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Hamiltonian renormalization, as defined within this series of works, was derived from covariant Wilson
renormalization via Osterwalder-Schrader reconstruction. As such it directly applies to quantum field
theory (QFT) with a true (physical) Hamiltonian bounded from below. The validity of the scheme was
positively tested for free QFT in any dimension with or without Abelian gauge symmetries of Yang-Mills
type. The aim of this Hamiltonian renormalization scheme is to remove quantization ambiguities of
Hamiltonians in interacting QFT that remain even after UV and IR regulators are removed as it happens in
highly nonlinear QFT such as quantum gravity. Also, while not derived for that case, the renormalization
flow formulas can without change also be applied to QFT without a single true Hamiltonian but rather an
infinite number of Hamiltonian constraints. In that case a number of interesting questions arise: (1) Does
the flow reach the correct fixed point also for an infinite number of “Hamiltonians” simultaneously? (2) As
the constraints are labeled by test functions, which in the presence of a regulator are typically regularized
(discretized and of compact support), how do those test functions react to the flow? (3) Does the quantum
constraint algebra, which in the presence of a regulator is expected to be anomalous, close at the fixed
point? These questions should ultimately be addressed in quantum gravity. Before one considers this
interacting, constrained QFT, it is well-motivated to consider a free, constrained QFT where the fixed point
is explicitly known. In this paper we therefore address the case of parametrized field theory for which the
quantum constraint algebra coincides simultaneously with the hypersurface deformation algebra of
quantum gravity (or any other generally covariant theory) and the Virasoro algebra of free, closed, bosonic
string theory or other conformal field theories to which the results of this paper apply verbatim. The central
result of our investigation is that the finite resolution (discretized) constraint algebras typically do not close,
that there is not necessarily anything wrong with that, and that anomaly freeness of the continuum algebra

is encoded in the convergence behavior of the renormalization flow.
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I. INTRODUCTION

Interacting quantum field theory (QFT) typically have to
be constructed: One first defines a regulated theory (with
both UV and IR regulators present) and then tries to remove
the regulator, thereby renormalizing the bare parameters
(i.e., redefining them in terms of measured parameters and
regulators). That procedure of constructive QFT, even if
successful in the sense that the unregulated, nonperturba-
tive theory is well-defined, may yet be ambiguous; i.e., it
may keep a memory of which regularization procedure was
applied. We will refer to such ambiguities as quantization
ambiguities. One expects this problem the more likely to
occur the more nonlinear the theory is. An extreme case is
quantum gravity whose Einstein-Hilbert action depends
nonpolynomially on the metric field.

Such ambiguities are not severe if they can be encoded
by a finite number of (so-called relevant) parameters. They
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could be fixed by a finite number of experiments and thus
lead to a predictive theory. However, if that parameter space
is infinite dimensional, the theory is not predictive. To
make it predictive, the number of free parameters must be
downsized to a finite dimensional manifold. To achieve
this, one imposes a restriction on the family of regulated
theories: they must qualify, at the finite regulator, as the
coarse-grained versions of a continuum theory at a reso-
lution defined by that regulator. For instance, a Euclidean
QFT may be defined by a family of measures y, where
r denotes the regulator. The measure p, knows how
to integrate functionals of the Euclidean quantum field
smeared with test functions that are restricted up to
resolution r. Thus, in order to produce unambiguous
results, for any finer resolution ' < r we must have
1], = p,; i.e., since the quantum field tested at resolution
r can be written in terms of the quantum field at resolution
¥, we can use pu, instead of u, to integrate functions
restricted to resolution r.

This so-called cylindrical consistency is basically
the idea of Wilson renormalization [1]. A cylindrically
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consistent family of measures y, in turn defines a con-
tinuum measure y that can integrate the quantum field at
any resolution under rather mild assumptions [2]. From a
practical viewpoint, the cylindrical family is then sufficient
because in reality one never considers physical processes at
infinite resolution, and thus the explicit construction of y is
not needed. Now in constructive QFT one typically starts

with an initial family {M(f’)},e r Where R is the regulator
manifold. It typically comes with an in principle infinite
number of parameters p € P that enter via the discretization
freedom of the classical theory (action) that one starts
from (e.g., next neighbor, next to next neighbor, ... , terms

in the Laplacian). Even if the limit x(© :=1lim,_, y&o)

exists as a measure, it will typically retain a nontrivial
dependence on all “directions” of the parameter mani-
fold P. Therefore, it is natural to improve the initial family

and define a sequence of families neNj— {,u(,”)},e r by

pl Y = [,uf:(lz)], where x(r) < r maps to a finer resolution.

This defines a flow of measure families which may have
a fixed point {y}},cx which by construction is consistent
at least with respect to the coarse grainings k(r) — r.
Experience shows that this usually also makes the fixed
point family consistent with respect to all pairs 7 < r. In
the course of this process, it may happen that all but finite
(relevant) directions in P have been fixed to a fixed value.
In that case we say that the QFT has been nonperturbatively
renormalized to a predictive QFT.

These ideas were first formulated in quantum statitistical
field theory (i.e., Euclidean field theory [3]) using
path integral methods. Using Osterwalder-Schrader (OS)
reconstruction one can also translate them into the
Hamiltonian language [4] (see also [5] for closely related
earlier Hamiltonian renormalization schemes and references
therein). The validity of [4] has been tested in free field
theories without [6] and with [7] Abelian gauge symmetry of
the Yang-Mills type. The motivation for [4] is actually its
application in Hamiltonian quantum gravity, specifically
in its loop quantum gravity (LQG) incarnation [8]. Since
the classical Einstein-Hilbert action is nonpolynomial in
the metric field, the quantization ambiguity problem is
expected to be especially severe in this case. Indeed,
quantum gravity is not perturbatively renormalizable, which
motivates the nonperturbative path integral renormalization
program known as asymptotic safety [9]. In the Hamiltonian
setting, while it is possible to rigorously define the
Hamiltonian constraint operators [10], they suffer from
quantization ambiguities so that a Hamiltonian renormali-
zation thereof is well-motivated [11,12]. See also [11] for a
comparison with other renomalization schemes that are
applied to general relativity.

At first it may look strange why an OS motivated
Hamiltonian renormalization scheme should apply at
all to quantum gravity: OS reconstruction delivers a
Hamiltonian operator H bounded from below on a

Hilbert space H and a ground state Q&H. However,
canonical quantum gravity does not come with a
Hamiltonian but rather an infinite number of Hamiltonian
constraints C(N) on a Hilbert space H’' where N are test
functions (called lapse functions). For no choice of N are
these bounded from below, and rather than the spectrum of
H on H one is interested in the joint kernel of the C(N) on
‘H' defining the physical Hilbert space H which does not
coincide with H and is typically not a subspace thereof
(typically it is a space of distributions on a dense subspace
of H'). However, on the one hand, it is possible to cast
quantum gravity into the framework of an ordinary quan-
tum Hamiltonian system by using Hamiltonian constraint
gauge fixings [13]. In this reduced phase space approach
one then retains a physical Hamiltonian directly on the
physical Hilbert space H.

On the other hand, it turns out that the Hamiltonian
renormalization flow, while derived from the OS renorm-
alization scheme, can formally be applied also to more than
one operator and in particular also those that are not
bounded from below, certainly but not necessarily when
they share a common ground state €. This observation
allows the attractive perspective to monitor the fate of the
commutator algebra of the C(N) during the renormaliza-
tion process that is not possible in the reduced phase
approach where the C(N) are solved classically. Classically
we have the closed hypersurface deformation algebra [14]
{C(M),C(N)} = C(f(M,N)) where f(M,N) are new
test functions which in more than two spacetime dimen-
sions or with density weight different from two also depend
on the metric. This fact makes it especially difficult to
turn this into an anomaly-free constraint operator commu-
tator [C(M),C(N)|] =ih “C(f(M,N))” because of the
ordering problem involved in C(f(M,N)) [15]. Indeed,
the development of [10] can be interpreted as saying that
[C(M),C(N)] = ihC(f(M,N)) closes with the correct
ordering [i.e., the kernel of the C(f(M,N)) is contained
in that of the C(N)] but with the wrong “structure
functions,” that is, the operators f(M,N) do not qualify
as the quantization of f(M, N). To improve on this state of
affairs, one may modify the quantization of the C(N)
without resorting to renormalization methods, an ambitious
very interesting program that is now in motion [16] and to
which the developments of the current paper may be
viewed as complementary; see especially the parametrized
field theory application of that program [17] (and also [18]
where qualitatively similar results were obtained without
changing the notion of convergence of regulated operators
as defined in [10]).

