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In constructive quantum field theory (CQFT) it is customary to first regularize the theory at finite UVand
IR cutoff. Then one first removes the UV cutoff using renormalization techniques applied to families of
CQFTs labeled by finite UV resolutions and then takes the thermodynamic limit. Alternatively, one may
try to work directly without IR cutoff. More recently, wavelets have been proposed to define the
renormalization flow of CQFTs which is natural as they come accompanied with a multiresolution analysis.
However, wavelets so far have been mostly studied in the noncompact case. Practically useful wavelets that
display compact support and some degree of smoothness can be constructed on the real line using Fourier
space techniques but explicit formulas as functions of position are rarely available. Compactly supported
wavelets can be periodized by summing over period translates keeping orthogonality properties but still
yielding to rather complicated expressions which generically lose their smoothness and position locality
properties. It transpires that a direct approach to wavelets in the compact case is desirable. In this
contribution we show that the Dirichlet-Shannon kernels serve as a natural scaling function to define
generalized orthonormal wavelet bases on tori or copies of real lines, respectively. These generalized
wavelets are smooth, are simple explicitly computable functions, display quasilocal properties close to the
Haar wavelet, and have compact momentum support. Accordingly they have a built-in cutoff in both
position and momentum, making them very useful for renormalization applications.
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I. INTRODUCTION

Examples of rigorously defined interacting Wightman
quantum field theories in four-dimensional Minkowski
space are still not available. As the usual perturbative
approach is mathematically ill-defined (Haag’s theorem)
[1], the nonperturbative constructive QFT (CQFT) program
was proposed [2] which had spectacular success in
two and three spacetime dimensions [3]. CQFT has both
a rigorous path integral (Euclidean) and Hamiltonian for-
mulation which are connected by Osterwalder-Schrader
reconstruction. The systematic construction of interacting
QFT via the CQFT approach is to consider a family of
theories labeled by aUVand IR cutoff. This could be a lattice
spacingM−1 and a toroidal radiusR, respectively. Following
the Wilsonian approach to renormalization one first con-
structs a renormalization flow defined by integrating out
degrees of freedom at higher scales M0 > M to define an
effective theory at scalesM. Fixed points of this flow define

consistent continuum theories at finite IR cutoff R in the
sense that the continuum theory which corresponds to
infinite resolution M → ∞ analyzed at resolution M coin-
cides with the effective theory for the fixed point family. In a
nontrivial second step one then tries to take the thermo-
dynamic limit R → ∞.
In this work we are mainly but not only concerned with

the renormalization process at finite IR cutoff, thus we
consider QFTs at fixed finite R. It is convenient to study
the QFT compactified on a d-torus Td, and after trivial
rescalings of the coordinates we can restrict to the unit torus
Td ¼ ½0; 1Þd. As renormalization for all d directions is then
done independently, we can restrict the considerations that
follow to d ¼ 1 as far as the coarse-graining (or renorm-
alization) maps acting on the “one particle Hilbert space”
(denoted L below) of the QFT is concerned. Note that this
does not imply that this factorization also happens for the
coarse-graining maps of the QFT Hilbert space (denotedH
below). While we explain the general context of these
notions in a later section for completeness, in this paper we
are just interested in the behavior of L under coarse
graining.
To define renormalization, one has to specify what one

means by “the theory at resolution M.” As quantum fields
are operator valued distributions, it is necessary to smear
them with test functions; thus, one can introduce the finite
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resolution scale M by a suitable space of test functions VM
labeled byM. The label setM from which the labelsM are
taken is supposed to be equipped with some partial order
≤ so that M ≤ M0 distinguishes between lower (M) and
higher (M0) resolution. Then for M ≤ M0 the spaces VM
and VM0 are supposed to be nested, i.e., VM ⊂ VM0 , which
means that the quantum field degrees of freedom at scaleM
can be written as functions of the quantum field degrees of
freedom at scale M0. This enables one to integrate out
the extra degrees of freedom smeared by the functions in
VM0 − VM and thus defines a renormalization flow.
It is clear that the details of the flow depend on the choice

of the spaces fVMgM∈M. However, the possible fixed
point theories should not because the degrees of freedom
can be smeared with any test functions and thus give
“cylindrically” consistent effective theories labeled by the
respective choice of test functions in VM. As the above
nested structure suggests, a systematic and “economic”
approach to a suitable choice of the spaces VM are multi-
resolution analyses (MRAs). Here the spaces VM are
constructed from a single “scaling” test function ϕ whose
rescaling byM and translates provide an orthonormal basis
of VM with respect to an inner product on the space V of all
test functions which thus carries a Hilbert space structure.
The spaces VM are, however, by construction not mutually
orthogonal but rather nested. To provide an ortho-
normal basis of V one can thus construct a sequence of
spaces inductively defined by WM0

≔ VM0
and WMn

is the
orthogonal complement of VMn

in VMnþ1
. Here n ↦ Mn

is a divergent, linearly ordered sequence in M, i.e.,
Mn < Mnþ1. This provides an orthogonal decomposition
V ¼ ⊕∞

n¼−∞ WMn
in the noncompact case and V ¼ ⊕∞

n¼0

WMn
in the compact case. In discrete wavelet theory one

often uses the sequence of scales Mn ¼ 2nM0, M0 ¼ 1. A
“mother wavelet” ψ is now a very special test function,
namely its rescaling by Mn and translates generate an
orthonormal basis ofWn and thus in turn of all of V. Given
certain conditions on the scaling function ϕ, the mother
wavelet ψ can be constructed from ϕ by Fourier analysis.
Wavelet theory is an active research field of mathe-

matics, mathematical physics and signal processing [4].
In contrast to the “plane wave” basis used in the Fourier
transform, wavelets by construction also display some
notion of position space locality. One distinguishes
between discrete wavelets (with discrete labels) and con-
tinuous wavelets (with continuous labels). The ones that
naturally fit into the renormalization language developed
above are the discrete ones. Historically the first discrete
wavelet was the Haar wavelet [5] on the real axis whose
scaling function is a step function. It is the only wavelet on
the real axis known to date, whose dependence on position
x is known in closed form and which is of compact support.
If one is content with only quasicompact support, then the
Shannon wavelet [6] which decays only slowly at infinity is
an option if one is interested in explicitly known position

space dependence (the scaling function is basically the sinc
function). If manifest compact support is more important
and in addition some degree of smoothness is required
(the Haar wavelet is not even continuous), then one is led
to the Daubechies [7] and Meyer [8] wavelets. It is well
known that there is no “Schwartz” wavelet on the real axis,
i.e., a wavelet that belongs to the space of Schwartz
functions (smooth of rapid decrease) [8].
These well-studied examples on the real axis generalize

immediately to Rd using the tensor product. To obtain
wavelets on compact spaces such as tori or spheres one can
consider compactly supported children wavelets ψn;mðxÞ ¼
2−n=2ψð2nx −mÞ; m; n∈Z on the real axis and periodize
them by ½π · ψ �n;mðxÞ ¼

P
l∈Z ψn;mðx − lÞ which confines

n to N0 and m ¼ 0; 1; 2;…; 2n − 1. This yields an ortho-
normal basis (ONB) of L ¼ L2ð½0; 1Þ; dxÞ of periodic
functions thanks to the compact support of ψ but there
are several drawbacks:
(1) Even if ψ has compact support on R, the support of

π · ψ on [0, 1) may not even be quasilocal (i.e., the
function is not peaked).

(2) The complicated coordinate expression of ψ prop-
agates to π · ψ .

(3) Generically, the periodized wavelet is again
discontinuous.

It transpires that a more direct approach to wavelets on
compact spaces such as intervals or circles is desirable
which does not rely at all on the theory of the infinite line
(see [9] for such real line based approaches which retain
smoothness properties but are technically very involved).
There are constructions available in the literature [10] that
use wavelet bases of finite order; i.e., there is a maximal
resolution Mmax allowed. However, these are neither
peaked in position nor do they span all of L2; they just
span VMmax

.
We will understand MRA, scaling functions, and wave-

lets in a generalized sense, which is inspired by minimal
requirements that these should satisfy for purposes of
renormalization. These are the following:

(I) A nested sequence of subspaces VM ⊂ VM0 ;M ≤ M0
whose span is dense in the Hilbert space L of test
functions. This allows one to consider arbitrarily
high resolutions and coarse grainings between dif-
ferent resolutions.

(II) A real valued orthonormal basis of test functions of
VM which are obtained from a fixed finite set of
“mother” (scaling) functions ϕ by rescaling and
translation. Real valuedness is important because
these functions are used for discretizations of quan-
tum fields in the CQFT approach, and we do not
want to change their adjointness relations.

(III) An orthonormal basis of WM0 ¼ V⊥
M which is the

orthogonal complement of VM in VM0 ;M ≤ M0
which is obtained from a fixed finite set of “mother”
wavelet functions ψ , which are directly related to the
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scaling functions ϕ, by rescaling and translation.
The fact that the coarse-graining maps built from the
ONB of the VM or WM are based on a few scaling
functions or wavelets makes the renormalization
procedure systematic, economic, and tractable.

