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Hamiltonian renormalization, as defined within this series of works, was derived from covariant Wilson
renormalization via Osterwalder-Schrader reconstruction. As such it directly applies to quantum field
theory (QFT) with a true (physical) Hamiltonian bounded from below. The validity of the scheme was
positively tested for free QFT in any dimension with or without Abelian gauge symmetries of Yang-Mills
type. The aim of this Hamiltonian renormalization scheme is to remove quantization ambiguities of
Hamiltonians in interacting QFT that remain even after UVand IR regulators are removed as it happens in
highly nonlinear QFT such as quantum gravity. Also, while not derived for that case, the renormalization
flow formulas can without change also be applied to QFT without a single true Hamiltonian but rather an
infinite number of Hamiltonian constraints. In that case a number of interesting questions arise: (1) Does
the flow reach the correct fixed point also for an infinite number of “Hamiltonians” simultaneously? (2) As
the constraints are labeled by test functions, which in the presence of a regulator are typically regularized
(discretized and of compact support), how do those test functions react to the flow? (3) Does the quantum
constraint algebra, which in the presence of a regulator is expected to be anomalous, close at the fixed
point? These questions should ultimately be addressed in quantum gravity. Before one considers this
interacting, constrained QFT, it is well-motivated to consider a free, constrained QFTwhere the fixed point
is explicitly known. In this paper we therefore address the case of parametrized field theory for which the
quantum constraint algebra coincides simultaneously with the hypersurface deformation algebra of
quantum gravity (or any other generally covariant theory) and the Virasoro algebra of free, closed, bosonic
string theory or other conformal field theories to which the results of this paper apply verbatim. The central
result of our investigation is that the finite resolution (discretized) constraint algebras typically do not close,
that there is not necessarily anything wrong with that, and that anomaly freeness of the continuum algebra
is encoded in the convergence behavior of the renormalization flow.
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I. INTRODUCTION

Interacting quantum field theory (QFT) typically have to
be constructed: One first defines a regulated theory (with
both UVand IR regulators present) and then tries to remove
the regulator, thereby renormalizing the bare parameters
(i.e., redefining them in terms of measured parameters and
regulators). That procedure of constructive QFT, even if
successful in the sense that the unregulated, nonperturba-
tive theory is well-defined, may yet be ambiguous; i.e., it
may keep a memory of which regularization procedure was
applied. We will refer to such ambiguities as quantization
ambiguities. One expects this problem the more likely to
occur the more nonlinear the theory is. An extreme case is
quantum gravity whose Einstein-Hilbert action depends
nonpolynomially on the metric field.
Such ambiguities are not severe if they can be encoded

by a finite number of (so-called relevant) parameters. They

could be fixed by a finite number of experiments and thus
lead to a predictive theory. However, if that parameter space
is infinite dimensional, the theory is not predictive. To
make it predictive, the number of free parameters must be
downsized to a finite dimensional manifold. To achieve
this, one imposes a restriction on the family of regulated
theories: they must qualify, at the finite regulator, as the
coarse-grained versions of a continuum theory at a reso-
lution defined by that regulator. For instance, a Euclidean
QFT may be defined by a family of measures μr where
r denotes the regulator. The measure μr knows how
to integrate functionals of the Euclidean quantum field
smeared with test functions that are restricted up to
resolution r. Thus, in order to produce unambiguous
results, for any finer resolution r0 < r we must have
½μr0 �r ¼ μr; i.e., since the quantum field tested at resolution
r can be written in terms of the quantum field at resolution
r0, we can use μr0 instead of μr to integrate functions
restricted to resolution r.
This so-called cylindrical consistency is basically

the idea of Wilson renormalization [1]. A cylindrically
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consistent family of measures μr in turn defines a con-
tinuum measure μ that can integrate the quantum field at
any resolution under rather mild assumptions [2]. From a
practical viewpoint, the cylindrical family is then sufficient
because in reality one never considers physical processes at
infinite resolution, and thus the explicit construction of μ is
not needed. Now in constructive QFT one typically starts

with an initial family fμð0Þr gr∈R where R is the regulator
manifold. It typically comes with an in principle infinite
number of parameters p∈P that enter via the discretization
freedom of the classical theory (action) that one starts
from (e.g., next neighbor, next to next neighbor, … , terms

in the Laplacian). Even if the limit μð0Þ ≔ limr→0 μ
ð0Þ
r

exists as a measure, it will typically retain a nontrivial
dependence on all “directions” of the parameter mani-
fold P. Therefore, it is natural to improve the initial family

and define a sequence of families n∈N0↦fμðnÞr gr∈R by

μðnþ1Þ
r ≔ ½μðnÞκðrÞ�r where κðrÞ < r maps to a finer resolution.

This defines a flow of measure families which may have
a fixed point fμ�rgr∈R which by construction is consistent
at least with respect to the coarse grainings κðrÞ → r.
Experience shows that this usually also makes the fixed
point family consistent with respect to all pairs r0 < r. In
the course of this process, it may happen that all but finite
(relevant) directions in P have been fixed to a fixed value.
In that case we say that the QFT has been nonperturbatively
renormalized to a predictive QFT.
These ideas were first formulated in quantum statitistical

field theory (i.e., Euclidean field theory [3]) using
path integral methods. Using Osterwalder-Schrader (OS)
reconstruction one can also translate them into the
Hamiltonian language [4] (see also [5] for closely related
earlier Hamiltonian renormalization schemes and references
therein). The validity of [4] has been tested in free field
theorieswithout [6] andwith [7]Abelian gauge symmetry of
the Yang-Mills type. The motivation for [4] is actually its
application in Hamiltonian quantum gravity, specifically
in its loop quantum gravity (LQG) incarnation [8]. Since
the classical Einstein-Hilbert action is nonpolynomial in
the metric field, the quantization ambiguity problem is
expected to be especially severe in this case. Indeed,
quantum gravity is not perturbatively renormalizable, which
motivates the nonperturbative path integral renormalization
program known as asymptotic safety [9]. In the Hamiltonian
setting, while it is possible to rigorously define the
Hamiltonian constraint operators [10], they suffer from
quantization ambiguities so that a Hamiltonian renormali-
zation thereof is well-motivated [11,12]. See also [11] for a
comparison with other renomalization schemes that are
applied to general relativity.
At first it may look strange why an OS motivated

Hamiltonian renormalization scheme should apply at
all to quantum gravity: OS reconstruction delivers a
Hamiltonian operator H bounded from below on a

Hilbert space H and a ground state Ω∈H. However,
canonical quantum gravity does not come with a
Hamiltonian but rather an infinite number of Hamiltonian
constraints CðNÞ on a Hilbert space H0 where N are test
functions (called lapse functions). For no choice of N are
these bounded from below, and rather than the spectrum of
H on H one is interested in the joint kernel of the CðNÞ on
H0 defining the physical Hilbert space H which does not
coincide with H and is typically not a subspace thereof
(typically it is a space of distributions on a dense subspace
of H0). However, on the one hand, it is possible to cast
quantum gravity into the framework of an ordinary quan-
tum Hamiltonian system by using Hamiltonian constraint
gauge fixings [13]. In this reduced phase space approach
one then retains a physical Hamiltonian directly on the
physical Hilbert space H.
On the other hand, it turns out that the Hamiltonian

renormalization flow, while derived from the OS renorm-
alization scheme, can formally be applied also to more than
one operator and in particular also those that are not
bounded from below, certainly but not necessarily when
they share a common ground state Ω. This observation
allows the attractive perspective to monitor the fate of the
commutator algebra of the CðNÞ during the renormaliza-
tion process that is not possible in the reduced phase
approach where the CðNÞ are solved classically. Classically
we have the closed hypersurface deformation algebra [14]
fCðMÞ; CðNÞg ¼ CðfðM;NÞÞ where fðM;NÞ are new
test functions which in more than two spacetime dimen-
sions or with density weight different from two also depend
on the metric. This fact makes it especially difficult to
turn this into an anomaly-free constraint operator commu-
tator ½CðMÞ; CðNÞ� ¼ iℏ “CðfðM;NÞÞ” because of the
ordering problem involved in CðfðM;NÞÞ [15]. Indeed,
the development of [10] can be interpreted as saying that
½CðMÞ; CðNÞ� ¼ iℏCðf̃ðM;NÞÞ closes with the correct
ordering [i.e., the kernel of the CðfðM;NÞÞ is contained
in that of the CðNÞ] but with the wrong “structure
functions,” that is, the operators f̃ðM;NÞ do not qualify
as the quantization of fðM;NÞ. To improve on this state of
affairs, one may modify the quantization of the CðNÞ
without resorting to renormalization methods, an ambitious
very interesting program that is now in motion [16] and to
which the developments of the current paper may be
viewed as complementary; see especially the parametrized
field theory application of that program [17] (and also [18]
where qualitatively similar results were obtained without
changing the notion of convergence of regulated operators
as defined in [10]).
More in detail, the Hamiltonian renormalization flow

works with a family of triples ðHr; Hr;ΩrÞ where Hr is a
Hilbert space, Hr is a self-adjoint operator onHr (bounded
from below if coming from an OS measure), and Ωr is a
ground state of Hr, i.e., HrΩr ¼ 0. The regulator labels r
belong to partially ordered and directed set R. Given
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isometric embeddings Jrr0∶ Hr → Hr0 ; r < r0 to be con-
structed subject to the consistency condition Jr0r00Jrr0 ¼
Jrr00 ; r < r0 < r00 and that ensure Jrr0Ωr ¼ Ωr0 , one defines
the inductive limit Hilbert space H by a standard
construction [19]. Moreover, at the fixed point, the Hr
form a consistently defined family of quadratic forms
Hr ¼ J†rr0Hr0Jrr0 ; r < r0 defining a continuum form H.
That form may or may not define a self-adjoint operator
onH and in particular is in general not to be confused with
the inductive limit of the Hr which is not granted to exist.
In extending this framework to more than one (in field

theory, even an infinite number of) operators, we face
several new questions:
(1) We start with an initial familyCð0Þ

r ðNÞ of operators on
an initial family of Hilbert spacesHð0Þ

r , one for each
resolution scale r and one for each continuum
smearing functionN. The origin of r typically comes
from a discretization of the continuum field ϕ and
conjugate momentum π in terms of coarse-grained
variables ϕr; πr and substituting them for ϕ; π in the
expression for CðNÞ. Does this automatically induce

a discretization Nð0Þ
r of N as well? If not, should one

supply one by hand or leaveN in its continuum form?
(2) Is it possible or necessary to find a common zero

eigenvector Ωð0Þ
r ∈Hð0Þ

r of the Cð0Þ
r ðNÞ or Cð0Þ

r ðNð0Þ
r Þ

independent of N or Nð0Þ
r ? This is far from trivial:

while the classical continuum constraints form a
closed Poisson algebra of real functions, there is no
reason to take it for granted that the algebra of the

discretizedCð0Þ
r ðNÞ orCð0Þ

r ðNð0Þ
r Þ closes under taking

commutators. In fact, this is most likely not the case
because typically the classical constraint algebra
rests on the validity of the Leibniz rule for partial
derivatives. However, discretized derivatives do not
obey the Leibniz rule [20]. Thus, not only can these
constraints not be simultaneously diagonalized, it
may even be that their joint kernel just consists
of the zero vector. In that case, we have to assume

that there exists at least a cyclic vector Ωð0Þ
r for the

algebra of operators under consideration in the
common dense domain of all constraints.

(3) Given that Ωð0Þ
r can be found, one can proceed as in

the case of just one Hamiltonian operator and
construct a sequence of families of Hilbert spaces

HðnÞ
r and isometric injections JðnÞrr0 ∶ Hðnþ1Þ

r → HðnÞ
r0

for r0 < r such that JðnÞrr0 Ω
ðnþ1Þ
r ¼ ΩðnÞ

r0 . The isometry
requirement translates into flow equations for

the Hilbert space measures νðnÞr underlying HðnÞ
r ¼

L2ðQr; dν
ðnÞ
r Þ where Qr is a flow invariant

model configuration space. Assuming that a fixed
point Jrr0 of this flow of isometric injections can be
found (equivalently, a cylindrically consistent mea-
sure family νr), one can construct a continuum
Hilbert space H as the inductive limit of the
Hr ¼ L2ðQr; dνrÞ. In tandem, one constructs a

flow of families’ quadratic forms Cðnþ1Þ
r ðNÞ ≔

½JðnÞrr0 �†CðnÞ
r0 ðNÞJðnÞrr0 , one for each N. Can one arrange

that all of them flow into a fixed point whatever
choice of N is made? Or should one rather also let
the discretized smearing functions flow according

to Cðnþ1Þ
r ðNðnþ1Þ

r Þ ≔ ½JðnÞrr0 �†CðnÞ
r0 ðNðnÞr0 ÞJðnÞrr0 ?

(4) Suppose that a simultaneous fixed point family
CrðNÞ or CrðNrÞ can be found. Then by construc-
tion CrðNÞ ¼ J†rCðNÞJr or CrðNrÞ ¼ J†rCðNÞJr
where Jr∶ Hr → H is the isometric embedding
granted to exist by the inductive limit construction.
Is it true that CðNÞ is no longer plagued by an
infinite number of quantization ambiguities? Is it
true that the algebra of commutators of CðNÞ is
nonanomalous? Note that it is not clear that the
commutators can even be computed becauseCðNÞ is
just a quadratic form.

(5) Assuming that these questions can be answered in
the affirmative, how does one recognize anomaly
freeness at finite resolution? Note that theCrðNÞwill
most certainly not close under forming commutators
even if the CðNÞ do because [11]

½CrðMÞ; CrðNÞ� ¼ J†r ½CðMÞPrCðNÞ − CðNÞPrCðMÞ�Jr; ð1:1Þ

where Pr ≔ JrJ
†
r is a projection in H. It is therefore generically not expected that the finite resolution projections of the

constraints form a closed algebra. However, given closure in the continuum, we may rewrite (1.1) as

½CrðMÞ; CrðNÞ� ¼ iℏCrðfðM;NÞÞ − J†r ½CðMÞð1H − PrÞCðNÞ − CðNÞð1H − PrÞCðMÞ�Jr; ð1:2Þ

and the anomalous term naively vanishes as r is removed and Pr becomes 1H. This, when supplied by a suitable operator
topology of convergence, may serve as a practical guide toward proving anomaly freeness even if one cannot determine the
continuum operator CðNÞ in closed form.
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It would be very interesting to find necessary and
sufficient conditions under which the above questions
can be answered in the affirmative. In this paper we confine
ourselves to the much easier task to illustrate and work out
the catalog of questions and answers for the case of
parametrized massless Klein-Gordon field theory in 1þ 1
spacetime dimensions.
The architecture of this paper is as follows:
In Sec. II we briefly review (1þ 1)-dimensional para-

metrised field theory (PFT) following the notation of [18].
We treat both the classical and the quantum theories.
In Sec. III we specialize the general framework of [4,11]

to PFT. We choose as the regulator space a nested system of
square lattices. Here we learn the first important lesson
from the present work: The constraint operators are ill-
defined on the dense domain of finite resolution subspaces
generated by the discretized Weyl algebra unless the test
functions that enter that Weyl algebra and that define the
renormalization flow display at least a minimal amount of
smoothness. This issue did not arise in the works [6]
because there the renormalization could be phrased in terms
of the covariance of the Gaussian measure which decays
sufficiently fast at infinity in momentum space even when
smeared against the discontinuous test functions used.
However, in PFT we also need inverse powers of that
covariance. This observation triggered the work [21] where
we generalize [11] in a natural way to a generalized
multiresolution analysis (MRA) based renormalization
flows of which there are even smooth candidates, thus
removing the aforementioned obstacle. In fact, Ref. [6]
turns out to be a special case of [21] as [6] is based on the
so-called Haar MRA. On the other hand, as the conver-
gence to the continuum via sequences of discontinuous or
smooth functions should not affect the continuum fixed
point theory, we also offer an equivalent solution to the just
mentioned smoothness problem within the Haar MRA class
based on zeta function regularization which is a common
tool in conformal field theories (CFT) such as PFT.
In Sec. IV we show that there exists a well-motivated

discretization of the PFT constraints. Clearly, because of
the central term in the Virasoro algebra there does not exist
a single vector in the joint point kernel of all constraints,
not even in the continuum. However, there does exist a
preferred cyclic vector in the common dense domain of
all constraints which serves as a substitute, both in the
continuum and at finite resolution. We can then proceed in
a similar manner to Refs. [6,7] and compute the flow and
fixed point of the corresponding Hilbert space measures.
In Sec. Vwe compute the flow of the constraint operators.

We show that the first option of leaving the smearing
functions N untouched (not discretized by hand) does not
induce a canonical discretization of the smearing functions
of the constraints. On the other hand, using the coarse-
graining map that is used to compute the flow of measures,
vacua, and constraints to discretize their smearing functions

by hand does lead to a cylindrically consistent system (under
change of resolution) of constraints.
In Secs. VI and VII we compute the algebra of

constraints at finite resolution and illustrate the behavior
of (1.1) and (1.2). It is at this point that we learn the second
most important lesson from the present work when trying to
show that the discrete algebra converges to the continuum
algebra in the weak operator topology:

(i) When working with nondiscretized constraint
smearing functions, there is just one correction to
the continuum algebra at the finite resolution in-
dicated in (1.1) and (1.2). However, when addition-
ally discretizing the constraint smearing function by
hand, an additional correction arises.

(ii) Convergence to zero of the first correction requires a
minimal amount of smoothness of the test functions
of the Weyl algebra for reasons similar to those
mentioned before concerning the domain of defi-
nition of the constraints.

(iii) Convergence to zero of the second correction
requires sufficient smoothness of the discretized
smearing function N of the constraints, which is,
of course, not surprising because the Virasoro
algebra depends on third order (Schwartzian) deriv-
atives of those smearing functions.

We establish convergence using for instance the Dirichlet
flow of [21] rather than the Haar flow of [6].
In Sec. VIII we summarize and conclude our findings for

this model which presents the next logical step in the
research program started in [4,6,7,11].
The most important lessons learned from the present

work are as follows:
(A) Finite resolution constraints typically do not close.
(B) This is no problem at all; in fact, it would be

physically wrong: It just displays the mathematical
fact that the constraints typically are not block
diagonal with respect to different resolution Hilbert
subspaces. If theywould be, theywould “know about
the dynamics”; however, the finite resolution projec-
tions we use are entirely kinematical. The failure to
close is no anomaly but a finite resolution artifact.

(C) Whether the continuum algebra closes, i.e., is free of
anomalies, can be checked using finite resolution
analysis: The finite resolution artifact should con-
verge to zero. This is of practical importance because
in more complicated theories one will hopefully be
able to construct the theory at finite resolution but
perhaps computing the infinite resolution (con-
tinuum) theory may be too hard but also unnecessary
as measurements always have finite resolution.