More in detail, the Hamiltonian renormalization flow
works with a family of triples (H,, H,,Q,) where H, is a
Hilbert space, H, is a self-adjoint operator on H, (bounded
from below if coming from an OS measure), and Q, is a
ground state of H,, i.e., H,Q, = 0. The regulator labels r
belong to partially ordered and directed set R. Given
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isometric embeddings J,.: H, — H,;r <r to be con-
structed subject to the consistency condition J.J,, =
Jryr < ¥ < ¢" and that ensure J,.Q, = Q,, one defines
the inductive limit Hilbert space H by a standard
construction [19]. Moreover, at the fixed point, the H,
form a consistently defined family of quadratic forms
H, = Ji/Hr/Jr,J,r < r' defining a continuum form H.
That form may or may not define a self-adjoint operator
on H and in particular is in general not to be confused with
the inductive limit of the H, which is not granted to exist.

In extending this framework to more than one (in field
theory, even an infinite number of) operators, we face
several new questions:

(1) We start with an initial family C” (N) of operators on

an initial family of Hilbert spaces Hi‘”, one for each
resolution scale r and one for each continuum
smearing function N. The origin of r typically comes
from a discretization of the continuum field ¢ and
conjugate momentum z in terms of coarse-grained
variables ¢,, 7, and substituting them for ¢, 7 in the
expression for C(N). Does this automatically induce
a discretization N (,0) of N as well? If not, should one
supply one by hand or leave N in its continuum form?
(2) Is it possible or necessary to find a common zero
eigenvector Q£O> IS H£0> of the C(r()) (N) or c£0> (N 5()))
independent of N or N\"? This is far from trivial:
while the classical continuum constraints form a
closed Poisson algebra of real functions, there is no

reason to take it for granted that the algebra of the

discretized C'” (N)orC © (N 50)) closes under taking
commutators. In fact, this is most likely not the case
because typically the classical constraint algebra
rests on the validity of the Leibniz rule for partial
derivatives. However, discretized derivatives do not
obey the Leibniz rule [20]. Thus, not only can these
constraints not be simultaneously diagonalized, it
may even be that their joint kernel just consists
of the zero vector. In that case, we have to assume

that there exists at least a cyclic vector ng) for the
|

3

“

&)

algebra of operators under consideration in the
common dense domain of all constraints.

Given that Q(r()) can be found, one can proceed as in
the case of just one Hamiltonian operator and
construct a sequence of families of Hilbert spaces

" and isometric injections J): H"Y HE,”)

rr’

for ¥ < r such that J 5’;,)9(,”“) = Q(rf'>. The isometry
requirement translates into flow equations for

the Hilbert space measures /") underlying H\" =
LZ(Q,,dz/gn)) where Q, is a flow invariant
model configuration space. Assuming that a fixed
point J,,. of this flow of isometric injections can be
found (equivalently, a cylindrically consistent mea-
sure family v,), one can construct a continuum
Hilbert space H as the inductive limit of the

H, = L,(Q,,dv,). In tandem, one constructs a

flow of families’ quadratic forms Cg”H)(N) 1=

777t (N)J™), one for each N. Can one arrange
that all of them flow into a fixed point whatever
choice of N is made? Or should one rather also let
the discretized smearing functions flow according
to "N = T (N )
Suppose that a simultaneous fixed point family
C,(N) or C,(N,) can be found. Then by construc-
tion C,(N)=JIC(N)J, or C,(N,)=J.C(N)J,
where J,: H, — H is the isometric embedding
granted to exist by the inductive limit construction.
Is it true that C(N) is no longer plagued by an
infinite number of quantization ambiguities? Is it
true that the algebra of commutators of C(N) is
nonanomalous? Note that it is not clear that the
commutators can even be computed because C(N) is
just a quadratic form.

Assuming that these questions can be answered in
the affirmative, how does one recognize anomaly
freeness at finite resolution? Note that the C,(N) will
most certainly not close under forming commutators
even if the C(N) do because [11]

[Cr(M)7 Cr(N)] = JI [C(M)PrC<N) - C<N)PrC(M)]Jr’ (1'1)

where P, :=J,J Tisa projection in H. It is therefore generically not expected that the finite resolution projections of the
constraints form a closed algebra. However, given closure in the continuum, we may rewrite (1.1) as

[C.(M), C,(N)] = ihC,(f(M.N)) = J}[C(M)(13 = P,)C(N) = C(N)(1y = P,)C(M)]J,. (1.2)

and the anomalous term naively vanishes as r is removed and P, becomes 14. This, when supplied by a suitable operator
topology of convergence, may serve as a practical guide toward proving anomaly freeness even if one cannot determine the

continuum operator C(N) in closed form.
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It would be very interesting to find necessary and
sufficient conditions under which the above questions
can be answered in the affirmative. In this paper we confine
ourselves to the much easier task to illustrate and work out
the catalog of questions and answers for the case of
parametrized massless Klein-Gordon field theory in 1 + 1
spacetime dimensions.

The architecture of this paper is as follows:

In Sec. II we briefly review (1 4 1)-dimensional para-
metrised field theory (PFT) following the notation of [18].
We treat both the classical and the quantum theories.

In Sec. III we specialize the general framework of [4,11]
to PFT. We choose as the regulator space a nested system of
square lattices. Here we learn the first important lesson
from the present work: The constraint operators are ill-
defined on the dense domain of finite resolution subspaces
generated by the discretized Weyl algebra unless the test
functions that enter that Weyl algebra and that define the
renormalization flow display at least a minimal amount of
smoothness. This issue did not arise in the works [6]
because there the renormalization could be phrased in terms
of the covariance of the Gaussian measure which decays
sufficiently fast at infinity in momentum space even when
smeared against the discontinuous test functions used.
However, in PFT we also need inverse powers of that
covariance. This observation triggered the work [21] where
we generalize [11] in a natural way to a generalized
multiresolution analysis (MRA) based renormalization
flows of which there are even smooth candidates, thus
removing the aforementioned obstacle. In fact, Ref. [6]
turns out to be a special case of [21] as [6] is based on the
so-called Haar MRA. On the other hand, as the conver-
gence to the continuum via sequences of discontinuous or
smooth functions should not affect the continuum fixed
point theory, we also offer an equivalent solution to the just
mentioned smoothness problem within the Haar MRA class
based on zeta function regularization which is a common
tool in conformal field theories (CFT) such as PFT.

In Sec. IV we show that there exists a well-motivated
discretization of the PFT constraints. Clearly, because of
the central term in the Virasoro algebra there does not exist
a single vector in the joint point kernel of all constraints,
not even in the continuum. However, there does exist a
preferred cyclic vector in the common dense domain of
all constraints which serves as a substitute, both in the
continuum and at finite resolution. We can then proceed in
a similar manner to Refs. [6,7] and compute the flow and
fixed point of the corresponding Hilbert space measures.

In Sec. V we compute the flow of the constraint operators.
We show that the first option of leaving the smearing
functions N untouched (not discretized by hand) does not
induce a canonical discretization of the smearing functions
of the constraints. On the other hand, using the coarse-
graining map that is used to compute the flow of measures,
vacua, and constraints to discretize their smearing functions

by hand does lead to a cylindrically consistent system (under
change of resolution) of constraints.

In Secs. VI and VII we compute the algebra of
constraints at finite resolution and illustrate the behavior
of (1.1) and (1.2). It is at this point that we learn the second
most important lesson from the present work when trying to
show that the discrete algebra converges to the continuum
algebra in the weak operator topology:

(i) When working with nondiscretized constraint
smearing functions, there is just one correction to
the continuum algebra at the finite resolution in-
dicated in (1.1) and (1.2). However, when addition-
ally discretizing the constraint smearing function by
hand, an additional correction arises.

(i) Convergence to zero of the first correction requires a
minimal amount of smoothness of the test functions
of the Weyl algebra for reasons similar to those
mentioned before concerning the domain of defi-
nition of the constraints.