(IV) The ONB should display at least peakedness
in position space in order that it can be used for
discretization of quantum fields on the lattice
defined by the UV regulator.

In this paper we show that such a generalized MRA on
T1 ¼ S1 ¼ ½0; 1Þ can be constructed based on the Dirichlet
kernel [11] as a scaling function. It has the following
features:
(1) Real valuedness.
(2) Smoothness.
(3) Compact momentum support.
(4) It is a simple trigonometric polynomial which can be

explicitly summed to obtain a simple position space
expression which is related to the Shannon scaling
function.

(5) Peakedness (quasilocality) in position space.
(6) Its rescalings and translates generate an MRA.
(7) There are two associated mother wavelets whose

rescalings and translates generate an ONB of
L2ð½0; 1Þ; dxÞ.

(8) Being smooth and reflection symmetric, it has an
infinite number of vanishing trigonometric moments
(the moments must be defined using trigonometric
rather than proper polynomials as the latter are not
periodic).

(9) The wavelet basis can be considered as a smooth-
ened version of the Haar wavelet on the torus with
improved features for purposes of renormalization:
not only field operators can be systematically
discretized but also their derivatives (these are ill-
defined in the discontinuous Haar case).

The locality features of this MRA is, of course, not
surprising because it is well-known that the rescalings of
the Dirichlet kernel provide smooth approximants of the
periodic δ-distribution. However, to the best of our knowl-
edge, the usefulness of the Dirichlet kernel for purposes of
renormalization and its relations to MRAs on S1 have not
been highlighted before. In that respect, the purpose of the
present paper is to assemble available knowledge about the
analytic properties of the Dirichlet kernel together withMRA
and renormalization framework. In tandem, we show that the
Shannon kernel on the real line, which we study from the
above generalized point of view, has very similar properties.
The architecture of this article is as follows:
In Sec. II, for the benefit of the unfamiliar reader we give

a minimal account on MRAs and wavelets. This has the
only purpose of preparing for the next section and will be
far from complete.
In Sec. III we briefly recall what we mean by

Hamiltonian renormalization in the language of [12] which

has been applied and tested in [13] for free field theories
without constraints and in [14] with constraints whose
algebra is isomorphic to that of quantum gravity. We
exhibit how coarse-graining or blocking maps that define
renormalization flows are naturally generated by MRA
structures. In particular, we show that the renormalization
flow in the works [13] is simply based on the Haar scaling
function, which the authors of [13] were not aware of.
Rather, the blocking kernels used there were obtained by
rather independent arguments, specifically lattice gauge
theory technology [15]. For earlier uses of MRA structures
in the CQFT program see, e.g., [16] and references therein.
In [14] it became obvious that the renormalization flow
should be driven by kernels that display at least a minimal
amount of smoothness which therefore directly motivated
the present work. The impact of the choice of kernel on the
physical properties of the fixed point theory was empha-
sized before in [17].
In Sec. IV we define the Dirichlet and Shannon kernel,

recall some of its analytical properties, and demonstrate
how it generates a generalized MRA and an associated
orthornormal mother wavelet pair. We highlight in what
sense the corresponding blocking kernels can be considered
as smooth versions of the Haar blocking kernel, which
makes it well adapted to discretization of continuum QFT
in the CQFT approach.
In Sec. V we showcase how the Dirichlet renormaliza-

tion flow tremendously simplifies the Haar flow of [13]
while not changing the fixed point theory. This is due to the
translation invariance of both the Shannon and Dirichlet
kernels that is not shared by the Haar kernel.
In Sec. VI we summarize and conclude.

II. GENERALIZED MULTIRESOLUTION
ANALYSIS

We consider first the torus X ¼ T1 to define a general-
ized MRA and after that explain where the definition has to
be modified for the real line X ¼ R.
We consider the torus T1 as R=Z, i.e., as the interval

[0, 1) with boundary points identified. By L≔L2ð½0;1Þ;dxÞ
we denote the square integrable periodic functions on
[0, 1). It has the ONB

enðxÞ ≔ e2πinx; n∈Z: ð2:1Þ

We consider a subset M ⊂ N; 1∈M equipped with a
partial order ≤, i.e., an antisymmetric, reflexive, and
transitive relation on M with respect to which it is also
directed; i.e., for any M1;M2 ∈M we find M3 ∈M such
that M1;M2 ≤ M3. We require that for pairs M ≤ M0 ∈M
there is a scale factor number sðM;M0Þ∈N, and we define
for f∈L; s∈N the dilatated function ðDsfÞðxÞ ¼ fðsxÞ
which is again one-periodic. Furthermore, for any M∈M
we require that there exists a dimension number dðMÞ∈N,
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and for any f∈L, d > 0 we define the translation
ðTdfÞðxÞ ¼ fðx − dÞ.
Definition 2.1. I. A generalized MRA of L ¼

L2ð½0; 1Þ; dxÞ subordinate to M, s, d is an assignment
M ∋ M ↦ VM (principal translation invariant subspaces)
where VM is a closed, finite dimensional subspace of L of
dimension dðMÞ such that

(i) V1 ¼ C.
(ii) If M ≤ M0, then VM ⊂ VM0 .
(iii) ∪M∈M VM is dense in L.
(iv) If f∈VM, M ≤ M0, then DsðM;M0Þf∈VM0 .
(v) There exists a fixed finite set of scaling functions

ϕ∈L such that an ONB χMm of VM is obtained
as a fixed set of rational functions of their
dilatations DdðMÞϕ and translations Tm

1=dðMÞϕ; m ¼
0; 1;…; dðMÞ − 1 or combinations thereof.

II. A wavelet subordinate to a generalized MRA is a fixed
finite set of functions ψ ∈L which are algebraic functions
of the scaling functions ϕ such that a fixed set of rational
functions of their dilatations DdðMÞψ and translations
Tm
1=dðMÞψ ; m ¼ 0; 1;…; dðMÞ − 1 or combinations thereof

provides an ONB of WM where WM ¼ V⊥
M is the ortho-

gonal complement of VM in VM0ðMÞ and whereM0ðMÞ ≥ M
is a fixed resolution higher than M.
A couple of remarks are in order:
(1) In the usual wavelet literature on the real line one

considers mostly the set M ¼ f2N; N ∈Zg of in-
teger powers of two with the usual linear order ≤ on
real numbers. The reason why in our case positive
powers are sufficient is that negative powers would
produce a lattice spacing larger than the lattice itself
and thus maps us out of the space of one-periodic
functions.

(2) The reason why we consider more general
partial orders is because we allow more positive
integers than positive powers of two, and we wish
that for M ≤ M0 the lattice defined by the points
m=dðMÞ; m ¼ 0; 1;…; dðMÞ − 1 is a sublattice
of the lattice defined by the points m0=dðM0Þ;
m0 ¼ 0; 1;…; dðM0Þ − 1.

(3) On the real line the spaces VM are all infinite
dimensional, i.e., dð2NÞ ¼ ∞ for all N ∈N, and
instead of V1 ¼ C we have ∩N V2N ¼ f0g.

(4) On the real line the function one usually restricts s to
2N; 2Nþk in which case it takes the value s ¼ 2k.

(5) On the real line the functions

χNmðxÞ ≔ 2N=2ϕð2Nx −mÞ; m∈Z; ð2:2Þ

are an orthonormal basis for V2N if χ0m is an ONB of
V20 . We had to modify this for two reasons: First,
the space V20 is only one-dimensional on S1 while
infinite dimensional on R and thus cannot serve to
build a basis for the higher dimensional spaces VM.

Second, the integer shifts of an one-periodic function
are trivial. Therefore we disentangled the simulta-
neous rescaling and shifting performed on the func-
tion ϕ in (2.2) and allowed pure dilatations and pure
shifts or combinations thereof in order to assemble
χMm as a rational function (i.e., a fraction of poly-
nomials) of those. In the standard case (2.2) we only
need one such function ϕ, and the rational aggregate
formed from it is just the function itself multiplied by
a constant. While our more general construction of
the χMm is more complicated than in the standard case,
it keeps the spirit of building the basis χMm of
“children” functions from a few “mother” functions
ϕ.We restrict to rational functions in order to keep the
expressions involved manageable and because in the
examples we have constructed, rational functions
appear to be sufficient.

(6) On the real line the relation between scaling function
ϕ and wavelet ψ is less direct: it starts with a
function m0 in Fourier space subject to a support
(Cohen’s) condition and a normalization condition
on its modulus squared. Then one defines the
Fourier transform of ϕ as an infinite product of
dilatations of m0, and the Fourier transform of ψ is a
product of m0, the Fourier transform of ϕ, and a
phase factor depending on momentum. Only in rare
cases can one solve the Fourier integral in closed
form to obtain an explicit position space expression.
Our definition is again motivated by the essential
idea that the wavelet basis should arise from a few
mother wavelets that are computable by a concrete
formula from the scaling functions. In contrast to the
noncompact case we do not provide a procedure for
how to obtain ψ from ϕ but we allow for more
complicated (algebraic rather than rational) relations
between those, again because also in the standard
case the relation is more complicated and because
in the examples we have constructed an algebraic
relation appears to be sufficient. The algebraic
rather than rational functions issue can, however,
be avoided if one increases the number of mother
wavelets. Thus, this difference is not essential.

