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The Hamiltonian renormalization program motivated by constructive quantum field theory and
Osterwalder-Schrader reconstruction that was recently launched for bosonic field theories is extended to
fermions. As fermion quantization is not in terms of measures, the scheme has to be mildly modified
accordingly.We exemplify the scheme for free fermions for both compact and noncompact spatial topologies,
respectively (i.e., with and without IR cutoff) and demonstrate that the convenient Dirichlet or Shannon
coarse-graining kernels recently advertised in a companion paper lead to a manifestly doubler free flow.
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I. INTRODUCTION

The Hamiltonian or canonical approach to quantum
gravity [1] aims at implementing the constraints as operators
on a Hilbert space. In the classical theory, the constraints
generate the Einstein equations via the Hamiltonian equa-
tions of motion [2]. They underlie the numerical imple-
mentation of the initial value formulation of Einstein’s
equations, e.g., in black hole merger and gravitational wave
template codes [3].
The mathematically sound construction of canonical

quantum gravity is a hard problem because the constraints
are nonpolynomial expressions in the elementary fields and
in that sense much more nonlinear than even the most
complicated interacting quantum field theory (QFT) on
Minkowski space such as QCD whose Hamiltonian is still
polynomial in gluon and quark fields. As the theory is
nonrenormalizable and thus believed to exist only non-
perturbatively, the loop quantum gravity (LQG) approach
has systematically developed such a nonperturbative pro-
gram [4]. LQG derives its name from the fact that it uses a
connection rather than metric-based formulation; hence, it
is phrased in the language of Yang-Mills type gauge fields
and thus benefits from the nonperturbative technology
introduced for such theories, specifically gauge invariant
Wilson loop variables [5].
The current status of LQG can be described as follows:

While the quantum constraints can indeed be implemented
in a Hilbert space representation [6] of the canonical

(anti)commutation and adjointness relations as densely
defined operators [7] and while its commutator algebra
is mathematically consistent in the sense that it closes, it
closes with the wrong structure “functions.” The inverted
commas refer to the fact that the classical constraints do not
form a Lie Poisson algebra because for a Lie algebra it is
required that one has structure constants. By contrast, here
we have nontrivial structure functions in the classical
theory that are dictated by the fundamental hypersurface
deformation algebra [8], and in the quantum theory they
become operators themselves and are not simply constant
multiples of the identity operator. We therefore call them
structure operators.
The most important missing step in LQG is therefore

to correct those structure operators. It is for this reason
that more recently Hamiltonian renormalization techniques
were considered [9]. There one actually works with a one-
parameter family of gauge fixed versions of the theory [10]
so that the constraints no longer appear and are traded for a
Hamiltonian which drives that one-parameter evolution.
The reason for doing this is twofold: On the one hand,
working with the gauge fixed version means solving the
constraints classically and saves the work to determine
the quantum kernel and Hilbert space structure on it.
On the other hand, the techniques of [9] were derived
from the Osterwalder-Schrader reconstruction [11], which
deals with theories whose dynamics is driven by an
actual Hamiltonian rather than constraints (however, see
Ref. [12]). Still, that Hamiltonian uniquely descends from
the constraints, and therefore its quantization implicitly
depends on the quantization of the constraints. Therefore,
the quantum constraints and their structure operators
are implicitly also present in the gauge fixed version. In
addition, in [13] we have shown that the techniques
of [9] can be “abused” also for constrained quantum
theories in the sense that the renormalization steps to
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be carried out can be performed independently for all
constraints “as if they were actual Hamiltonians,” even if
the corresponding operators are not bounded from below.
In that sense the methods of [9] complement those
of [14] where the correction of the structure operators is
approached by exploiting the spatial diffeomorphism
invariance of the classical theory in an even more nonlinear
fashion than it was already done in [7].
The program of [9] rests on the following observation: In

quantizing an interacting classical field theory one cannot
proceed directly but rather has to introduce at least an
UV cutoff M where we may think of M−1 as a spatial
resolution. Introducing M produces quantization ambigu-
ities that are encoded in a set of parameters depending on
M. Almost all points in that set do not define consistent
theories where a consistent theory is defined to be one in
which the theory at resolutionM is the same as the theory at
higher resolution M0 > M after “integrating out” the extra
degrees of freedom. Renormalization introduces a flow on
these parameters whose fixed or critical points define
consistent theories. In this way, the correct structure
operators or algebra of constraints referred to above are
also believed to be found, either explicitly or implicitly.
In [13] we have shown that this is what actually happens for
the much simpler case of two-dimensional (2D) para-
metrized field theory [15] whose quantum hypersurface
deformation algebra coincides with the Virasoro algebra.
One of the lessons learned from this is that the quantum
constraint algebra must not close at any finite resolution
even if the continuum algebra closes with the correct
structure operators. In other words, it is physically correct
that the finite resolution constraints are “anomalous” while
the actual continuum theory is anomaly free. The “anoma-
lous” terms just reflect a discretization artifact that decays
to zero as we increase the resolution. The other lesson
learned is that while there is a substantial amount of
freedom in the choice of the renormalization flow, for a
general theory the coarse-graining kernel should have
sufficient smoothness properties. A systematic classifica-
tion of these choices of flow is made possible using multi-
resolution analysis [16] known from wavelet theory [17].
In [18] we have further tested [9] for free bosons (scalars

and vector fields). Theories with fermions were not
considered so far. In this paper we close this gap; see
also [19] for a closely related formulation.
The architecture of this paper is as follows:
In Sec. II we briefly recall the bosonic theory from [9].
In Sec. III we adapt the bosonic theory to the fermionic

setting.
In Sec. IV we test the fermionic Hamiltonian renorm-

alization theory for free Dirac, Majorana, or Weyl fermions
both with and without IR cutoff using the Dirichlet-
Shannon kernel as a coarse-graining scheme and confirm
a manifestly doubler free spectrum at each resolution M
at the fixed point. The Nielsen-Ninomiya theorem [20]

is evaded because the finite resolution Hamiltonians
are spatially nonlocal as it is usually the case when one
“blocks from the continuum,” i.e., computes the “perfect
Hamiltonian.” A similar observation was made in the
context of QCD in the Euclidean action approach [21].
Indeed, if one uses the local but discontinuous Haar
kernel to define the renormalization flow, the usual doubler
troubled pole structure of the Feynman propagator is found
while for the smooth but only quasilocal Dirichlet-Shannon
kernel a doubler free pole structure results.
In Sec. V we summarize and conclude.