(iii) Convergence to zero of the second correction
requires sufficient smoothness of the discretized
smearing function N of the constraints, which is,
of course, not surprising because the Virasoro
algebra depends on third order (Schwartzian) deriv-
atives of those smearing functions.

We establish convergence using for instance the Dirichlet
flow of [21] rather than the Haar flow of [6].

In Sec. VIII we summarize and conclude our findings for
this model which presents the next logical step in the
research program started in [4,6,7,11].

The most important lessons learned from the present
work are as follows:

(A) Finite resolution constraints typically do not close.

(B) This is no problem at all; in fact, it would be
physically wrong: 1t just displays the mathematical
fact that the constraints typically are not block
diagonal with respect to different resolution Hilbert
subspaces. If they would be, they would “know about
the dynamics”’; however, the finite resolution projec-
tions we use are entirely kinematical. The failure to
close is no anomaly but a finite resolution artifact.

(C) Whether the continuum algebra closes, i.e., is free of
anomalies, can be checked using finite resolution
analysis: The finite resolution artifact should con-
verge to zero. This is of practical importance because
in more complicated theories one will hopefully be
able to construct the theory at finite resolution but
perhaps computing the infinite resolution (con-
tinuum) theory may be too hard but also unnecessary
as measurements always have finite resolution.

II. BRIEF REVIEW OF PFT

This section mainly serves to introduce our notation and
follows [18]. See [18] for more information and references
therein. See also [22] for more details on the quantization of
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PFT using classically equivalent constraints for which the
quantum anomaly is formally a coboundary so that it can be
(formally—i.e., modulo showing the existence of corre-
sponding Hilbert space representations) absorbed into a
noncentral quantum correction of the constraints. See [23]
for renormalization of closely related (fermionic) CFTs.

A. Classical theory

The spacetime is the infinite cylinder Zp = R x Cy
where Cy, is the circle of radius R with Minkowski metric
n = diag(—1,1) and Cartesian coordinates T := X’ € R,
X = X'€[0,2zR). We introduce another cylinder Z of
unit radius Z = R x ' with coordinates (x°=1r,x'=x)
and consider the diffeomorphism ¢:Z — Zg; (t,x)
T(t,x),X(t,x) upon which T, X become fields on Z.
Note that T is periodic T(¢,x + 1) = T(z,x) while X is
an angular variable X(7,x + 1) = X(¢,x) + 2zR.

The action of the massless Klein-Gordon field ¢ on Zp,

S==3 | X0 @.1)
2 )z, 4%

is pulled back by the above diffeomorphism and yields via
¢ = @*® the PFT action

1
5= [ dxldal) gro 0, (22)

g=4¢n,
which by construction is invariant under reparametrizations
(diffeomorphisms) of Z. It is thus an example of a generally
covariant field theory, and thus its canonical formulation in
terms of Hamiltonian C and spatial diffeomorphism con-
straints D must yield a representation of the abstract
hypersurface deformation algebra of the one parameter
family of hypersurfaces 7+ X, = ¢(t,[0, 1)) discovered
in [14]. Using standard methods one finds

1
H=PX'+ YT’+§[H2 +(@)?], D=PT +YX'+1d,

(2.3)

where (.)=0,(.),(.) =d,(.), and (P, Y.TI) are the momenta
conjugate to (7,X,®), respectively; i.e., the nontrivial
equal ¢ Poisson brackets are

{P(u), T(v)} = {Y (), X(v)} = {l(u), ®(v)} = 6(u, v)

with the & distribution on S!

5(’/" U) — Zeﬂn(u—v)n‘

nez

(2.5)

One quickly verifies the hypersurface deformation algebra
b relations

{D(f).D(9)} = D([f. ),
{H(f).H(9)} = D(If9));

{D(f),H(g9)} = H([f, ),
If.gl=fg9-fd, (2.6)

where f and g are periodic, real valued smearing functions
on S' and, e.g., D(f) = fsl dxfD. Geometrically, C and D
are scalar densities of weight two, and f and g are scalar
densities of weight minus one, which is why [f,g] is
independent of the spatial metric ¢ = g,,, an effect that can
happen only in one spatial dimension.

We note that the constraints depend only on the
derivatives of X, T, ® and thus do not contain information
about their respective zero modes. We denote them by @,
Xo, Ty. Also, since X is not periodic in contrast to Y, P, I,
T, @, the field X’ has a phase space independent zero mode
given by 2zR. We thus write

X(x) = 2zRx + X (x), (2.7)
where X has the same zero mode as X and is still conjugate
to P. We can thus write the constraints as

D =2zRY + D, H=2zRP+H, (2.8)
where D and H differ from D and H upon replacing X by X.
The zero modes of Y, P, Il can be extracted as

1
Yo—QL'Y1=/O de()C), Q1= IL_QJJ (29)

and similar for Py, I1;. Note Q is an orthogonal projection
on L :=L,([0,1),dx) extracting the nonzero modes of a
function.

It is convenient to introduce the field combinations

_ 1
Xe=X&T.  Po=g(YE£P).,  Ac=P £X),
B,=P_+X., C,=N0+® (2.10)

in terms of which we can write the constraints as

(2.11)

One checks

(AL (). As (1)} = £20,6(u, 0){A+ (1), Az (v)} = 0
(2.12)

and similar for B and C, all other brackets vanishing, so that

{Di(f),Di(g)}:Di([ﬂgD’ {Di(f)’D:F(g>}:0'

(2.13)
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The original variables can be recovered from A, B, C; except for the zero modes of the configuration variables

1 1 1
H:E[C++C_}, Y:P++P_:§[A++A_+B++B_], P:P+—P_:§[A++A_—B+—B_],

1 -

1 1
©=2[C.-C). X=X, +X.= [A,~A_+B,~B]. T'=X,-X_= [A,~A_-B +B].

so that the zero modes of Y, P, Il but not those of X, 7T, ®
are available from A, B, C,. For the original constraints
we find

. 1

with P, =1[A, + A_] and P_ =1[B, + B_]. Therefore,
also

(2.16)

{Di(f)’[)i(g)} = D:t([f7 1),

In what follows we will only consider the a lgebra of the
D (f). The algebra of the D can be treated by identical
methods.

B. Quantum theory

The classical system consists of three independent
scalar fields X, T, @, which are coupled via the constraints
that are only quadratic in the fields and their momenta. We
thus use a Fock representation. In most approaches to PFT
and also the closed bosonic string [24] one constructs a
Fock space using the mode functions e, (x) = exp(i2znx)
which form an orthonormal basis of the “one particle
Hilbert space” L = L,([0,1),dx) and defines A (n):=
A.(e,) = [dxe,(x)*AL(x), etc., from which one finds
As(n) = As(-n),

{Ai(nl)’Ai(nz)} = j:2(1"12)5;1,”2.0’ (2'17)
or in terms of commutators
[Ai(nl)’A:I:(HZ)} = i2n16111+n2,0' (218)

This allows one to interpret A (n) as an annihilation
operator and A, (n)* as a creation operator for n > 0,
A_(n) as an annihilation operator and A_(n)* as a creation
operator for n < 0, while A, (0) =A_(0) = (P,), (zero
mode). Similar remarks hold for B, and C, where
B.(0)=B_(0)=(P_), and C,(0)=C_(0)= (I,
This split with respect to the sign of n makes the discussion
somewhat cumbersome as it requires one to introduce six
different Fock spaces and a separate discussion of the zero
mode sector.

(2.14)
|
Let us therefore introduce the quantities
A::i[a)‘/ZQX —iw~'/2QP,]
V2 ’ o
1
B:=—[w'?0X_—io~'?QP_],
ﬂ[ Q or_|]
1
C:=—[w"/?0® - iw™ /2011, 2.19
ﬁ[ 0 o (2.19)
where
@?()=—=()"=-A (2.20)

is minus the Laplacian on S' and @ its positive square root.
The quantities (2.19) are the standard annihilation operators
of three massless Klein-Gordon fields where we have been
careful to remove the zero mode on which the Laplacian is
not invertible (if there would be a mass term, we would
have @?> = m? — A and in this case a separate discussion of
the zero mode is not necessary).
For the zero modes we set

L ap )
Ay i=— o X, —iw P,
0 \/5[ 0 Qi1Xy o QO P.]
L ap Y
By :i=—|w, X_—iw P_|,
0 \/j[ 0 QJ_ 0 QJ_ ]
L ap )
Coi=——|m b —iw I1], 2.21
0 \/j[ 0 QJ_ 0 QJ_ } ( )

where @y > 0 is an arbitrary parameter of dimension of
inverse length. It is therefore natural to set it equal to 1/R
but we will keep it unfixed for the moment.