II. BRIEF REVIEW OF PFT

This section mainly serves to introduce our notation and
follows [18]. See [18] for more information and references
therein. See also [22] for more details on the quantization of
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PFT using classically equivalent constraints for which the
quantum anomaly is formally a coboundary so that it can be
(formally—i.e., modulo showing the existence of corre-
sponding Hilbert space representations) absorbed into a
noncentral quantum correction of the constraints. See [23]
for renormalization of closely related (fermionic) CFTs.

A. Classical theory

The spacetime is the infinite cylinder ZR ¼ R × CR
where CR is the circle of radius R with Minkowski metric
η ¼ diagð−1; 1Þ and Cartesian coordinates T ≔ X0 ∈R;
X ≔ X1 ∈ ½0; 2πRÞ. We introduce another cylinder Z of
unit radius Z ¼ R × S1 with coordinates ðx0¼ t;x1¼xÞ
and consider the diffeomorphism φ∶Z → ZR; ðt; xÞ ↦
Tðt; xÞ; Xðt; xÞ upon which T, X become fields on Z.
Note that T is periodic Tðt; xþ 1Þ ¼ Tðt; xÞ while X is
an angular variable Xðt; xþ 1Þ ¼ Xðt; xÞ þ 2πR.
The action of the massless Klein-Gordon field ϕ on ZR,

S ¼ −
1

2

Z
ZR

d2XηABϕ;Aϕ;B; ð2:1Þ

is pulled back by the above diffeomorphism and yields via
ϕ ¼ φ�Φ the PFT action

S ¼ −
1

2

Z
Z
d2xj detðgÞj1=2gαβΦ;αΦ;β; g ¼ ϕ�η; ð2:2Þ

which by construction is invariant under reparametrizations
(diffeomorphisms) of Z. It is thus an example of a generally
covariant field theory, and thus its canonical formulation in
terms of Hamiltonian C and spatial diffeomorphism con-
straints D must yield a representation of the abstract
hypersurface deformation algebra of the one parameter
family of hypersurfaces t ↦ Σt ¼ φðt; ½0; 1ÞÞ discovered
in [14]. Using standard methods one finds

H¼PX0 þYT 0 þ1

2
½Π2þðΦ0Þ2�; D¼PT 0 þYX0 þΠΦ0;

ð2:3Þ

where ˙ð:Þ¼∂tð:Þ;ð:Þ0 ¼∂xð:Þ, and ðP; Y;ΠÞ are the momenta
conjugate to ðT; X;ΦÞ, respectively; i.e., the nontrivial
equal t Poisson brackets are

fPðuÞ; TðvÞg ¼ fYðuÞ; XðvÞg ¼ fΠðuÞ;ΦðvÞg ¼ δðu; vÞ
ð2:4Þ

with the δ distribution on S1

δðu; vÞ ¼
X
n∈Z

ei2πðu−vÞn: ð2:5Þ

One quickly verifies the hypersurface deformation algebra
h relations

fDðfÞ;DðgÞg ¼Dð½f; g�Þ; fDðfÞ;HðgÞg ¼Hð½f; g�Þ;
fHðfÞ;HðgÞg ¼Dð½f; g�Þ; ½f; g�≔ f0g− fg0; ð2:6Þ

where f and g are periodic, real valued smearing functions
on S1 and, e.g., DðfÞ ¼ R

S1 dxfD. Geometrically, C and D
are scalar densities of weight two, and f and g are scalar
densities of weight minus one, which is why ½f; g� is
independent of the spatial metric q ¼ gxx, an effect that can
happen only in one spatial dimension.
We note that the constraints depend only on the

derivatives of X, T, Φ and thus do not contain information
about their respective zero modes. We denote them by Φ0,
X0, T0. Also, since X is not periodic in contrast to Y, P, Π,
T, Φ, the field X0 has a phase space independent zero mode
given by 2πR. We thus write

XðxÞ ¼ 2πRxþ X̃ðxÞ; ð2:7Þ

where X̃ has the same zero mode as X and is still conjugate
to P. We can thus write the constraints as

D ¼ 2πRY þ D̃; H ¼ 2πRPþ H̃; ð2:8Þ

where D̃ and H̃ differ fromD andH upon replacing X by X̃.
The zero modes of Y, P, Π can be extracted as

Y0 ¼ Q⊥ · Y ≔
Z

1

0

dxYðxÞ; Q ≔ 1L −Q⊥; ð2:9Þ

and similar for P0, Π0. Note Q is an orthogonal projection
on L ≔ L2ð½0; 1Þ; dxÞ extracting the nonzero modes of a
function.
It is convenient to introduce the field combinations

X� ≔ X̃ � T; P� ≔
1

2
ðY � PÞ; A� ≔ Pþ � X0þ;

B� ≔ P− � X0
−; C� ≔ Π�Φ0 ð2:10Þ

in terms of which we can write the constraints as

D� ≔
1

2
ðD̃� H̃Þ; D̃þ ¼ 1

4
½ðAþÞ2 − ðA−Þ2 þ ðCþÞ2�;

D̃− ¼ 1

4
½ðBþÞ2 − ðB−Þ2 − ðC−Þ2�: ð2:11Þ

One checks

fA�ðuÞ; A�ðvÞg ¼ �2∂vδðu; vÞfA�ðuÞ; A∓ðvÞg ¼ 0

ð2:12Þ

and similar for B andC, all other brackets vanishing, so that

fD�ðfÞ; D�ðgÞg ¼ D�ð½f; g�Þ; fD�ðfÞ; D∓ðgÞg ¼ 0:

ð2:13Þ
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The original variables can be recovered from A�; B�; C� except for the zero modes of the configuration variables

Π¼1

2
½CþþC−�; Y¼PþþP−¼

1

2
½AþþA−þBþþB−�; P¼Pþ−P−¼

1

2
½AþþA−−Bþ−B−�;

Φ0 ¼1

2
½Cþ−C−�; X̃0 ¼X0þþX0

−¼
1

2
½Aþ−A−þBþ−B−�; T 0 ¼X0þ−X0

−¼
1

2
½Aþ−A−−BþþB−�; ð2:14Þ

so that the zero modes of Y, P, Π but not those of X̃; T;Φ
are available from A�; B�; C�. For the original constraints
we find

D̃� ¼ 1

2
½D�H� ¼ D� þ 2πRP� ð2:15Þ

with Pþ ¼ 1
2
½Aþ þ A−� and P− ¼ 1

2
½Bþ þ B−�. Therefore,

also

fD̃�ðfÞ; D̃�ðgÞg ¼ D̃�ð½f; g�Þ; fD̃�ðfÞ; D̃∓ðgÞg ¼ 0:

ð2:16Þ

In what follows we will only consider the a lgebra of the
D�ðfÞ. The algebra of the D̃� can be treated by identical
methods.

B. Quantum theory

The classical system consists of three independent
scalar fields X, T, Φ, which are coupled via the constraints
that are only quadratic in the fields and their momenta. We
thus use a Fock representation. In most approaches to PFT
and also the closed bosonic string [24] one constructs a
Fock space using the mode functions enðxÞ ≔ expði2πnxÞ
which form an orthonormal basis of the “one particle
Hilbert space” L ¼ L2ð½0; 1Þ; dxÞ and defines A�ðnÞ ≔
A�ðenÞ ¼

R
dxenðxÞ�A�ðxÞ, etc., from which one finds

A�ðnÞ� ¼ A�ð−nÞ,

fA�ðn1Þ; A�ðn2Þg ¼ �2ðin2Þδn1þn2;0; ð2:17Þ

or in terms of commutators

½A�ðn1Þ; A�ðn2Þ� ¼ �2n1δn1þn2;0: ð2:18Þ

This allows one to interpret AþðnÞ as an annihilation
operator and AþðnÞ� as a creation operator for n > 0,
A−ðnÞ as an annihilation operator and A−ðnÞ� as a creation
operator for n < 0, while Aþð0Þ ¼ A−ð0Þ ¼ ðPþÞ0 (zero
mode). Similar remarks hold for B� and C� where
Bþð0Þ ¼ B−ð0Þ ¼ ðP−Þ0 and Cþð0Þ ¼ C−ð0Þ ¼ ðΠÞ0.
This split with respect to the sign of nmakes the discussion
somewhat cumbersome as it requires one to introduce six
different Fock spaces and a separate discussion of the zero
mode sector.

Let us therefore introduce the quantities

A ≔
1ffiffiffi
2

p ½ω1=2QXþ − iω−1=2QPþ�;

B ≔
1ffiffiffi
2

p ½ω1=2QX− − iω−1=2QP−�;

C ≔
1ffiffiffi
2

p ½ω1=2QΦ − iω−1=2QΠ�; ð2:19Þ

where

ω2ð:Þ ¼ −ð:Þ00 ≕ − Δ ð2:20Þ

is minus the Laplacian on S1 and ω its positive square root.
The quantities (2.19) are the standard annihilation operators
of three massless Klein-Gordon fields where we have been
careful to remove the zero mode on which the Laplacian is
not invertible (if there would be a mass term, we would
have ω2 ¼ m2 − Δ and in this case a separate discussion of
the zero mode is not necessary).
For the zero modes we set

A0 ≔
1ffiffiffi
2

p ½ω1=2
0 Q⊥Xþ − iω−1=2

0 Q⊥Pþ�;

B0 ≔
1ffiffiffi
2

p ½ω1=2
0 Q⊥X− − iω−1=2

0 Q⊥P−�;

C0 ≔
1ffiffiffi
2

p ½ω1=2
0 Q⊥Φ − iω−1=2

0 Q⊥Π�; ð2:21Þ

where ω0 > 0 is an arbitrary parameter of dimension of
inverse length. It is therefore natural to set it equal to 1=R
but we will keep it unfixed for the moment.
For any operator valued distribution O and any smearing

function f we set

hf;Oi ≔
Z

dxf�ðxÞOðxÞ≕Oðf�Þ: ð2:22Þ

Then, by promoting the Poisson brackets to commutators

½hf;A0i; hg;A0i�� ¼ hf;Q⊥gi; ½hf;Ai; hg;Ai�� ¼ hf;Qgi;
ð2:23Þ

and similar for the B and C sectors, all other commutators
vanish. Here � is the respective complex conjugate of (2.19)
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and (2.20) extended to an involution on linear combinations
of products.
The relation among these annihilators is as follows:

A� ¼ Pþ � X0þ ¼ Q⊥Pþ þQðPþ � X0þÞ

¼ i

ffiffiffiffiffiffi
ω0

2

r
½A0 − A�

0� þ i

ffiffiffiffi
ω

2

r
½A − A�� �

ffiffiffiffiffiffi
1

2ω

r
½Aþ A��0

¼ i

ffiffiffiffiffiffi
ω0

2

r
½A0 − A�

0� þ i
ffiffiffiffiffiffi
2ω

p
f½Q�A� − ½Q�A��g; ð2:24Þ

where

Q� ¼ 1

2

�
1L ∓ i

∂

ω

�
Q ð2:25Þ

projects onto the positive/negative Fourier modes: Q�en ¼
en if n > = < 0 and zero otherwise. Note that Q� is an
orthogonal (i.e., self-adjoint) projection on the 1-particle
Hilbert space Lwhich commutes withQ; ∂;ω which can be
seen by using the common eigenbasis en. As ½Q�A�� ¼
Q∓A� (Fock space, not L space adjoint), it follows that

i
ffiffiffiffiffiffi
2ω

p
A ¼ QþAþ þQ−A−; ð2:26Þ

which demonstrates that the Fock space defined by declar-
ing A as annihilation operators is the same as the tensor
product of Fock spaces defined by declaring QþAþ; Q−A−
as annihilators, which is exactly relation (2.18). Similar
statements hold for the B and C sectors. It is thus equivalent
but more economic to work with A rather than A�, and we
consider the Fock spaceHwith Fock vacuumΩ annihilated
by A0 and A.
We compute the commutators corresponding to (2.13).

We introduce the building blocks

E0 ≔
ffiffiffiffiffiffi
ω0

p ½A0 − A�
0�; E� ≔

ffiffiffiffi
ω

p
Q�A ð2:27Þ

so that

A� ¼ i

�
1ffiffiffi
2

p E0 þ
ffiffiffi
2

p
½E� − E�

��
�
: ð2:28Þ

Since we need A2
�, there is an ordering ambiguity with

respect to the term ðE� − E†
�Þ2. We pick normal ordering

with respect to the annihilators A and leave a possible
normal ordering constant proportional to the algebraic
unit 1 open for the moment; that is, we set

A2
�ðfÞ ¼ −

�
1

2
E2
0ðQ⊥fÞ þ 2E0ð1ÞðE�ðfÞ − E�ðfÞ�ÞðfÞ þ 2∶ðE� − E�

�Þ2∶ ðfÞ
�
≕T0

�ðfÞ þ T1
�ðfÞ þ T2

�ðfÞ; ð2:29Þ

where ∶ð:Þ∶ denotes normal ordering. We have used in (2.29) that f is real valued. As ½E0; E�� ¼ 0, we find with s; s0 ¼ �,

½A2
sðfÞ; A2

s0 ðgÞ� ¼ ½T1
sðfÞ; T1

s0 ðgÞ� þ ½T1
sðfÞ; T2

s0 ðgÞ� − ½T1
s0 ðgÞ; T2

sðfÞ� þ ½T2
sðfÞ; T2

s0 ðgÞ�: ð2:30Þ

We have with

EsðfÞ ¼ hω1=2Qsf; Ai ð2:31Þ

that

½T1
sðfÞ; T1

s0 ðgÞ� ¼ 4E0ð1Þ2½EsðfÞ − EsðfÞ�; Es0 ðgÞ − Es0 ðgÞ��
¼ −4E0ð1Þ2f½EsðfÞ; Es0 ðgÞ�� − ½Es0 ðgÞ; EsðfÞ��g
¼ −4E0ð1Þ2fhω1=2Qsf;ω1=2Qs0gi − hω1=2Qs0g;ω1=2Qsfig
¼ −4δss0E0ð1Þ2fhf;ω;Qsgi − hg;ωQsgig
¼ −2δss0E0ð1Þ2ð−isÞfhf; g0i − hg; f0ig
¼ 4isδss0T0

sð½f; g�Þ; ð2:32Þ
where we used that 2ωQs ¼ 1 − is∂. Next

½T1
sðfÞ; T2

s0 ðgÞ� ¼ 4E0ð1Þ½EsðfÞ − EsðfÞ�; ½Es0 �2ðgÞ þ ½E�
s0 �2ðgÞ − 2½E�

s0Es0 �ðgÞ�
¼ 4E0ð1Þf½EsðfÞ; ½E�

s0 �2ðgÞ − 2½E�
s0Es0 �ðgÞ� − ½EsðfÞ�; ½Es0 �2ðgÞ − 2½E�

s0Es0 �ðgÞ�g

¼ 8E0ð1Þ
Z

dxdyfðxÞgðyÞ½Kss0 ðx; yÞfE�
s0 ðyÞ − Es0 ðyÞg − Ks0sðy; xÞfE�

s0 ðyÞ − Es0 ðyÞg� ð2:33Þ
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with the kernel

Kss0 ðx; yÞ ¼ ½EsðxÞ; E�
s0 ðyÞ� ⇒ Kss0 ðx; yÞ�1H ¼ ½Kss0 ðx; yÞ1H�� ¼ Ks0sðy; xÞ: ð2:34Þ

Explicitly,

hf; Kss0 · gi ¼ ½hf; Esi; hg; Es0 i�� ¼ δss0hf;ωQsgi≕ δss0 hf; Ks · gi: ð2:35Þ

Abbreviating Eg
s0 ðyÞ ¼ gðyÞEs0 ðyÞ we obtain

½T1
sðfÞ; T2

s0 ðgÞ� ¼ −8E0ð1Þfhf; Kss0 · fEg
s0 − ½Eg

s0 ��gi − hf; K�
ss0 · fEg

s0 − ½Eg
s0 ��gig

¼ −8E0ð1Þh½Kss0 − K�
ss0 � · f; fEg

s0 − ½Eg
s0 ��gi

¼ −8E0ð1Þδss0 fhf;ωðQs −Q−sÞfEg
s − ½Eg

s��gig
¼ 8E0ð1Þδss0 ðisÞfhf; fEg

s − ½Eg
s��g0ig; ð2:36Þ

whence

½T1
sðfÞ; T2

s0 ðgÞ� − ½T1
s0 ðgÞ; T2

sðfÞ� ¼ 8E0ð1Þδss0 ðisÞfhf; fEg
s − ½Eg

s��g0i − hg; fEf
s − ½Ef

s0 ��g0ig
¼ −8E0ð1Þδss0 ð−isÞ½Es − ðEsÞ��ðfg0 − f0gÞ
¼ 4isδss0T1

sð½f; g�Þ: ð2:37Þ

Finally,

½T2
sðfÞ; T2

s0 ðgÞ� ¼ 4

Z
dx

Z
dyfðxÞgðyÞf½EsðxÞ2; ½Es0 ðyÞ†�2 − 2E�

s0 ðyÞEs0 ðyÞ� þ ½EsðxÞ��2; ½Es0 ðyÞ�2 − 2E�
s0 ðyÞEs0 ðyÞ�

− 2½EsðxÞ�EsðxÞ; ½Es0 ðyÞ��2 þ ½Es0 ðyÞ�2 − 2E�
s0 ðyÞEs0 ðyÞ�g

¼ 4

Z
dx

Z
dyfðxÞgðyÞfKss0 ðx; yÞ½2EsðxÞEs0 ðyÞ� þ 2Es0 ðyÞ�EsðxÞ− 4EsðxÞEs0 ðyÞ�

−Ks0sðy; xÞ½2EsðxÞ�Es0 ðyÞ2Es0 ðyÞEsðxÞ� − 4EsðxÞ†Es0 ðyÞ��
− 2ðKss0 ðx; yÞEsðxÞ†½2Es0 ðyÞ� − 2Es0 ðyÞ�−Ks0sðx; yÞ½2Es0 ðyÞ− 2Es0 ðyÞ��EsðxÞÞg

¼ 4

Z
dx

Z
dyfðxÞgðyÞ

× fKss0 ðx; yÞ½2Kss0 ðx; yÞ þ 4½Es0 ðyÞ� −Es0 ðyÞ�EsðxÞ�−Ks0sðy; xÞ½2Ks0sðy; xÞ− 4EsðxÞ�½Es0 ðyÞ� −Es0 ðyÞ��
− 4ðKss0 ðx; yÞEsðxÞ�½Es0 ðyÞ� −Es0 ðyÞ�−Ks0sðy; xÞ½Es0 ðyÞ−Es0 ðyÞ��EsðxÞÞg: ð2:38Þ

Since Kss0 ¼ δss0Ks we can simplify (5.31) using FsðxÞ ≔ EsðxÞ − EsðxÞ† and fx ¼ fðxÞ; gy ¼ gðyÞ,

½T2
sðfÞ; T2

s0 ðgÞ� ¼ 8 δss0
Z

dx
Z

dy fðxÞgðyÞfKsðx; yÞ½Ksðx; yÞ − 2FsðyÞEsðxÞ� − Ksðy; xÞ½Ksðy; xÞ þ 2EsðxÞ�FsðyÞ�

þ 2Ksðx; yÞEsðxÞ�FsðyÞ þ 2Ksðy; xÞFsðyÞEsðxÞg

¼ 8δss0
Z

dx
Z

dyKsðx; yÞffxgy½Ksðx; yÞ − 2∶EsðxÞFsðyÞ∶

þ 2∶EsðxÞ�FsðyÞ∶� − fygx½Ksðx; yÞ þ 2∶EsðyÞ�FsðxÞ∶ − 2∶EsðyÞFsðxÞ∶�g

¼ 8δss0
Z

dx
Z

dyKsðx; yÞffxgy½Ksðx; yÞ − 2∶FsðxÞFsðyÞ�∶� − fygx½Ksðx; yÞ − 2∶FsðyÞFsðxÞ∶�g

¼ 8 δss0
Z

dx
Z

dyKsðx; yÞffxgy − fygxgfKsðx; yÞ − 2∶FsðxÞFsðyÞ�∶g; ð2:39Þ
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where we used that within the normal ordering symbol
operator valued distributions commute. Using Ff

s ðxÞ ¼
fðxÞFsðxÞ the second term in (2.39) can be written

− 16 δss0∶ ½Ff
s ðωQs · F

g
sÞ − Fg

sðωQs · F
f
s Þ�∶

¼ −8 δss0 ð−isÞ∶½Ff
s ððFg

sÞ0Þ − Fg
sððFf

s Þ0Þ�∶
¼ −8 δss0 ð−isÞ∶½F2

s �∶ðfg0 − f0gÞ
¼ 4 i s δss0T2

sð½f; g�Þ; ð2:40Þ

where we used that the operator ω is symmetric.