II. REVIEW OF HAMILTONIAN
RENORMALIZATION FOR BOSONS

To be specific we will consider the theory either with IR
cutoff so that space is a d-torus Td or without IR cutoff so
that space is d-dimensional Euclidean space Rd, and it will
be sufficient to consider one coordinate direction as both
spaces are Cartesian products. Thus X ¼ ½0; 1Þ or X ¼ R in
what follows.
Thus, for simplicity we consider a bosonic, scalar

quantum field Φ (operator valued distribution) with con-
jugate momentum Π on X with canonical commutation and
adjointness relations (in natural units ℏ ¼ 1)

½ΠðxÞ;ΦðyÞ�¼ iδðx;yÞ; ΦðxÞ� ¼ΦðxÞ; Π�ðxÞ¼ΠðxÞ;
ð2:1Þ

where

δðx; yÞ ¼
X
n∈Z

enðxÞenðyÞ�; enðxÞ ¼ e2πinx ð2:2Þ

is the periodic δ distribution on the torus or

δðx; yÞ ¼
Z
R

dk
2π

ekðxÞekðyÞ�; ekðxÞ ¼ eikx ð2:3Þ

on the real line, respectively. It is customary to work with
the bounded Weyl operators

w½f;g�¼ expði½ΦðfÞþΠðgÞ�Þ; ΦðfÞ¼
Z
X
dxfðxÞΦðxÞ;

ΠðgÞ¼
Z
X
dxgðxÞΠðxÞ ð2:4Þ

with f; g∈L ¼ L2ðX; dxÞ test functions or smearing
functions usually with some additional properties such
as differentiability or even smoothness. For tensor fields
of higher degree a similar procedure can be followed
(see Ref. [9]).
Since the space L enters the stage naturally, we use

multiresolution analysis (MRA) language [16] familiar
from wavelet theory [17] to define a renormalization group
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flow. MRAs serve as a powerful organizing principle to
define renormalization flows in terms of coarse-graining
kernels, and while the choice of the kernel should intui-
tively not have much influence on the fixed point or
continuum theory (at least in the presence of universality)
the examples of [13,22] show that generic features such as
smoothness can have an impact.
In the most general sense an MRA is a nested sequence

of Hilbert subspaces VM ⊂ L indexed byM∈MwhereM
is partially ordered and directed by ≤. That is, one has
VM ⊂ VM0 for M ≤ M0 and ∪M∈M VM is dense in L. Pick
an orthonormal basis (ONB) dðMÞ1=2χMm for VM wherem is
from a countably finite (infinite) index set ZM for X ¼
½0; 1Þ (X ¼ R), respectively, and dðMÞ is a finite number.
In the case that X ¼ ½0; 1Þ typically ZM is the lattice
xMm ;m=dðMÞ and dðMÞ ¼ dimðVMÞ the number of points
in it. Let LM ¼ l2ðZMÞ be the Hilbert space of square
summable sequences indexed by ZM with inner product

hfM; gMi ≔ dðMÞ−1
X

m∈ZM

f�MðmÞgMðmÞ: ð2:5Þ

This scalar product offers the interpretation of fMðmÞ ≔
fðxMm Þ; xMm ≔ m

dðMÞ, and similar for gM as the discretized

values of some functions f; g∈L in which case (2.5) is the
Riemann sum approximant of hf; giL. It is for this reason
that we did not normalize the χMm .
What follows works for any such choice of ONB indexed

by M. However, to reduce the amount of arbitrariness and
to give additional structure to MRAs one requires, in both
wavelet theory and renormalization, in addition that the
ONBs descend from a few mother scaling functions ϕ by
dilatations depending on M and translations depending on
m. In wavelet theory on the real line one is rather specific
about the concrete descendance. In particular, there is only
one mother scaling function, the χMm and ϕ are linearly
related,M just consists of the powersM ¼ 2N;N ∈Z, and
χMm ¼ ϕðMx −mÞ. As advertised in [16] we allow a more
general descendance and thus accept a finite, fixed number
of mother scaling functions and that the χMm are dilatations
and translations of a rational function of those mother
scaling functions. This keeps the central idea of providing
minimal structure to an MRA while increasing flexibility.
The spaces VM and LM are in bijection via

IM∶ LM → L; fM ↦
X
m

fMðmÞχMm : ð2:6Þ

Note that (2.6) has a range in VM ⊂ L only. Its adjoint
I†M∶ L → LM is defined by

hI†Mf; fMiLM
≔ hf; IMfMiL ð2:7Þ

so that

ðI†MfÞðmÞ ¼ dðMÞhχM; fiL: ð2:8Þ

Clearly

ðI†MIMfMÞðmÞ ¼ dðMÞhχMm ; IMfMiL ¼ fMðmÞ: ð2:9Þ

i.e., I†MIM ¼ 1LM
while

ðIMI†MfÞðxÞ ¼ dðMÞ
X
m

χMm ðxÞhχMm ; fMiL ¼ ðpMfÞðxÞ

ð2:10Þ

is the projection PM∶ L ↦ VM.
Given M ≤ M0 we define the coarse-graining map

IMM0 ≔ I†M0IM∶ LM ↦ LM0 : ð2:11Þ

It obeys

IM0IMM0 ¼ pM0IM ¼ IM ð2:12Þ

because IM has range in VM ⊂ VM0 forM ≤ M0. This is the
place where the MRA property of the nested set of
subspaces VM was important. Next for M1 ≤ M2 ≤ M3

we have

IM2M3
IM1M2

¼ I†M3
pM2

IM1
¼ I†M3

IM1
¼ IM1M3

ð2:13Þ

for the same reason. This is called the condition of
cylindrical consistency which is crucial for the renormal-
ization group flow.
To see the importance of (2.13) we consider a probability

measure ν on the space F of field configurations Φ which
defines a Hilbert space H ¼ L2ðF ; dνÞ and a representa-
tions space for the Weyl algebraA generated from theWeyl
elements (2.4). We set w½f� ≔ w½f; g ¼ 0� and define the
generating functional of moments of ν by

νðfÞ ≔ νðw½f�Þ: ð2:14Þ

If we restrict f to VM we obtain an effective measure on the
space of discretized quantum fields ΦM ¼ I†MΦ via

w½IMfM�¼wM½fM�¼eiΦMðfMÞ; ΦMðfMÞ¼hfM;ΦMiLM

ð2:15Þ

and

νMðfMÞ ≔ νðw½IMfM�Þ ¼ νMðwm½fM�Þ: ð2:16Þ

The measures νM on the spaces FM of fields ΦM are
consistently defined by construction

νM0 ðIMM0fMÞ ¼ νMðfMÞ ð2:17Þ
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for any M < M0 since the νM descend from a continuum
measure. Conversely, given a family of measures νM
satisfying (2.17) a continuum measure ν can be constructed
known as the projective limit of the νM under mild technical
assumptions [23]. To see the importance of (2.13) for this
to be the case, suppose we write f∈L in two equivalent
ways f ¼ IM1

fM ¼ IM2
gM2

, and then we should have
νM1

ðfM1
Þ ¼ νM2

ðgM2
Þ. Now while M1 and M2 may not

be in relation, as M is directed we find M1;M2 ≤ M3.
Applying I†M3

we conclude IM1M3
fM1

¼ IM2M3
gM2

; thus
due to (2.17) indeed

νM1
ðf1Þ ¼ νM3

ðIM1M3
fM1

Þ ¼ νM3
ðIM2M3

gM2
Þ ¼ νM2

ðgM2
Þ:

ð2:18Þ

In constructive quantum field theory the task is to construct
a representation of the Weyl algebra A with additional
properties such as allowing for the implementation of a
Hamiltonian operator H ¼ H½Φ;Π� which imposes severe
restrictions on the Hilbert space representation. One may
start with discretized Hamiltonians

Hð0Þ
M ½ΦM;ΠM� ≔ H½pMΦ; pMΠ� ð2:19Þ

on Hð0Þ
M ≔ L2ðFM; ν

ð0Þ
M Þ where νð0ÞM is any probability

measure to begin with, for instance, a Gaussian measure

or a measure constructed from the ground state Ωð0Þ
M of the

Hamiltonian Hð0Þ
M . The point of using the IR cutoff is that

there are only finitely many, namely dðMÞ degrees of
freedom ΦM, ΠM which are conjugate

½ΠMðmÞ;Φðm0Þ� ¼ idðMÞδðm;m0Þ; ΦMðmÞ� ¼ΦMðmÞ;
Π�

MðmÞ ¼ ΠMðmÞ ð2:20Þ

so that construction of νð0ÞM does not pose any problems. In the
case that there is no IR cutoff it is significantly harder to show
that the theories even at finite UV cutoff exist. Assuming
this to be the case, one fixes for each M∈M an element
M ≤ M0ðMÞ∈M and defines isometric injections

Jðnþ1Þ
MM0ðMÞ∶ Hðnþ1Þ

M → HðnÞ
M0ðMÞ; HðnÞ

M ≔ L2ðFM; dν
ðnÞ
M Þ
ð2:21Þ

via

νðnþ1Þ
M ðfMÞ ≔ νðnÞM0ðMÞðIMM0ðMÞfMÞ; ð2:22Þ

and with these the flow of Hamiltonians

Hðnþ1Þ
M ≔ J†MM0ðMÞH

ðnÞ
M0ðMÞJMM0ðMÞ: ð2:23Þ

The isometry of the injections relies on the assumption that the

spanof thewM½fM� is dense inHð0Þ
M which is typically the case.

This defines a sequence or flow (indexed by n)

of families (indexed by M) of theories HðnÞ
M and HðnÞ

M . At
a critical or fixed point of this flow the consistency
condition (2.17) is satisfied [at first in the linearly ordered
sets of MðMÞ ≔ fðM0ÞNðMÞ; N ∈N0g and then usually
for all of M by universality], and one obtains a consistent
family ðHM;HMÞ. This family defines a continuum theory
ðH; HÞ as one obtains inductive limit isometric injections
JM∶ HM ↦ H such that JM0JMM0 ¼ JM;M ≤ M0, thanks
to the fixed point identity JM2M3

JM1M2
¼ JM1M3

;
M1 ≤ M2 ≤ M3, and such that

HM ¼ J†MHJM ð2:24Þ

is a consistent family of quadratic forms HM ¼
J†MM0HM0JMM0 ;M ≤ M0.
We conclude this section by noting that wavelet theory

actually also seeks to decompose the spaces as VM0 ¼
VM ⊕ WM whereWM is the orthogonal complement of VM
in VM0 ;M ≤ M0, to provide an ONB for the WM and to
require that this basis descends from a mother wavelet ψ
concretely related to the scaling function in the same
specific way as outlined above for the scaling function.
For the purpose of renormalization this additional structure
is not essential, and thus we will not go into further details.
We remark, however, that in [16] we also generalized the
notion of wavelets in the same way as for the scaling
function which again keeps the central idea of structurizing
the MRA and showed that the Dirichlet and Shannon
kernels are nontrivial realizations of that more general
definition.

III. HAMILTONIAN RENORMALIZATION
FOR FERMIONS

To distinguish the bosonic field Φ from the previous
section from the present fermionic field we use the notation
ξB for a chiral (or Weyl) fermion where B ¼ 1; 2 transforms
in one of the two fundamental representations of SLð2;CÞ.
Its Majorana conjugate ϵξ� with ϵ ¼ iσ2 (Pauli matrix) of
opposite chirality then transforms in the dual fundamental
representation. We have the fundamental simultaneous
canonical anticommutation relations (CAR)

½ξBðxÞ;ξCðyÞ��þ≔ ξBðxÞξCðyÞ�þξCðyÞ�ξBðxÞ¼ δBCδðx;yÞ
ð3:1Þ

with all other anticommutators vanishing. Dirac fermions
and Majorana fermions can be considered as usual by using
direct sum SLð2;CÞ representations of independent Weyl
fermions of opposite chirality or of the direct sum of a
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fermion with its Majorana conjugate. It will be sufficient to
consider a single Weyl fermion species ξB for what follows.
The measure theoretic language given for bosons of the

previous section cannot apply because of several reasons:
i. the “Weyl elements” w½f� ≔ expðihf; ξi†LÞ are not
mutually commuting; ii. the w½f�Ω are not dense in the
Fock space H defined by hf; ξiΩ ¼ 0 because, in fact,
w½f� ¼ 1H þ ihf; ξi† due to nilpotency; and iii. w½f� is not
unitary. To avoid this one can formally work with Berezin
“integrals” [24] and anticommuting smearing fields f but
then we cannot immediately transfer the functional ana-
lytic properties of the commuting test functions from the
bosonic theory, and apart from serving as a compact
organising tool, anticommuting smearing functions do not
have any advantage over what we say below.
One of the motivations to work with Weyl elements

rather than say ΦðfÞ;ΠðfÞ in the bosonic case is that the
Weyl elements are bounded operators. However, the
operators ξðfÞ ≔ hf; ξiL; ξðfÞ† are already bounded by
jjfjjL as follows from the CAR:

½ξðfÞ; ξðfÞ��þ ¼ kfk2L1H
⇒ kξðfÞψk2H; kξðfÞψk2H ≤ kfk2Lkψk2: ð3:2Þ

The derivation of the renormalization scheme given
in [9], in fact, covers both the bosonic and the fermionic
cases, but the practical implementation for bosons used
measures [18]. We thus adapt the bosonic renormalization
scheme by reformulating it in an equivalent way which then
extends to the fermionic case:
Given cyclic vectors ΩðnÞ