For any operator valued distribution O and any smearing
function f we set

(1.0 = [armow=o¢). 22
Then, by promoting the Poisson brackets to commutators

[(f\Ao). (9. 40)"] = (. Q19).  [(f.A).(9.4)"] = (f. Q).

(2.23)

and similar for the B and C sectors, all other commutators
vanish. Here * is the respective complex conjugate of (2.19)
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and (2.20) extended to an involution on linear combinations
of products.
The relation among these annihilators is as follows:

A, =P, £X,=0Q,P, +Q(P, £ X})

:i\/%[A — A +i \E[A A*]i\/g[A+A*}’
.4¢§m—%Hﬂ@M&M—wﬁm,@%

where

(0 :% |:1L F lg} o (2.25)
projects onto the positive/negative Fourier modes: Q e, =
e, if n >/ <0 and zero otherwise. Note that Q. is an
orthogonal (i.e., self-adjoint) projection on the 1-particle
Hilbert space L which commutes with O, d, @ which can be
seen by using the common eigenbasis e,. As [QLA]* =
Q- A" (Fock space, not L space adjoint), it follows that

iV20A = QA + Q_A_, (2.26)

Y B0, 5) + 2B, (1) (EL(f)

A =-|5

—EL(f)) () +2:(E

which demonstrates that the Fock space defined by declar-
ing A as annihilation operators is the same as the tensor
product of Fock spaces defined by declaring QO A, Q_A_
as annihilators, which is exactly relation (2.18). Similar
statements hold for the B and C sectors. It is thus equivalent
but more economic to work with A rather than A, and we
consider the Fock space ‘H with Fock vacuum €2 annihilated
by A, and A.

We compute the commutators corresponding to (2.13).
We introduce the building blocks

E;=VwQ.A (2.27)

Ey = \JaxlAg — Agl,

so that

Ai:i<\%Eo+ﬂ[Ei E;]). (2.28)

Since we need AZ, there is an ordering ambiguity with

respect to the term (E. — Eit)2 We pick normal ordering
with respect to the annihilators A and leave a possible
normal ordering constant proportional to the algebraic
unit 1 open for the moment; that is, we set

L= EL)? ()| =T +TL() +TE(f).  (2:29)

where :(.): denotes normal ordering. We have used in (2.29) that f is real valued. As [Ey, E] = 0, we find with s, s’ = =+,

[AS(F): A2 (9)] = [T5(), Tu(9)] + [T5(f), Ta(9)] = [Ty (), T3 ()] + [T5(£). T3 (9)]- (2.30)
We have with
Ey(f) = (0'?0,f,A) (2.31)
that
[T5(): Ty (9)] = 4Eo(1)*[Es(f) = Es(f)*, Eg(9) — Eg(9)"]
= —4E(1)*{[Es(f). E¢(9)'] = [E¢(9). Es(f)"]}
= _4E0(1)2{< 1/2st C’)I/ZQ g> < 1/2Qs’ng1/2st>}
= _45ss’E0<1)2{<f w; ng> <g7 0)ng>}
= =28, Eo(1)*(=is){{f. d) = (9. ')}
= 4lS5ss’T ([fv g]) (232)
where we used that 2wQ, = 1 — isd. Next
[T3(f), T2(9)] = 4Eo(V)[Es(f) = Es(f)", [E¢]*(9) + [EL]*(9) = 2[ELE](9)]
= 4E (D{[Es(f), [E3)(9) = 2[ELE)(9)] = [ES(f), [E¢]*(9) = 2[EVES](9)]}
= 8Ey(1) / dxdyf(x)g(y)[Ksy (x, ){EG(y) = Ey ()} = Kos (. X){E3 (v) — Ev(v)}]  (2.33)
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with the kernel
Koo (x,y) = [Eg(x), Ey (3)] = Ky (x,9) 13 = [Kyg (x,3) 1]" = Kys(y.x). (2.34)
Explicitly,
(f- Ky - 9) = [f. Ey). (9. Ey)'] = 655 (f. wQy9) =285 (f . K - g). (2.35)

Abbreviating EY (y) = g(y)Ey(y) we obtain

[Té(f),T?(g)]=—8Eo(1){<f Ky {E— [E))) - (F. K {ES — [EY) 1))
= —8E(1)([Kyw — K7, £ B - [E5]°))
— 8E(1)5,y {<f o0, — 0! - (1)
— 8y (1), (is) {{f. {EL - [E}) ). (2.36)
whence
(). T2 (g)] = [T (9). T2()] = SEo(1)3,y (i) {(f. {EL — [EZJ"}) — (. {EL — [E]°}))
— —8E(1)5,y (~is)[E, — (E.)|(fd - 1)
Finally,
/ dx / dy F (IO [E, (). [Ey ()12 = 2E5 (0 Ey ()] + [Es (x) 12 [Eo ()] = 2 E3 () Ey (3)]
E,(x). [Ey (5P + [Eo ()P = 2E5()Ey (7)]}
—4 / dx / dy F(x)g0) Koy (6.3) R E, () Eg (y)* +2Ey (y) Ey (x) = 4 E, () Ey (3)]

ys(y X)[2E () Eg (9)2Eg (y)E,(x)* =4 Es(x)"E (v)"]
X V)E (x) 2Ey(y)* = 2E¢(y)] - Ko (x.9)[2E¢ (y) =2 Eg (y)*]E,(x)) }

—4 / dx / dyf(x)9()

X{Kss’(x’y)[szs’(x’y)+4[Es/(y)*_Es’( )] ()C)] ss(y x)[szs(y )C) 4Es(x)*{Es/(y)*_Es’(y)H
—4(Kyy (x.y)Eg(x)*[Eg (y)" = Eg (¥)] = Kys (v, ) [Eg () — E¢ (y)"]E(x)) }. (2.38)

Since Ky = 8,¢K, we can simplify (5.31) using F,(x) := E;(x) — Es(x)" and f, = f(x). g, = g(»),

T2 T30 =86 [ dx [ dy f0g0) (K (v3) K 3) = 2 FLG)ES (0] = K)o + 2 Ey (1), ()
+ 2K (x, 9)Eg(x)" Fy(y) + 2K (v, ) F(y)Es(x) }
=80, [ dr [y K (e (FylKo(x0) - 2EWF0):
2B () Fy ()] — Fug K (609) £ 2B, () Fy (1)1 — 2:E,(0)F, (1):]}

— 85, / dx / dy K, (2 ) {f 1, Ko (. ¥) = 20 Fy (O F,(0)]] = £, Ko (x.5) = 2 F, () Fy ()]}

— 86, / dx / dy K, (x.){fx0, = £ 1K, (5.5) = 2: Fu(0)F, ()] ). (2.39)
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where we used that within the normal ordering symbol The first term in (2.39) can be evaluated as follows: Let

operator valued distributions commute. Using F(x) = Z; = {n€Z;sn >0} and then

f(x)F(x) the second term in (2.39) can be written

— 166, [F{(0Q, - F{) - F{(0Q, - F)]: (K- f)(x) =27y [nley(x)(en. /)
— —86,0(-is): [FL((FL)) — FU(FI)): ) =S ey (4
= =864 (=is):[F3]: (g = f'9) ST G TR '
:4iS5ss’Ts([ 79])’ (240)

where we used that the operator @ is symmetric. Thus,

/dx/dyfxgst(x’y>2:(2”)2 Z |n1n2|<f, en1+nz><en1+n27g>

nyn, €Z;

= (2”)2 Z nln2<f» eA\*(n]+n2)><es(n,+nz)’g>

= 3 (- ewlten| S min =)
= Y {f ew)lend) rgnto + 1) = gnln s D2+ 1)
= (2n Z (s ean) (e 9)* = 1]
= <2n>zg:i<f, ear) (ean- ) (5m)* = (sm)]
= CrP & 3 (0uf enen )l =1
rias o [(2) -2
- (277)2%};(%, een|(32) = 3)9)
o os () )
(2”>2I6S<Q G 209 ) (242)

Thus, the first term in (2.39) can be written

sisd g 20P{ (0.f. [ 0" = D (0o | —5e7))}
s oo { (1 [+ 529] )~ o [ + 227 )}

=:4is6,0cS(f. g), (2.43)

where the term proportional i s d/w in Q, has dropped out as 0° /@ = —w and 0*/w = @> are symmetric operators on L.
The term (2.43) displays the anomaly of the classical hypersurface deformation algebra or equivalently its central extension
with central charge ¢ = % which is called the Virasoro algebra with that central charge.
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Altogether
AT (), A7 (9)] = 4isS {AY([f, 9]) + cS(f.9)}  (2.44)
and similar for the B and C sector so that

D,(f). Dy (9)] = 6,0 [D,([f. ) +3¢S(f.g))-  (2.45)

The Lie algebraic 2-cycle S(f, g) = —S(g, f) is a 2-cocycle

S(Lf. g, 1)+ S((g. hl. f) + S([h. fl.9) =0 (2.46)
by construction but no 2-coboundary; i.e., there is no linear
functional F on the space of test functions f such that
S(f.g) = F([f, g]). Thus, the D,(f) cannot be modified by
adding 3c¢F(f) - 1 to obtain a proper Lie algebra.