We now spell out how the definition needs to be or can
be modified in the noncompact case X ¼ R1. First of all,
the label set M can be generalized to a subset of the
positive rationalsQþ equipped with some partial order with
respect to which it is directed. For M ≤ M0 the number
sðM;M0Þ is still required to be a positive natural. The
function dðMÞ is supposed to take values in Qþ and no
longer has the interpretation of a dimension.
Definition 2.2. A generalized MRA and wavelet of

L ¼ L2ðR; dxÞ subordinate to M, s, d is identical to
the generalized MRA and wavelet for the case L ¼
L2ð½0; 1Þ; dxÞ with the following modifications:
I.1: ∩M∈M¼ f0g.
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I.v and II.: The translations Tm
1=dðMÞ are now labeled by

m∈Z and are not confined to 0;…; dðMÞ.
It will be helpful to test the definition against a well-

known example which can be used in both the noncompact
and the compact cases. This is the Haar wavelet. Its mother
scaling function is given by

ϕðxÞ ≔ χ½0;1ÞðxÞ; ð2:3Þ

where χ½a;bÞ denotes the characteristic function of the
clopen (i.e. left closed, right open) interval ½a; bÞ.
Consider first the noncompact case. Then the functions

χMm ðxÞ are for the set M ¼ f2N; N ∈Zg with M ≔ 2N and
m∈Z,

χMm ðxÞ ≔ M1=2χ½0;1ÞðMx −mÞ; ð2:4Þ

which have support in ½xMm ;xMmþ1Þ;xMm ≔ m
M, and dðMÞ ¼ M.

They are indeed just simple dilatations of translations of
the mother scaling functions. As these partition the real
line into intervals of length M−1, they are orthogonal at
fixed M with respect to the standard inner product on
L ¼ L2ðR; dxÞ,

hχMm ; χMm0 i ¼ δm;m0 : ð2:5Þ

Their span at fixed M defines a dense subset of the
subspace VM of L. As

χMm ¼ 2−1=2½χ2M2m þ χ2M2mþ1� ð2:6Þ

obviously VM ⊂ V2M. That ∪M VM is dense in L follows,
for instance, from the way the Lebesgue measure is
constructed as a Borel measure. Thus, indeed, we obtain
an MRA on the real line using (2.3). The orthogonal
decomposition V2M ¼ VM ⊕ WM can be done by direct
methods in this case: Obviously, we have to assemble an
ONB of WM from the ONB of V2M because WM is a
subspace thereof and every basis function of WM must be
orthogonal to each of the basis functions of VM. In view
of (2.6) this leads to the natural choice

ψM
m ðxÞ ¼ 2−1=2½χ2M2m ðxÞ − χ2M2mþ1ðxÞ�

¼ ð2MÞ1=2ψð2Mx − 2mÞ; ð2:7Þ

where

ψðxÞ ¼ 2−1=2½χ½0;1ÞðxÞ − χ½0;1Þðx − 1Þ� ð2:8Þ

is the corresponding mother wavelet. It is a linear (and
therefore rational) aggregate of mother scaling functions.
Finally, as the intersection of the spaces VM;M ¼ 2N;
N ≥ N0 coincides with the space of square integrable
functions that can be expanded in the basis χMm which

are piecewise constant on intervals of length M−1, we see
that for N0 → ∞ only f0g results as there is no non-
vanishing, square integrable, constant function on R. It
follows

hψM
m ;ψM0

m0 i ¼ δM;M0
δm;m0 ; ð2:9Þ

i.e., the Haar wavelets form an orthonormal basis of L.
Now consider the compact case. First of all, χ½0;1ÞðxÞ≡ 1

for x∈ ½0; 1Þ ¼ T1 so indeed V1 ¼ C. Otherwise we may
use the same functions (2.6) but with x∈ ½0; 1Þ and m
restricted to 0; 1;…;M − 1 to define an M-dimensional
subspace VM of L ¼ L2ð½0; 1Þ; dxÞ consisting of mutually
orthonormal, periodic functions on [0, 1) exploiting the
fact that χMm ðxÞ drops to zero outside of its support. From
here on the construction of ψ follows exactly the same
steps as in the noncompact case, just obeying the respective
finite ranges x∈ ½0; 1Þ and m∈ f0; 1;…;M − 1g and
M ¼ 2N ≥ 1 for ψM

m . In particular, we see that the example
of the Haar wavelet fits into the definition (2.6) for an MRA
on the torus with dðMÞ ¼ M ¼ 2N , sðM; 2kMÞ ¼ 2k,
and M0ðMÞ ¼ 2.

III. HAMILTONIAN RENORMALIZATION

In this section we will combine the renormalization
technology from [12] with the MRA framework developed
in the previous section.
Again it will be sufficient to consider one coordinate

direction as Td and Rd are Cartesian products. Thus for
simplicity we consider a bosonic, scalar quantum field Φ
(operator valued distribution) with conjugate momentum Π
on [0, 1) with canonical commutation and adjointness
relations (in natural units ℏ ¼ 1)

½ΠðxÞ;ΦðyÞ�¼ iδðx;yÞ; ΦðxÞ� ¼ΦðxÞ; Π�ðxÞ¼ΠðxÞ;
ð3:1Þ

where

δðx; yÞ ¼
X
n∈Z

enðxÞenðyÞ�; enðxÞ ¼ e2π i n x ð3:2Þ

is the periodic δ distribution on the torus or the standard δ
distribution on the real line, respectively. It is customary to
work with the bounded Weyl operators for X ¼ ½0; 1Þ or
X ¼ R,

w½f;g� ¼ expði½ΦðfÞþΠðgÞ�Þ; ΦðfÞ ¼
Z
X
dxfðxÞΦðxÞ;

ΠðgÞ ¼
Z
X
dxgðxÞΠðxÞ ð3:3Þ

with f; g∈L ¼ L2ðX; dxÞ test functions or smearing func-
tions usually with some additional properties such as
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differentiability or even smoothness. For more complicated
tensor fields or spinor fields a similar procedure can be
followed (see, e.g., the last two references in [13]).
Since the space L enters the stage naturally we use MRA

ideas to define a renormalization group flow. Suppose that
M ↦ VM ⊂ withM∈M defines an MRAwith orthogonal
basis χMm ;m∈ZM ¼ f0;…; dðMÞ − 1g for X ¼ ½0; 1Þ and
ZM ¼ Z for X ¼ R of VM normalized according to
kχMmk2 ¼ dðMÞ−1. The reason why we do not normalize
the χMm (we could) will become obvious in a moment. In
tandem with VM we define the space LM ≔ l2ðZMÞ of
square integrable sequences with dðMÞ entries and with
inner product

hfM; gMi ≔ dðMÞ−1
X

m∈ZM

f�MðmÞgMðmÞ: ð3:4Þ

This scalar product offers the interpretation of
fMðmÞ ≔ fðxMm Þ; xMm ≔ m

dðMÞ, and similar for gM as the

discretized values of some functions f; g∈L in which
case (3.5) is the Riemann sum approximant of hf; giL. It is
for this reason that we did not normalize the χMm .
The spaces VM and LM are in bijection via

IM∶ LM → L; fM ↦
X
m

fMðmÞχMm : ð3:5Þ

Note that (3.5) has range in VM ⊂ L only. Its adjoint
I†M∶ L → LM is defined by

hI†Mf; fMiLM
≔ hf; IMfMiL ð3:6Þ

so that

ðI†MfÞðmÞ ¼ dðMÞhχMm ; fiL: ð3:7Þ

Clearly

ðI†MIMfMÞðmÞ ¼ dðMÞhχMm ; IMfMiL ¼ fMðmÞ; ð3:8Þ

i.e., I†MIM ¼ 1LM
, while

ðIMI†MfÞðxÞ ¼ dðMÞ
X
m

χMm ðxÞhχMm ; fMiL ¼ ðpMfÞðxÞ

ð3:9Þ

is the projection pM∶ L ↦ VM.
Given M ≤ M0 we define the coarse-graining map

IMM0 ≔ I†M0IM∶ LM ↦ LM0 : ð3:10Þ

It obeys

IM0IMM0 ¼ pM0IM ¼ IM ð3:11Þ

because IM has range in VM ⊂ VM0 forM ≤ M0. This is the
place where the MRA property of the nested set of
subspaces VM was important. Next for M1 ≤ M2 ≤ M3

we have

IM2M3
IM1M2

¼ I†M3
pM2

IM1
¼ I†M3

IM1
¼ IM1M3

ð3:12Þ

for the same reason. This is called the condition of
cylindrical consistency, which is crucial for the renormal-
ization group flow.
To see the importance of (3.12) we consider a probability

measure ν on the space F of field configurations Φ, which
defines a Hilbert space H ¼ L2ðF ; dνÞ and a representa-
tions space for the Weyl algebraA generated from theWeyl
elements (3.3). We set w½f� ≔ w½f; g ¼ 0� and define the
generating functional of moments of ν by