M for the algebra generated by
the annihilation operator

ξMðfMÞ ≔ hIMfM; ξiL ¼ hfM; I†MξiLM

¼ 1

dðMÞ
X

B;m∈ZM

½fBMðmÞ��ξM;BðmÞ ð3:3Þ

and their adjoints (perhaps the vacua of the Hamiltonians

HðnÞ
M ), we define the flow of isometric injections [e.g.,

for M0 ¼ M0ðMÞ]

Jðnþ1Þ
MM0 Ωðnþ1Þ

M ≔ ΩðnÞ
M0 ;

Jðnþ1Þ
MM0 ΞMðFM;1Þ � � �ΞMðFM;NÞΩðnþ1Þ

M ≔ ΞM0 ðIMM0FM;1Þ� � � �ΞM0 ðIMM0FM;NÞ�ΩðnÞ
M0 ;

starting from an initial vector Ωð0Þ
M defined below. Note that

ξM ¼ dðMÞI†Mξ preserve the CAR in the sense that

½ξMðmÞ; ½ξMðm0Þ���þ ¼ dðMÞδmm0 ð3:4Þ

and ΞðFÞ ¼ P
B½hfB; ξBiL þ hf̃B; ξBi�� where we have

collected four independent smearing functions fB; f̃B;
B ¼ 1; 2 into one symbol F. The same notation was used
in (3.4) for the M dependent quantities. With these we
define the flow of Hamiltonian quadratic forms as

Hðnþ1Þ
M ≔ ½Jðnþ1Þ

MM0 �†HðnÞ
M0 J

ðnþ1Þ
MM0 : ð3:5Þ

These formulas are even simpler than in the bosonic case
because there is no fermionic Gaussian measure and
corresponding covariance to consider. However, as in the
bosonic case, one has to give initial data for this flow. This
can be done, e.g., by defining

Hð0Þ
M ½ξM; ξ�M� ≔ ∶ H½pMξ; ðpMξÞ��∶ ð3:6Þ

where ðpMξÞB ≔ IMI
†
MξB, H is the classical Hamiltonian,

and∶:∶ denotes normal orderingwith respect to a Fock space

Hð0Þ
M with cyclic Fock vacuum Ωð0Þ

M annihilated by Að0Þ
B;M

assembled from ξM;B and ξ�M;B as suggested by the form of
H½pMξ; ðpMξÞ��. As in the bosonic case, the fields ξM;B do
not depend on the sequence label n while the annihilators

AðnÞ
M;B do as one obtains them from the ξM;B using extra

discretized structure that depends on M, typically lattice
derivatives and more complicated aggregates made from
those (Dirac-Weyl operators, Laplacians, etc.).

IV. HAMILTONIAN RENORMALIZATION OF
FREE FERMIONS AND FERMION DOUBLING

In this section we will concretely choose the renormal-
ization structure as follows (see Ref. [16] for more details):
ZM will be the lattice of points xMm withm∈Z if X ¼ R and
m∈ZM ≔ f0; 1; 2;…;M − 1g if X ¼ ½0; 1Þ respectively,
and dðMÞ ¼ M. The set M consists of the odd naturals
with partial order M ≤ M0 iff M0=M∈N. The renormali-
zation sequence will be constructed usingM0ðMÞ ¼ 3M for
simplicity. The MRAs are based on the Shannon [24] and
Dirichlet [25] kernels, respectively, that is,

χMm ðxÞ ¼
8<
:

sinðMπðx−xMm ÞÞ
Mπðx−xMm Þ X ¼ R

sinðMπðx−xMm ÞÞ
M sinðπðx−xMm ÞÞ X ¼ ½0; 1Þ

: ð4:1Þ

Their span is dense in VM, and they are mutually ortho-
gonal with normM−1. TheDirichlet kernel is 1-periodic as it
should be. Both have maximal value 1 at x ¼ xMm , are
symmetric about this point, and (slowly) decay away
from it, thus displaying some position space locality. They
are real valued and smooth and have compact momentum
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support k∈ ½−πM; πM� and k ¼ 2πn; n∈ ẐM ¼ f−M−1
2

;
−M−1

2
þ 1;…; M−1

2
g, respectively.

Recall the following facts about the topologies of
position space and momentum space via the Fourier
transform where we denote by M the spatial resolution

of the lattice xMm with either m∈Z or m∈ZM ¼
f0; 1; 2;…;M − 1g where for M odd we set ẐM ¼
f−M−1

2
;…; M−1

2
g [c: compact, nc: noncompact, d: discrete,

nd: nondiscrete (continuous)]:

space − topology momentum − topology Fourier − function

nc; nd∶ R nc; nd∶ R ekðxÞ ¼ eikx;

nc; d∶ 1
M · Z c; nd∶ ½−Mπ;MπÞ eMk ðmÞ ¼ eikx

M
m ;

c; nd∶ ½0; 1Þ nc; d∶ Z enðxÞ ¼ e2πinx;

c; d∶ 1
M · ZM c; d∶ ẐM eMn ðmÞ ¼ e2πinx

M
m :

ð4:2Þ

Accordingly, in the noncompact and compact cases, respec-
tively, the space of Schwartz test functions is a suitable
subspace of L ¼ L2ðR; dxÞ and L ¼ L2ð½0; 1Þ; dxÞ, respec-
tively, which have momentum support in 2πR and 2π · Z,
respectively. Upon discretizing space into cells of width 1=M
themomentum supportR andZ, respectively, gets confined to
the Brillouin zones ½−πM; πMÞ and ẐM, respectively.
The corresponding completeness relations or resolutions

of the identity read

δRðx; x0Þ ¼
Z
R

dk
2π

ekðx − x0Þ;

MδZðm;m0Þ ¼
Z

πM

−πM

dk
2π

eMk ðm −m0Þ;

δ½0;1Þðx; x0Þ ¼
X
n∈Z

enðx − x0Þ;

MδZM
ðm;m0Þ ¼

X
n∈ZM

eMn ðm −m0Þ: ð4:3Þ

While the first and third relations in (4.3) define the δ
distribution on R and [0, 1), respectively, the second and
fourth relations in (4.3) are the restrictions to the lattice of
the regular functions

δR;MðxÞ ¼
Z

πM

−πM

dk
2π

ekðxÞ ¼
sinðπMxÞ

πx
;

δ½0;1Þ;MðxÞ ¼
X
n∈ZM

enðxÞ ¼
sinðπMxÞ
sinðπxÞ ; ð4:4Þ

which we recognize as the Shannon (sinc) and Dirichlet
kernels, respectively. After dividing and dilating them
by M and translating them by m, we obtain precisely
the functions (4.1). These kernels can be considered as
regularizations of the aforementioned δ distributions in the
sense that the momentum integral k∈R or momentum sum
n∈Z has been confined to jkj < πM and jnj < M−1