It should be noted that the result (2.46) is purely
algebraic, and it just follows from x-algebraic relations
and the chosen (normal) ordering. It is not necessary to
assume a Fock representation; we just used the x-algebra
generated by A, and A and their algebraic adjoints. In order
that our intended Fock representation is defined by A, A,
etc. (thereby replacing algebraic adjoint * by Hilbert space
adjoint T), we must therefore check whether the constraints
(and thus their adjoints as they are manifestly symmetric)
are densely defined. Since Dy is a linear combination of the
A2, B2, C?, it will be sufficient to show that A2(f) is densely
defined. Since A2(f) is a linear combination of the
Ti(f),j=0, 1, 2 [see (2.29)], it will be sufficient to
consider those. Consider first the action of A2(f) on the
Fock vacuum

. 2
T FRlP =1 0. AP = (0.

ITH(F)QIP =112 oA EL (F)Q > = 4o (F.0Q, F)
IT3(F)QIP =4[l (E~EL)*: (NQIP =4|(EL)(F)Qll?

:8/dxdyF(x)F(y)Ks(x’y)2

is 1 PR B
:(2n)26<st, [(2”)3F +2]TF} >

R XS E

1 1 1
=275 [(2”)3 (fr0™ F") +Z<f,a)‘lF”>]

s (P01 =50

(2.47)

where we used that for smooth, real valued, periodic
functions F

(FF") == ((F2)) =0, (F,F) == ((F))=0.

(2.48)

Note that [w/(27)]® — [w/(2x)] has a spectrum in N.

To show that the hypersurface deformation generators
are indeed densely defined and symmetric in the chosen
Fock representation we should check that they map Fock
states into normalizable states. It is convenient not to work
with Fock states directly but rather with the states

wlf1Q wlf] = exp(i(f. D)) (2.49)
for the C sector and similar for the A and B sector. By
choosing f = > "%  s,b, for some real valued orthonormal
basis (ONB) of L one can generate all Fock states from
the corresponding Weyl element w[f] by taking suitable
derivatives of (2.49) at s,, = 0, n €N. This shows that the
w[f]Q with f real valued span a dense subset. A short
standard calculation reveals
E,(x)w[f]Q=ig,(x)w[f]Q  g;(x)=[Q,f](x). (2.50)
We establish the finiteness of the constraint operators on the
Fock states only for the most difficult piece T2(F); the
other pieces are left to the reader. We have

~T3(F)w[f]Q = / dxF (x)([E;(x) + ig,(x)*]")*w[f]Q.
(2.51)

Thus using the creation/annihilation algebra as in (2.47)
and (2.50) a straightforward calculation reveals

T3 (F)wifle|* = IIW[f]wllz/dxF(x)/dyF(y)

X [2K,(x,y)* + 4K (x,y)g(x)g(y)
+ 9(x)*g(y)*. (2.52)

where g = [0, + Q_]f = OF.

We now discuss the finiteness of (2.52). To be sure, if f is
smooth, then finiteness is immediate. Therefore, with
respect to the smooth and quasilocal waveletlike functions
introduced in [21] for the purpose of renormalization, the
following complications do not arise. However, the par-
ticular set of functions that were used for renormalization
in [2-4] are only piecewise smooth (in fact, constant) and
display finitely many discontinuities. We therefore consider
these functions in what follows in order to pinpoint which
convergence issues arise, why passing to smoother coarse-
graining functions to define the renormalization flow is
more convenient, and how one can still work with only
piecewise smooth coarse-graining functions using zeta
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function regularization. Readers not interested in these
issues can safely skip the rest of the following paragraph.

1. Zeta function regularization

The first term in (2.52) is, of course, the vacuum
contribution (2.47) and thus independent of f. We already
showed that it is finite in (2.47) for smooth F. The third
term can be estimated by ||F||2 || f||% where ||.||., denotes
the supremum norm. Thus, it is finite even if f is a
discontinuous but bounded function on [0, 1). The second
term is given by (up to the factor of 4)

(F(Qf).2wQ,|[F(QS)]) = (F(QF). Qlw—iso] Q[F(QS)])-

(2.53)

If f is at least C', then the piece —isd vanishes by a similar
calculation as in (2.70). If f has discontinuities but is
periodic and together with F' is real valued as is the case
here, then this piece still vanishes if we define for a step
function with 0 <a <b < 1,x€[0,1)

1l a<x<b

=6(x,a)—56(x,b), )([ayb)(x): %x:an:b.

)(Ea,b) (x)

0 x<avb<x

(2.54)

The boundary values of the step function are uniquely
selected by requiring

Hlab) Xieay) + Xlapy Xieay) =0 (2.55)

for all possible (namely 13) orderings of a, b, ¢, d. These
values also ensure that the sum of step functions for a
partition of [0, 1) equals unity at every point. Thus, even in
the case of discontinuities (2.53) simplifies to

(F(Qf). QwQ[F(Qf)]) = ([F(Qf)]'. Q™' Q[F(Qf)]')
= (F'(Qf), Q™' Q[F'(Qf)])
2((Qf), F; Qo' Q[F(Q)])
(F(Qf), Qu™ Q[F(Qf))).
(2.56)
J

+
+

(F(Qf)'. Qo' [F

Zf my)f

my,my

= =M1 3" [0y f)(m) £ (m) {F(Qe™ Qlih,

ny.ny

=-M" 12 O f1(my) f(my)F(x,, Z—

my,my

(Qa)_lQb(mQ D( m]>

We have explicitly, using the spectral theorem,

272G :=27Qw ' Q[F' (Of))

—Z"“ (en F(QS)) +e_nle_n F(QF))]  (2.57)

pointwise in [0, 1); thus, the modulus squared of (2.57) can
be estimated from above by the Cauchy-Schwartz inequal-
ity and using |e,| = 1 pointwise

3| [Siten rii < e

n=1 n#0
< c(|Fllo Q) o)
(2.58)

where ¢ > 0 is a constant. Thus since for bounded
L>([0, 1), dx) functions we have ||.||, < ||/l «>

1™ QIF'(Qf)Ill. < [0~ Q[F'(Qf)]ll

< cl[Fllo (2l o (2.59)

which shows that the first term in (2.56) is finite due to
||F'f]| < oo and the Cauchy sequence (CS) inequality. The
second term is also finite if Qf has finitely many dis-
continuities because the contributions of these discontinu-
ities to the integral involving (Qf)" amounts to a finite
linear combination of evaluations of F'G at those points and
both functions have a finite supremum norm. The only
potentially troublesome term is the last one which involves
products of 6 distributions. We evaluate it explicitly for the
case encountered in the next sections, namely

}(m('x) :)([x,”,xm+1)(x> (260)

with real valued f(m) and characteristic functions y,, of an
interval where M <oco and 1=0=x5<x; <---<
Xy—1 < 1 1s a partition of [0, 1). We find

(F(Qw™' Qly, F1) (xm,) }
FI} (xm,)

—

(X, ) (€ns X, F) + €y (X, ) {€—ps X, )]