νðfÞ ≔ νðw½f�Þ ≔
Z
F
dνðΦÞ expðiΦðfÞÞ: ð3:13Þ

If we restrict f to VM, we obtain an effective measure on the
space of discretized quantum fields ΦM ¼ I†MΦ via

w½IMfM�¼wM½fM�¼eiΦMðfMÞ; ΦMðfMÞ¼hfM;ΦMiLM

ð3:14Þ

and measures

νMðfMÞ ≔ νðw½IMfM�Þ ¼ νMðwM½fM�Þ: ð3:15Þ

The measures νM with support on the spaces FM of fields
ΦM are consistently defined by construction

νM0 ðIMM0fMÞ ¼ νMðfMÞ ð3:16Þ

for any M ≤ M0 since the νM descend from a continuum
measure. Conversely, given a family of measures νM
satisfying (3.16), a continuum measure ν can be con-
structed known as the projective limit of the νM under mild
technical assumptions [18]. To see the importance of (3.12)
for this to be the case, suppose we write f∈L in two
equivalent ways f ¼ IM1

fM ¼ IM2
gM2

, and then we should
have νM1

ðfM1
Þ ¼ νM2

ðgM2
Þ. Now while M1 and M2 may

not be in relation, as M is directed we find M1;M2 ≤ M3.
Applying I†M3

we conclude IM1M3
fM1

¼ IM2M3
gM2

; thus,
due to (3.16), indeed,

νM1
ðf1Þ ¼ νM3

ðIM1M3
fM1

Þ ¼ νM3
ðIM2M3

gM2
Þ ¼ νM2

ðgM2
Þ:

ð3:17Þ

In CQFT the task is to construct a representation of A
with additional properties such as allowing for the
implementation of a Hamiltonian operator H ¼ H½Φ;Π�
which imposes severe restrictions on the Hilbert space

T. THIEMANN PHYS. REV. D 108, 125008 (2023)

125008-6



representation. Onemay start with discretized Hamiltonians
(H is the classical Hamiltonian function)

Hð0Þ
M ½ΦM;ΠM� ≔ H½pMΦ; pMΠ� ð3:18Þ

on Hð0Þ
M ≔ L2ðFM; ν

ð0Þ
M Þ where νð0ÞM is any probability

measure to begin with, for instance, a Gaussian measure

or a measure constructed from the ground state Ωð0Þ
M of

the Hamiltonian Hð0Þ
M . The definition (3.18) is incomplete

without some ordering prescription, and we assume that
such a prescription has been chosen.
The point of using an IR cutoff, that is, the compact

space X ¼ ½0; 1Þ, is that there are only finitely many,

namely dðMÞ degrees of freedom ΦM and ΠM, which
are conjugate

½ΠMðmÞ;Φðm0Þ� ¼ idðMÞδðm;m0Þ; ΦMðmÞ� ¼ΦMðmÞ;
Π�

MðmÞ ¼ΠMðmÞ; ð3:19Þ

so that the construction of νð0ÞM does not pose any problems.

For X ¼ R (3.19) still holds, but now the existence of νð0ÞM is
not granted and requires further analysis. Assuming this
one fixes for each M∈M an element M ≤ M0ðMÞ∈M
and defines isometric injections

JðnÞMM0ðMÞ∶ Hðnþ1Þ
M → HðnÞ

M0ðMÞ; JðnÞMM0ðMÞwM½fM�Ωðnþ1Þ
M ≔ wM0ðMÞ½IMM0ðMÞfM�ΩðnÞ

M0ðMÞ;

νðnÞM ðwMðfMÞÞ≕ hΩðnÞ
M ;wMðfMÞΩðnÞ

M iHðnÞ ; ðnÞ
M ≔ L2ðFM; dν

ðnÞ
M Þ ð3:20Þ

via

νðnþ1Þ
M ðfMÞ ≔ νðnÞM0ðMÞðIMM0ðMÞfMÞ; ð3:21Þ

and with these the flow of Hamiltonians

Hðnþ1Þ
M ≔ J†MM0ðMÞH

ðnÞ
M0ðMÞJMM0ðMÞ: ð3:22Þ

The isometry of the injections relies on the assumption that

the span of the wM½fM�Ωð0Þ
M is dense in Hð0Þ

M , which is
typically the case. Here we have written the measures νM
interpreted as positive linear functionals on the Abelian
C�-algebra AM generated by the wM½fM� as expectation

value functionals with respect to cyclic vectors ΩðnÞ
M inHðnÞ

M
following the Gel’fand, Naimark, Segal (GNS) construc-
tion [1]. These details will not concern us for what follows.
This defines a sequence or flow (indexed by n) of

families (indexed by M) of theories ðHðnÞ
M ;HðnÞ

M ;ΩðnÞ
M Þ.

At a critical or fixed point of this flow the consistency
condition (3.16) is satisfied [at first in the linearly ordered
sets of MðMÞ ≔ fðM0ÞNðMÞ; N ∈N0g and then usually
for all of M by universality], and one obtains a consistent
family ðHM;HM;ΩMÞ. This family defines a continuum
theory ðH; HÞ as one obtains inductive limit isometric
injections JM∶ HM ↦ H such that JM0JMM0 ¼JM;M≤M0
thanks to the fixed point identity JM2M3

JM1M2
¼ JM1M3

;
M1 ≤ M2 ≤ M3 and such that

HM ¼ J†MHJM ð3:23Þ

is a consistent family of quadratic forms HM ¼
J†MM0HM0JMM0 ;M ≤ M0.

The conclusion of the present section is that the MRA
framework fits quite naturally with the construction of the
Hamiltonian renormalization flow. All that is needed is, in
fact, the nested structure of the VM; it is strictly speaking
not necessary to have mother scaling functions or mother
wavelets. However, to reduce the arbitrariness in the nested
structure or choice of coarse-graining maps, the require-
ment that the nesting descends from a (finite number of)
scaling function(s) is very useful. In fact, in [13] the authors
used, without being aware of it, the MRA based on the Haar
scaling function. While this works, it makes the formalism
unnecessarily complicated because the Haar scaling func-
tion is not even continuous and thus the discretization
prescription (3.18) is ill-defined as it stands as soon as H
depends on derivatives of Φ and Π which is typically the
case. Thus in [13] one had to use an additional prescription
to define those discrete derivatives, which increases the
discretization ambiguity that one actually wants to avoid. It
is for this reason that we try to base an MRA on scaling
functions with additional smoothness properties while
keeping sufficient spatial locality such that formula (3.18)
provides a suitable spatial discretization. We will show in
the next section that one possibility is based on the Shannon
and Dirichlet kernels.

IV. RESOLUTIONS OF THE IDENTITYMRAS AND
THE SHANNON-DIRICHLET KERNELS

In the previous section we have shown that a nested
structure of subspaces VM ⊂L with VM ⊂VM0 ;M≤M0;
M;M0∈M⊂N whose span is dense in L leads to a
useful renormalization flow in CQFT for any choice of
orthonormal basis χMm ;m ¼ 0; 1;…; dðMÞ ¼ dimðVMÞ.
This uses only part of the definition of an MRA: It was
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not specified how that basis of VM is to be generated; in
particular, it was not required that the χMm descend from one
or several fixed mother scaling functions. To systemize this
choice the concept of mother functions and therefore the
full definition of an MRA appear natural.

A. Torus

We begin with the compact case. First of all, one
may pick an ONB en of Lwhich for the sake of definiteness
we label by n∈Z (if one prefers n∈N0 set b2n≔ ½enþ
e−n�=

ffiffiffi
2

p
;n≥0;b2nþ1≔ ½en−e−n�=

ffiffiffi
2

p
;n>0). This could

be the eigenbasis of a self-adjoint operator on L with a
pure point spectrum. For reasons explained in Sec. III, we
want the en to have at least some degree of differentiability.
Then for any odd integer M we may consider the
dðMÞ ¼ M dimensional subspaces VM of L spanned by
the functions en; jnj ≤ ðM − 1Þ=2. Picking M ⊂ N as the
odd naturals equipped with the usual ordering relation ≤ on
the naturals, one obtains trivially a nested structure of
Hilbert spaces.
However, this is still too general and not useful for our

renormalization intentions. This is because the enðxÞ
typically fail to be localized with respect to x, because
the spectral label n has in general nothing to do with the
points xMm ¼ m

M of the lattice of [0, 1) at which we wish to
localize and discretize our quantum fields Φ and Π. Thus
we need to connect the label n to the lattice label m in such
a way that the resulting orthogonal basis functions χMm
display some form of peakedness in position space around
the points xMm .
To do this, we use the following notation: Let forM odd