2
,

respectively. Both are real valued, smooth, strongly peaked

at x ¼ 0 and have compact momentum support. The
Shannon kernel like the Dirichlet kernel is an L2 function
but it is not of rapid decay with respect to position.
The simplest possible action for fermions is the massless,

chiral theory in 2D Minkowski space

S ¼ i
Z
R
dt

Z
X
dxξ̄=∂ξ: ð4:5Þ

Here X ¼ R or X ¼ ½0; 1Þ. The 2D Clifford algebra with
signature ð−1;þ1Þ is generated by γ0 ¼ ϵ ¼ iσ2; γ1 ¼ σ1,
where σ1; σ2; σ3 ¼ ϵσ1 are the Pauli matrices. Then =∂ ¼
γμ∂μ; x0 ¼ t; x1 ¼ x, and ξ̄ ¼ ðξ�ÞTγ0. Due to ð½γ0γμ��ÞT ¼
γ0γμ the action is real valued. Generalizations to higher
dimensions, massive theories, with more species or higher
spin are immediate and just require the corresponding
Clifford algebras.
Then i½ξA��; A ¼ 1; 2 is canonically conjugate to ξA

which results in the nonvanishing CAR

½ξAðxÞ; ðξBÞ�ðyÞ�þ ¼ δABδðx; yÞ; ð4:6Þ
and the Hamiltonian is

H ¼ −i
Z
X
dxf½ξ��Tσ3ξ0gðxÞ ð4:7Þ

with ξ0 ¼ ∂ξ=∂x which is linear in spatial derivatives.
Indeed, the Dirac-Weyl equation =∂ξ ¼ 0 is reproduced
by the Heisenberg equation of (4.7)

iξ̇ ¼ ½H; ξ� ¼ iσ3ξ0 ⇔ ϵξ̇ − ϵσ3ξ
0 ¼ =∂ξ ¼ 0: ð4:8Þ

As (4.7) is indefinite as it stands, we introduce the self-
adjoint projections on L ¼ L2ðX; dxÞ with s ¼ �1,

Qs ¼
1

2

�
1L þ is

∂

ω

�
Q; Q ¼ 1L − 1h1 � � �iL=k1k2L;

ω ¼
ffiffiffiffiffiffiffiffi
−∂2

p
; i∂Qs ¼ sωQs; ð4:9Þ
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where 1 is just the constant function equal to unity, 1L is the
identity operator on the Hilbert spaceL, andω is the positive
square root ofminus the Laplacian. NoteQ ¼ 1L forX ¼ R.
Using the identityω½Qþ −Q−� ¼ i∂ and the definition of the
Pauli matrix, we then rewrite the Hamiltonian as

−H ¼ hξ1; ½Qþ −Q−�ωξ1iL − hξ2; ½Qþ −Q−�ωξ2iL
¼ hQþξ1;ωQþξ1iL − hQ−ξ1;ωQ−ξ1iL
− hQþξ2;ωQþξ2iL þ hQ−ξ2;ωQ−ξ2iL: ð4:10Þ

Thus we declare

A1;þ ≔ ðQþξ1Þ�; A1;− ≔ Q−ξ1;

A2;− ≔ ðQ−ξ2Þ�; A2;þ ≔ Qþξ2 ð4:11Þ

as annihilators and obtain the normal ordered, positive
semidefinite Hamiltonian

∶ H ≔
X

B¼1;2;σ¼�

Z
X
dxA�

B;σωAB;σ; ð4:12Þ

where the AB;σ obey the CAR

½AB;sðxÞ; ½AB0;s0 ðx0Þ���þ ¼ δBB0δss0Qsðx; x0Þ; ð4:13Þ

where Qsðx; x0Þ is the integral kernel ðQsfÞðxÞ ¼R
X dx

0Qsðx; x0Þfðx0Þ. Note that the zero modes of ξB do
not contribute to H so we have to quantize them without

guidance from the form of the Hamiltonian. With
Q⊥ ¼ 1L −Q we define AB;0 ≔ Q⊥ξB as the annihilation
operator which is nonvanishing only for X ¼ ½0; 1Þ.
From this perspective, the problem of the fermion

doublers on the lattice 1
MZ or 1

MZM for X ¼ R and
X ¼ ½0; 1Þ, respectively, is encoded in the way one dis-
cretizes the partial derivative ∂ that appears in the pro-
jections Qs (in Hamiltonian renormalization the time
variable and time derivatives are kept continuous). For
scalar theories, ∂ appears only quadratically in the
Laplacian Δ ¼ −∂2 while for fermions it appears linearly.
This problem is therefore not only present for fermions but
for all theories in which besides the Laplacian also the
partial derivatives themselves are involved in the quantiza-
tion process. One such example is the parametrized field
theory which shares many features with string theory [11].
Alternatively, this problem shows up in the discretization

of the two-point functions of the theory (as the theory is
free, the two-point function determines all higher N-point
functions). To compute them from the current Hamiltonian
setting we use the CAR to compute the Heisenberg time
evolution of the annihilators (from now on normal ordering
is being understood)

AB;σðt; xÞ ¼ e−itHAB;σðxÞeitH ¼ ½eitωAB;σ�ðxÞ; ð4:14Þ

where QσAB;σ ¼ AB;σ was used. Then the nonvanishing
two-point functions before discretization are for the
case ¼ R using the definitions in (4.9)

hΩ; ξBðs; xÞξCðt; yÞ�Ωi ¼ hΩ; ð½Qþ þQ− þQ⊥�ξBÞðs; xÞð½Qþ þQ− þQ⊥�ξC�ðt; yÞ�Ωi
¼ hΩ; fδB;1½A�

1;þ þ A1;− þ A1;0� þ δB;2½A2;þ þ A�
2;− þ A2; 0�gðs; xÞ

× fδC;1½A1;þ þ A�
1;− þ A�

1;0� þ δC;2½A�
2;þ þ A2;− þ A�

2;0�gðt; yÞΩi
¼ hΩ; fδB;1½A1;− þ A1;0� þ δB;2½A2;þ þ A2;0�gðs; xÞfδC;1½A�

1;− þ A�
1;0� þ δC;2½A�

2;þ þ A�
2;0gðt; yÞΩi

¼ eisωx−itωyfδ1;Bδ1;C½Q−ðx; yÞ þQ⊥�ðx; yÞ þ δ2;Bδ2;CQþðx; yÞ þQ⊥�ðx; yÞg

¼ 1

2
eisωx−itωy

�
δBCð1þQ⊥Þ − i½σ3�BC

∂x

ωx

�
δðx; yÞ

¼ δBC
2k1k2 þ

Z
dk

2π2ωðkÞ e
i½ωðkÞðs−tÞ−kðx−yÞ�½ωðkÞ12 − kσ3�BC

¼ δBC
2k1k2 þ

Z
dk

2π2ωðkÞ e
−iK·ðX−YÞ½K0ð1þQ⊥Þ12 − K1σ3�BC

¼ δBC
2k1k2 − i½12ð1þQ⊥Þ∂X0 þ σ3∂X1 �BC

Z
dk

2π2ωðkÞ e
−iK·ðX−YÞ

¼ δBC
2k1k2 þ ið½ϵð1þQ⊥Þ∂X0 þ σ1∂X1 �ϵÞBCΔþðx − yÞ

¼ δBC
2k1k2 þ i½=∂Xϵ�BCΔþðX − YÞ ð4:15Þ
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with K0 ≔ ωðkÞ ¼ jkj; K1 ¼ k and X0¼ s;X1¼x;Y0¼ t;
Y1¼y andK · X ¼ −K0X0 þ K1X1. HereΔþ is theWight-
man two-point function of a free massless Klein-Gordon
field in 2D Minkowski space:

ΔþðX − YÞ ¼
Z

dk
2π2ωðkÞ e

−iK·ðX−YÞ: ð4:16Þ

A similar computation yields (X; Y and B;C and Qþ; Q−
switch and the contribution from AB;0 is missing leading to
−δBC in the final result)

hΩ; ξCðt; yÞ�ξBðs; xÞΩi

¼ −
δBC
2k1k2 þ iϵ½ϵ∂Y0 − σ3∂Y1 �CBΔþðY − XÞ

¼ −
δBC
2k1k2 þ i½ϵ=∂Y �CBΔþðY − XÞ: ð4:17Þ

Using the conjugate spinor ξ̄ ¼ ½ξ��Tϵ we may
rewrite (4.16) and (4.17) as

hΩ; ξðXÞ ⊗ ξ̄ðYÞΩi ¼ ϵ

2k1k2 þ i=∂XΔþðX − YÞ;

hΩ; ξ̄ðYÞ ⊗ ξðXÞΩi ¼ −
ϵ

2k1k2 þ i=∂YΔþðY − XÞ; ð4:18Þ

which gives the time ordered two-point function or Feynman
propagator

DFðX − YÞ ≔ hΩ; T½ξðXÞ ⊗ ξ̄ðYÞ�Ωi
≔ θðX0 − Y0ÞhΩ; ξðXÞ ⊗ ξ̄ðYÞΩi
− θðY0 − X0ÞhΩ; ξ̄ðYÞ ⊗ ξðXÞΩi

¼ =∂XΔFðX − YÞ; ð4:19Þ

where

ΔFðX − YÞ ¼ −i lim
ϵ→0þ

Z
d2K
ð2πÞ2

e−iK·ðX−YÞ

−K · K − iϵ
ð4:20Þ

is the Feynman propagator of the 2Dmassless Klein-Gordon
field. We see that =∂XDFðX − YÞ ¼ iδð2ÞðX − YÞ due to
=∂2 ¼ □, i.e., DF ¼ i=∂−1.
Turning to the discretization, in Hamiltonian renor-

malization one discretizes only x; ∂x and confines only
jK1j < πM, while in the Euclidean approach one discre-
tizes also t; ∂t and confines jK0j < πM. In any case we see
that it is the projections Qs that directly translate into =∂
which is linear in the derivatives. If the propagator is to
keep the property to invert the Dirac-Weyl operator =∂, then
we are forced to write the momentum expression of (4.19),
say in the Hamiltonian approach, as

ϵK0 þ σ1λMðK1Þ
K2

0 − λMðK1Þ2 − iϵ
; ð4:21Þ

where ½∂MeK1
�ðX1Þ ¼ iλMðK1ÞeK1

ðX1Þ; X1 ∈Z=M; jK1j ≤
πM defines the eigenvalues of the discrete derivative and
indices are moved with the Minkowski metric.
The case X ¼ ½0; 1Þ is literally the same, just that we

must sum over k ¼ K1 ¼ 2πn; n∈Z rather than inte-
grating over K1 ∈R with measure dK1=ð2πÞ. Also the
Q⊥ contribution is now nontrivial but cancels in the
Feynman propagator. That is, all expressions before
discretization remain the same except that we must
replace Δþ;ΔF by

ΔþðX − YÞ ¼
X
n∈Z

1

2ωðnÞ e
−iK·ðX−YÞ; ωðnÞ ¼ 2πjnj; K1 ¼ 2πn;

ΔFðX − YÞ ¼ −i
Z

dK0

2π

X
n∈Z

e−iK·ðX−YÞ

−K · K − iϵ
; K1 ¼ 2πn: ð4:22Þ

These can now be discretized as for the case X ¼ R, i.e., by
using (4.21) with ½∂MeK1

�ðX1Þ ¼ iλMðK1ÞeK1
ðX1Þ where

X1 ∈ZM=M; jK1j∈ZM.
Turning to the details of the discretization, in the so-

called “naive” discretization one writes

ð∂MfMÞðmÞ ≔ M
2
½fMðmþ 1Þ − fMðm − 1Þ� ð4:23Þ

for fM ∈LM the Hilbert space of square symmable
sequences on the lattice. Using the Fourier functions
fMðmÞ ¼ eMk ðmÞ ¼ ekðxMm Þ with jkj < πM for X ¼ R
and fMðmÞ ¼ eMn ðmÞ ¼ e2πnðxMm Þ with jnj ≤ M−1

2
and

xMm ¼ m
M with m∈Z or m∈ZM, respectively, we find the

eigenvalues λMðkÞ given by iM sinð kMÞ and iM sinð2πnM Þ,
respectively. These vanish in the allowed domain of k
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and n, respectively, at k ¼ 0; k ¼ �πM and n ¼ 0; n ¼ M
2

if M is even, otherwise only at n ¼ 0 with a correspon-
ding doubler pole in the propagator when K0 ¼ 0. We
see that there are no doublers in the compact case for
lattices with odd numbers of points even with respect to
the naive discretization of the discrete derivative. Still,
even in the compact case and for odd M the eigenvalue
iM sinðπ M−1

M Þ ¼ −iM sinðπ=MÞ for n ¼ M−1
2

approaches
−iπ for large M while most other eigenvalues are large
of orderM, and thus n ¼ �ðM − 1Þ=2 can be considered as
an “almost” doubler mode.
We now show that the spectrum of ∂M is doubler free if

we do not pick the naive discretization but rather the
natural discretization provided by the maps IM and I†M in
terms of which the renormalization flow is defined. This
discretization is defined by

∂M ≔ I†M∂IM ð4:24Þ

for both X ¼ R and X ¼ ½0; 1Þ and is well defined when-
ever the MRA functions χMm are at least C1. Note that with
this definition ∂M is automatically antisymmetric since ∂ is.
In fact, for the Haar flow [16] based on characteristic

functions χ̂Mm of intervals ½m=M; ðmþ 1Þ=MÞ partitioning
X and which is not C1 we formally find