3

n=1
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= =M1 " [0y f)(m)f

my,my

my,my

with (9y,f)(m) = M[f(m + 1)

as follows:

| |

Z;{en(xml - xmz) —+ e—n(xml - } ZZ

n=1 n=1
_ le
ST

where we considered an equidistant partition, set
ky =2x/M, and exploited periodicity modulo M. Then
for any 0 </ <M — 1 we consider

[Se] 1 [Se]
Zl—i—nM Z[l—l—nM nM} *

n=1 n=1

1 N
— lim —.
MN—)oo o n

(2.63)

The first infinite sum in (2.63) converges absolutely for
each /. The limit of the second sum marginally diverges to
the simple pole (with residue unity) value of the Riemann
zeta function. Consider

1A 1 1

n=1

If we take the limits ¢ —» 0+,0 — 0+, N — oo in exactly
this order, then we return to (2.63). As usual, regularization
of infinities consists in interchanging limits that would be
allowed if the sums involved would converge absolutely.
We take the limits in the order N — 0,6 — 0, ¢ — 0. After
N — oo we obtain for 6 > € > 0 the finite result

r(e.0) = [C(1+6+¢€)+¢(1+5-¢),

(2.65)

li =
dimy(N.e.6)

| =

where ¢ is the Riemann zeta function. It has an analytic
extension to the whole complex plane except for its simple
pole z = 1. With this analytic extension being understood
in (2.64) we can now take 6 — 0,

C(1+e)+C(1—€). (2.66)

N[ =

y(e) = }gy(a ) =

Finally, we take ¢ — 0, which results in the principal value
of the zeta function at unity

Xy Z {e m]

(o]

= M_2 Z [aMme1>[aMf](m2)F(xml)F(xmz) Z% {en(xml - xmz) +e_y (xm, - xm2>}

n=1

€_n ) (xmz) -

(e—nF) (X, 1)] 4 c.c.}

(2.61)

— f(m)]. It is the sum over n € N in (2.61) that is problematic. We isolate and manipulate it

—my)n)

[es]

M-1
1
I)+2) cos(ky(m; —my)l) ,
> .

(2.62)

[
pve](1) = lim 3 (1 +€) +£(1 =€)
(2.67)

y = limy(e) =

which turns out to be finite and equal to the Euler-
Mascheroni constant [25]

g

)+ ; n] , (2.68)
which is numerically 0.58 in the second decimal precision.

This kind of regularization is, of course, standard in
conformal field theory [26]. It would not be necessary if the
functions f were smooth. In the smooth case exactly the
same infinite sum of 1/n would occur but the difference
would be that it is multiplied by n-dependent coefficients
that either have compact support in n or lead to stronger
decay rendering the sum absolutely convergent. Thus, in
the smooth case the result of the calculation would be
dominated by the respective and corresponding first term
in (2.62) and (2.63). Note also that the proposed regulari-
zation can be considered as the regularization

y = 1\}1_1)20 {— In(N

(1)_1 - l[a)l-ﬁ-é-&-e + a)l-‘ré—e]

(2.69)

with 6 > € > 0 and then taking the limits in the order
described. This regularization is the price to pay when
working with bounded discontinuous functions f but it
extracts exactly the dominating terms that would arise if f
was smooth. The motivation for using nonsmooth step
functions is that they result in coarse-graining maps for
purposes of renormalization with almost perfect properties
as we will see in the next section. In [21] we introduce
smooth coarse-graining maps which come very close to
those step functions, for which the above regularization is
not necessary and for which the finite result obtained here
after regularization is exact. As these step functions are
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finite position resolution approximants of smooth con-
tinuum functions, our manipulation is physically justified.
This can also be seen as follows: The absolute value of both
terms in (2.63) can be bounded from above (after the above
regularization) by ¢/M where ¢ =y + >_.%_, N~2 (observ-
ing that n <M — 1). If f(m) = M{yM, ) for smooth f as
we assume in the next section, with y¥ the characteristic
function of the interval [m/M, (m + 1)/M), then the first
term in (2.61) converges to the smooth continuum value
(Ff',Qo~'QFf") as M — oo while the two remaining
terms can be bounded by c||Ff’||?/M, which converges to
zero. Accordingly our zeta function regularization (only
necessary for nonsmooth finite resolution approximants)
ensures that the continuum limit (taking the finite reso-
lution regulator M — o) agrees with the direct continuum
result.

With this understanding, the hypersurface generators are
densely defined on the span of Fock states.

2. Comments on the space of solutions to the constraints

For completeness, we close this section with a few remarks
on the actual solution of the quantum constraints which are
mostly standard. These will not be of any relevance for the rest
of the paper, and the reader not interested in these remarks can
safely jump to the next section.

Not even the Fock vacuum is in the kernel of any of
them, not to speak of the joint kernel. Indeed, there can be
no joint zero eigenvector v of all the constraints except the
zero vector due to the anomaly

0 = [Dy(f). Ds(g)]v = is3cS(f. g)v. (2.70)

In solving the constraints, we thus look not for joint zero
eigenvectors (zero is not in the joint point spectrum) but for
|

[Ds(em) - a(sn]H’ Ds’(en) - aéan] = 1.5”/ [Ds([em
= i8¢ [27i(m
= —271'(3”1(1’” -

as the second term only contributes for m = n = 0 if m,
n > 0 but then the prefactor vanishes. Thus the right-hand
side (rhs) of (2.75) is nonvanishing iff m + n > 0 so that
the system of conditions (2.73) is consistent. Of course,
other choices of D are equally valid such as imposing
(2.73) for n < 0 only for both values of s or using (2.73)
with n > 0 for s = + and with n <0 for s = —.

Alternatively, to actually solve (2.73) we could use
master constraint methods [27]; i.e., we set

M := Z m,,Ds(en)TDs(en)’

s,n>0

(2.75)

generalized joint eigenvectors (distributions), i.e., linear
functionals / on a dense and invariant [under the action of
the D,(f)] domain D such that

IIDs(f)v]=0 V f, s, veD.

(2.71)
Note that the finite linear span of Fock states is dense
but not invariant. However, Eq. (2.71) also does not
work for any such choice of invariant domain, because
if D is invariant, then any such [ also satisfies
I[[Ds(f), Ds(9)|v] = iscS(f, g)l[v] = 0; i.e., [ vanishes
identically on D. We thus resort, as it is common practice,
to solving the equations D,(f) =0 not in the strong
operator topology but in the weak operator topology.
That is, we look for a proper subspace D C H in the
domain of the D,(f) such that the D,(f)D C D, i.e., the
image of D under any Dg(f) lies in the orthogonal
complement of (the completion of) D. That is, for any
v, v' €D we impose for all s, f,

(v, [Dy(f) = a{f)1n]v') =0, (2.72)
where a possible normal ordering constant a was introduced.
In other words, with respect to the split H =D @ D,
all operators D (f) contain no diagonal block corresponding
to D. A well-known choice of D consists in the solution to
the system of equations

[D.v(en)_aﬁan]v:(); v S,

n>0. (2.73)

Since Dj(e,)" = D,(e_,) it follows that (2.73) implies
(2.72) for all f. The system (2.73) does not suffer from
the anomaly because for m, n > 0,

cen]) +3cS(en, en)]

- n)Ds(eern) - 3ic(m3 —m—n + n)61n+n,0]

n)Dy(m + n) (2.74)

|

where m,, > 0 are coefficients that decay sufficiently fast in
order that M be densely defined in the Fock space. Then
any solution v of (2.73) solves Mv = 0, and conversely any
solution of Mv =0 solves (v, Mv) =0 and therefore
(2.73). The task is now to solve for the ground states of
the master constraint M. One will look for them in the form

UV = VB ®’UL., VAB EHA ®HB’ ’UceHc, (276)

where v is any Fock state and v, is to be determined in
dependence on v . In this way, the physical Hilbert space is
isomorphic to H.
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This is, of course, expected as the PFT should be
equivalent to the massless Klein Gordon field on the
cylinder. Indeed, the natural gauge fixing conditions
T = t, X = x reproduce this theory which one immediately
arrives at using the corresponding reduced phase space
quantization. The actual solution of PFT is beyond the
scope of the present work in which we are just interested in
studying how the system behaves under renormalization.

II1. HAMILTONIAN RENORMALIZATION
OF HAMILTONIAN SYSTEMS

This section is to recall the essential elements from
[4,11] to which the reader is referred for more information.