ZM ≔ f0; 1; 2;…;M − 1g and ẐM ≔ f−M−1
2

;−M−1
2

þ
1;…; M−1

2
g and dðMÞ ≔ M. Pick any unitary M ×M

matrix with entries eMn ðmÞ; n∈ ẐM;m∈ZM, and consider

χMm ðxÞ ≔ M−1=2
X
n∈ ẐM

enðxÞ½eMn ðmÞ��: ð4:1Þ

Then by construction (i.e., unitarity)

hχMm ; χMm0 iL ¼ M−1δm;m0 : ð4:2Þ

The question now arises whether it is possible to pick that
unitary matrix in such a way that χMm ðxÞ: 1. is real valued
(so that they can be used to define Weyl operators); 2. is
localized around xMm ; and 3. such that the χMm descend from
some mother scaling functions ϕ in the generalized sense
of Sec. II.
Wewill not give an exhaustive answer about the maximal

freedom there is in doing so but rather show that there is at
least one example that satisfies all three criteria. Moreover,
the resulting χMm will not only be smooth (thus, its Fourier
coefficients decay rapidly at infinity) but even trigono-
metric polynomials (i.e., finite linear combinations of the

eigenbasis of the momentum operator −id=dx on L; hence,
the Fourier coefficients are of compact support).
We pick for m∈ZM; n∈ ẐM

enðxÞ≔e2πinx; eMn ðmÞ≔enðxMm Þ; xMm ≔
m
M
: ð4:3Þ

Then, indeed,

1

M

X
m∈ZM

eMn ðmÞ½eMn0 ðmÞ�� ¼ δn;n0 ;

X
n∈ ẐM

eMn ðmÞ½eMn ðm0Þ�� ¼ Mδðm;m0Þ; ð4:4Þ

and we have, using e�n ¼ e−n; enen0 ¼ enþn0 ,

χMm ðxÞ ¼ M−1
X
n∈ ẐM

enðxÞ½eMn ðmÞ�� ¼
X

jnj≤M−1
2

enðx − xMm Þ

ð4:5Þ

from which the real valuedness of χMm is manifest. Also,
clearly χMm is smooth being a trigonometric polynomial of
order ðM − 1Þ=2 and thus has compact momentum support
rather than having only a rapid momentum decrease.
Furthermore, the geometric series (4.5) can be explicitly
summed to yield the explicit expression

MχMm ðxÞ ¼
sinðπM½x − xMm �Þ
sinðπ½x − xMm �Þ

; ð4:6Þ

which is a rational function of dilatations and translations
of the sin function. Thus, if we define the mother scaling
function to be

ϕðxÞ ≔ sinðπxÞ; ð4:7Þ

then

MχMm ðxÞ ¼
½DMTm

1=Mϕ�ðxÞ
½Tm

1=Mϕ�ðxÞ
; ð4:8Þ

which is precisely of the form required in Definition 2.1 if
we remember that dðMÞ ¼ M. To complete the definition
we must decide on the choice ofM and its partial order. We
pickM to be the odd naturals and defineM ≤ M0 iff M

0
M is a

(necessarily odd) integer. This partial order is motivated by
the requirement that the lattice labeled by M should be a
sublattice of the lattice labeled by M0. With this partial
order, M is directed as given M1, M2, and we may pick
M3 ¼ M1M2 (or more economically the smallest common
multiple) to achieve M1;M2 ≤ M3.
Finally, we note that MχMm ðxÞ ¼ δMðx − yÞ; y ¼ xMm is

the restriction to our lattice points xMm of theDirichlet kernel
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δMðx − yÞ ¼
X

jnj≤M−1
2

enðxÞ½enðyÞ��; ð4:9Þ

which is an approximant to the δ-distribution on [0, 1) cut
off at momentum ðM − 1Þ=2. This makes it plausible to be
strongly peaked at x ¼ xMm asM grows large. To investigate
this, we perform some elementary analysis on the function
δM. Having period 1 and being symmetric around x ¼ 0 it
will be sufficient to investigate the interval x∈ ½0; 1

2
Þ of the

function

δMðxÞ ¼
sinðπMxÞ
sinðπxÞ ; ð4:10Þ

whose denominator vanishes only at x ¼ 0 in ½−1=2; 1=2Þ.
However, δM is smooth at x ¼ 0 with δMð0Þ ¼ M. Close to
x ¼ 0 it becomes the sinc function MsincðπMxÞ, which is
the scaling function of the Shannon wavelet on the real
line. Besides x ¼ 0 the numerator vanishes at the zeros
zMm ¼ m

M ;m ¼ 1;…; M−1
2
. To compute its extrema between

those zeros we take the derivative

½δM�0ðxÞ ¼
π

sin2ðπxÞ ½M cosðπMxÞ sinðπxÞ

− sinðπMxÞ cosðπxÞ�: ð4:11Þ

It vanishes at x ¼ 0 as the numerator ∝ x3 while the
denominator ∝ x2 there. It also vanishes at x ¼ 1=2 due
to the cosines and becauseM is odd. For 0 < x < 1=2 both
cosðπxÞ and sinðπxÞ are nonvanishing, and since a zero of
cosðπMxÞ is an extremum of sinðπMxÞ, the vanishing
of (4.11) for 0 < x < 1=2 yields the transcendental
equation

tanðMyÞ ¼ M tanðyÞ; 0 < y ¼ πx <
π

2
: ð4:12Þ

This equation has 1þ M−1
2

solutions yMm ;m ¼ 0;…; M−1
2

with 0 ¼ yM0 < zM1 < yM2 < � � � < zM½M−1�=2 < ym½M−1�=2 <
1
2
.

To see this, note that the right-hand side is positive, strictly
monotonously increases, and diverges at y ¼ π

2
þ. The left-

hand side runs through one positive fundamental branch of
the tan function between y ¼ 0; π=ð2MÞ, and ðM − 1Þ=2
full (negative and positive) fundamental branches between
y¼ð2k−1Þ=ð2MÞπ;ð2kþ1Þ=ð2MÞπ;k¼ 1;…;ðM−1Þ=2.
Since tanðMyÞ is strictly monotonously increasing but at a
faster rate than M tanðyÞ in each of those full branches, we
get one solution. The solution yMk ; k ¼ 1;…; M−1

2
lies very

close to 2kþ1
2M π, the larger k [because tanðyÞ is monoto-

nously increasing] and the larger M (since ½tanðMyÞ −
M tanðyÞ�0 ¼ M½tan2ðMyÞ − tan2ðyÞ� > 0 for y > 0 we
have tanðMyÞ > M tanðyÞ for 0 < y < π=ð2MÞ and
d=dM½tanðMyÞ−M tanðyÞ ¼ 1þ tan2ðMyÞ− tanðyÞ> 1þ
tan2ðyÞ− tanðyÞ ¼ ½tanðyÞ þ 1=2�2 þ 3=4> 0). Therefore

we can construct them iteratively by setting yMk ≕
2kþ1
2M π − ΔM

k with ΔM
k ≤ π

M and writing (4.12) as

tanðMΔM
k Þ ¼

1

M
cotðyMk Þ; ð4:13Þ

which grants that ΔM
k < π=ð2MÞ. We can solve (4.13) by

reinserting it into itself. To lowest order in 1=M,

ΔM
k ¼ 1

M
arctan

�
cotðð2kþ 1Þ=ð2MÞπ

M

�
: ð4:14Þ

The value of δM at yMk can be seen from

½δMðx ¼ yMk =πÞ�2 ¼
M2

1þ ½M2 − 1� sin2ðyMk Þ
: ð4:15Þ

For k ¼ 0 we get δ2Mð0Þ ¼ M2, while for k > 0 we get
δ2MðyMk =πÞ ¼ Oð1Þ. Thus the maximum at x ¼ 0 exceeds
the other extrema by at least an order of M.
Accordingly one can visualize δM roughly as a smooth-

ened version of a symmetric triangle of height M and
width 2=M between the first zeros zM1 ¼ �1=M of δM.
Outside that interval, which has a volume smaller
than 1, the function is relatively bounded as Oð1=MÞ
compared to its maximum. Thus the central triangle has
area Oð1Þ. If we compare to the Haar scaling function
MχMm ðxÞ ¼ Mχ½− 1

2M;
1
2MÞðx −mÞ, we see that basically the

rectangle of heightM and width 1=M has been replaced by
that triangle, except for subdominant contributions to the
triangle that are the price to pay for having a smooth kernel.
That price, however, is well worth paying for: We want

to use δM to discretize functions f on the lattice xMm ¼ m
M by

fMðmÞ ≔ ½I†Mf�ðmÞ ¼ MhχMm ; fiL: ð4:16Þ

This formula is well-defined for both the Haar and
the Dirichlet scaling functions. However, what about
derivatives? Using the same formula we would get
½f0�MðmÞ ¼ hχMm ; f0i, which is still well-defined but one
would like to relate this to some sort of discrete derivative
of fM. In the case of the Haar scaling function one can do
the integral and obtains ½f0�MðmÞ ¼ M½fðxMmþ1Þ − fðxMm Þ�,
which is a possible definition of the discrete derivative;
however, the function values fðxMm Þ are not linearly related
to the values fMðmÞ in (4.16). In particular, if we replace
f by the quantum field, this definition of derivative
would map us out of the space of already discretized fields
ΦMðmÞ.
By contrast, in the case of the Dirichlet kernel, as the χMm

are smooth we can integrate by parts (no boundary
terms occur because all functions involved are periodic)
to obtain
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½f0�MðmÞ ¼ −h½χMm �0; fiL: ð4:17Þ

The functions χMm are in VM which is spanned by the
en; jnj ≤ ðM − 1Þ=2. As e0n ¼ 2πinen the functions ½χMm �0
are still in VM and thus can be expressed as linear
combinations of the χMm0 . It follows that (4.17) defines a
linear map on the sequence m ↦ fMðmÞ ¼ hχMm ; fiL,