∂MfMðmÞ ¼ M
X
m̃

hχ̂Mm ; ½χ̂Mm̃ �0iLfMðmÞ

¼ −M
X
m̃

h½χ̂Mm �0; χ̂Mm̃ iLfMðmÞ

¼ M
2
½fMðmþ 1Þ − fMðm − 1Þ�; ð4:25Þ

i.e., precisely the naive derivative where we have formally
integrated by parts in between and used that χ̂Mm is of
compact support for X ¼ R and periodic for X ¼ ½0; 1Þ,
respectively. Thus, the Haar flow results in the naive
discretization that yields the doubler troubled spectrum.
Note that the map IM∶ LM → L has a range in VM

and, in fact, I†M∶ L → LM restricts to the inverse as
I†MIM ¼ 1LM; i.e., LM and VM are in bijection. Thus, if,
in fact, ∂ preserves VM, then the spectrum of ∂M will
simply coincide with that of ∂ except that k will be
restricted from R to ½−πM; πM� and n from Z to ẐM.
This is precisely what happens for both the Shannon and
the Dirichlet kernels as we will now confirm.
For the Shannon kernel in the case X ¼ R we compute

ð∂MfMÞðmÞ ¼ M
X
m̃∈Z

fMðm̃ÞhχMm ; ∂χMm̃ iLð∂MfMÞðmÞ

¼ M
X
m̃∈Z

fMðm̃Þ
Z

πM

πM

dk
2π

ðikÞhχMm ; ekiLhek; χMm̃ iL

¼ M
X
m̃∈Z

fMðm̃Þ
Z

πM

πM

dk
2π

ðikÞekðxMm − xMm̃ Þ

¼
X
m̃∈Z

fMðm̃Þ½∂xχMm̃ ðxÞ�x¼xMm

¼
X
m̃∈Z

fMðm̃Þ
�
y cosðMπyÞ − ðMπÞ−1 sinðπMyÞ

y2

�
y¼xMm−xMm̃

; ð4:26Þ

which displays the nonlocal nature of the discrete derivative as all points m̃∈Z contribute. However, Eq. (4.26) vanishes at
m ¼ m̃ and takes the maximal value ∓ M at m − m̃ ¼ �1, which shows that it approximates the naive derivative in the
vicinity of m. On the other hand, for fM ¼ eMk we find the exact eigenfunctions

ð∂MeMk ÞðmÞ ¼ M
Z

πM

πM

dq
2π

ðiqÞeqðxMm Þ
X
m̃∈Z

ek−qðxMm̃Þ ¼ ikeMk ðmÞ ð4:27Þ

with manifestly doubler free spectrum.
For the Dirichlet kernel in the case X ¼ ½0; 1Þ the computations are completely analogous:

ð∂MfMÞðmÞ ¼ M
X

m̃∈ZM

fMðm̃ÞhχMm ; ∂χMm̃ iLð∂MfMÞðmÞ

¼ M
X

m̃∈ZM

fMðm̃Þ
X

jnj≤M−1
2

ð2π inÞhχMm ; e2πniLhe2πn; χMm̃ iL
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¼ M
X

m̃∈ZM

fMðm̃Þ
X

jnj≤M−1
2

ð2π inÞe2πnðxMm − xMm̃ Þ

¼
X

m̃∈ZM

fMðm̃Þ½∂xχMm̃ ðxÞ�x¼xMm

¼
X

m̃∈ZM

fMðm̃Þπ
�
sinðπyÞ cosðMπyÞ −M−1 sinðπMyÞ cosðπyÞ

sin2ðπyÞ
�
y¼xMm−xMm̃

; ð4:28Þ

which displays the nonlocal nature of the discrete derivative as all points m̃∈ZM contribute. However, Eq. (4.28) vanishes
atm ¼ m̃ and takes the maximal value∓ M atm − m̃ ¼ �1 that approximates the naive derivative in the vicinity ofm. On
the other hand, for fM ¼ eMn we find the exact eigenfunctions

ð∂MeMn ÞðmÞ ¼ M
X

m̃∈ZM

eMn Mðm̃Þ
X

jñj≤M−1
2

ð2π iñÞeMñ ðm − m̃Þ ¼ 2π in eMn ðmÞ ð4:29Þ

with manifestly doubler free spectrum.
We now study the Shannon or Dirichlet flow of the

(non)compact theory. We start with some initial discretiza-

tion ∂
ð0Þ
M ;ωð0Þ

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−½∂ð0ÞM �2

q
; Qð0Þ

M;s ¼ 1
2
½1LM

þ is ∂
ð0Þ
M

ωð0Þ
M

�, which
determines the annihilators in analogy to (4.11):

Að0Þ
M;1;þ ≔ ðQð0Þ

M;þξM;1Þ�; Að0Þ
M;1;− ≔ Qð0Þ

M;−ξM;1;

Að0Þ
M;2;− ≔ ðQð0Þ

M;−ξM;2Þ�; Að0Þ
M;2;þ ≔ Qð0Þ

M;þξM;2; ð4:30Þ

the vacuum Ωð0Þ
M , the Fock space Hð0Þ

M , and the initial
Hamiltonian family

Hð0Þ
M ¼

X
m∈Z

X
B;σ

½Að0Þ
M;B;σ��ωð0Þ

M Að0Þ
M;B;σ; ð4:31Þ

and similar for the compact case with the restriction
m∈ZM.

We can encode the flow (3.4) and (3.5) into a single
quantity ∂

ðnÞ
M in terms of which we define analogously

ωðnÞ
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−½∂ðnÞM �2

q
and QðnÞ

M;s ¼ 1
2

h
1LM

þ is ∂
ðnÞ
M

ωðnÞ
M

i
as well as

AðnÞ
M;1;þ ≔ ðQðnÞ

M;þξM;1Þ�; AðnÞ
M;1;− ≔ QðnÞ

M;−ξM;1;

AðnÞ
M;2;− ≔ ðQðnÞ

M;−ξM;2Þ�; AðnÞ
M;2;þ ≔ QðnÞ

M;þξM;2; ð4:32Þ

and the initial Hamiltonian family

HðnÞ
M ¼

X
m∈Z

X
B;σ

½AðnÞ
M;B;σ��ωðnÞ

M AðnÞ
M;B;σ; ð4:33Þ

and again for the compact case we just restrict to m∈ZM.
To see that this is, indeed, possible we note that in the

corresponding Fock spaces it is sufficient to check isometry
on vectors of the form

ΨðnÞ
M0 ðIMM0FM;1;…; IMM0FM;NÞ ≔ AðnÞ

M0 ðIMM0FM;1Þ� � � �AðnÞ
M0 ðIMM0FM;NÞ�ΩðnÞ

M0 ;

