markov gap was zero. We
have argued that acceleration causes tripartite entanglement
in the system for all three states in consideration, as
evidenced by the nonzero value of the Markov gap at

finite and even infinite acceleration in Figs. 7(a)–7(c). This
observation suggests that the Markov gap could be used to
characterize the three-body correlation encoded for tripar-
tite states apart from some other measures in the literature.
We have suggested a dimensionless σ function of

reflected entropy for a fixed mode frequency which pre-
serves monotonicity with increasing temperature. Because
of the character of the reflected entropy, this specific
function is free from any divergences. The function exhibits
always a convergence to certain values at T → 0 and
T → ∞. We suggest the possibility that this function
contains information of the effective degrees of freedom
or the shared correlation between two parties.
As for future direction, it would be interesting to ask

what happens if Alice and Bob both accelerate simulta-
neously with different rates of acceleration. Intuitively, one
could expect that reflected entropy between Alice and Bob
to further decrease, eventually reaching a nonzero value in
the infinite acceleration limit. Another interesting path for
future research along this line is to address the same
question for black hole spacetimes. In addition, it will
be exciting to check the generalized properties of the σ
function independent of the choices of states.
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APPENDIX A: THE DENSITY OF MATRICES
OF THE BELL STATE

The density matrices ρðBÞAB , ρ
ðBÞ
AB̄ , and ρ

ðBÞ
BB̄ for the Bell state

have been given in section II A. Using a proper basis fj00i;
j01i; j10i; j11ig, ρAA⋆ ¼ TrBB⋆ðj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρABA⋆B⋆
p ih ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρABA⋆B⋆
p jÞ,

ρ̄AA⋆ ¼ Tr
BB⋆ðj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρ

AB̄A⋆B⋆
p ih ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρ

AB̄A⋆B⋆
p jÞ, and ρBB⋆ ¼

Tr
B̄ B⋆ðj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρ

BB̄B⋆B⋆
p ih ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρ

BB̄B⋆B⋆
p jÞ are given as follows:
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0
BBBBBBBB@

α2ðð2α2−1Þ cos 2rþ1Þ
−α2þα2 cos 2rþ2

0 0 −
ffiffi
2

p
α2ðα2−1Þ sin2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 sin2 rð−α2þα2 cos 2rþ2Þ
p

0 − 2α2ðα2−1Þ cos2 r
−α2þα2 cos 2rþ2

0 0

0 0 − 2α2ðα2−1Þ cos2 r
−α2þα2 cos 2rþ2

0

−
ffiffi
2

p
α2ðα2−1Þ sin2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 sin2 rð−α2þα2 cos 2rþ2Þ
p 0 0

2ðα2−1Þ2
−α2þα2 cos 2rþ2

1
CCCCCCCCA
; ðA1Þ

0
BBBBBBBB@

α2ðð2α2−1Þ cosð2rÞ−1Þ
α2þα2 cosð2rÞ−2 0 0 − αðα2−1Þ cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−α2 cos2ðrÞ
p

0
2α2ðα2−1Þ sin2ðrÞ
α2þα2 cosð2rÞ−2 0 0

0 0
2α2ðα2−1Þ sin2ðrÞ
α2þα2 cosð2rÞ−2 0

− αðα2−1Þ cosðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2 cos2ðrÞ

p 0 0 − 2ðα2−1Þ2
α2þα2 cosð2rÞ−2

1
CCCCCCCCA
; ðA2Þ

0
BBBB@

α2 cos4ðrÞ 0 0 α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
cos2ðrÞ

0 α2 sin2ðrÞ cos2ðrÞ 0 0

0 0 α2 sin2ðrÞ cos2ðrÞ 0

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
cos2ðrÞ 0 0 −α2 þ α2 sin2ðrÞ cos2ðrÞ þ 1

1
CCCCA: ðA3Þ

The reflected entropy SRðA∶BÞ, SRðA∶B̄Þ, and SRðB∶B̄Þ
may be obtained by employing Eq. (3.7) and using the
information above. The expression of these density ma-
trices ρAA� , ρ̄AA� , and ρBB� for the W state and GHZ state are
large, and we have not included them here for presentation
reasons.

APPENDIX B: POLYGAMY INEQUALITY

To show the polygamy inequality Eq. (3.9), we construct
SRðA∶BÞ þ SRðA∶B̄Þ − SRðA∶BB̄Þ for the Bell state and
SRðA∶BÞ þ SRðA∶B̄CÞ − SRðA∶BB̄CÞ for the Werner and
GHZ states for fixed α and plot these in Figs. 9(a)–9(c). We
notice that for the Bell and GHZ states, it increases
monotonically with growing r and remains positive for
all values of r; thus, it satisfies the polygamy inequality.
Unlike the Bell and GHZ states, for the W state it decreases
monotonically with r from a maximum value at r ¼ 0,

although it satisfies the polygamy inequality as it remains
positive for all r.

APPENDIX C: MONOTONICITY OF REFLECTED
ENTROPY

In this section, we show some representative plots of
the monotonicity of the reflected entropy by depicting

SðξÞR ðA∶BB̄Þ − SðξÞR ðA∶BÞ as a function of the Renyi index
ξ for the Bell, Werner, and GHZ states. We show that

SðξÞR ðA∶BB̄Þ − SðξÞR ðA∶BÞ is always positive for any value of
ξ, which indicates that the reflected entropy (Renyi index
ξ ¼ 1) is a valid correlation measure for the systems under
question. We have considered all the possible configura-
tions of the parties to check the monotonicity, where in
Fig. 10 only three representatives have been presented.
Nevertheless, here we further elaborate on the

existence of other generic quantum states that violate the
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FIG. 9. Polygamy inequality as function of the acceleration. (a) Bell state. (b) W state. (c) GHZ state.
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monotonicity of the reflected entropy under partial trace,
and we find new generalized states with this property in
higher-dimensional Hilbert spaces. The violation depends

on the ratio p ¼ a
b, which changes with the dimension of the

Hilbert space. Such a generic state in HA ⊗ HB ⊗ HC ¼
Cnþ1 ⊗ Cmþ1 ⊗ C2 can be suggested to be

ρABC ¼ 1

2naþ 2ðm − 1Þb
�
aj000ih000j þ aj110ih110j þ

X
m;n

ðajn00ihn00j þ ajn10ihn10jÞ

þ bj0m0ih0m0j þ bj1m1ih1m1jÞ
�
; ðC1Þ

where n, m ≥ 2. Considering n ¼ m ¼ 2, we get the
states given in [22]. The state presented in Eq. (3.11)
can be reproduced by taking n ¼ 3 and m ¼ 2 in
Eq. (C1). We expect that for any arbitrary value of m
and n, the plots for SξRðA∶BCÞ − SξRðA∶BÞ with respect
to the Renyi index and p are similar to those presented

in Figs. 3(a) and 3(b). The generic state in Eq. (C1)
represents the class of states showing the nonmonoto-
nicity of the reflected entropy. It would be interesting to
study the characteristics of these states in detail com-
pared to the states that respect the monotonicity under
partial tracing.
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