The first term in (2.39) can be evaluated as follows: Let
Zs ¼ fn∈Z; sn ≥ 0g and then

ðKs · fÞðxÞ ¼ 2π
X
n∈Zs

jnjenðxÞhen; fi

⇒ Ksðx; yÞ ¼ 2π
X
n∈Zs

jnjenðxÞenðyÞ�: ð2:41Þ

Thus,

Z
dx

Z
dy fxgyKsðx; yÞ2 ¼ ð2πÞ2

X
n1;n2 ∈Zs

jn1n2jhf; en1þn2ihen1þn2 ; gi

¼ ð2πÞ2
X

n1;n2 ∈Zþ

n1n2hf; esðn1þn2Þihesðn1þn2Þ; gi

¼ ð2πÞ2
X
n∈Zþ

hf; esnihes; gi
�Xn
n1¼0

n1ðn − n2Þ
�

¼ ð2πÞ2
X
n∈Zþ

hf; esnihesn; gi
�
n
1

2
nðnþ 1Þ − 1

6
nðnþ 1Þð2nþ 1Þ

�
¼ ð2πÞ2 1

6

X
n∈Zþ

hf; esnihesn; gi½n3 − n�

¼ ð2πÞ2 s
6

X
n∈Zs

hf; esnihesn; gi½ðsnÞ3 − ðsnÞ�

¼ ð2πÞ2 s
6

X
n∈Z

hQsf; enihen; gi½n3 − n�

¼ ð2πÞ2 s
6

X
n∈Z

hQsf; eni
���

−i∂
2π

�
3

−
−i∂
2π

�
en; g

�
¼ ð2πÞ2 s

6

X
n∈Z

hQsf; eni
�
en;

��
−i∂
2π

�
3

−
−i∂
2π

�
g

�
¼ ð2πÞ2 s

6

�
Qsf;

��
−i∂
2π

�
3

−
−i∂
2π

�
g

�
¼ ð2πÞ2 is

6

�
Qsf;

�
1

ð2πÞ3 g
000 þ 1

2π
g0
��

: ð2:42Þ

Thus, the first term in (2.39) can be written

8isδss0
1

6
ð2πÞ2

	�
Qsf;

�
1

ð2πÞ3 g
000 −

1

2π
g0
��

−
�
Qsg;

�
1

ð2πÞ3 g
000 −

1

2π
g0
��


¼ 4isδss0
1

6

�
ð2πÞ2

	�
f;

�
1

ð2πÞ3 g
000 þ 1

2π
g0
��

−
�
g;

�
1

ð2πÞ3 f
000 þ 1

2π
f0
��
�

≕ 4isδss0cSðf; gÞ; ð2:43Þ

where the term proportional i s ∂=ω in Qs has dropped out as ∂2=ω ¼ −ω and ∂
4=ω ¼ ω3 are symmetric operators on L.

The term (2.43) displays the anomaly of the classical hypersurface deformation algebra or equivalently its central extension
with central charge c ¼ 1

6
which is called the Virasoro algebra with that central charge.
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Altogether

½A2
sðfÞ; A2

s0 ðgÞ� ¼ 4isδss0 fA2
sð½f; g�Þ þ cSðf; gÞg ð2:44Þ

and similar for the B and C sector so that

½DsðfÞ; Ds0 ðgÞ� ¼ iδss0 ½Dsð½f; g�Þ þ 3cSðf; gÞ�: ð2:45Þ

The Lie algebraic 2-cycle Sðf; gÞ ¼ −Sðg; fÞ is a 2-cocycle

Sð½f; g�; hÞ þ Sð½g; h�; fÞ þ Sð½h; f�; gÞ ¼ 0 ð2:46Þ

by construction but no 2-coboundary; i.e., there is no linear
functional F on the space of test functions f such that
Sðf; gÞ ¼ Fð½f; g�Þ. Thus, theDsðfÞ cannot be modified by
adding 3cFðfÞ · 1 to obtain a proper Lie algebra.
It should be noted that the result (2.46) is purely

algebraic, and it just follows from �-algebraic relations
and the chosen (normal) ordering. It is not necessary to
assume a Fock representation; we just used the �-algebra
generated by A0 and A and their algebraic adjoints. In order
that our intended Fock representation is defined by A0; A,
etc. (thereby replacing algebraic adjoint � by Hilbert space
adjoint †), we must therefore check whether the constraints
(and thus their adjoints as they are manifestly symmetric)
are densely defined. SinceDs0 is a linear combination of the
A2
s ; B2

s ; C2
s , it will be sufficient to show that A2

sðfÞ is densely
defined. Since A2

sðfÞ is a linear combination of the
Tj
sðfÞ; j ¼ 0, 1, 2 [see (2.29)], it will be sufficient to

consider those. Consider first the action of A2
sðfÞ on the

Fock vacuum

kT0
sðFÞΩjj2¼kω0

2
ðQ⊥FÞA†

0Ωjj2¼
�
ω0

2
ðQ⊥FÞ

�
2

kT1
sðFÞΩjj2¼k2 ffiffiffiffiffiffi

ω0

p
A†
0E

†
sðFÞΩjj2¼4ω0hF;ωQsFi

kT2
sðFÞΩjj2¼4k∶ðE�−E†

�Þ2∶ ðfÞΩjj2¼4kðE†
�Þ2ðFÞΩjj2

¼8

Z
dxdyFðxÞFðyÞKsðx;yÞ2

¼ð2πÞ2 is
6

�
Qsf;

�
1

ð2πÞ3F
000 þ 1

2π
F0
��

¼ð2πÞ2 ðisÞ
2

12

�
ω−1F0;

�
1

ð2πÞ3F
000 þ 1

2π
f0
��

¼ð2πÞ2 1

12

�
1

ð2πÞ3 hf;ω
−1F0000iþ 1

2π
hf;ω−1F00i

�
¼ð2πÞ2 1

12

�
1

ð2πÞ3 hF;ω
3Fi− 1

2π
hF;ωFi

�
;

ð2:47Þ

where we used that for smooth, real valued, periodic
functions F

hF;F000i ¼−
1

2
hððF0Þ2Þ0i ¼ 0; hF;F0i ¼−

1

2
hðF2Þ0i ¼ 0:

ð2:48Þ

Note that ½ω=ð2πÞ�3 − ½ω=ð2πÞ� has a spectrum in N.
To show that the hypersurface deformation generators

are indeed densely defined and symmetric in the chosen
Fock representation we should check that they map Fock
states into normalizable states. It is convenient not to work
with Fock states directly but rather with the states

w½f�Ω; w½f� ¼ expðihf;ΦiÞ ð2:49Þ

for the C sector and similar for the A and B sector. By
choosing f ¼ P∞

k¼n snbn for some real valued orthonormal
basis (ONB) of L one can generate all Fock states from
the corresponding Weyl element w½f� by taking suitable
derivatives of (2.49) at sn ¼ 0; n∈N. This shows that the
w½f�Ω with f real valued span a dense subset. A short
standard calculation reveals

EsðxÞw½f�Ω¼ igsðxÞw½f�Ω; gsðxÞ≔ ½Qsf�ðxÞ: ð2:50Þ

We establish the finiteness of the constraint operators on the
Fock states only for the most difficult piece T2

sðFÞ; the
other pieces are left to the reader. We have

−T2
sðFÞw½f�Ω ¼

Z
dxFðxÞð½EsðxÞ þ igsðxÞ��†Þ2w½f�Ω:

ð2:51Þ

Thus using the creation/annihilation algebra as in (2.47)
and (2.50) a straightforward calculation reveals

kT2
sðFÞw½f�ωk2 ¼ kw½f�ωk2

Z
dxFðxÞ

Z
dyFðyÞ

× ½2Ksðx; yÞ2 þ 4Ksðx; yÞgðxÞgðyÞ
þ gðxÞ2gðyÞ2�; ð2:52Þ

where g ¼ ½Qs þQ−s�f ¼ Qf.
We now discuss the finiteness of (2.52). To be sure, if f is

smooth, then finiteness is immediate. Therefore, with
respect to the smooth and quasilocal waveletlike functions
introduced in [21] for the purpose of renormalization, the
following complications do not arise. However, the par-
ticular set of functions that were used for renormalization
in [2–4] are only piecewise smooth (in fact, constant) and
display finitely many discontinuities. We therefore consider
these functions in what follows in order to pinpoint which
convergence issues arise, why passing to smoother coarse-
graining functions to define the renormalization flow is
more convenient, and how one can still work with only
piecewise smooth coarse-graining functions using zeta
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function regularization. Readers not interested in these
issues can safely skip the rest of the following paragraph.

1. Zeta function regularization

The first term in (2.52) is, of course, the vacuum
contribution (2.47) and thus independent of f. We already
showed that it is finite in (2.47) for smooth F. The third
term can be estimated by kFk2∞kfk4∞ where k:k∞ denotes
the supremum norm. Thus, it is finite even if f is a
discontinuous but bounded function on [0, 1). The second
term is given by (up to the factor of 4)

hFðQfÞ; ½2ωQs�½FðQfÞ�i¼hFðQfÞ;Q½ω− is∂�Q½FðQfÞ�i:
ð2:53Þ

If f is at least C1, then the piece −is∂ vanishes by a similar
calculation as in (2.70). If f has discontinuities but is
periodic and together with F is real valued as is the case
here, then this piece still vanishes if we define for a step
function with 0 ≤ a < b < 1; x∈ ½0; 1Þ

χ0½a;bÞðxÞ¼δðx;aÞ−δðx;bÞ; χ½a;bÞðxÞ¼

8>><>>:
1 a<x<b
1
2
x¼a∨x¼b

0 x<a∨b<x

:

ð2:54Þ

The boundary values of the step function are uniquely
selected by requiring

hχ½a;bÞ; χ0½cdÞi þ hχ0½a;bÞ; χ½cdÞi ¼ 0 ð2:55Þ

for all possible (namely 13) orderings of a, b, c, d. These
values also ensure that the sum of step functions for a
partition of [0, 1) equals unity at every point. Thus, even in
the case of discontinuities (2.53) simplifies to

hFðQfÞ; QωQ½FðQfÞ�i ¼ h½FðQfÞ�0; Qω−1Q½FðQfÞ�0i
¼ hF0ðQfÞ; Qω−1Q½F0ðQfÞ�i
þ 2hðQfÞ0; F;Qω−1Q½FðQfÞ�i
þ hFðQfÞ0; Qω−1Q½FðQfÞ0�i:

ð2:56Þ

We have explicitly, using the spectral theorem,

2πG≔2πQω−1Q½F0ðQfÞ�

¼
X∞
n¼1

n−1½enhen;FðQfÞiþe−nhe−n;FðQfÞi� ð2:57Þ

pointwise in [0, 1); thus, the modulus squared of (2.57) can
be estimated from above by the Cauchy-Schwartz inequal-
ity and using jenj ¼ 1 pointwise

�X∞
n¼1

n−2
��X

n≠0
jhen; FðQfÞij ≤ ckFðQfÞk2L

�
≤ cðkFk∞kðQfÞk∞Þ2;

ð2:58Þ

where c > 0 is a constant. Thus since for bounded
L2ð½0; 1Þ; dxÞ functions we have k:kL ≤ k:k∞,

kQω−1Q½F0ðQfÞ�kL ≤ kQω−1Q½F0ðQfÞ�k∞
≤ ckFk∞kðQfÞk∞; ð2:59Þ

which shows that the first term in (2.56) is finite due to
kF0fk < ∞ and the Cauchy sequence (CS) inequality. The
second term is also finite if Qf has finitely many dis-
continuities because the contributions of these discontinu-
ities to the integral involving ðQfÞ0 amounts to a finite
linear combination of evaluations of FG at those points and
both functions have a finite supremum norm. The only
potentially troublesome term is the last one which involves
products of δ distributions. We evaluate it explicitly for the
case encountered in the next sections, namely

Qf ¼
XM
m¼0

fðmÞχmðxÞ; χmðxÞ ¼ χ½xm;xmþ1ÞðxÞ ð2:60Þ

with real valued fðmÞ and characteristic functions χm of an
interval where M < ∞ and 1≡ 0 ¼ x0 < x1 < � � � <
xM−1 < 1 is a partition of [0, 1). We find

hFðQfÞ0; Qω−1½FðQfÞ0�i ¼
X
m1;m2

fðm1Þfðm2ÞfðFðQω−1Q½χ0m2
F�Þðxm1

Þ − ðFðQω−1Q½χ0m2
F�Þðxm2

Þg

¼ −M−1
X
m1;m2

½∂Mf�ðm1Þfðm2ÞfFðQω−1Q½χ0m2
F�gðxm1

Þ

¼ −M−1
X
m1;m2

½∂Mf�ðm1Þfðm2ÞFðxm1
Þ
X∞
n¼1

1

n
½enðxm1

Þhen; χ0m2
Fi þ e−nðxm1

Þhe−n; χ0m2
Fi�
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¼ −M−1
X
m1;m2

½∂Mf�ðm1Þfðm2ÞFðxm1
Þ
X∞
n¼1

1

n
fenðxm1

Þ½ðe−nFÞðxm2
Þ − ðe−nFÞðxm2þ1Þ� þ c:c:g

¼ M−2
X
m1;m2

½∂Mf�ðm1Þ½∂Mf�ðm2ÞFðxm1
ÞFðxm2

Þ
X∞
n¼1

1

n
fenðxm1

− xm2
Þ þ e−nðxm1

− xm2
Þg ð2:61Þ

with ð∂MfÞðmÞ ¼ M½fðmþ 1Þ − fðmÞ�. It is the sum over n∈N in (2.61) that is problematic. We isolate and manipulate it
as follows:

X∞
n¼1

1

n
fenðxm1

− xm2
Þ þ e−nðxm1

− xm2
Þg ¼ 2

X∞
n¼1

1

n
cosðkMðm1 −m2ÞnÞ

¼ 2
XM−1

l¼1

1

l
cosðkMðm1 −m2ÞlÞ þ 2

XM−1

l¼0

cosðkMðm1 −m2ÞlÞ
X∞
n¼1

1

lþ nM
; ð2:62Þ

where we considered an equidistant partition, set
kM ¼ 2π=M, and exploited periodicity modulo M. Then
for any 0 ≤ l ≤ M − 1 we consider

X∞
n¼1

1

lþnM
¼
X∞
n¼1

�
1

lþnM
−

1

nM

�
þ 1

M
lim
N→∞

XN
n¼1

1

n
: ð2:63Þ

The first infinite sum in (2.63) converges absolutely for
each l. The limit of the second sum marginally diverges to
the simple pole (with residue unity) value of the Riemann
zeta function. Consider

γðN; ϵ; δÞ ≔ 1

2

XN
n¼1

�
1

n1þδþϵ þ
1

n1þδ−ϵ

�
: ð2:64Þ

If we take the limits ϵ → 0þ; δ → 0þ; N → ∞ in exactly
this order, then we return to (2.63). As usual, regularization
of infinities consists in interchanging limits that would be
allowed if the sums involved would converge absolutely.
We take the limits in the order N → ∞; δ → 0, ϵ → 0. After
N → ∞ we obtain for δ > ϵ > 0 the finite result

γðϵ; δÞ ≔ lim
N→∞

γðN; ϵ; δÞ ¼ 1

2
½ζð1þ δþ ϵÞ þ ζð1þ δ− ϵÞ�;

ð2:65Þ

where ζ is the Riemann zeta function. It has an analytic
extension to the whole complex plane except for its simple
pole z ¼ 1. With this analytic extension being understood
in (2.64) we can now take δ → 0,

γðϵÞ ≔ lim
δ→0

γðϵ; δÞ ¼ 1

2
½ζð1þ ϵÞ þ ζð1 − ϵÞ�: ð2:66Þ

Finally, we take ϵ → 0, which results in the principal value
of the zeta function at unity

γ ≔ lim
ϵ→0

γðϵÞ ¼ ½pvζ�ð1Þ ¼ lim
ϵ→

1

2
½ζð1þ ϵÞ þ ζð1 − ϵÞ�;

ð2:67Þ

which turns out to be finite and equal to the Euler-
Mascheroni constant [25]

γ ¼ lim
N→∞

�
− lnðNÞ þ

XN
n¼1

1

n

�
; ð2:68Þ

which is numerically 0.58 in the second decimal precision.
This kind of regularization is, of course, standard in

conformal field theory [26]. It would not be necessary if the
functions f were smooth. In the smooth case exactly the
same infinite sum of 1=n would occur but the difference
would be that it is multiplied by n-dependent coefficients
that either have compact support in n or lead to stronger
decay rendering the sum absolutely convergent. Thus, in
the smooth case the result of the calculation would be
dominated by the respective and corresponding first term
in (2.62) and (2.63). Note also that the proposed regulari-
zation can be considered as the regularization

ω−1 →
1

2
½ω1þδþϵ þ ω1þδ−ϵ� ð2:69Þ

with δ > ϵ > 0 and then taking the limits in the order
described. This regularization is the price to pay when
working with bounded discontinuous functions f but it
extracts exactly the dominating terms that would arise if f
was smooth. The motivation for using nonsmooth step
functions is that they result in coarse-graining maps for
purposes of renormalization with almost perfect properties
as we will see in the next section. In [21] we introduce
smooth coarse-graining maps which come very close to
those step functions, for which the above regularization is
not necessary and for which the finite result obtained here
after regularization is exact. As these step functions are
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finite position resolution approximants of smooth con-
tinuum functions, our manipulation is physically justified.
This can also be seen as follows: The absolute value of both
terms in (2.63) can be bounded from above (after the above
regularization) by c=M where c ¼ γ þP∞

N¼1 N
−2 (observ-

ing that n ≤ M − 1). If fðmÞ ¼ MhχMm ; fi for smooth f as
we assume in the next section, with χMm the characteristic
function of the interval ½m=M; ðmþ 1Þ=MÞ, then the first
term in (2.61) converges to the smooth continuum value
hFf0; Qω−1QFf0i as M → ∞ while the two remaining
terms can be bounded by ckFf0k2=M, which converges to
zero. Accordingly our zeta function regularization (only
necessary for nonsmooth finite resolution approximants)
ensures that the continuum limit (taking the finite reso-
lution regulator M → ∞) agrees with the direct continuum
result.
With this understanding, the hypersurface generators are

densely defined on the span of Fock states.