AðnÞ
M ðFMÞ ≔

X
B;σ

hFM;B;σ; A
ðnÞ
M;B;σiLM

: ð4:34Þ

These give the inner products

hΨðnÞ
M0 ðIMM0FM;1;…; IMM0FM;NÞ;ΨðnÞ

M0 ðIMM0GM;1;…; IMM0GM;ÑÞiHðnÞ
M0

¼ δN;Ñ detð½hQðnÞ
M0 IMM0FM;k; Q

ðnÞ
M0 IMM0GM;liL4

M0 �Nk;l¼1Þ; ð4:35Þ

where

hQðnÞ
M0 IMM0FM;Q

ðnÞ
M0 IMM0GMiL4

M0 ¼
X
B;σ

hIMM0FM;B;σ; Q
ðnÞ
M0σIMM0GM;B;σiLM0

¼
X
B;σ

hFM;B;σ; ½I†MM0Q
ðnÞ
M0;σIMM0 �GM;B;σiLM

: ð4:36Þ
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We used that, whatever ∂ðnÞM is, the corresponding operators

QðnÞ
M;sQ

ðnÞ
M;s0 ¼ δs;s0Q

ðnÞ
M;s are orthogonal projections and that

the B ¼ 1; 2 species anticommute. Comparing with

hΨðnþ1Þ
M ðFM;1;…; FM;NÞ;Ψðnþ1Þ

M ðGM;1;…; GM;ÑÞiHðnþ1Þ
M

;

ð4:37Þ

we obtain isometry iff

Qðnþ1Þ
M;σ ¼ I†MM0Q

ðnÞ
M0;σIMM0 : ð4:38Þ

Similarly, since

½HðnÞ
M0 ½AðnÞ

M0 ðIMM0FMÞ��� ¼ −½AðnÞ
M0 ðωðnÞ

M0 Q
ðnÞ
M0 IMM0FMÞ��;

ð4:39Þ

we get a match between the matrix elements of Hamil-
tonians iff

ωðnþ1Þ
M ¼ I†MM0ω

ðnÞ
M0 IMM0 ; ð4:40Þ

where we used that by construction ½ωðnÞ
M ;QðnÞ

M;s� ¼ 0.
We now ask under what conditions on the coarse-

graining kernel IM both (4.38) and (4.40) are implied by

∂
ðnþ1Þ
M ≔ I†MM0∂

ðnÞ
M0 IMM0 : ð4:41Þ

Theorem 1. Suppose that ∂ð0ÞM ≔ I†M∂IM is the natural
discrete derivative with respect to a coarse-graining kernel
IM∶ LM → L and such that ½∂; IMI†M� ¼ 0. Then (4.41)
implies both (4.38) and (4.40).
Proof. By (4.41) we have

∂
ð1Þ
M ¼ ½IMM0 �†∂ð0ÞM0 IMM0 ¼ I†M∂IM ¼ ∂

ð0Þ
M ð4:42Þ

since by construction IM ¼ IM0IMM0 . Thus by iteration

∂
ðnÞ
M ¼ ∂

ð0Þ
M ¼ ∂M is already fixed pointed, no matter what

the coarse-graining maps IM are as long as they descend
from an MRA.
It follows that

∂
N
M ¼ I†Mð∂½IMI†M�ÞN−1

∂IM: ð4:43Þ

While I†MIM ¼ 1LM
by isometry, pM ≔ IMI

†
M is a projec-

tion in L (onto the subspace VM of the MRA). Thus, if
½∂; pM� ¼ 0, we find ∂NM ¼ I†M∂

NIM. The claim then follows
from the spectral theorem (functional calculus). ▪
To see that both the Shannon and Dirichlet kernels

satisfy the assumption of the theorem, it suffices to remark
that they only depend on the difference x − y; i.e., they are
translation invariant. Explicitly, since the χMm with m∈Z
andm∈ZM, respectively, are an ONB of VM just as are the
ek; jkj ≤ πM and e2πn; jnj ≤ M−1

2
, respectively,

ðpMfÞðxÞ ¼
X
m

χMm ðxÞh χMm ; fi ¼
8<
:

R
X dy

hR
πM
−πM

dk
2π ekðx − yÞ

i
fðyÞ X ¼ R

R
X dy

hP
jnj≤M−1

2
e2πnðx − yÞ

i
fðyÞ X ¼ ½0; 1Þ

; ð4:44Þ

and integration by parts does not lead to boundary terms due to the support properties of f or by periodicity, respectively.
It follows that by using the natural discretization the free Weyl fermion theory is already at its fixed point and the fixed

point family member at resolutionM coincides with the continuum theory blocked from the continuum to resolutionM; that
is, by simply dropping the superscript ðnÞ we have

JMΩM ¼ Ω; JMAMðFM;1Þ� � � �AMðFM;NÞ�ΩM;¼ AðIMFM;1Þ� � � �AðIMFM;NÞ�Ω; HM ¼ J†MHJM: ð4:45Þ

This would not hold using the Haar discretization, and
more complicated theories require further analysis also in
the presence of the Dirichlet-Shannon kernel.
Remark. Thus, the translation invariance of the Shannon

and Dirichlet kernels, respectively, is, besides smoothness,
another important difference with the Haar kernel [26]

X
m

χMm ðxÞχMm ðyÞ ¼
X
m

χ½mM;mþ1
M ÞðxÞχ½mM;mþ1

M ÞðyÞ; ð4:46Þ

which is not translation invariant. Therefore in this case the
flows of ωM or ω−1

M are not simply related by ωM ¼ I†MωIM

and ω−1
M ¼ I†Mω

−1IM, and thus one must define ωM as the
inverse of the covariance ω−1

M . As M → ∞ this difference
disappears, but at finiteM it is present and makes the study
of the flow with respect to a nontranslation invariant kernel
much more and unnecessarily involved.

V. CONCLUSION AND OUTLOOK

In this paper we have extended the definition of
Hamiltonian renormalization in the sense of [9], which
is motivated by quantum gravity from the bosonic to the
fermionic case. The definition given in [9], in fact, covers

HAMILTONIAN RENORMALIZATION. VII. FREE FERMIONS AND … PHYS. REV. D 108, 125007 (2023)

125007-11



both cases but the practical implementation for bosons was
in terms of measures [18] that cannot be used for fermions.
We have tested the scheme for massless 2D chiral fermion
theories, the extension to the massive and higher dimen-
sional case being immediate, just requiring the higher
dimensional Clifford algebra. In particular, we showed
that using the smooth local Shannon-Dirichlet kernel for
renormalization and discretization results in simple flow, an

easy computable fixed point theory that coincides with the
known continuum theory and has manifestly doubler free
spectrum even at finite resolution due to the inherent
nonlocality with respect to the chosen finite resolution
microscopes based on those kernels.
An immediate extension of the current paper that

suggests itself is to apply the current framework to the
known solvable 2D interacting fermion theories [27].
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