½∂MfM�ðmÞ ≔ ½f0�MðmÞ ¼
X

m̃∈ZM

∂Mðm; m̃ÞfMðm̃Þ: ð4:18Þ

Without working it out explicitly, we can already determine
the dominant contribution of the matrix ∂M: Since χMm is
steepest of inclination�M close to xMm∓1, we know without
further calculation that ∂Mðm; m̃Þ will be approximated by
cM½δm̃;mþ1 − δm̃;m−1� where c is a numerical constant of
order unity. By construction, this is an antisymmetric matrix
as being related to the derivative of a symmetric kernel.
Accordingly, the formula (4.16) can be universally used

to discretize fields, their momenta, and their arbitrarily high
derivatives as they appear in the classical Hamiltonian
without introducing extra structure, thereby downsizing the
discretization ambiguities. All of the renormalization pro-
gram can therefore be based on a single input, namely the
MRA based on a scaling function with suitable properties
that we listed in the Introduction.
We complete the analysis by computing the mother

wavelets corresponding to the Dirichlet scaling function.
This requires, for each M∈M, the specification of a
fixed element M0ðMÞ∈M such that M0ðMÞ > M. We
pick the simplest choice M0ðMÞ ¼ 3M. We will content
ourselves with considering the linearly ordered subset
M3;¼ f3N; N ∈N0g, which is what one always does in
discrete wavelet analysis (with 2 replaced by 3). Note that
for renormalization the essential structure is the MRA and
mother scaling function while the mother wavelet function
is a convenient but not essential additional structure.

We have with δN ≔ δM¼3N the delta distribution
approximation on the lattice with 3M points, and since
ð3Nþ1 − 1Þ=2 ¼ 3N þ ð3N − 1Þ=2,

δNþ1 ¼
X

jnj≤3Nþ1−1
2

en ¼ ðe3N þ 1þ e−3N Þ

×
X

jnj≤3N−1
2

en ¼ ðe3N þ 1þ e−3N ÞδN; ð4:19Þ

which displays a self-similar structure

δN ¼
YN−1

k¼1

γk; γk ¼ e3k þ 1þ e−3k ð4:20Þ

and nicely illustrates how the Dirichlet kernel δN is built
from the 3N basis vectors en; jnj ≤ ð3N − 1Þ=2. This also
makes it easy to give an explicit parametrization of the
orthogonal complement W3N of V3N in V3Nþ1 , which has
twice the dimension ofV3N , which is dð3NÞ ¼ 3N : it is given
by the functions en�3N ; jnj ≤ ð3N − 1Þ=2. Let us therefore
define eσn ≔ enþσ3N ; jnj ≤ ð3N − 1Þ=2; σ ∈ f0;�1g. Then

heσn; eσ̃ñiL ¼ δσ;σ̃δn;ñ: ð4:21Þ

We are thus led to consider two kernels δN� in addition to
δN ≔ δN0 , which are also real valued,

δNþðxÞ ¼ cosð3N2πxÞδNðxÞ; δN−ðxÞ ¼ sinð3N2πxÞδNðxÞ
ð4:22Þ

and set for σ ¼ �1,

ψN
σ;mðxÞ ≔ δNσ ðx − xNmÞ: ð4:23Þ

We have with M ¼ 3N

hψNþ;m;ψ
N
−;m̃i ¼

1

4i
h½e3Ne−3N ðxMm Þ þ e−3Ne3N ðxMm Þ� χMm ; ½e3Ne−3N ðxMm Þ − e−3Ne3N ðxMm Þ� χMm̃ i

¼ 1

4i
½e3N ðxMm − xMm̃ Þ − e−3N ðxMm − xMm̃ Þ�hχMm ; χMm̃ i

¼ 0; ð4:24Þ

where we used that e3Nχ
M
n contains only modes ð3N þ 1Þ=2 ≤ 3N þ n ≤ ð3Nþ1 − 1Þ=2 while e−3Nχ

M
n contains only modes

−ð3N þ 1Þ=2 ≥ −3N þ n ≥ −ð3Nþ1 − 1Þ=2 which lie in mutually disjoint sets. On the other hand,

hψN
�;m;ψ

N
�;m̃i ¼

1

4
h½e3Ne−3N ðxMm Þ � e−3Ne3N ðxMm Þ� χMm ; ½e3Ne−3N ðxMm Þ � e−3Ne3N ðxMm Þ� χMm̃ i

¼ 1

4
½e3N ðxMm − xMm̃ Þ þ e−3N ðxMm − xMm̃ Þ�hχMm ; χMm̃ i

¼ 1

2
3Nδm;m̃: ð4:25Þ
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Accordingly, the ψN
�;n; jnj ≤ ð3N − 1Þ=2 are an ONB for W3N up to normalization, and as N varies they provide an ONB

of L. We now relate them to the scaling function usingM ¼ 3N; yMm ¼ x − xMm ;m∈ZM and determine the mother wavelets.
We have with normalization 2M ¼ 23N (the dimension of WN)

ψNþ;mðxÞ ¼ 2
cosð2πMyMm Þ sinðπMyMm Þ

sinðπyMm Þ
¼ 2

sinðπMyMm Þ − 2sin3ðπMyMm Þ
sinðπyMm Þ

¼ sinð3πMyMm Þ − sinðπMyMm Þ
sinðπyMm Þ

;

ψN
−;mðxÞ ¼ 2

sinð2πMyMm Þ sinðπMyMm Þ
sinðπyMm Þ

¼ 4
cosðπMyMm Þsin2ðπMyMm Þ

sinðπyMm Þ

¼ 2
− cosð3πMyMm Þ þ cosðπMyMm Þ

sinðπyMm Þ
: ð4:26Þ

Thus, we may define two mother wavelets ψþðxÞ ¼ sinðπxÞ ¼ ϕðxÞ and ψ−ðxÞ ¼ cosðπxÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕðxÞp

algebraically
related to the mother scaling function ϕ and can write (4.26) as translations and rescalings of rational functions of
those

ψNþ;mðxÞ ¼
ð½D3M −DM�Tm

1=MψþÞðxÞ
ðTm

1=MψþÞðxÞ
;

ψN
−;mðxÞ ¼ −

ð½D3M −DM�Tm
1=Mψ−ÞðxÞ

ðTm
1=MψþÞðxÞ

: ð4:27Þ

B. Noncompact case

Recall the following facts about the topologies of position space and momentum space via the Fourier transform where
we denote byM the spatial resolution of the lattice xMm with eitherm∈Z orm∈ZM ¼ f0; 1; 2;…;M − 1gwhere forM odd

we set ẐM ¼ f−M−1
2

;…; M−1
2
g [c: compact, nc: noncompact, d: discrete, and nd: nondiscrete (continuous)]:

space − topology momentum − topology Fourier − kernel

nc; nd∶ R nc; nd∶ R ekðxÞ ¼ eikx;

nc; d∶ 1
M · Z c; nd∶ ½−Mπ;MπÞ eMk ðmÞ ¼ eikx

M
m ;

c; nd∶ ½0; 1Þ nc; d∶ Z enðxÞ ¼ e2πinx;

c; d∶ 1
M · ZM c; d∶ ẐM eMn ðmÞ ¼ e2πinx

M
m :

ð4:28Þ

Accordingly, in the noncompact and compact cases, respec-
tively, the space of Schwartz test functions is a suitable
subspace of L ¼ L2ðR; dxÞ and L ¼ L2ð½0; 1Þ; dxÞ, respec-
tively, which have momentum support in 2πR and 2π · Z,
respectively. Upon discretizing space into cells of width 1=M
the momentum support R and Z, respectively, gets confined
to the Brillouin zones ½−πM; πMÞ and ẐM, respectively.
The corresponding completeness relations or resolutions

of the identity read

δRðx; x0Þ ¼
Z
R

dk
2π

ekðx − x0Þ;

MδZm;m0 ¼
Z

πM

−πM

dk
2π

eMk ðm −m0Þ;

δ½0;1Þðx; x0Þ ¼
X
n∈Z

enðx − x0Þ;

MδZM
m;m0 ¼

X
n∈ZM

eMn ðm −m0Þ: ð4:29Þ
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While the first and third relations in (4.29) define the δ
distribution on R and [0, 1), respectively, the second and
fourth relations in (4.29) are the restrictions to the lattice of
the regular functions

δR;MðxÞ ¼
Z

πM

−πM

dk
2π

ekðxÞ ¼
sinðπMxÞ

πx
;

δ½0;1Þ;MðxÞ ¼
X
n∈ZM

enðxÞ ¼
sinðπMxÞ
sinðπxÞ ; ð4:30Þ

which we recognize as the Shannon (sinc) and Dirichlet
kernels, respectively. These kernels can be considered as
regularizations of the aforementioned δ distributions in the
sense that the momentum integral k∈R or momentum sum
n∈Z has been confined to jkj < πM and jnj < M−1