2. Comments on the space of solutions to the constraints

For completeness, we close this sectionwith a few remarks
on the actual solution of the quantum constraints which are
mostly standard.Thesewill not beof any relevance for the rest
of the paper, and the reader not interested in these remarks can
safely jump to the next section.
Not even the Fock vacuum is in the kernel of any of

them, not to speak of the joint kernel. Indeed, there can be
no joint zero eigenvector v of all the constraints except the
zero vector due to the anomaly

0 ¼ ½DsðfÞ; DsðgÞ�v ¼ is3cSðf; gÞv: ð2:70Þ

In solving the constraints, we thus look not for joint zero
eigenvectors (zero is not in the joint point spectrum) but for

generalized joint eigenvectors (distributions), i.e., linear
functionals l on a dense and invariant [under the action of
the DsðfÞ] domain D such that

l½DsðfÞv� ¼ 0 ∀ f; s; v∈D: ð2:71Þ

Note that the finite linear span of Fock states is dense
but not invariant. However, Eq. (2.71) also does not
work for any such choice of invariant domain, because
if D is invariant, then any such l also satisfies
l½½DsðfÞ; DsðgÞ�v� ¼ iscSðf; gÞl½v� ¼ 0; i.e., l vanishes
identically on D. We thus resort, as it is common practice,
to solving the equations DsðfÞ ¼ 0 not in the strong
operator topology but in the weak operator topology.
That is, we look for a proper subspace D ⊂ H in the
domain of the DsðfÞ such that the DsðfÞD ⊂ D̄⊥; i.e., the
image of D under any DsðfÞ lies in the orthogonal
complement of (the completion of) D. That is, for any
v; v0 ∈D we impose for all s, f,

hv; ½DsðfÞ − ahfi1H�v0i ¼ 0; ð2:72Þ

where a possible normal ordering constantawas introduced.
In other words, with respect to the split H ¼ D̄ ⊕ D̄⊥
all operatorsDsðfÞ contain nodiagonal block corresponding
to D. A well-known choice of D consists in the solution to
the system of equations

½DsðenÞ − aδn1H�v ¼ 0; ∀ s; n ≥ 0: ð2:73Þ

Since DsðenÞ† ¼ Dsðe−nÞ it follows that (2.73) implies
(2.72) for all f. The system (2.73) does not suffer from
the anomaly because for m, n ≥ 0,

½DsðemÞ − aδn1H; Ds0 ðenÞ − aδn1H� ¼ iδss0 ½Dsð½em; en�Þ þ 3cSðem; enÞ�
¼ iδss0 ½2πiðm − nÞDsðemþnÞ − 3icðm3 −m − n3 þ nÞδmþn;0�
¼ −2πδss0 ðm − nÞDsðmþ nÞ ð2:74Þ

as the second term only contributes for m ¼ n ¼ 0 if m,
n ≥ 0 but then the prefactor vanishes. Thus the right-hand
side (rhs) of (2.75) is nonvanishing iff mþ n > 0 so that
the system of conditions (2.73) is consistent. Of course,
other choices of D are equally valid such as imposing
(2.73) for n ≤ 0 only for both values of s or using (2.73)
with n ≥ 0 for s ¼ þ and with n ≤ 0 for s ¼ −.
Alternatively, to actually solve (2.73) we could use

master constraint methods [27]; i.e., we set

M ≔
X
s;n≥0

mnDsðenÞ†DsðenÞ; ð2:75Þ

wheremn > 0 are coefficients that decay sufficiently fast in
order that M be densely defined in the Fock space. Then
any solution v of (2.73) solvesMv ¼ 0, and conversely any
solution of Mv ¼ 0 solves hv;Mvi ¼ 0 and therefore
(2.73). The task is now to solve for the ground states of
the master constraintM. One will look for them in the form

v¼ vAB ⊗ vc; vAB∈HA ⊗HB; vC∈HC; ð2:76Þ

where vC is any Fock state and vAB is to be determined in
dependence on vC. In this way, the physical Hilbert space is
isomorphic to HC.
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This is, of course, expected as the PFT should be
equivalent to the massless Klein Gordon field on the
cylinder. Indeed, the natural gauge fixing conditions
T ¼ t, X ¼ x reproduce this theory which one immediately
arrives at using the corresponding reduced phase space
quantization. The actual solution of PFT is beyond the
scope of the present work in which we are just interested in
studying how the system behaves under renormalization.

III. HAMILTONIAN RENORMALIZATION
OF HAMILTONIAN SYSTEMS

This section is to recall the essential elements from
[4,11] to which the reader is referred for more information.
We introduce some coordinate x∈ ½0; 1Þ and equidistant

lattices ΛM on [0, 1) with M points xm ¼ m
M ;m∈ZM ≔

f0; 1; 2;…;M − 1g. Among the numbers M∈N we intro-
duce the relation M < M0 iff M0

M ∈N which means that ΛM

is a sublattice of ΛM0 . It is not difficult to see that this
defines a partial order and that N is directed with respect
to it.
The space of complex valued sequences ffMðmÞgm∈ZM

is denoted by LM and given a Hilbert space structure by

hfM; f0MiLM
≔

1

M

X
m∈ZM

fMðmÞ�f0MðmÞ: ð3:1Þ

Let χ½a;bÞ be the characteristic function of the left closed,
right open interval ½a; bÞ ⊂ ½0; 1Þ where for any S ⊂ R we
have χSðxÞ ¼ 1 if x∈ S and χsðxÞ ¼ 0 else. Then for
x∈ ½0; 1Þ

χMm ðxÞ ≔ χ½mM;mþ1
M ÞðxÞ: ð3:2Þ

Consider the embedding [recall L ¼ L2ð½0; 1Þ; dxÞ]

IM∶ LM → L; ðIMfMÞðxÞ ≔
X

m∈ZM

fMðmÞχMm ðxÞ; ð3:3Þ

which is, in fact, an isometry

hIMfM; IMf0MiL ¼ hfM; f0MiLM
ð3:4Þ

and thus allows the interpretation of (3.1) as the Riemann
sum approximation of hf; f0iL with fMðmÞ ≔ fðm=MÞ
and f0MðmÞ ¼ f0ðm=MÞ.
For M < M0 we construct the embeddings

IMM0∶ LM → LM0 ; IMM0 ≔ I†M0IM: ð3:5Þ

The operator I†M can be worked out explicitly

½I†Mf�ðmÞ ¼ MhχMm ; fiL: ð3:6Þ

It is also an isometry

hIMM0fM; IMM0f0MiLM0 ¼ hfM; f0MiLM
; ð3:7Þ

and these embeddings automatically obey the consistency
conditions for all M < M0 < M00,

IM0M00∘IMM0 ¼ IMM00 : ð3:8Þ

This follows from the identity

IM0I†M0IM ¼ IM; ð3:9Þ

which in turn is due to the property of the χMm to define
partitions of [0, 1) which are nested for M < M0, that is,

χMm ¼
Xk−1
l¼0

χM
0

kmþl; k ¼ M0

M
: ð3:10Þ

We can also work out IMM0 explicitly (k ≔ M0=M)

ðIMM0fMÞðm0Þ ¼ M0hχMm0 ; IMfMiL
¼ M0 X

m∈ZM

fMðmÞhχMm0 ; χMm iL

¼ M0 X
m∈ZM

fMðmÞ
�

1

M0
Xk−1
l¼0

δm0;mkþl

�

¼ fM

��
M

m0

M0

��
; ð3:11Þ

where ½:� denotes the floor function (Gauss bracket). We
remark at this point that the objects IM and IMM0 are never
changed by the renormalization flow to be defined below.
Consider a scalar field ϕ on [0, 1) with conjugate

momentum π. Note that geometrically π is a scalar density
of weight one on [0, 1) as one can see from the Poisson
bracket

fπðxÞ;ϕðyÞg ¼ δðx; yÞ: ð3:12Þ

We consider real density one valued test functions f and
real density zero valued test functions F on [0, 1). Then the
real numbers

ϕðfÞ ≔ hf;ϕi; πðFÞ ≔ hF; πi ð3:13Þ

are invariant under diffeomorphisms of [0, 1), and we have

fπðFÞ;ϕðfÞg ¼ FðfÞ: ð3:14Þ

One can construct the abstract �-algebra (even C�-algebra)
A generated by the Weyl elements

wðf; FÞ ¼ expði½ϕðfÞ þ πðFÞ�Þ ð3:15Þ
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and the corresponding Weyl relations that follow from the
reality of (3.13) and (3.14).
Representations of A can be constructed from a state

(positive, normalized, linear functional) ω̂ on it via the
Gel'fand-Naimark-Segal construction [19]. This delivers a
Hilbert space H, a representation ρ of A by bounded
operators on H, and a vector Ω∈A cyclic for ρðAÞ. If H
is separable, we always find an Abelian sub-�-algebra B of
A for which Ω is still cyclic. For instance, we can pick an
ONB eI; I ∈Z with b0 ≔ Ω of H and consider the Abelian
group of unitary operators UI; I ∈Z; U†

I ¼ U−I such that
UIeJ ¼ eIþJ. Thenwe findaI ∈A such that ρðaIÞ ¼ UI and
B is generated by those aI. See [11] for more details and
more general cases. Of course, the aI may in general be very
complicated (in general infinite) linear combinations of the
Weyl elements (3.15). Still it follows thatH can be thought
of as L2ðΔðBÞ; dνÞ where ΔðBÞ is the Gel’fand spectrum
(space of “characters,” i.e., homomorphisms χ∶B → C
equipped with the Gel’fand topology) of B and ν a
probability measure thereon. More precisely, there is a
unitary map U∶H → L2ðΔðBÞ; dνÞ with ½UρðbÞΩ�ðχÞ ≔
b̂ðχÞ ≔ χðbÞwhich is essentially theGel’fand isomorphism.
We will assume that B can be generated by the

wðfÞ ≔ wðf; F ¼ 0Þ so that we can identify the space of
characters with the space of fields ϕ and ν as a probability
measure on that space. Indeed, this is the case in Fock
representations ω̂ ¼ h� � �iH in which wðfÞΩ is essentially
expðih½2ω�−1=2f; Ai†LÞΩ up to a phase where A ¼ ð ffiffiffiffi

ω
p

ϕ −
i

ffiffiffiffi
ω

p −1πÞ= ffiffiffi
2

p
is the annihilator. Thus arbitrary linear

combinations of Fock states hf1; Ai† � � � hfn; Ai†Ω can be
obtained by taking derivatives at s1 ¼ � � � ¼ sn ¼ 0 of
wðPk sk½2ω�1=2fkÞΩ establishing that the span of the
wðfÞΩ is dense. Then ν is the Gaussian measure with
covariance 1=ð2ωÞ [3]

νðwðfÞÞ≔ hΩ;wðfÞΩiH ¼ exp
�
−
1

4
hf;ω−1fiL

�
: ð3:16Þ

Given the injections IM;LM → L we may restrict ϕ to
the subspace IMLM; i.e., we define a scalar field ϕM on the
lattice ΛM by

ϕMðfMÞ ≔ ϕðIMfMÞ ⇒ ϕM ¼ I†Mϕ; ð3:17Þ

which provides a natural “discretization.” Here ϕðfÞ ≔
hf;ϕi for real valued f. As ðI†MϕÞðmÞ ¼ MhχMm ;ϕi
approaches ϕðxÞ in the limit M → ∞ for m ¼ xM we
see that the density zero valued ϕ is smeared against the
density one valued discretized δ distributionMχM which is
diffeomorphism covariant. We may likewise define a
discretized momentum πM ¼ M−1I†Mπ ¼ hχM: ; πi, which
smears the density one valued π against the density zero
valued χM which is also covariant. Together this ensures
that ϕM and πM are conjugate on ΛM,

fπMðmÞ;ϕMðm0Þg ¼ MfπðχMm Þ;ϕðχMm0 Þg
¼ MhχMm ; χMm0 iL ¼ δm;m0 : ð3:18Þ

Although this is geometrically more natural, we will
instead use

πMðmÞ≔ ½I†Mπ�ðmÞ; fπMðmÞ;ϕMðm0Þg¼Mδm;m0 ð3:19Þ

so that ϕM and πM are conjugate not in the sense of a
Kronecker δ but rather a discrete δ distribution.
Given a function H½ϕ; π� on the continuum phase space

coordinated by the variables ϕ and π we may try to define a
discretized function

HM½ϕM; πM� ≔ H½IMϕM; IMπM�; ð3:20Þ

where the approximation IMI
†
M → 1L asM → ∞ was used.

This indeed works as long as H depends on π and ϕ only
algebraically. However, when derivatives are involved, the
simple prescription (3.20) may cause trouble because the
functions χM are not differentiable. This can be improved
by passing to alternative, smoother coarse-graining maps
IM [21] which lead to coarse-graining maps IMM0 satisfying
the consistency conditions (3.8) which are essential
for the renormalization scheme. For the examples discussed
in [21] it turns out that the natural discretization
∂M ≔ I†M∂IM is a well-defined and antisymmetric discrete
derivative operator on LM.
To keep the presentation simple and to see into which

problems one may run using step functions, we take the
usual point of view that the prescription (3.20) is as good as
any other as long as HM½ϕM; πM� converges to H½ϕ; π� in
the continuum limit M → ∞. Noting that ϕMðmÞ ¼
MhχMm ;ϕi approaches ϕðxÞ as m;M → ∞ if we keep
x ¼ m=M fixed, we may therefore discretize, e.g., ϕ0ðxÞ by

IMð∂MϕMÞ; ð3:21Þ

where

½∂MfM�ðmÞ ≔ M
2
½fMðmþ 1Þ − fMðm − 1Þ� ð3:22Þ

is the antisymmetric, next neighbor, first order lattice
derivative. There are an infinite number of prescriptions
such as (3.22) which have the correct continuum limit in
the sense mentioned above, and therefore using any such
prescription introduces a discretization ambiguity into
the functions HM½ϕM; πM�. This ambiguity is drastically
reduced if one uses the natural discretization using
smoother functions χM with all the desired properties as
indicated above.
Given a continuum measure νwe may construct a family

of measures νM by
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νMðwM½fM�Þ≔νðw½IMfM�Þ; wM½fM�¼expðihfM;ϕMiLM
Þ;

ð3:23Þ

which are automatically cylindrically consistent, i.e., for
all M < M0,

νM0 ðwM0 ½IMM0fM�Þ ¼ νMðwM½fM�Þ; ð3:24Þ

i.e., integrating the excess degrees of freedom in artificially
writing the function wM of ϕM as the function wM0

of ϕM0 , which, however, depends on ϕM0 only in terms
of the blocked variables I†MM0ϕM0 does not change the
result. Conversely, under relatively mild technical assump-
tions [2], a cylindrically consistent family of measures νM
on quantum configuration spaces KM can be extended to a
measure ν on a space K called the projective limit of the
KM. In that sense, a cylindrically consistent family is as
good as the continuum definition but the practical advan-
tage of the family is that the νM are easier to compute.
Consider the Hilbert spacesHM ¼ L2ðKM; dνMÞ and the

embeddings

JM∶HM→H¼L2ðΦ;dνÞ; wM½fM�ΩM↦w½IMfM�Ω;
ð3:25Þ

which by construction are isometries. Here νMð:Þ ¼
hΩM; :ΩMiHM

and νð:Þ ¼ hΩ; :ΩiH. It is also not difficult
to see that the JM inherit from the IM the consistency
properties

JM0M00JMM0 ¼ JMM00 ∀ M < M0 < M00; ð3:26Þ

where JMM0 ¼ J†M0JM;M < M0. It follows that H is the
inductive limit of the HM [19]. Given a symmetric
quadratic form H on H with dense domain D spanned
by the w½f�Ω we may construct the symmetric quadratic
forms HM ≔ J†MHJM which are automatically consistently
defined: For any M < M0 we have

J†MM0HM0JMM0 ¼ HM: ð3:27Þ

Moreover, given JMψM; JM0ψ 0
M0 ∈H with ψM ∈DM;

ψ 0
M0 ∈DM0 in the dense set of the span of vectors

wM½fM�ΩM, etc., we find M00 > M;M0 and can compute

hJMψM;HJM0ψM0 iH ¼ hJMM00ψM;HM00JM0M00ψ 0
M0 iHM00 ;

ð3:28Þ

i.e., for all practical purposes the family of quadratic forms
HM is as good as H but easier to compute. Note that H is
not the inductive limit of theHM [19] for two reasons: First,
while HM are actually operators and not only quadratic
forms (as the systems labeled byM only depend on finitely

many degrees of freedom), the object H is in general not.
Second, for H to be the inductive limit of the HM we
require the much stronger intertwiner property JMHM ¼
HJM which implies HM ¼ J†MHJM but not vice versa. We
remark at this point the objects JM and JMM0 will change
during the flow to be defined below as they map vacua to
vacua which do flow.
The problem that one encounters in quantizing a

classical Hamiltonian system with canonical variables
ϕ; π and Hamiltonian H is this: Provide a representation
ρ of the �-algebra generated by the ϕðfÞ; πðFÞ [or the
C�-algebra generated by the wðf; FÞ] that supports “the”
Hamiltonian H as a self-adjoint operator. We have used
inverted commas as this task is ill-defined as it stands: The
classical function H typically is ill-defined when naively
substituting the classical ϕ; π by their corresponding
operator valued distributions. The strategy of constructive
QFT is to come up with quantizations of the simpler, well-
defined (since finite dimensional—if both UV regulator M
and IR regulator R are present) discretized Hamiltonian
systems defined by ϕM; πM;HM and then restrict the
discretization ambiguities inherent in these systems by
inverting the logic: the automatic consistency properties of
discretizations descending from continuum quantum the-
ories (sometimes called “blocking from the continuum”)
are imposed as consistency conditions which are twofold
when the renormalization flow reaches a fixed point and
thus qualifies as a continuum theory.
That is, we start from a family of triples ðHð0Þ