We introduce some coordinate x € [0, 1) and equidistant
lattices Ay, on [0, 1) with M points x,, = {7, mEZy =
{0,1,2,...,M — 1}. Among the numbers M € N we intro-
duce the relation M < M’ iff %’ € N which means that A,
is a sublattice of A,p. It is not difficult to see that this
defines a partial order and that N is directed with respect
to it.

The space of complex valued sequences {f(m)},, ¢z,
is denoted by L,, and given a Hilbert space structure by

ot Frd ey = ZfM(m Frlm).  (3.1)

mEZM

Let y(4) be the characteristic function of the left closed,
right open interval [a, b) C [0, 1) where for any S C R we
have yg(x) =1 if x€S and y,(x) =0 else. Then for
x€[0,1)

7(0) = g0 (0) (.2
Consider the embedding [recall L = L,([0, 1), dx)]
Iyt Ly = Ly (Iyfu)(x ZfM m(x), (3.3)
meZy
which is, in fact, an isometry
<IMfM,IMffv1>L = <fM7f;l/1>LM (3-4)

and thus allows the interpretation of (3.1) as the Riemann

sum approximation of (f,f’), with f,,(m):= f(m/M)
and f)(m) = f'(m/M).
For M < M’ we construct the embeddings
IMM/: LM _)LM/’ IMMI = I[L’IM (35)
The operator IL can be worked out explicitly
[L0f1(m) = Mt ). (3.6)

It is also an isometry

<IMM’fMaIMM’f§w>LM, = <vaf§w>LM (3.7)

and these embeddings automatically obey the consistency
conditions for all M < M’ < M",

IM/M//OIMM/ — IMM//, (38)
This follows from the identity
Lyl Iy = Iy, (3.9)

which in turn is due to the property of the ¥ to define
partitions of [0, 1) which are nested for M < M’, that is,

k—1 /
/ M
_ M _
- )(km+l’ k=—-. (310)
» z
We can also work out I, explicitly (k := M'/M)
Iy f o) (m') = M/O{%, Iufu)r
=M Z fM(m)O(%v)(%>L
meZy
=M Z fM(m) <M26m’.mk+l)
meZy =0
m/
:fM([Mﬁ]>y (3.11)

where [.] denotes the floor function (Gauss bracket). We
remark at this point that the objects 1), and 1, are never
changed by the renormalization flow to be defined below.

Consider a scalar field ¢ on [0, 1) with conjugate
momentum z. Note that geometrically 7 is a scalar density
of weight one on [0, 1) as one can see from the Poisson
bracket

{z(x).9(»)} =

We consider real density one valued test functions f and
real density zero valued test functions F on [0, 1). Then the
real numbers

5(x,y). (3.12)

o(f) = (f. ), (3.13)

are invariant under diffeomorphisms of [0, 1), and we have
{n(F),¢(f)} = F(f).

One can construct the abstract *-algebra (even C*-algebra)
2 generated by the Weyl elements

(3.14)

w(f, F) = exp(i[¢(f) + =(F)]) (3.15)
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and the corresponding Weyl relations that follow from the
reality of (3.13) and (3.14).

Representations of 2 can be constructed from a state
(positive, normalized, linear functional) & on it via the
Gel'fand-Naimark-Segal construction [19]. This delivers a
Hilbert space H, a representation p of 2 by bounded
operators on H, and a vector Q € A cyclic for p(). If H
is separable, we always find an Abelian sub-*-algebra 8 of
A for which Q is still cyclic. For instance, we can pick an
ONB ¢,, I € Z with b, := Q of H and consider the Abelian
group of unitary operators U, I € Z, Uj = U_; such that
Use; = e;,;. Thenwe find a; € A such thatp(a;) = U;and
B is generated by those a;. See [11] for more details and
more general cases. Of course, the a; may in general be very
complicated (in general infinite) linear combinations of the
Weyl elements (3.15). Still it follows that H can be thought
of as L,(A(®B), dv) where A(B) is the Gel’fand spectrum
(space of “characters,” i.e., homomorphisms y:8 — C
equipped with the Gel’fand topology) of B and v a
probability measure thereon. More precisely, there is a
unitary map U:H — L,(A(B), dv) with [Up(b)Q](x) =
b(y) := y(b) which is essentially the Gel’fand isomorphism.

We will assume that 8B can be generated by the
w(f) = w(f, F =0) so that we can identify the space of
characters with the space of fields ¢ and v as a probability
measure on that space. Indeed, this is the case in Fock
representations & = (- - -),, in which w(f)Q is essentially

exp(i([2w]7"/2f, A))Q up to a phase where A = (y/w¢p —
iv/o~'m)/v/2 is the annihilator. Thus arbitrary linear
combinations of Fock states (f;,A)" - (f,,A)'Q can be
obtained by taking derivatives at s; =--- =15, =0 of
w(> i se[20]'2f,)Q establishing that the span of the
w(f)Q is dense. Then v is the Gaussian measure with
covariance 1/(2w) [3]

1
4

u<w<f>>==<sz,w<f>sz>H=exp( <f,w-'f>L>. (3.16)

Given the injections /,;; Ly, — L we may restrict ¢ to
the subspace 1,,L,,; i.e., we define a scalar field ¢, on the
lattice A, by

du(fu) = dUnufu) = bu = 11T1/1¢v (3.17)

which provides a natural “discretization.” Here ¢(f) =
(f.¢) for real valued f. As (Ii,)(m)=M{yM, $)
approaches ¢(x) in the limit M — oo for m = xM we
see that the density zero valued ¢ is smeared against the
density one valued discretized & distribution My™ which is
diffeomorphism covariant. We may likewise define a
discretized momentum 7z, = M~'I},x = (4, x), which
smears the density one valued z against the density zero
valued ™ which is also covariant. Together this ensures
that ¢,, and z,, are conjugate on A,,,

{mu(m), pua(m')} = M{z(rm). ¢ 0t}

= MW%71%>L = 6m,m’- (318)
Although this is geometrically more natural, we will
instead use
my(m)=Iym)(m),  {z(m),dy(m')} = M8, (3.19)
so that ¢, and =z, are conjugate not in the sense of a
Kronecker 6 but rather a discrete ¢ distribution.

Given a function H[¢, z] on the continuum phase space
coordinated by the variables ¢ and 7 we may try to define a
discretized function

Hy[purs mu] = H{Iyybars Iumu) (3.20)
where the approximation / MIL — 1; as M — oo was used.
This indeed works as long as H depends on z and ¢ only
algebraically. However, when derivatives are involved, the
simple prescription (3.20) may cause trouble because the
functions ¥ are not differentiable. This can be improved
by passing to alternative, smoother coarse-graining maps
I, [21] which lead to coarse-graining maps [,;,, satisfying
the consistency conditions (3.8) which are essential

for the renormalization scheme. For the examples discussed
in [21] it turns out that the natural discretization

Oy = IL&I u 1s a well-defined and antisymmetric discrete
derivative operator on L,,.

To keep the presentation simple and to see into which
problems one may run using step functions, we take the
usual point of view that the prescription (3.20) is as good as
any other as long as Hy;[¢y, 7] converges to H[¢p, z] in
the continuum limit M — co. Noting that ¢, (m) =
M{M, ¢) approaches ¢(x) as m,M — oo if we keep
x = m/M fixed, we may therefore discretize, e.g., ¢'(x) by

T (Oudm). (3.21)

where

Oufal(m) =5 [fulm 1) = fulm=1)]  (3.22)

is the antisymmetric, next neighbor, first order lattice
derivative. There are an infinite number of prescriptions
such as (3.22) which have the correct continuum limit in
the sense mentioned above, and therefore using any such
prescription introduces a discretization ambiguity into
the functions Hy[¢y, 7y]. This ambiguity is drastically
reduced if one uses the natural discretization using
smoother functions ¥ with all the desired properties as
indicated above.

Given a continuum measure v we may construct a family
of measures vy, by
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v (Wi lful) =vwllyful),

(3.23)

which are automatically cylindrically consistent, i.e., for
all M < M,

U Wi L ) = vae(Waa[f ). (3.24)
i.e., integrating the excess degrees of freedom in artificially
writing the function wy, of ¢,, as the function w,,
of ¢,r, which, however, depends on ¢,y only in terms
of the blocked variables [ MM’¢M’ does not change the
result. Conversely, under relatively mild technical assump-
tions [2], a cylindrically consistent family of measures vy,
on quantum configuration spaces K, can be extended to a
measure v on a space K called the projective limit of the
K. In that sense, a cylindrically consistent family is as
good as the continuum definition but the practical advan-
tage of the family is that the v,, are easier to compute.