2
,

respectively. Both are real valued, smooth, strongly peaked
at x ¼ 0 and have compact momentum support. The
Shannon kernel like the Dirichlet kernel is an L2 function
but it is not of rapid decay with respect to position.
In the previous subsection we already have explored the

Dirichlet kernel and proved it to be both very useful for
renormalization and for defining a generalized MRA,
respectively. In this section we will show that analogous
properties hold for the Shannon kernel.
We begin with the MRA structure of the Shannon kernel,

which we denote by δMðxÞ for the rest of this section. As it
involves the Fourier modes jkj ≤ πM in complete analogy

to the compact case, we consider the space VM as the
closure in L ¼ L2ðR; dxÞ of the smooth functions with
compact momentum support in ð−πM; πMÞ. This obvi-
ously gives a nested structure of subspaces VM ⊂ VM0 , in
fact, for any positive real numbers 0 < M ≤ M0 with the
usual ordering relation, but due to the lattice context we
restrict again to the odd positive integers M with M ≤ M0
if M0=M∈N.
The analogy to the compact case suggests to consider the

functions

χMm ðxÞ ≔
1

M
δMðx − xMm Þ∈VM: ð4:31Þ

We have

M2hχMm ;χMm0 iL¼
Z

πM

−πM

dk
2π

Z
πM

−πM

dk0

2π
ekðxMm Þe−k0 ðxMm0 Þhek;ek0 iL

¼
Z

πM

−πM

dk
2π

ekðxMm Þe−kðxMm0 Þ

¼δMðxMm −xMm0 Þ¼Mδm;m0 ; ð4:32Þ

which shows that the χMm form an orthogonal system of
functions in VM.
Next let f belong to the dense subset of VM consisting of

smooth functions with compact momentum support in
ð−πM; πMÞ. We have

M
X
m∈Z

χMm ðxÞhχMm ; fiL ¼ M−1
Z

πM

−πM

dk
2π

f̂ðkÞ
Z

πM

−πM

dk0

2π
ek0 ðxÞ

�X
m∈Z

ei
k−k0
M m

�

¼ M−1
Z

πM

−πM

dk
2π

f̂ðkÞ
Z

πM

−πM

dk0

2π
ek0 ðxÞ

�
2π

X
m∈Z

δRððk − k0Þ=M − 2πmÞ
�

¼
Z

πM

−πM

dk
2π

f̂ðkÞekðxÞ ¼ fðxÞ; ð4:33Þ

where the Fourier transform of f is

f̂ðkÞ ¼
Z
R
dxe−kðxÞfðxÞ ¼ hek; fiL ð4:34Þ

and where we used that for jkj; jk0j < πM the condition
k − k0 ¼ 2πm has a solution only for m ¼ 0 which is
k0 ¼ k. It follows that the

ffiffiffiffiffi
M

p
χMm form an ONB of VM. We

may write them as

ffiffiffiffiffi
M

p
χMm ¼ M1=2DMTm

1=Mϕ; ϕðxÞ ¼ sincðπxÞ; ð4:35Þ

demonstrating that the scaling function of this MRA is
nothing but the sinc function. While this is well-known, we
have rederived this here without any effort and from the
regularization of the δ function perspective, which in turn is

motivated by the desire to produce MRA ONB bases with
locality features.
Next we turn to the underlying wavelet structure. Again

we proceed in complete analogy to the compact case and
consider the sequence MN ¼ 3N; N ∈N0 (we could also
allow N ∈Z; however, for the purpose of renormalization
one is interested in large M only). We thus have to
decompose V3M into VM and its orthogonal complement
WM in V3M. To do this note that

χ3Mm ðxÞ ¼ ½e2πMðx−x3Mm Þ þ e−2πMðx−x3Mm Þ þ 1�

×
Z

πM

−πM

dk
2π

ekðx − x3Mm Þ: ð4:36Þ

The integral that appears in (4.36) defines an element of VM

and thus can be decomposed into the χMm . The functions that
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appear in the square brackets lie in the span of
1; sinð2πMðx − xMm ÞÞ; cosð2πMðx − xm −mÞ. We conclude
that the χ3Mm can be decomposed into the functions χMσ;m0

with σ ¼ 0;�1 where χM
0;m0 ¼ χMm0 and

χMþ;mðxÞ ¼ cosð2πMðx − xMm ÞÞχMm ðxÞ;
χM−;mðxÞ ¼ sinð2πMðx − xMm ÞÞχMm ðxÞ: ð4:37Þ

Using that 2πM þ k > πM;−2πM þ k < −π for jkj < πM
it is not difficult to see by a calculation completely analogous
to that of Sec. IV that the χMσ;m are mutually orthogonal. Thus
WM is spanned by the χM�;m, which can be written as

χM�;m ¼ �ðD3M −DMÞTm
1=Mψ�; ψþðxÞ ¼ sincðπxÞ;

ψ−ðxÞ ¼ cosincðπxÞ; ð4:38Þ

exhibiting the twomother wavelets. The fact that we can deal
here with just linear aggregates of mother wavelets rather
than rational or algebraic ones is due to the fact that in the
noncompact case the denominator function πx scales under
dilatationwhile in the compact case the denominator function
sinðπxÞ does not. These wavelets are, of course, well-known
in the literature (there only one mother wavelet is required
because theMRA is based on powers of 2 rather than powers
of 3 as considered here); however, the novel point here is,
apart from using powers of 3 rather than 2, that we have
constructed them here effortlessly, directly, by elementary
means starting from the cutoff resolution of the identity point
of view andwithout going through the complicated algorithm
involving Cohen’s condition. Note that (4.38) extends nat-
urally fromM being positive powers of 3 to negative powers.
The analysis (localization and height) of the extrema of

the Shannon kernel is even simpler than for the Dirichlet
kernel since it is basically the function sincðyÞ; y ¼ πMx.
The absolute maximum is at y ¼ 0 of height 1, and the
other extrema have to obey y ¼ tanðyÞ whose approximate

solution is y ¼ π=2þ Nπ for large y with N ∈N without
loss of generality (w.l.g.). (we just consider y ≥ 0 since the
function is symmetric). They thus take the approximate
value ð−1ÞN=ðπ=2þ NπÞ and in contrast to the Dirichlet
kernel decay as a consequence of large N and not because
they are suppressed by an order of M which is, of course,
the difference between the compact and noncompact
situations.
As a final remark we note that the Shannon kernel is

symmetric and thus has an infinite number of odd
polynomial vanishing moments (which, of course, do not
converge absolutely).

C. Translation invariant kernels and discretization
of derivatives

We close this section with the following observation.
Theorem 4.1: (Theorem 6.1).Suppose that ∂M ≔

I†M∂IM is the natural discrete derivative with respect to a
coarse-graining kernel IM∶ LM → L and such that
½∂; IMI†M� ¼ 0. Then for any measurable function f on R
we have I†Mfði∂ÞIM ¼ fði∂MÞ.
Proof. We have

∂
N
M ¼ I†Mð∂½IMI†M�ÞN−1

∂IM: ð4:39Þ

While I†MIM ¼ 1LM
by isometry, pM ≔ IMI

†
M is a projec-

tion in L (onto the subspace VM of the MRA). Thus, if
½∂; pM� ¼ 0, we find ∂NM ¼ I†M∂

NIM. The claim then follows
from the spectral theorem (functional calculus) since i∂M is
self-adjoint because i∂ is. ▪
To see that both the Shannon and Dirichlet kernels

satisfy the assumption of the theorem, it suffices to remark
that they only depend on the difference x − y; i.e., they are
translation invariant. More precisely, since the χMm with
m∈Z and m∈ZM, respectively, are an ONB of VM just as
are the ek; jkj ≤ πM and e2πn; jnj ≤ M−1

2
, respectively,

ðpMfÞðxÞ ¼
X
m

χMm ðxÞhχMm ; fi ¼

8>><
>>:

R
X dy

hR
πM
−πM

dk
2π ekðx − yÞ

i
fðyÞ X ¼ R

R
X dy

�P
jnj≤M−1

2
e2πnðx − yÞ

�
fðyÞ X ¼ ½0; 1Þ

; ð4:40Þ

and integration by parts does not lead to boundary terms
due to the support properties of f or by periodicity,
respectively.
Translation invariance of the Shannon and Dirichlet

kernels, respectively, is, besides smoothness, another
important difference from the Haar kernel

X
m

χMm ðxÞχMm ðyÞ ¼
X
m

χ½mM;mþ1
M ÞðxÞχ½mM;mþ1

M ÞðyÞ; ð4:41Þ

which is not translation invariant. Therefore in this case
the flows of, e.g., ωM or ω−1

M , are not simply related by
ωM ¼ I†MωIM;ω

−1
M ¼ I†Mω

−1IM, and thus one must define
ωM as the inverse of the covariance ω−1

M . Here ω ≔ þ ffiffiffiffiffiffiffi
−Δ

p
is the positive square root of the Laplacian Δ ¼ ∂

2 and
ωM ¼ þ ffiffiffiffiffiffiffiffiffiffi

−ΔM
p

;ΔM ¼ ∂
2
M its discretization. As M → ∞

this difference disappears but at finite M it is present and
makes the study of the flow with respect to a nontranslation
invariant kernel much more and unnecessarily involved.
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In [19] translation invariance of the Shannon and
Dirichlet kernels will be exploited to show that the discrete
fermion theories on the lattices labeled by M they
define is manifestly doubler free. The Nielsen-Ninomiya
theorem [20] is evaded because the kernels are merely
peaked (quasilocal) but not local (compact support). This
mechanism is similar to the nonlocality provided by perfect
(blocked from the continuum) actions in the Euclidean path
integral approach [21].