M ;Ωð0Þ
M ;Hð0Þ

M Þ
obtained by some prescription and then define a sequence

(“renormalization flow”) of such triples ðHð0Þ
M ;Ωð0Þ

M ;Hð0Þ
M Þ

by the following rules:
(1) The maps for M < M0,

JðnÞMM0wM½fM�Ωðnþ1Þ
M ≔ wM0 ½IMM0fM�ΩðnÞ

M0 ; ð3:29Þ

are imposed to be isometries; that is, the correspond-
ing measures are defined by

νðnþ1Þ
M ðwM½fM�Þ ≔ νðnÞM0 ðwM0 ½IMM0fM�Þ: ð3:30Þ

(2) Using these we set

Hðnþ1Þ
M ≔ J†MM0H

ðnÞ
M0 JMM0 : ð3:31Þ

The idea is then to look for fixed points
JMM0 ;ΩM;HM; νM;HM of this flow for which then
all consistency conditions are satisfied by construc-
tion and which therefore defines a continuum theory.
The hope is then that at fixed points all but finitely
many (so-called relevant parameters) of the free
parameters that coordinate the discretization ambi-
guities also assume fixed values, thus rendering the
theory predictive.
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In practice one cannot use (3.29)–(3.31) for all M < M0
since for M < M0

1;M
0
2;M

0
1 ≠ M0

2; e.g., the definitions
(3.30) and (3.31) generically do not agree when using
M0 ¼ M0

1 or M0 ¼ M0
2, respectively. Thus, one usually

picks a fixed M0ðMÞ satisfying M0ðMÞ > M, a popular
choice being M0ðMÞ ¼ 2M. Then, relying on the intuition
of universality, the fixed point is hoped for not to depend on
the choiceM0ðMÞ, so that at the fixed point the consistency
conditions indeed hold for all M < M0.
An automatic feature of this renormalization scheme is

that for all M the fixed point vacuum ΩM is a ground state
of the fixed point Hamiltonian HM if this is true for the

initial data Ωð0Þ
M and Hð0Þ

M : This follows inductively from

Hðnþ1Þ
M Ωðnþ1Þ

M ¼ ½JðnÞMM0ðMÞ�†HðnÞ
M0ðMÞJ

ðnÞ
MM0ðMÞΩ

ðnþ1Þ
M

¼ ½JðnÞMM0ðMÞ�†HðnÞ
M0ðMÞΩ

ðnÞ
M0ðMÞ ¼ 0: ð3:32Þ

This condition is necessary in order to make the
renormalization scheme compatible with Wilsonian
renormalization of the Euclidean (path integral) formu-
lation from which the present scheme was derived via OS
reconstruction [4,11].

IV. HAMILTONIAN RENORMALIZATION
OF CONSTRAINED SYSTEMS

As mentioned, the scheme reviewed in the previous
section was motivated using the Euclidean formulation
of a QFT which needs as a minimal input a self-adjoint
Hamiltonian H on a Hilbert space H bounded from below
with vacuum Ω. From these one can attempt to construct
the associated Gibbs measure μ on the space of field
histories, and when this exists, it satisfies a minimal set of
Euclidean axioms (in particular, reflection positivity)
ensuring that ðH;H;ΩÞ can be recovered from μ.
When we consider constrained Hamiltonian systems, in

particular when there is no Hamiltonian but just a set of
Hamiltonian constraints, we are strictly speaking leaving
that framework. One can return to it by using the reduced
phase space formulation in which one gauge fixes the
Hamiltonian constraints thereby ending up with a true
Hamiltonian again that just acts on the gauge invariant
(or true) degrees of freedom [28], and this is the strategy
followed so far [11]. However, in this paper we want to
explore a different route:
The observation is that the two renormalization steps

(3.30) and (3.31) actually do not rely on H being bounded
from below or that Ω is the vacuum of H. Thus we propose
to “abuse” (3.30) and (3.31) and use them also for con-
strained Hamiltonian systems. In other words, we keep
(3.30) as it is and apply (3.31) to each constraint operator
separately.
This proposal raises the following immediate questions

and concerns:

(1) The classical continuum constraints are of the form
HðFÞ ¼ R

dxFðxÞHðxÞ where F is a smearing
function and HðxÞ is the Hamiltonian constraint
density. Thus the essential difference between a true
Hamiltonian system and a constrained Hamiltonian
system (apart from the fact that true Hamiltonian
densities are typically bounded from below at least
classically) is that for the true Hamiltonian the only
allowed smearing function is F ¼ 1 while for the
constrained case the space of the smearing function
is infinite dimensional. The question is now how F
should be treated when we discretize HðFÞ. There
are two extreme and equally natural points of view:
(a) The first is that for each F the function HðFÞ is

simply an independent object and should be
treated just as a true Hamiltonian. That is, the
function F remains as it is; it is not discretized.

(b) The second is that F should be treated on equal
footing with the phase space variables ϕ; π and
thus should be discretized, perhaps by the same
map I†M, perhaps by another. This, of course,
introduces yet more discretization ambiguities
into the quantization and also requires one to
invent a flow equation on the space of discretized
smearing functions FM when stating (3.31).

Note that the second point of view is often taken for granted
in lattice inspired approaches to constrained systems [29].
One may think that the first point of view in fact provides a
natural choice of discretization of F as follows:
Suppose that we actually have the continuum theory,

i.e., the Hilbert space H and the constraints HðFÞ, at our
disposal. Then the idea is to define a map EM∶ L → LM via
the identity

HMðEMFÞ ≔
X

m∈ZM

ðEMFÞðmÞHMðmÞ ≔ J†MHðFÞJM;

ð4:1Þ
which assumes that the rhs can actually be written in this
local form. This is unfortunately already not the case even
for the PFT considered here. The reason for this to happen
is that H when written in terms of polynomials of
annihilation and creation operators involves nonlocal in-
tegral kernels. While these do get discretized by means of
JM this leads to an effective EM which maps L → LN

M
where N ≥ 2 is the polynomial degree. We will demon-
strate this explicitly below for PFT.
This establishes that viewpoints i. and ii. are drastically

different; i.e., a map EM∶ L → LM generically cannot
be induced via (4.1). Instead, according to viewpoint ii.
we consider as an extra structure maps ĨMLM → L and
ĨMM0∶ LM → LM0 and define

HMðFMÞ≔
X
m∈ZM

FMðmÞHMðmÞ≔J†MHðĨMFMÞJM: ð4:2Þ
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This is consistently defined

HMðFMÞ ¼ J†MM0HM0 ðĨMM0FMÞJMM0 ð4:3Þ

due to JM0JMM0 ¼ JM and provided that ĨM0 ĨMM0 ¼ ĨM.
We may reduce the ambiguity and actually consider
ĨM ¼ IM; ĨMM0 ¼ IMM0 ; however, this choice is inconven-
ient for the following reason: While we can certainly
compute the commutator ½HMðFMÞ; HMðGMÞ� directly,
which is well-defined, one would like to see the deviation
from the continuum computation by using the identity

½HMðFMÞ; HMðGMÞ�
¼ J†Mf½HðIMFMÞ; HðIMGMÞ�
−HðIMFMÞð1H − PMÞHðIMGMÞ
þHðIMGMÞð1H − PMÞHðIMFMÞgJ†M; ð4:4Þ

where we defined PM ¼ JMJ
†
M, which is a projection in H

due to the isometry of JM. The first term gives the
cylindrical projection of the continuum algebra, which in
our case is the Virasoro algebra. The second and third terms
should vanish asM → ∞ because JM becomes the identity
inH. Therefore, Eq. (4.4) appears to be an appropriate way
to monitor how the cylindrically projected theories ap-
proach the correct continuum. The catch is that we know
that in PFT the commutator ½HðIMFMÞ; HðIMGÞ� depends
on the first and third derivatives of the IMFM; IMGM which
are, however, not even continuous. Accordingly, if we want
to use (4.4) we should instead use ĨM and ĨMM0 which are at
least C3 and which share all the properties of ĨM and ĨMM0 .
Thus such maps constructed from wavelets [30] suggest
themselves, and we will give more details below.
To summarize this part of the discussion, for the purpose

of this paper we take viewpoint i. and leave F and G
undiscretized, and then with HMðFÞ ¼ J†MHðFÞJM the
computation

½HMðFÞ; HMðGÞ� ¼ J†Mf½HðFÞ; HðGÞ�
−HðFÞð1H − PMÞHðGÞ
þHðGÞð1H − PMÞHðFÞgJ†M ð4:5Þ

is unproblematic. To avoid confusion note that (4.5) is
supposed to yield the Virasoro algebra, as M → ∞,
including the central term; i.e., the anomaly as compared
to the classical computation (Witt algebra) should be
present. We thus want to check that the Virasoro algebra
is recovered without anomaly, not the Witt algebra.
(2) As noted in the previous section, due to the central

term in the Virasoro algebra, there cannot be a joint
vacuum Ω for all the constraints HðFÞ. This is even
more the case for the HMðFÞ at finite resolution
because they typically do not close as it is plain to

see from (4.5); hence, the states ΩM that arise at the
fixed point cannot be joint vacua for the HMðFÞ.
This is no obstacle for the renormalization scheme

when applied separately to the HðFÞ because the
HMðFÞ are operators (and not only quadratic forms)
of systems with finitely many degrees of freedom,
and thus one does not expect the usual problems in
finding a domain that is typical for QFT (infinitely
many degrees of freedom) especially if HðFÞ, even
when normal ordered, contains terms that are mono-
mials made solely from creation operators. Thus, we
expect to find dense domains DMðFÞ for HMðFÞ
and by construction JMM0DMðFÞ ⊂ DM0 ðFÞ. How-
ever, a problem may occur when we compute
commutators such as (4.5) because the domains
DMðFÞ may depend on F and it may be the case
that HMðFÞDMðFÞ⊄DMðF0Þ [31]. At least it is true
that at finite M the domains are invariant
HMðFÞDMðFÞ ⊂ DMðFÞ because they are just finite
linear combinations of monomials [and not infinite
linear combinations as in the case of HðFÞ] of
creation and annihilation operators. Thus a minimal
requirement for (4.5) to be meaningful is that the
HMðFÞ have a dense, invariant domainDM indepen-
dent of F and then by construction JMM0DM ⊂ DM0 .
Since the span D of the JMDM is dense in the

inductive limitH on which by construction is a form
domain ofHðFÞ, this then also makes the fixed point
HðFÞ densely defined as a quadratic form. However,
this does not ensure that the commutators of the
HðFÞ are well-defined because matrix elements of
the formal expression HðFÞHðF0Þ, which can be
formally computed by invoking resolutions of the
identity in terms of an ONBmade from vectors inD,
may diverge, which is a potential danger even ifHðFÞ
can be promoted to an operator especially if D is not
invariant for HðFÞ. It is here where a joint cyclic
vacuumwould be very convenient to build a common
dense operator domain upon. In the absence of it, the
construction of such a domainmay bevery difficult, if
it exists at all. In PFTwe know that this problem does
not occur, despite the nonexistence of such a joint
vacuum, as a common dense (but not invariant)
operator domain is given explicitly by the span of
the chosen Fock states. However, it may be in more
complicated theories, especially if the domains de-
pend on F, which in unfortunate cases can have
nondense intersections [31].

(3) Note that our renormalization scheme constructs a
single Hilbert spaceH (or measure ν) but an infinite
number of quadratic forms HðFÞ if a simultaneous
fixed point of the respective flow equations exists at
all. While the flow equations for ν and HðFÞ are
tightly coupled, the flow equations for the various
HðFÞ are treated as independent for each choice
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of F. Now it could happen that these latter equations
have several different fixed points for each choice of
F that are reached depending on the choice of initial

discretization Hð0Þ
M ðFÞ. Then the corresponding

fixed point family HMðFÞ may depend rather dis-
continuously on F and thus would probably not
coincide with the result of blocking from the
continuum HMðFÞ ≔ JMHðFÞJM. We will see that
this does not happen because the flow acts directly
on the constraint function which does not depend on
F during the flow if the initial discretization
does not.

In the next section we examine whether these issues arise in
the Hamiltonian renormalization of PFT.

V. HAMILTONIAN RENORMALIZATION OF PFT

Since the constraint operators are of the form

Dþ¼½A2þ−A2
−�⊗1B⊗1Cþ1A⊗1B⊗C2þ;

Dþ¼1A⊗ ½B2þ−B2
−�⊗1C−1A⊗1B⊗C2

−; ð5:1Þ

it will be sufficient to consider one of the sectors A, B, C
only, say C. Our first task is to pick initial discretizations of

the Cð0Þ
�;M and corresponding Hilbert space measures νð0ÞM on

KM ¼ RM. As suggested by the considerations of Sec. II

we build Cð0Þ
�;M out of Cð0Þ

0;M and Cð0Þ
M . We define in parallel to

the continuum [see (2.24) and (2.25)]

ΦM ≔ I†MΦ;

ΠM ≔ I†MΠ;

QM⊥fM ≔ h1; fMiLM
1;

QM ≔ 1LM
−QM⊥ ;

Cð0Þ
0;M ≔

1ffiffiffi
2

p
� ffiffiffiffiffiffi

ω0

p
QM⊥ΦM − i

1ffiffiffiffiffiffi
ω0

p QM⊥MΠM

�
;

Cð0Þ
M ≔

1ffiffiffi
2

p

264 ffiffiffiffiffiffiffiffi
ωð0Þ
M

q
QMΦM − i

1ffiffiffiffiffiffiffiffi
ωð0Þ
M

q QMΠM

375;
Cð0Þ
s;M ≔ i

ffiffiffiffiffiffiffiffiffiffi
ω0=2

p
½Cð0Þ

0;M − ðCð0Þ
0;MÞ†� þ i

ffiffiffiffiffiffiffiffiffiffiffi
2ωð0Þ

M

q
½QMð0Þ

s Cð0Þ
M − ðQMð0Þ

s Cð0Þ
M Þ†Þ�;

ðωð0Þ
M Þ2 ≔ −ð∂ð0ÞM Þ2;

ð∂ð0ÞM fMÞðmÞ ≔ ð2MÞ−1½fMðmþ 1Þ − fMðm − 1Þ�;

QMð0Þ
s ≔

1

2

�
1LM

− is
∂
ð0Þ
M

ωð0Þ
M

�
QM;

Dð0Þ
s;M ≔ ∶½Cð0Þ

s;M�2∶ : ð5:2Þ

Here the adjoint operation and normal ordering is with respect to the Fock Hilbert space structure Hð0Þ
M defined by the

annihilation operators Cð0Þ
0;M and Cð0Þ

M with Fock vacuum Ωð0Þ
M . Note that QM⊥ ; QM; i∂M;ωM are self-adjoint on LM and that

Q⊥; QM;QM
s are orthogonal projections in LM with QM⊥QM ¼ QMþQM

− ¼ 0 and 1LM
¼ QM⊥ þQM;QM ¼ QMþ þQM

− . Note
that QM⊥ is the projection on the constant function 1 that equals unity.
An immediate observation is that

QM⊥ΦM ¼ h1;ΦMiLM
¼ 1

M

X
m

1ðmÞΦMðmÞ ¼ 1

M

X
m

ðI†MΦÞðmÞ ¼
X
m

hχMm ;ΦiL ¼ h1;Φi ¼ Q⊥Φ ð5:3Þ

and similarly for QM⊥ΠM ¼ Q⊥Π so that in fact

Cð0Þ
0;M ¼ C0 ð5:4Þ

is actually the same as in the continuum in the initial discretization. We will see that this property is preserved by the
renormalization flow so that the zero modes remain unrenormalized.
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We proceed to the flow equation for the Fock measure. We have

hfM;ΦMiLM
¼ hQM⊥fM;ΦMiLM

þ hQMfM;ΦMiLM

¼ h½2ω0�−1=2QM⊥fM; C
ð0Þ
0;MiLM

þ h½2ω0�−1=2QM⊥fM; C
ð0Þ†
0;M iLM

þ h½2ωð0Þ
M �−1=2QMfM;C

ð0Þ
M iLM

þ h½2ωð0Þ
M �−1=2QMfM;C

ð0Þ†
M iLM

: ð5:5Þ

Thus, the initial measure family has generating functional of moments

νð0ÞM ðwM½fM�Þ ¼ hΩð0Þ
M ; expðihfM;ϕMiÞΩð0Þ

M iHð0Þ

¼ exp

�
−
1

4
½hQM⊥fM;ω−1

0 QM⊥fMiLM
þQMfM; ½ωð0Þ

M �−1QMfMiLM
�
�
: ð5:6Þ

It is a family of Gaussian measures with covariances
(kernels on LM)

Kð0Þ
M ¼ 1

2
½QM⊥ω−1

0 QM⊥ þQM½ωð0Þ
M �−1QM�: ð5:7Þ

This is exactly as for the 1þ 1 Klein-Gordon field treated
in the first reference of [6] except that there we assumed a
nonvanishing mass p so that the projections QM⊥ and QM

are not necessary and the initial covariance is just

½2ωð0Þ
M ðpÞ�−1 with ½ωð0Þ

M ðpÞ�2 ¼ ½ωð0Þ
M �2 þ p2.

To study the flow of (5.7) we can borrow the results
of [6] as follows: In [6] we used the spectral theorem
to write

½2ωMðpÞ�−1 ¼
Z
R

dk
2π

½k2 þ ðωð0Þ
M ðpÞÞ2�−1 ð5:8Þ

by the residue theorem where due to p ≠ 0 there is no real
pole of the holomorphic integrand. Here, instead of
integrating over the real line, we consider the path

cρ∶ R → C; cρðkÞ ¼
(
k jkj > ρ

−ρei
π
2
ðkρþ1Þ jkj ¼ ρ

; ð5:9Þ

where ρ > 0 is arbitrarily small thus avoiding the real pole
k ¼ 0. Then

QM½2ωð0Þ
M �−1QM ¼ lim

ρ→0þ

Z
cρ

dk
2π

½k2 þ ðωð0Þ
M Þ2�−1: ð5:10Þ

By the flow equation

νðnþ1Þ
M ðwMðfMÞÞ ≔ νðnÞM0ðMÞðwM0ðMÞðIMM0ðMÞfMÞÞ ð5:11Þ

the measure family stays always inside the Gaussian class
and (5.12) translates into a flow of covariances

Kðnþ1Þ ¼ I†MM0ðMÞK
ðnÞ
M0ðMÞIMM0ðMÞ; ð5:12Þ

whereM0ðMÞ > M is the fixed higher resolution that enters
the concrete implementation of the blocking equations. As
in [6] we will choose M0ðMÞ ¼ 2M for simplicity.
We note that

QM0
⊥ IMM0fM ¼ h1; IMM0fMiLM0 ¼

1

M0
X

m0 ∈ZM0

fM

��
M

m0

M0

��

¼ 1

M0
X

m∈ZM

fMðmÞ
� XM0=M−1

l¼0

1

�
¼ 1

M

X
m∈ZM

fMðmÞ ¼ h1; fMiLM

¼ QM⊥fM ¼ IMM0QM⊥fM; ð5:13Þ

where in the last step we used that IMM0c ¼ c if c is a constant. Thus,

QM0
⊥ IMM0 ¼ IMM0QM⊥ ; ð5:14Þ
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i.e., the family of projectionsQM⊥ is equivariant with respect
to the coarse-graining maps IMM0 . Similarly

QM0
IMM0 ¼ ð1LM0 −QM0

⊥ ÞIMM0 ¼ IMM0 − IMM0QM⊥
¼ IMM0 ð1LM

−QM⊥ Þ ¼ IMM0QM: ð5:15Þ

It follows from (5.7) and (5.12) that the covariance always
takes the form

KðnÞ
M ¼ 1

2
½QM⊥ ½ωðnÞ

0;M�−1QM⊥ þQM½ωðnÞ
M �−1QM�; ð5:16Þ

in particular, the projections QM and QM⊥ are not
changed under the flow. Moreover, we have separated
the flow

½ωðnþ1Þ
0;M �−1 ¼ I†MM0ðMÞ½ωðnÞ

0;M0ðMÞ�−1IMM0ðMÞ;

½ωðnþ1Þ
M �−1 ¼ I†MM0ðMÞ½ωðnÞ

M0ðMÞ�−1IMM0ðMÞ; ð5:17Þ

The obvious fixed point of the first equation in (5.17) is

½ωðnÞ
0;M�−1 ¼ ω−1

0 QM⊥ ; ð5:18Þ

i.e., the zero modes remain unrenormalized as promised.
As for the second equation, we can in view of (5.10)
immediately copy the results of [6]: Instead of the param-
eter q2 ≔ k2 þ p2 used there we just use q2 ¼ k2. All other
relations remain literally identical. As the flow equations
in [6] depend analytically on q2, we infer that the fixed
point covariance ωM is the same as in [6] except that p ¼ 0

and that it appears sandwiched between QM,

KM ¼ 1

2
½QM⊥ω−1

0 QM⊥ þQMω−1
M QM�; ð5:19Þ

and moreover KM agrees with the covariance obtained by
blocking from the continuum.
Next we turn to the smeared constraints. Here we enter

new territory as compared to [6], first due to the presence of
the projectionsQMð0Þ

s and second because the constraints do
not annihilate the Fock vacuum.We focus just on the part of
DsðfÞ quadratic in the nonzero mode fields as this term by
itself also satisfies the Virasoro algebra [see Sec. II where
this term was denoted by T2

sðfÞ], and it is also this term
alone that leads to the anomaly. The other terms denoted
T0
sðfÞ and T1

sðfÞ can be treated by similar methods. We
start with the continuum expression and write it in terms of
integral kernels

DsðFÞ ¼
Z

dxFðxÞ
Z

dy
Z

dz½κ1sðx; y; zÞCðyÞ†CðzÞ þ κ2sðx; y; zÞCðyÞCðzÞ þ κ2sðx; y; zÞ�CðyÞ†CðzÞ†�; ð5:20Þ

where κ1sðx; y; zÞ� ¼ κ1sðx; z; yÞ and κ2sðx; y; zÞ ¼ κ2sðx; z; yÞ. We block from the continuum and compute
½DsðfÞ�M ≔ J†MDsðfÞJM,

hwM½fM�ΩM; ½DsðFÞ�MwM½gM�ΩMiHM
¼ hw½IMfM�Ω; DsðFÞw½IMgM�ΩiH: ð5:21Þ

We have for any f, g

hw½f�Ω; DsðFÞw½g�ΩiH ¼
Z

dxFðxÞ
Z

dy
Z

dz½κ1sðx; y; zÞhCðyÞw½f�Ω; CðzÞw½g�Ωi

þ κ2sðx; y; zÞhw½f�Ω; CðyÞCðzÞw½g�Ωi þ κ2sðx; y; zÞ�hCðyÞCðzÞw½f�Ω; w½g�Ωi ð5:22Þ

and

CðyÞw½f�Ω ¼ w½f�w½f�−1CðyÞw½f�Ω ¼ w½f�ðCðxÞ − i½ϕðfÞ; CðyÞ�ÞΩ ¼ i½CðxÞ;ϕðfÞ�w½f�Ω
¼ ½ð2ωÞ−1=2Qf�ðyÞw½f�Ω

CðyÞCðzÞw½f�Ω ¼ ½ð2ωÞ−1=2Qf�ðzÞCðyÞw½f�Ω ¼ ½ð2ωÞ−1=2Qf�ðzÞ½ð2ωÞ−1=2Qf�ðyÞw½f�Ω: ð5:23Þ

Abbreviating σ ¼ ð2ωÞ−1=2Q we thus find

hw½f�Ω;DsðFÞw½g�Ωi¼hw½f�Ω;w½g�Ωi
Z

dxFðxÞ
Z

dy
Z

dzðσfÞðyÞðσgÞðzÞ½κ1sðx;y;zÞþκ2sðx;y;zÞþκ2sðx;y;zÞ��: ð5:24Þ

Applied to f ¼ IMfM and g ¼ IMgM we obtain due to J†MJM ¼ 1HM
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hwM½fM�ΩM; ½DsðFÞ�MwM½gM�ΩMi

¼ hwM½fM�ΩM; wM½gM�ΩMi
Z

dxFðxÞ
Z

dy
Z

dzðσIMfMÞðyÞðσIMgMÞðzÞ½κ1sðx; y; zÞ þ κ2sðx; y; zÞ þ κ2sðx; y; zÞ��

¼ hwM½fM�ΩM; wM½gM�ΩMi
X

m1;m2 ∈ZM

fMðm1ÞgMðm2Þ
Z

dxFðxÞ
Z

dy
Z

dzσMðy;m1ÞσMðz;m2Þ

× ½κ1sðx; y; zÞ þ κ2sðx; y; zÞ þ κ2sðx; y; zÞ��
≕ hwM½fM�ΩM; wM½gM�ΩMi

×
X

m1;m2 ∈ZM

fMðm1ÞgMðm2Þ
Z

dxFðxÞ½κ1s;Mðx;m1; m2Þ þ κ2s;Mðx;m1; m2Þ þ κ2s;Mðx;m1; m2Þ�� ð5:25Þ

with σMðx;mÞ ≔ ðσχMm ÞðxÞ. Now in terms of

CM ¼ 1ffiffiffi
2

p ½ ffiffiffiffiffiffiffi
ωM

p
QMΦM − i

ffiffiffiffiffiffiffi
ωM

p −1QMΠM�; ð5:26Þ

where ω−1
M is the fixed point covariance that we obtained from the flow of the measures and which annihilates ΩM. We find

with the abbreviation σ̂M ¼ ½2ωM�−1=2QM and the Ansatz

½DsðFÞ�M ¼
X

m̂1;m̂2 ∈ZM

Z
dxFðxÞ½κ̂1s;Mðx; m̂1; m̂2ÞCMðm̂1Þ†CMðm̂2Þ

þ κ̂2s;Mðx; m̂1; m̂2ÞCMðm̂1ÞCMðm̂2Þ þ κ̂2s;Mðx; m̂1; m̂2Þ�CMðm̂1Þ†CMðm̂2Þ†� ð5:27Þ
with

κ̂1s;Mðx; m̂1; m̂2Þ� ¼ κ̂1s;Mðx; m̂2; m̂1Þ; κ̂2s;Mðx; m̂1; m̂2Þ ¼ κ̂2s;Mðx; m̂2; m̂1Þ ð5:28Þ
by exactly the same calculation

hwM½fM�ΩM; ½DsðFÞ�MwM½gM�ΩMiHM

¼ hwM½fM�ΩM; wM½gM�ΩMi ×
X

m1;m2 ∈ZM

fMðm1ÞgMðm2Þ
Z

dxFðxÞ

×
X
m̂1;m̂2

σ̂Mðm̂1; m1Þσ̂Mðm̂2; m2Þ½κ̂1s;Mðx; m̂1; m̂2Þ þ κ̂2s;Mðx; m̂1; m̂2Þ þ κ̂2s;Mðx; m̂1; m̂2Þ��

≕ hwM½fM�ΩM; wM½gM�ΩMi ×
X

m1;m2 ∈ZM

fMðm1ÞgMðm2Þ
Z

dxFðxÞ

× ½κ̂10s;Mðx;m1; m2Þ þ κ̂20s;Mðx;m1; m2Þ þ κ2s;Mðx;m1; m2Þ��: ð5:29Þ

Comparing (5.25) and (5.29) we obtain an exact match iff for j ¼ 1, 2

κ̂j0s;Mðx;m1; m2Þ ¼ κjs;Mðx;m1; m2Þ ⇔
Z

dy
Z

dzκjsðx; y; zÞσMðy;m1ÞσMðz;m2Þ

¼
X
m̂1;m̂2

κ̂js;Mðx; m̂1; m̂2Þσ̂Mðm̂1; m1Þσ̂Mðm̂2; m2Þ; ð5:30Þ

which determines the discrete kernels κ̂js;Mðx; m̂1; m̂2Þ in terms of the continuum kernels κjsðx; ; y; zÞ.
The question is whether the flow n ↦ ½DðnÞðFÞ�M starting from (5.2) actually yields this fixed point. Before we answer

this question we note that (5.27) is simply not of the formZ
dxFðxÞ

X
m

EMðx;mÞDs;MðmÞ; ð5:31Þ
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which would yield a natural map (kernel) EM;L ↦ LM
(see the discussion of item 1, viewpoint i. in Sec. IV). It is
not even of the formZ

dxFðxÞ
X
m1;m2

EMðx;m1; m2ÞDs;Mðm1; m2Þ ð5:32Þ

in terms of a bikernel EM∶ L ↦ LM × LM because there
are three independent monomials of annihilation and
creation operators involved, not only one. Thus, blocking

from the continuum does not give rise to such a natural
kernel or bikernel which would allow us to consider the
discretized constraints as ½CðFÞ�M as smeared with a
discretized function or bifunction. However, one may
introduce such an interpretation by hand by restricting F
to be of the form ĨMFM where ÎM should be sufficiently
differentiable and has all the properties of IM (see again the
discussion of item 1, viewpoint ii. in Sec. IV). Such ĨM will
indeed be provided in [21].
To study the actual flow of the constraints we note that

κ1sðx; y; zÞ ¼ κsðx; yÞ�κsðx; zÞ; κ2sðx; y; zÞ ¼ κsðx; yÞκsðx; zÞ; κsðx; yÞ ¼ ½Qs

ffiffiffiffiffiffi
2ω

p
�ðx; yÞ; ð5:33Þ

while σ ¼ ð2ωÞ−1=2Q and σM ¼ σ ∘ IM so that

κ1s;Mðx;m1; m2Þ ¼ κs;Mðx;m1Þ�κs;Mðx;m2Þ; κ2s;Mðx;m1; m2Þ ¼ κs;Mðx;m1Þκsðx;m2Þ;
κs;Mðx;mÞ ¼ ½κs σM�ðx;mÞ ¼ ½Qs ∘ IM�ðx;mÞ: ð5:34Þ

Accordingly we conclude that

κ̂1s;Mðx;m1; m2Þ ¼ κ̂s;Mðx;m1Þ�κ̂s;Mðx;m2Þ;
κ̂2s;Mðx;m1; m2Þ ¼ κ̂s;Mðx;m1Þκ̂sðx;m2Þ; κ̂s;Mðx;mÞ ¼ ½QsIM

ffiffiffiffiffiffiffiffiffi
2ωM

p
�ðx;mÞ ð5:35Þ

because with σ̂M ¼ ð2ωMÞ−1=2QM we have

½κ̂s;M ∘ σ̂M�ðx;mÞ ¼ ½QsIMQM�ðx;mÞ ¼ ½QsQIM�ðx;mÞ ¼ ½QsIM�ðx;mÞ ¼ κs;Mðx;mÞ: ð5:36Þ

To see whether these fixed point values of the kernels are reached from the initial discretization we write

κ̂1ðnÞs;M ðx;m1; m2Þ ¼ κ̂ðnÞs;Mðx;m1Þ�κ̂ðnÞs;Mðx;m2Þ;

κ̂2ðnÞs;M ðx;m1; m2Þ ¼ κ̂ðnÞs;Mðx;m1Þκ̂ðnÞs ðx;m2Þ; κ̂ðnÞs;Mðx;mÞ ¼
�
QsIM

ffiffiffiffiffiffiffiffiffiffiffi
2ωðnÞ

M

q �
ðx;mÞ; ð5:37Þ

and by the literally identical calculation we obtain

σ̂ðnÞM ðx;mÞ ¼ ½2ωðnÞ
M �−1=2QM ð5:38Þ

in terms of which the flow equation readsX
m̂1;m̂2

κjðnþ1Þ
s;M ðx;m̂1;m̂2Þσ̂ðnþ1Þ

M ðm̂1;m1Þσ̂ðnþ1Þ
M ðm̂2;m2Þ

¼
X
m̂0

1
;m̂0

2

κjðnÞs;M0 ðx;m̂0
1;m̂

0
2Þðσ̂ðnÞM0 ∘ IMM0 ðm̂0

1;m1ÞÞ

×ðσ̂ðnÞM0 ∘ IMM0 ðm̂0
2;m2ÞÞ; ð5:39Þ

which is equivalent to

κ̂ðnþ1Þ
s;M ∘ σ̂ðnþ1Þ

M ¼ κ̂ðnÞs;M0 ∘ σ̂ðnÞM0 ∘ IMM0 ð5:40Þ

or

κ̂ðnþ1Þ
s;M ∘QM ¼ κ̂ðnÞs;M0 ∘ ½ωðnÞ

M0 �−1=2 ∘ IMM0 ½ωðnÞ
M �1=2 ∘QM;

ð5:41Þ

where the sequence n ↦ ωðnÞ
M was constructed explicitly

from the measure flow and satisfies for M0ðMÞ ¼ 2M,

I†MM0ðMÞ½ωðnÞ
M0ðMÞ�−1IMM0ðMÞ ¼ ½ωðnþ1Þ

M �−1: ð5:42Þ

Starting with

κ̂ð0Þs;M ¼ IMQ
ð0Þ
s;M½ωð0Þ

M �1=2; ð5:43Þ

one finds from (5.41) using the consistency of the maps
IM2M3

IM1M2
¼ IM1M3

for M1 < M2 < M3
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κ̂ðnÞs;M ¼ I2nMQ
ð0Þ
s;2nMIM;2nM½ωðnÞ

M �1=2: ð5:44Þ

Taking the limit n → ∞we get due to limit values I∞ ¼ 1L;

Qð0Þ
s;∞ ¼ Qs; IM;∞ ¼ IM; ωð∞Þ

M formally

κ̂ð∞Þ
s;M ¼ κ̂s;M: ð5:45Þ

However, it must be shown if and in what sense the
sequence (5.44) actually runs into the limit (5.45) which
coincides with that blocked from the continuum. This will
be done in the next section.

VI. DISCRETE VIRASORO ALGEBRA

The current section is the most important one of the
present paper as it answers the question whether the
continuum algebra is visible at finite resolution, how large
its finite resolution anomaly is, and in what sense that
anomaly is simply a finite resolution artifact and converges
to zero as we increase the resolution. We thus consider the
finite resolution M constraint operators on HM,

DsMðFÞ ≔ J†MDsðFÞJM; ð6:1Þ
and compute the finite resolution anomaly

αMðF; s;G; tÞ ≔ ½DsMðFÞ; DtMðGÞ� − J†M½DsðFÞ; DtðGÞ�JM ¼ −J†M½DsðFÞP⊥
MDtðGÞ −DtðGÞP⊥

MDsðFÞ�JM; ð6:2Þ

where

P⊥
M ¼ 1H − PM; PM ¼ JMJ⊥M ¼ P2

M ¼ P†
M ð6:3Þ

is an orthogonal projection thanks to the isometry
J†MJM ¼ 1HM

. The finite resolution anomaly vanishes only
when the constraint operators preserve the subspaces PMH
ofHwhich is generically not the case and certainly for PFT
it is not.
Heuristically the anomaly vanishes as we increase the

resolution M → ∞ as we expect that P⊥
M → 0. The rest of

this section is devoted to showing that this is the case
rigorously in a suitable operator topology. In fact, showing
that αMðs; F; t; GÞ as M → ∞ is a delicate issue and must
be defined appropriately. This is because we change the
Hilbert spaceHM on which αM is defined. Hence we cannot
simply probe the anomaly, say with respect to the weak
operator topology on HM, that is, fixing ψM;ψ 0

M ∈HM,
considering the matrix elements

hψM; αMðs; F; t; GÞψ 0
MiHM

ð6:4Þ

and taking M → ∞ at fixed ψM;ψ 0
M as these depend

themselves on M. However, what we can do is to consider
fixed ψ ;ψ 0 ∈H independent of M and probe the anomaly
with ψM ≔ J†Mψ ;ψ

0
M ≔ J†Mψ

0. Accordingly we study the
large M behavior of

hJ†Mψ ; αMðs; F; t; GÞJ†Mψ 0iHM
: ð6:5Þ

It will be sufficient to study one of the two terms in (6.2),
i.e., the matrix element

hψ ; PMDsðFÞP⊥
MDtðGÞPMψ

0iH
¼ hDsðFÞPMψ ; P⊥

MDtðGÞPMψ
0iH; ð6:6Þ

where it used the symmetry of all operators involved.