V. FREE SCALAR FIELD RENORMALIZATION
WITH DIRICHLET FLOW

In this section we repeat some of the computations done
in [13] in terms of the Haar renormalization flow but now
using the Dirichlet kernel which may be called theDirichlet
renormalization flow. We content ourselves by blocking
from the continuum.
The covariance of the Gaussian measure of a Klein-

Gordon field on the cylinder with mass p > 0 is C ¼
ð2ωÞ−1;ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δþ p2

p
where Δ is the Laplacian on T1.

For the massless case p ¼ 0 let Q⊥ ¼ 1h1; iL be the

projection on the zero mode with orthogonal complement
Q ¼ 1L −Q⊥. In this case fix any number ω0 > 0 and set

C ¼ Q⊥ð2ω0Þ−1Q⊥ þQð2ωÞ−1Q: ð5:1Þ

The first observation is that (1 ¼ 1M the constant function
equal to unity)

Q⊥IMfM ¼
X

m∈ZM

fMðmÞ1h1; χMm iL

¼
�
1

M

X
m∈ZM

fMðmÞ
�
1

¼ h1M; fMiLM
1M ≕Q⊥

MfM; ð5:2Þ

that is, Q⊥IM ¼ Q⊥
M. We also set QM ≔ 1LM

−Q⊥
M. Then

I†MQ
⊥ω−1

0 Q⊥IM ¼ Q⊥
Mω

−1
0 Q⊥

M; ð5:3Þ

while

ðI†MQω−1QIMfMÞðmÞ ¼ MhχMm ;Qω−1QIMfMiL
¼ M

X
m̂∈ZM

fMðm̂ÞhχMm ;Qω−1QχMm̂ iL

¼
X

m̂∈ZM

fMðm̂Þ
X

0<jnj<M−1
2

ωðnÞ−1eMn ðm̂Þ�hχMm ; eniL

¼ 1

M

X
m̂∈ZM

fMðm̂Þ
X

0<jnj<M−1
2

ωðnÞ−1eMn ðm − m̂Þ

¼
X

0<jnj<M−1
2

ωðnÞ−1eMn ðmÞf̂MðnÞ

¼ ½QMωMQMfMÞðmÞ; ð5:4Þ

where the Fourier transform of fM ∈LM is defined by

f̂MðnÞ ¼ heMn ; fMiLM
; fM ¼

X
n∈ ẐM

eMn f̂MðnÞ: ð5:5Þ

This shows that we have simply CMðnÞ−1=2¼ωMðnÞ¼
ωðnÞ¼2πjnj for 0< jnj≤ ðM−1Þ=2 and CMð0Þ−1=2≔ω0.
In the massive case simply ωMðnÞ ¼ ωðnÞ; 0 ≤
jnj ≤ ðM − 1Þ=2. This should be contrasted with the rather
complicated expression for ωMðnÞ given for the Haar
flow displayed in [13], which involves also all the
ωðnÞ; jnj > ðM − 1Þ=2. While these are subdominant for

largeM, they are not decaying rapidly. This is caused by the
discontinuity of the Haar scaling function.
These nonrapidly decaying terms can cause convergence

problems that are artifacts of using discontinuous approx-
imants to actually smooth functions f∈L. In [14] we
encounter the operator on L,

KM ≔ Q½C−1 − IMC−1
M I†M�Q ð5:6Þ

in a massless theory. We compute its action on en; n ≠ 0 for
the Dirichlet flow
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1

2
KMen ¼ ωðnÞen −

X
n̂∈ ẐM

C−1
M ðn̂ÞðQIMeMn̂ ÞheMn̂ ; I†MeniLM

¼ ωðnÞen −
X
n̂∈ ẐM

C−1
M ðn̂ÞðQIMeMn̂ ÞhIMeMn̂ ; eniL

¼ ωðnÞen −
X

0≠n̂∈ ẐM

ω−1
M ðn̂Þδn;n̂en

¼ ωðnÞθ
�
jnj −M − 1

2
þ 1

�
en; ð5:7Þ

where θ is the Heaviside step function and where we used
for jnj ≤ ðM − 1Þ=2

IMeMn ¼
X

m∈ZM

χMmeMn ðmÞ ¼ 1

M

X
jn̂j≤M−1

2

en̂
X

m∈ZM

eMn−n̂ðmÞ ¼ en:

ð5:8Þ

Accordingly,

KMf ¼
X

jnj>M−1
2

ωðnÞenf̂ðnÞ; ð5:9Þ

where the Fourier transform

f̂ðnÞ ¼ hen; fiL; f ¼
X
n∈Z

f̂nen; ð5:10Þ

was used. For smooth f, f̂ðnÞ is of rapid decay, and thus,
we get the sup norm estimate

kKMfk∞ ≤ 2π
X

jnj>M−1
2

jnj
n4

jn4f̂ðnÞj

≤ M−1
� X
jnj>M−1

2

n−2
�
sup
n∈Z

jn4f̂ðnÞj; ð5:11Þ

which decays as M → ∞. Thus, since T1 is compact and
therefore k:k1 ≤ k:k2 ≤ k:k∞, we get convergence to zero
with respect to all three norms. This is not the case with
respect to the Haar kernel.

VI. CONCLUSION AND OUTLOOK

In this contribution we intended to achieve three goals:
(1) To show that a useful (generalized) MRA in the

compact case can be obtained by direct methods not
relying on periodization of noncompact MRAs if
one is willing to accept that the associated ONB is
created by rescalings and translations of rational
rather than linear aggregates of mother scaling
functions. Corresponding mother wavelets then also
are to be understood in this generalized sense.

(2) To show that MRA is directly related to Hamiltonian
renormalization and serves as a very useful organi-
zational principle, thereby reducing the freedom that
one has in choosing the renormalization flow.

(3) To show that the Dirichlet and Shannon kernel fits
into the generalized MRA scheme and that its flow
has much improved analytical properties as com-
pared to the Haar flow, which not only tremendously
simplifies many calculations but even makes com-
putations possible that are otherwise plagued by
singularities due to insufficient differentiability of
the kernel; see [14] for an example.

There are many directions into which this work can be
extended. We mention three of them:

(I) Instead of the Shannon and Dirichlet kernels one
can choose other ones that also have promising
properties. For instance, in the compact case the Fejer
kernel [22] is the Cesaro average of the Dirichlet
kernel, shares many properties of the Dirichlet kernel,
and in addition is manifestly non-negative, which is
not true for the Dirichlet kernel.

(II) A more general question is: Which kernels are
optimal for which renormalization application?
Which ones display as few as possible “nonlinear-
ities” when one allows algebraic rather than linear
aggregates of scaling functions to generate an MRA?
We have seen that translation invariant kernels lead to
major simplifications in the renormalization flow. See
also [16] for the explicit use of Daubechies wavelets
and the properties of the corresponding flow.

(III) While tori are particularly convenient, there may be
other applications in which different compact topol-
ogies (e.g., spheres) are preferable. We expect that in
this case the theory laid out here generalizes by
substituting for the corresponding harmonic analysis
(e.g., spherical harmonics Yl;m on S2 rather than
toroidal harmonics en1;n2 on T2).

(IV) In the noncompact case the Shannon kernel has a
sharp cutoff in momentum space at jkj ¼ πM of the
Fourier transform of the δ distribution. This causes it
to have compact momentum transport but to decay
only slowly in position space. If we turn the
momentum cutoff function from a step function into
a smooth function of compact support or of rapid
decrease, then the corresponding kernel will also be
of rapid decrease in position space and in that sense
keep its locality. However, only if it is really of
compact support rather than merely of rapid de-
crease does it define an MRA in the sense of having
a nested structure of subspaces of L as otherwise the
spaces VM all coincide with L (consider, e.g., a
Gaussian cutoff of width M). But even then are
simple translates and dilatations of the resulting
kernel not automatically orthogonal, and thus it is
not a scaling function of the corresponding MRA.

RENORMALIZATION, WAVELETS, AND THE DIRICHLET- … PHYS. REV. D 108, 125008 (2023)

125008-15



In fact, it is well-known that noMRA in the strict sense
of [4] existswith scaling functions of rapid decrease. In
that sense the Shannon kernel performs better, being
simultaneously smooth of some decay and a scaling
function. This suggests that one picks the momentum
cutoff not sharply (discontinuously) but also not
smoothly [usually one uses mollifiers based on the
smooth function expð−x−2Þ] so that the position space

decay (locality) is improved while a scaling function
results. For practical calculations it is important that
this momentum cutoff function be analytically man-
ageable. It would be interesting to have a scaling
function with these properties at one’s disposal.

Note added. This article is part of a series, related concepts
occur in [14] and [19] in PRD and [13] in CQG.
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