There are several issues with (6.6) that require
clarification: First of all, one would like to take ψ ;ψ 0
from the dense domain D given by the span of the Weyl
vectors w½f�Ω; however, to be useful we need an explicit
formula for J†Mψ ; PMψ for ψ ∈D, which is not available
from [4,6,7]. We derive this formula below. Next, as
expected, the range of J†MD is in DM, which is the span
of the w½IMfM�Ω that is dense in PMH. However, as IMfM
is a step function, it is not clear that DsðFÞw½IMfM�Ω is
well-defined, i.e., a normalizable element ofH. It is for this
reason that we considered also the case of discontinuous
functions f such as IMfM as the domain of the constraint
operators in Sec. II, and we showed that after suitable
regularization we have indeed DsðFÞw½IMfM�Ω∈H.
Finally, the image of D or PMD is not invariant under
the constraints so that evaluation of the matrix elements of
P⊥
M between vectors in D is again not directly possible. In

fact, in order to evaluate P⊥
M on say DsðFÞPMw½f�Ω one

would need to know how to write it as a linear combination
of the w½g�Ω, a task which has no obvious solution. One
could think that one can avoid this complication and use the
fact thatD is dense inH. Thus given ϵwe find ψ̃ ∈Dwhich
differs in norm from DsðFÞPMw½f�Ω by at most ϵ. If
that ψ̃ would only depend on s, F, ϵ one could indeed
restrict consideration to the limit of the matrix elements
hψ̃ ; P⊥

Mψ̃
0i with ψ̃ ; ψ̃ 0 ∈D because kP⊥

Mk ¼ 1 is bounded.
Unfortunately, such ψ̃ does depend on M, and without
explicitly knowing how it does so, it is not possible to
estimate the limit of (6.6). The fact that also kPMk ¼ 1
does not help as PM stands between DsðFÞ and ψ .
We are therefore forced to have a detailed look at (6.6). A

simplification can be obtained by observing that

jhDsðFÞPMψ ; P⊥
MDtðGÞPMψ

0ij
≤ hDsðFÞPMψ ; P⊥

MDsðFÞPMψi1=2
× hDtðGÞPMψ

0; P⊥
MDtðGÞPMψ

0i1=2 ð6:7Þ
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thanks to the CS inequality and the projector property
ðP⊥

MÞ2 ¼ ðP⊥
MÞ† ¼ P⊥

M. Thus (6.6) converges to zero as
M → ∞ for all s; F;ψ ; t; G;ψ 0 if and only if

hDsðFÞPMψ ; P⊥
MDsðFÞPMψi ð6:8Þ

converges to zero for all s; F;ψ ∈D: That convergence of
(6.6) implies convergence of (6.8) followed by choosing
t ¼ s; G ¼ F;ψ 0 ¼ ψ . The next convergence of (6.8) for all
ψ ∈D implies in particular convergence of

hDsðFÞPMw½f�Ω; P⊥
MDsðFÞPMw½f�Ωi ð6:9Þ

for the choice ψ ¼ w½f�Ω and conversely convergence
of (6.9) implies convergence of (6.8) for finite linear
combinations of the w½f�Ω, that is, general ψ ∈D again
by the CS inequality.
Accordingly we will prove that (6.9) converges to zero.

Our first task is to compute PMw½f�Ω. We begin by
computing J†Mw½f�Ω,

hwM½gM�ΩM; J
†
Mw½f�ΩiHM

¼ hJMwM½gM�ΩM; w½f�ΩiH
¼ hw½IMgM�Ω; w½f�ΩiH
¼ hΩ; w½f − IMgM�ΩiH
¼ exp

�
−
1

2
Cðf − IMgM; f − IMgMÞ

�
; ð6:10Þ

where we have written out the continuum covariance

2C ¼ Q⊥ω−1
0 Q⊥ þQω−1Q ð6:11Þ

as a symmetric bilinear form on L × L. We can also
consider it as an operator defined by

hf; CgiL ≔ Cðf; gÞ: ð6:12Þ

We will make use of these two meanings of C as
appropriate, and it is clear from the context which meaning
is used, respectively. We also remind the reader of the
covariance at resolution M,

2CM ¼ I†M2CIM ¼ Q⊥
Mω

−1
0 Q⊥

M þQMω
−1
M QM; ð6:13Þ

where equivarianceQIM ¼ IMQM was used. Note that both
C and CM considered as operators on L and LM, respec-
tively, have, in contrast to ω and ωM an inverse, explicitly

1

2
C−1
M ¼ I†M2CIM ¼ Q⊥

Mω0Q⊥
M þQMωMQM ð6:14Þ

and similar for C−1.
We make the Ansatz

J†Mw½f�Ω ¼ κMðfÞwM½fMðfÞ�ΩM ð6:15Þ

for numbers κMðfÞ and vectors fMðfÞ∈LM to be deter-
mined. Plugging (6.15) into (6.10) we find

exp

�
−
1

2
Cðf − IMgM; f − IMgMÞ

�
¼ κMðfÞ exp

�
−
1

2
CMðfMðfÞ − gM; fMðfÞ − IMgMÞ

�
; ð6:16Þ

which is uniquely solved by

fMðfÞ ¼ C−1
M I†MCf; κMðfÞ ¼ exp

�
−
1

2
½Cðf; fÞ − CMðfMðfÞ; fMðfÞÞ�

�
: ð6:17Þ

Note that κMðfÞ can be simplified

CMðfMðfÞ; fMðfÞÞ ¼ CðIMfMðfÞ; IMfMðfÞÞ ¼ hIMfMðfÞ; CIMfMðfÞiL
¼ hfMðfÞ; I†MCIMfMðfÞiLM

¼ hfMðfÞ; CMfMðfÞiLM

¼ hfMðfÞ; I†MCfiLM
¼ hf; ½CðIMC−1

M I†MÞC�fiL: ð6:18Þ

It follows

PMw½f�Ω ¼ κMðfÞw½fMðfÞ�Ω; fMðfÞ ¼ IMfMðfÞ ¼ ðIMC−1
M I†MÞCf: ð6:19Þ

It is instructive to verify the projection property P2
M ¼ PM and the isometry property J†MJM ¼ 1HM

, which relies on
κMðIMfMÞ ¼ 1 and fMðIMfMÞ ¼ IMfM for any fM ∈LM.
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The next task is to compute DsðFÞPMw½f�Ω, which
given (6.19) can be done, of course, using the explicit
expression of DsðFÞ in terms of creation and annihilation
operators. However, to be useful, we must write
DsðFÞPMw½f�Ω in the form of linear combinations of
w½h�Ω again because in order to apply P⊥

M to it, whose
action follows from (6.19), its action is only known in
closed form on vectors in D and not on Fock states. The
other option would be to expand PMw½f�Ω into Fock states.
While this is possible, it leads to very complex expressions.
We therefore choose the former route which also has
the advantage to maximally benefit from the identity
P⊥
MPM ¼ 0.

We note that (we pick the C sector for definiteness and
focus only on the corresponding contribution to the con-
straints)

w½h�Ω¼ expðihh;ΦiÞΩ¼ expðihC−1=2h;A†
CþACiLÞΩ

¼ exp

�
−
1

2
hh;ChiexpðihC1=2h;A†

CþiL
�
Ω; ð6:20Þ

using well-known Fock space techniques (Baker Campbell
Hausdorff formula). Here we have denoted the annihilation
operator of theC sector by AC in order not to confuse it with
the covariance C. Thus, we find the functional derivatives

δ

δhðyÞw½C
−1hþ g�Ω ¼ ½−gðyÞ − ðC−1hÞðyÞ þ iðC−1=2A†

CÞðyÞ�w½C−1hþ g�Ω

δ2

½δhðyÞ�½δhðzÞ�w½C
−1hþ g�Ω ¼ f−C−1ðy; zÞ þ ½−gðyÞ − ðC−1hÞðyÞ þ iðC−1=2A†

CÞðyÞ�

× ½−gðzÞ − ðC−1hÞðzÞ þ iðC−1=2A†
CÞðzÞ�w½C−1hþ g�Ω; ð6:21Þ

i.e., at h ¼ 0�
δ

δhðyÞw½C
−1hþ g�Ω

�
h¼0

¼ ½−gðyÞ þ iðC−1=2A†
CÞðyÞ�w½g�Ω�

δ2

½δhðyÞ�½δhðzÞ�w½C
−1hþ g�Ω

�
h¼0

¼ f−C−1ðy; zÞ þ ½−gðyÞ þ iðC−1=2A†
CÞðyÞ�½−gðzÞ þ iðC−1=2A†

CÞðzÞ�gw½g�Ω: ð6:22Þ

Here we used that all expressions just depend on creation operators that mutually commute.
Recall the constraint operator

−DsðFÞ ¼
Z

dxFðxÞ
Z

dy
Z

dzfQsðx; yÞQsðx; zÞðC−1=2ACÞðyÞðC−1=2ACÞðzÞ

þQ�
sðx; yÞQ�

sðx; zÞðC−1=2A†
CÞðyÞðC−1=2A†

CÞðzÞ − 2Q�
sðx; yÞQsðx; zÞðC−1=2A†

CÞðyÞðC−1=2ACÞðzÞg; ð6:23Þ

where Qsðx; yÞ is the integral kernel of the projection Qs. We have explicitly

½C−1=2AC�ðyÞw½g�Ω ¼ w½g�ðw½−g�½C−1=2AC�ðyÞw½g�ÞΩ ¼ w½g�ð½C−1=2AC�ðyÞ − i½ϕ½g�; ðC−1=2ACÞðyÞ�ÞΩ
¼ −iw½g�½A�

C½C1=2g�; ðC−1=2ACÞðyÞ�ÞΩ ¼ −igðyÞw½g�Ω; ð6:24Þ

whence

−DsðFÞw½g�Ω ¼
Z

dxFðxÞ
Z

dy
Z

dzf−Qsðx; yÞQsðx; zÞgðyÞgðzÞ

þQ�
sðx; yÞQ�

sðx; zÞðC−1=2A†
CÞðyÞðC−1=2A†

CÞðzÞ − 2iQ�
sðx; yÞQsðx; zÞðC−1=2A†

CÞðyÞgðzÞgw½g�Ω

¼
Z

dx
Z

dy
Z

dzffð−Qsðx; yÞQsðx; zÞ þQ�
sðx; yÞQ�

sðx; zÞ − 2Qsðy; zÞ�Qðx; zÞÞgðyÞgðzÞ − C−1ðx; yÞg

þQ�
sðx; yÞQ�

sðx; zÞfðC−1=2A†
CÞðyÞðC−1=2A†

CÞðzÞ þ 2igðyÞðC−1=2A†
CÞðzÞ þ C−1=2ðy; zÞ − gðyÞgðzÞg

− 2fðQ�
sðx; yÞQsðx; zÞ þQ�

sðx; yÞQ�
sðx; zÞÞ½iðC−1=2A†

CÞðyÞ − gðyÞ�gðzÞggw½g�Ω ð6:25Þ
with Q ¼ Qs þQ�

s . We evaluate (6.25) for g ¼ fMðfÞ, multiply it from the left with κMðfÞP⊥
M, and use (6.22) to obtain

the identity
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P⊥
MDs½F�PMw½f�Ω¼

	
P⊥
M

Z
dxFðxÞ

Z
dy

Z
dz

	
Qsðx;yÞ�Qsðx;zÞ�

δ2

½δhðyÞ�½δhðzÞ�−2Qsðx;yÞ�Qðx;zÞ½fMðfÞ�ðzÞ δ

δhðyÞ



×κMðfÞw½C−1hþfMðfÞ�Ω



h¼0

; ð6:26Þ

where the terms in (6.25) that do not involve creation operators could be dropped because at h ¼ 0 we
get P⊥

MκMðfÞw½C−1hþ fMðfÞ�Ω ¼ P⊥
MPMw½f�Ω ¼ 0.

Formula (6.26) is the desired expression because P⊥
M can be pulled past the functional derivatives where it hits w½C−1hþ

fMðfÞ�Ω and can be evaluated. Let h0 ¼ C−1h; g ¼ fMðfÞ. Then due to the projector property fMðgÞ ¼ g and κMðgÞ ¼ 1
whence

P⊥
Mw½h0 þ g�Ω ¼ w½h0 þ g�Ω − κMðh0 þ gÞw½fMðh0 þ gÞ�Ω;
fMðh0 þ gÞ ¼ fMðh0Þ þ g;

κMðh0 þ gÞ ¼ κMðh0ÞκMðgÞ expðhh0; Cð1 − IMC−1
M I†MÞgiLÞ ¼ κMðh0Þ; ð6:27Þ

therefore,

κMðfÞP⊥
Mw½h0 þ g�Ω ¼ κMðfÞðw½h0 þ g� − κMðh0Þw½fMðh0Þ þ g�ÞΩ ¼ ½w½h0� − κMðh0Þ�w½fMðh0Þ�PMw½f�Ω: ð6:28Þ

We can now evaluate (6.8):

kP⊥
MDsðFÞPMw½f�Ωk2 ¼

	Z
dxFðxÞ

Z
dy

Z
dz

Z
dx0Fðx0Þ

Z
dy0

Z
dz0

×

	
Qsðx; yÞQsðx; zÞ

δ2

½δhðyÞ�½δhðzÞ� − 2Qsðx; yÞQðx; zÞgðzÞ δ

δhðyÞ



×

	
Q�

sðx0; y0ÞQ�
sðx0; z0Þ

δ2

½δĥðy0Þ�½δĥðz0Þ� − 2Q�
sðx0; y0ÞQðx0; z0Þgðz0Þ δ

δĥðy0Þ



× h½w½h0� − κMðh0Þ�w½fMðh0Þ�PMw½f�Ω; ½w½ĥ0� − κMðĥ0Þ�w½fMðĥ0Þ�PMw½f�ΩiH



h¼ĥ¼0

ð6:29Þ

with g ¼ fMðfÞ; h0 ¼ C−1h; and ĥ0 ¼ C−1ĥ. We have

h½w½h0� − κMðh0Þ�w½fMðh0Þ�PMw½f�Ω; ½w½ĥ0� − κMðĥ0Þ�w½fMðĥ0Þ�PMw½f�Ωi
¼ κMðfÞ2h½w½h0� − κMðh0Þ�w½fMðh0Þ�w½g�Ω; ½w½ĥ0� − κMðĥ0Þ�w½fMðĥ0Þ�w½g�Ωi
¼ κMðfÞ2h½w½h0� − κMðh0Þ�w½fMðh0Þ�Ω; ½w½ĥ0� − κMðĥ0Þ�w½fMðĥ0Þ�Ωi
¼ κMðfÞ2hP⊥

Mw½h0�Ω; P⊥
Mw½ĥ0�Ωi

¼ κMðfÞ2hw½h0�Ω; P⊥
Mw½ĥ0�Ωi

¼ κMðfÞ2hΩ; ½w½ĥ0 − h0� − κMðĥ0Þw½fMðĥ0Þ − h0�Ωi

¼ κMðfÞ2
�
exp

�
−
1

2
hĥ0 − h0; Cðbh0 − h0Þi

�
− κMðĥ0Þ exp

�
−
1

2
hfMðĥ0Þ − h0; CðfMðbh0Þ − h0Þi

��
: ð6:30Þ

Before evaluating the functional derivatives we can simplify (6.30):
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hh0; CfMðĥ0Þi ¼ hfMðh0Þ; Cĥ0i

hfMðĥ0Þ; CfMðĥ0Þi ¼ hĥ0; CfMðĥ0ÞiκMðĥ0Þ exp
�
−
1

2
hfMðĥ0Þ − h0; CðfMðbh0Þ − h0Þi

�
¼ exp

�
−
1

2
½hĥ0; C½ĥ0 − fMðĥ0Þ�i þ hfMðĥ0Þ − h0; C½fMðĥ0Þ − h0�i�

�
¼ exp

�
−
1

2
½h½ĥ0 − h0�C½ĥ0 − h0�i þ 2hh0; Cðĥ0 − fMðĥ0Þi�

�
: ð6:31Þ

Accordingly, Eq. (6.30) can be rewritten as (reintroducing h ¼ Ch0; ĥ ¼ Cĥ0)

κMðfÞ2 exp
�
−
1

2
h−h; C−1½ĥ − h�i

�
½1 − expð−hh; ½C−1 − IMC−1

M I†M�ĥiÞ�: ð6:32Þ

It will be convenient to define the symmetric kernels K ¼ C−1;ΔK ¼ C−1 − IMC−1
M I†M. In carrying out the double, triple,

and fourfold functional derivatives of (6.32) at h ¼ ĥ ¼ 0 we use arguments familiar from Wick’s theorem in perturbative
QFT: as (6.32) is a linear combination of two exponentials EðHÞ ¼ expðBðH;HÞ=2Þ of a quadratic polynomial B in
H ¼ ðh; ĥ0Þ, their derivatives are schematically

E0 ¼ ðBHÞE;E00 ¼ ½Bþ ðBHÞ2�E;E000 ¼ ½3B2H þ ðBHÞ3�E;
E0000 ¼ ½3B2 þ 3ðBHÞ2Bþ 3ðB2HÞðBHÞ þ ðBHÞ4�E; ð6:33Þ

so that at H ¼ 0 only second and fourth derivatives survive. To simplify the notation we set

E1 ≔ exp

�
−
1

2
hĥ − h;K½ĥ − h�i

�
; E2 ≔ expð−hh; ½ΔK�ĥiÞ; Ej;y ≔

δ

δhðyÞ ; Ej;y0 ≔
δ

δĥðy0Þ ; ð6:34Þ

with j ¼ 1, 2 and similar for z, z0. Then

ðE1E2Þ;yy0 ¼ E1;yy0E2 þ E1E2;yy0 þ E1;yE2;y0 þ E1;y0E2;y;

ðE1E2Þ;yy0zz0 ¼ ½E1;yy0zz0E2 þ E1;yy0E2;zz0 � þ ½E1;zz0E2;yy0 þ E1E2;yy0zz0 �
þ ½E1;yzE2;y0z0 ¼ E1;yz0E2;y0z� þ ½E1;y0zE2;yz0 þ E1;y0z0E2;yz� þ � � � ; ð6:35Þ

where � � � denotes odd order derivatives which vanish at H ¼ 0. We have at H ¼ 0

E1;yz ¼ −Kðy; zÞ; E1;y0z0 ¼ −Kðy0; z0Þ; E1;yz0 ¼ Kðy; z0Þ;
E2;yz ¼ 0; E2;y0z0 ¼ 0; E2;yz0 ¼ ½ΔK�ðy; z0Þ;

E1;yy0zz0 ¼ Kðy; zÞKðy0; z0Þ þ Kðy; y0ÞKðz; z0Þ þ Kðy; z0ÞKðz; y0Þ;
E2;yy0zz0 ¼ ½ΔK�ðy; y0Þ½ΔK�ðz; z0Þ þ ½ΔK�ðy; z0Þ½ΔK�ðz; y0Þ: ð6:36Þ

Collecting all terms we find at H ¼ 0

½E1ð1 − E2Þ�;yy0 ¼ ½ΔK�ðy; y0Þ; ð6:37Þ

½E1ð1 − E2Þ�;yy0zz0 ¼ Kðy; y0Þ½ΔK�ðz; z0Þ þ Kðy; z0Þ½ΔK�ðz; y0ÞKðz; y0Þ½ΔK�ðy; z0Þ
− ½ΔK�ðy; y0Þ½ΔK�ðz; z0Þ − ½ΔK�ðy; z0Þ½ΔK�ðz; y0Þ; ð6:38Þ

where importantly both terms proportional to E1;yy0zz0 have canceled so that all functional derivatives contain at least one
factor of ΔK, which we expect to imply the convergence to zero of (6.8), which now can be vastly simplified to
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κMðfÞ2
Z

dxFðxÞ
Z

dx0Fðx0Þf3Ksðx; x0Þ½ΔK�sðx; x0Þ − 2ð½ΔK�sðx; x0ÞÞ2 þ 4g0ðxÞg0ðx0Þ½ΔK�sðx; x0Þg; ð6:39Þ

where using Q�
sðy; zÞ ¼ Q−sðy; zÞ ¼ Qsðz; yÞ,

Ksðx; x0Þ ¼
Z

dy
Z

dzQsðx; yÞQsðx0; zÞKðy; zÞ ¼ ½QsKQs�ðx; x0Þ; ð6:40Þ

and similar for ½ΔK�sðx; x0Þ. Here

g0ðxÞ ¼ ½QIMC−1
M I†MCf�ðxÞ ¼ ðQðK − ½ΔK�ÞCfÞðxÞ; κMðxÞ ¼ exp

�
−
1

2
hCf; ½ΔK�Cfi

�
: ð6:41Þ

Since PM is a projection, we have kPMk ¼ 1; thus,

kPMw½f�Ωk ¼ κMðfÞkw½fMðfÞ�Ωk ¼ κMðfÞk ≤ kPMkkw½f�Ωk ¼ 1; ð6:42Þ

and it will be sufficient to show that the integral term in (6.39) converges. Also we focus on s ¼ þ, the case s ¼ − being
completely analogous. Obviously then, the convergence or not of (6.8) rests on the properties of ΔK and g0. We begin with
the term Z

dx
Z

dx0FðxÞFðx0ÞKþðx; x0Þ½ΔK�þðx; x0Þ ¼
Z

dx
Z

dx0FðxÞFðx0ÞKþðx; x0Þ½ΔK�−ðx0; xÞ; ð6:43Þ

where in the second step we used that ½ΔK�ðy; zÞ ¼ ½ΔK�ðz; yÞ and Qsðy; zÞ ¼ Q�
sðz; yÞ ¼ Q−sðz; yÞ. We expand into the

Fourier basis

Kþðx; x0Þ ¼
X

n;n0 ∈Z

enðxÞhen;QþKQþen0 ie−n0 ðx0Þ ¼
X
n;n0>0

enðxÞhen; Ken0 ie−n0 ðx0Þ;

½ΔK�−ðx0; xÞ ¼
X
n;n0<0

enðx0Þhen; ½ΔK�en0 ie−n0 ðxÞ;

FðxÞ ¼
X
jnj<n0

F̂ðnÞenðxÞ ¼ F�ðxÞ; F̂�ðnÞ ¼ F̂ð−nÞ; ð6:44Þ

where we assume that F has compact momentum support jnj < n0. Presumably what follows can also be shown under
milder decay assumptions on the Fourier modes F̂ðnÞ (e.g., rapid decrease in n∈Z), but we will be satisfied if convergence
can be proved for this class of smearing functions of the constraint. Then (6.43) turns intoX

jn1j;jn2j<n0
F̂ðn1Þ; F̂�ðn2Þ

X
m;n>0

hem; Keni
X

m0;n0<0

½ΔK�m0;n0δn1þm−n0δ−n2−nþm0 : ð6:45Þ

This implies the constraints on the range of m; n;m0; n0,

n0 ¼ n1 þm < 0; m0 ¼ n2 þ n < 0; m ¼ n0 − n1 > 0; n ¼ m0 − n2 > 0

⇒ 0 < m < −n1 < n0; 0 < n < −n2 < n0; 0 > n0 > n1 > −n0; 0 > m0 > n2 > −n0; ð6:46Þ

thus, the compact momentum support propagates to the m; n;m0; n0 modes. For bounded values of m, n the modulus of the
matrix element jhem; Kenij is uniformly bounded, and we are left to study the behavior of hen; ½ΔK�en0 i at fixed values of
n; n0 ≠ 0 (of equal sign). We have

hen; ½ΔK�en0 i ¼ hen; ½C−1 − IMC−1
M I†M�en0 i

¼ 2½ωðnÞδn;n0 −
X
ñ∈ZM

ωMðñÞhen; IMeMñ ihIMeMñ ; en0 i; ð6:47Þ
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where in the second step we expanded into the spectral
basis eMñ ∈LM of ωM given by eMñ ðmÞ ¼ eñðxMm Þ; xMm ¼ m

M ;
m∈ZM. The eigenvalues ωMðñÞ follow from the definition
CM ¼ I†MCIM, i.e.,

QMω
−1
M QM ¼ I†MQω−1QIM ð6:48Þ

from which

QMω
−1
M QMeMñ ¼

X
0≠n;n0∈Z

I†Menhen;ω−1en0 ihen0 ;IMeMñ i

¼
X

ñ0∈ZM

eMñ0
X
n≠0

hIMeMñ0 ;eniω−1ðnÞhen;IMeMñ i:

ð6:49Þ

Here we need the Fourier modes of the characteristic
functions χMm of the interval ½xMm ; xMmþ1Þ,

ðI†MenÞðmÞ¼MhχMm ;eni¼MenðxMm Þ
eikMn−1

2πin
; kM¼2π

M
:

ð6:50Þ

We note that (6.50) does not have compact momentum
support and also does not decay rapidly. This has some
bearing further below. It follows

heMñ ; I†Meni ¼ hIMeMñ ; eni

¼
X

m∈ZM

½eMñ ðmÞ��eMn ðmÞ e
ikMn − 1

2πin

¼
�X

m

eMn−ñðmÞ
�
eikMn − 1

2πin

¼ Mδñ;n̂
eikMn − 1

2πin
; ð6:51Þ

where n̂∈ZM and n ¼ n̂þ lM; l∈Z uniquely decom-
poses a general integer n into a multiple l of M and a
remainder n̂∈ZM ¼ f0; 1;…;M − 1g. Accordingly

QMω
−1
M QMeMñ ¼

X
ñ0
eMñ0

X
n≠0

ωðnÞ−1δñ;n̂δñ0;n̂

×
2M2½1−cosðkMn̂Þ�

½2πn�2
¼½1−δñ;0�eMñ

X
l∈Z

ωðñþ lMÞ−1

×
2M2½1−cosðkMñÞ�

½2πðñþ lMÞ�2 ; ð6:52Þ

whence for M > n > 0,

ωMðnÞ−1 ¼
X
l

ωðnþ lMÞ−1 2½1 − cosðkMnÞ�
½kMðnþ lMÞ�2

¼ ωðnÞ−1 2½1 − cosðkMnÞ�
½kMn�2

þ
X
l≠0

ωðnþ lMÞ−1 2½1 − cosðkMnÞ�
½kMðnþ lMÞ�2 : ð6:53Þ

Since ωðnÞ ¼ 2πjnj, at fixed n the first term in (6.53)
converges to ω−1ðnÞ as M → ∞ while the modulus of the
second is bounded by the series

4

ð2πÞ3M
X∞
l¼1

�
1

½lþ n
M�3

þ 1

½l− n
M�3

<
4

ð2πÞ3M
X∞
l¼1

�
1

l3
þ 1

½l− 1
2
�3
�

ð6:54Þ

for n < M=2 and thus converges to zero as M−1.
Accordingly ωMðnÞ − ωðnÞ ¼ Oð1=MÞ at fixed n. Then
(6.47) becomes

hen; ½ΔK�en0 i ¼ 2

�
ωðnÞδn;n0 −

X
ñ∈ZM

ωMðñÞ
X
m1;m2

eikMn
0 − 1

2πin0

�
eikMn − 1

2πin

��
eMñ−nðm1ÞeMn0−ñðm2Þ

�

¼ 2

�
ωðnÞδn;n0 −

X
ñ∈ZM

ωMðñÞδñ;n̂δñ;n̂0
2½1 − cosðkMñÞ�

ð2πÞ2nn0
�
; ð6:55Þ

where n ¼ n̂þ lM; n0 ¼ n̂0 þ l0M, and n̂; n̂0 ∈ZM. Since 0 > n; n0 > −n0, and eventually M > n0, we have l ¼ l0 ¼ −1
and n̂ ¼ M þ n ¼ ñ; n̂0 ¼ M þ n0 ¼ ñ; therefore, n ¼ n0 in the second term of (6.56) and ñ ¼ nþM

hen; ½ΔK�en0 i ¼ 2δn;n0

�
ωðnÞ − ωMðM þ nÞ 2½1 − cosðkMðnÞÞ�

ðkMnÞ2
�
: ð6:56Þ

Note that for −M < −n0 < n < 0 we have
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ωMðM þ nÞ−1 ¼
X
l∈Z

ωðM þ nþ lMÞ−1 2½1 − cosðkMðM þ nÞÞ�
½kMðM þ nþ lMÞ�2

¼
X
l∈Z

ωðnþ lMÞ−1 2½1 − cosðkMnÞ�
½kMðnþ lMÞ�2 → ωðnÞ−1 ¼ ωð−nÞ−1 ð6:57Þ

as M → ∞. Thus, indeed, Eq. (6.43) converges to zero.
Next considerZ

dx
Z

dx0FðxÞFðx0Þ½ΔK�þðx; x0Þ½ΔK�þðx; x0Þ ¼
Z

dx
Z

dx0FðxÞFðx0Þ½ΔK�þðx; x0Þ½ΔK�−ðx0; xÞ: ð6:58Þ

By the same argument as above, if F has compact
momentum support, then (6.58) is a quadratic polynomial
in the hen; ½ΔK�n0 i with M independent coefficients where
either n0 > n; n0 > 0 or −n0 < n; n0 < 0 and hence con-
verges to zero.
Finally considerZ

dxFðxÞ
Z

dx0Fðx0Þg0ðxÞg0ðx0Þ½ΔK�sðx; x0Þ; ð6:59Þ

where

g0ðxÞ ¼ ½QIMC−1
M I†MCf�ðxÞ: ð6:60Þ

We note that QIM ¼ IMQM; ½CM;QM� ¼ ½C;Q� ¼ 0

implies that I†MQ ¼ q −mI†M whence by the now familiar
argument

g0ðxÞ ¼ ½QIMC−1
M I†MCQf�ðxÞ ð6:61Þ

so that

g0 ¼
X
n;n0≠0

X
ñ

ωMðñÞen0 hen0 ; IMeMñ ihIMeMñ ; eniωðnÞ−1f̂ðnÞ

¼
X
l;l0 ∈Z

X
ñ

ωMðñÞeñþl0M
2½1 − cosðkMñÞ�

k2Mðñþ lMÞðñþ l0MÞωðñþ lMÞ−1f̂ðñþ lMÞ: ð6:62Þ

It follows that g0 does not have compact momentum support
n0 even if f does. Therefore, FðxÞg0ðxÞ also does not have
compact momentum support even if F does. It is not even
clear that (6.62) converges. This feature of f0 is again due
to the fact that the functions χMm are discontinuous. If one
would replace them by χM;n0

m where χ̂M;n0
m is the Fourier

expansion of χMm restricted to modes jnj < n0, then χ
M;n0
m →

χMm in the L norm, and if we define In0M; ½In0M �† like IM; I
†
M

with χMm replaced by χM;n0
m and first take the limit M → ∞

in (6.59) and then n0 → ∞, then (6.59) vanishes as
M → ∞. This regularization using the momentum cutoff
n0 is similar to the zeta function regularization of Sec. III
and is justified by the following argument: while the χMm
have all the necessary features in order to define a
renormalization flow, they are not the only choice. There
are other, smoother choices [21] satisfying the same
necessary requirements but those have a built-in compact
momentum support of orderM. In that case the sum over l,
l0 in (6.62) disappears and the compact momentum support
of f propagates to that of g, and then, e.g., g ¼ Qf even
exactly for sufficiently large M. Then also Fg0 have
compact momentum support, and the same argument as

was made for (6.43) and (6.58) can be used to show that
(6.59) converges to zero without any regulator. Since the
choice of the χMm is quite arbitrary subject to a minimal set
of requirements and since one wants to probe functions f of
compact momentum support using their IMI

†
Mf approx-

imants, such a smooth choice of χMm is simply more
convenient. With respect to any choice we have conver-
gence of IMI

†
M → 1L in the L2 sense, but the finite

resolution approximants have additional smoothness or
momentum compactness properties while others do not
and those additional properties turn out to be important in
the present convergence analysis. The strict proof that with
the choice of IM made in [21] expression (6.59) converges
to zero is given in Sec. 5 of [21] and also provides the
argument that was missing at the end of the previous
section to establish convergence of the flow of constraints.
We conclude this section with the remark that the

functions χMm used in [21] are smooth with compact
momentum support and that smooth smearing functions
F, f of constraints and Weyl elements, respectively, are of
rapid decrease in the momentum mode label n. Thus, with
respect to those functions all estimates of this section pass
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through without any regularization and convergence is
established.

VII. DISCRETIZED SMEARING FUNCTIONS
OF THE CONSTRAINTS

As we have seen, the embeddings JM do not induce a
canonical mapEM∶ L → LM such that (we drop the index s
for the purpose of this section)

DMðFÞ ≔ J†MDðFÞJM ≕ D̃MðEMFÞ: ð7:1Þ

However, we may use the map EM ≔ I†M to define the
family of discretized smearing functions FM ≔ I†MF,

D̃MðFMÞ ≔ J†MDðIMFMÞJM ¼ DMðpMFÞ; ð7:2Þ

where

pM ¼ IMI
†
M∶ L → L ð7:3Þ

is a projection due to isometry I†MIM ¼ 1LM
. This defines a

consistent family of quadratic forms in the sense that for
any M < M0,

J†MM0D̃M0 ðIMM0FMÞJMM0 ¼ D̃MðFMÞ ð7:4Þ

with IMM0 ¼ I†M0IM thanks to IM0IMM0 ¼ IM and
JM0JMM0 ¼ JM. We can therefore compute

½D̃MðFMÞ; D̃MðGMÞ� ¼ J†Mð½DðpMFÞ; DðpMGÞ� −DðpMFÞð1 − PMÞDðpMGÞ þDðpMGÞð1 − PMÞDðpMFÞÞJM ð7:5Þ

and modulo the central term we have in our case

½DðpMFÞ; DðpMGÞ� ¼ Dð½pMF; pMG�Þ: ð7:6Þ

The new smearing function in (7.6) is given by

½pMF; pMG� ≔ ½pMF�0½pMG� − ½pMF�½pMG�0 ¼ pMð½pMF; pMG�Þ þ ð1 − pMÞð½pMF; pMG�Þ: ð7:7Þ

Thus (7.5) becomes

½D̃MðFMÞ; D̃MðGMÞ� ¼ D̃MðκMðFM;GMÞÞ ð7:8Þ

modulo the central term and the corrections involving
1H − PM and 1L − pM. Here the discretized structure
functions are defined by

κMðFM;GMÞ≔ I†MκðIMFM; IMGMÞ; κðF;GÞ ¼ ½F;G�;
ð7:9Þ

which are well-defined if the functions χMm defining IM are
sufficiently differentiable. We have already seen in the
previous section that the correction involving 1H − PM
converges to zero if F has compact momentum support.
That is no longer the case for F replaced by pMF if the
functions χMm are step functions, but it is the case when
those functions themselves have compact momentum
support as those in [21]. The functions χmM in general span
a closed, finite dimensional subspace VM ⊂ L and their
derivatives ½χMm �0 may or may not lie in VM (for the case [21]
they actually do). However, the products χMm0 ½χMm �0 are no
longer in VM so that the term proportional to 1L − pM does
not vanish automatically. If, however, F, G have compact
momentum support, then the projections pMF coincide

with F for sufficiently large M because VM roughly
involves all Fourier modes up to order jnj ≤ M and thus
also ½F;G� eventually lies in VM and the correction
involving 1 − pM eventually vanishes.
If F, G do not have compact momentum support but are

smooth, then their Fourier transforms are of rapid decrease
in the mode label n. In this case the terms involving
1L − pM are not exactly zero for sufficiently largeM but do
converge to zero rapidly. Thus we see that with respect to
the coarse-graining maps of [21] the correction terms of
type 1H − PM; 1L − pM of the discrete Virasoro algebra
converge to zero in the weak operator topology of H and
that in particular the central term of the Virasoro algebra is
correctly reproduced.

VIII. CONCLUSION AND OUTLOOK

In the present work we have investigated the question
whether Hamiltonian renormalization in the sense of
[4,6,7,11], while derived in the context of ordinary
Hamiltonian systems, can be “abused” to study also
generally covariant Hamiltonian systems with an infinite
number of Hamiltonian constraints rather than a single
Hamiltonian. We have chosen parametrized field theory on
the 1þ 1 cylinder to test related questions where the exact
quantum theory is known.
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We have explicitly demonstrated that indeed the general
framework of [11] can be applied, although the system does
not exhibit a common vacuum vector Ω for all constraint
operators due to the central term in the Virasoro algebra.
The renormalization flow indeed finds the correct fixed
point theory. This enabled us to study the constraint algebra
at finite resolution. That finite resolution algebra generi-
cally does not close (including the central term). However,
it does not close for a simple mathematical reason: The
constraints at finite resolution are forced to map states in
the Hilbert space of given finite resolution to themselves.
However, to achieve closure, matrix elements with states
at higher resolution are needed. These are restored as we
increase the resolution and explains why the failure of
closure is parametrized by the projection 1H − PM where
PM projects on the given finite resolution subspace. In that
sense the failure to close does not represent an anomaly but
just a finite size artifact. In QFTs that are not exactly
solvable one can distinguish between true anomalies and
these artifacts by studying whether their size decreases as
we increase the resolution.
In addition, we could address the question if and in what

sense smearing functions of constraint operators can or
should also be discretized when probing them at finite
resolution. Namely, while it is not necessary or even natural
to do so, one can use the coarse-graining map that was
employed for reasons of renormalization also for those
smearing functions. This leads to an additional finite

size artifact in the finite resolution constraint algebra
parametrized by 1L − pM where now pM projects on
smearing functions (rather than Hilbert space states) of
finite resolution. This is because the commutator of
constraints is smeared by a bilinear expression in two
smearing functions and typically derivatives thereof of
finite order. Those aggregates generically leave the sub-
space pML. However, again these corrections converge to
zero as we increase the resolution for coarse-graining maps
with sufficient smoothness.
In the convergence proofs that we supplied it was

important that the functions that define the coarse-graining
maps of the renormalization flow display sufficient smooth-
ness as otherwise the estimates that were needed do not
hold: the Fourier transform of a merely piecewise smooth
function is not of rapid decrease and displays the Gibbs
phenomenon at the discontinuities [32]; i.e., the partial
Fourier transform of the function at finite resolution has
points within the resolution size away from the disconti-
nuity that differ from the function by a size independent of
the resolution.
Wewill use the lessons learned for more complicated and

physically more interesting constrained QFT such as PFT
in higher dimensions and the Uð1Þ3 model for quantum
gravity [33] which present the next logical step in the
degree of complexity as in these models the constraint
algebra (hypersurface deformation algebra) no longer
closes with structure constants but only structure functions.
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