Consider the Hilbert spaces H,; = L, (K, dvy,) and the
embeddings

Ju:Hy—=>H=Ly(P.dv); wy[fulQur>wliyfulQ

(3.25)

which by construction are isometries. Here vy (.) =
(Qur, )y, and v(.) = (Q,.Q). It is also not difficult
to see that the Jj, inherit from the 7, the consistency
properties

VM<M <M, (3.26)

JM!M//JMMI = JMMH
where Jyp = JL,JM,M < M'. 1t follows that H is the
inductive limit of the H, [19]. Given a symmetric
quadratic form H on ‘H with dense domain D spanned
by the w[f]Q we may construct the symmetric quadratic
forms Hy; = JZ,,H J s which are automatically consistently
defined: For any M < M’ we have
Moreover, given Jywy. Jywh, €H  with wy €Dy,
why €Dy in the dense set of the span of vectors
W[ far]Qu» etc., we find M” > M, M’ and can compute

Inwars H e ) = T Hyer Iy ) 1

)
M

(3.28)

i.e., for all practical purposes the family of quadratic forms
H,, is as good as H but easier to compute. Note that H is
not the inductive limit of the H,, [19] for two reasons: First,
while H,, are actually operators and not only quadratic
forms (as the systems labeled by M only depend on finitely

Wi [fml :exp(i<fM7¢M>LM)’

many degrees of freedom), the object H is in general not.
Second, for H to be the inductive limit of the H,, we
require the much stronger intertwiner property JyHy =

HJ; which implies Hy, = JLHJ u but not vice versa. We
remark at this point the objects J,, and J, will change
during the flow to be defined below as they map vacua to
vacua which do flow.

The problem that one encounters in quantizing a
classical Hamiltonian system with canonical variables
¢, = and Hamiltonian H is this: Provide a representation
p of the x-algebra generated by the ¢(f),z(F) [or the
C*-algebra generated by the w(f, F)] that supports “the”
Hamiltonian H as a self-adjoint operator. We have used
inverted commas as this task is ill-defined as it stands: The
classical function H typically is ill-defined when naively
substituting the classical ¢,z by their corresponding
operator valued distributions. The strategy of constructive
QFT is to come up with quantizations of the simpler, well-
defined (since finite dimensional—if both UV regulator M
and IR regulator R are present) discretized Hamiltonian
systems defined by ¢, 7y, Hy and then restrict the
discretization ambiguities inherent in these systems by
inverting the logic: the automatic consistency properties of
discretizations descending from continuum quantum the-
ories (sometimes called “blocking from the continuum’)
are imposed as consistency conditions which are twofold
when the renormalization flow reaches a fixed point and
thus qualifies as a continuum theory.

That is, we start from a family of triples (H Mo 18), Hz(S))
obtained by some prescription and then define a sequence

(“renormalization flow”) of such triples (HM , >, H(MO))
by the following rules:
(1) The maps for M < M,
n (n+1
JJ(W)VI/WM[ M|y Y = Wy Dy f 1] Q M/), (3.29)

are imposed to be isometries; that is, the correspond-
ing measures are defined by

”H ( mlfm)) —VMI (WM’[IMM’fMD (3.30)
(2) Using these we set
HY™ =gt H Ty (3.31)

The idea is then to look for fixed points
T s oz, Hogs vy, Hyy of this flow for which then
all consistency conditions are satisfied by construc-
tion and which therefore defines a continuum theory.
The hope is then that at fixed points all but finitely
many (so-called relevant parameters) of the free
parameters that coordinate the discretization ambi-
guities also assume fixed values, thus rendering the
theory predictive.
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In practice one cannot use (3.29)—(3.31) for all M < M’
since for M < M|, M,, M| # M}; e.g., the definitions
(3.30) and (3.31) generically do not agree when using
M' =M\ or M' = M), respectively. Thus, one usually
picks a fixed M'(M) satisfying M'(M) > M, a popular
choice being M’ (M) = 2M. Then, relying on the intuition
of universality, the fixed point is hoped for not to depend on
the choice M’(M), so that at the fixed point the consistency
conditions indeed hold for all M < M’.

An automatic feature of this renormalization scheme is
that for all M the fixed point vacuum €2, is a ground state
of the fixed point Hamiltonian H,, if this is true for the

initial data 95‘2) and HZ(S): This follows inductively from

(n+1) A (n+1) [ 4(n) (n) (n) (n+1)
HM QM - [JMM’(M)]THM’(M)‘IMM’(M)QM

This condition is necessary in order to make the
renormalization scheme compatible with Wilsonian
renormalization of the Euclidean (path integral) formu-
lation from which the present scheme was derived via OS
reconstruction [4,11].

IV. HAMILTONIAN RENORMALIZATION
OF CONSTRAINED SYSTEMS

As mentioned, the scheme reviewed in the previous
section was motivated using the Euclidean formulation
of a QFT which needs as a minimal input a self-adjoint
Hamiltonian H on a Hilbert space H bounded from below
with vacuum Q. From these one can attempt to construct
the associated Gibbs measure u on the space of field
histories, and when this exists, it satisfies a minimal set of
Euclidean axioms (in particular, reflection positivity)
ensuring that (H,H, Q) can be recovered from p.

When we consider constrained Hamiltonian systems, in
particular when there is no Hamiltonian but just a set of
Hamiltonian constraints, we are strictly speaking leaving
that framework. One can return to it by using the reduced
phase space formulation in which one gauge fixes the
Hamiltonian constraints thereby ending up with a true
Hamiltonian again that just acts on the gauge invariant
(or true) degrees of freedom [28], and this is the strategy
followed so far [11]. However, in this paper we want to
explore a different route:

The observation is that the two renormalization steps
(3.30) and (3.31) actually do not rely on H being bounded
from below or that Q is the vacuum of H. Thus we propose
to “abuse” (3.30) and (3.31) and use them also for con-
strained Hamiltonian systems. In other words, we keep
(3.30) as it is and apply (3.31) to each constraint operator
separately.

This proposal raises the following immediate questions
and concerns:

(1) The classical continuum constraints are of the form
H(F) = [dxF(x)H(x) where F is a smearing
function and H(x) is the Hamiltonian constraint
density. Thus the essential difference between a true
Hamiltonian system and a constrained Hamiltonian
system (apart from the fact that true Hamiltonian
densities are typically bounded from below at least
classically) is that for the true Hamiltonian the only
allowed smearing function is F = 1 while for the
constrained case the space of the smearing function
is infinite dimensional. The question is now how F
should be treated when we discretize H(F). There
are two extreme and equally natural points of view:
(a) The first is that for each F the function H(F) is

simply an independent object and should be
treated just as a true Hamiltonian. That is, the
function F remains as it is; it is not discretized.
(b) The second is that F should be treated on equal
footing with the phase space variables ¢, # and
thus should be discretized, perhaps by the same
map I},, perhaps by another. This, of course,
introduces yet more discretization ambiguities
into the quantization and also requires one to
invent a flow equation on the space of discretized
smearing functions F;; when stating (3.31).
Note that the second point of view is often taken for granted
in lattice inspired approaches to constrained systems [29].
One may think that the first point of view in fact provides a
natural choice of discretization of F as follows:

Suppose that we actually have the continuum theory,
i.e., the Hilbert space H and the constraints H(F), at our
disposal. Then the idea is to define amap E;: L — L), via
the identity

Hy(EyF) = S (EyF)(m)Hy(m) = JyH(F) .

me”Zy

(4.1)

which assumes that the rhs can actually be written in this
local form. This is unfortunately already not the case even
for the PFT considered here. The reason for this to happen
is that H when written in terms of polynomials of
annihilation and creation operators involves nonlocal in-
tegral kernels. While these do get discretized by means of
Jy this leads to an effective Ej; which maps L — L},
where N > 2 is the polynomial degree. We will demon-
strate this explicitly below for PFT.

This establishes that viewpoints i. and ii. are drastically
different; i.e., a map E,: L — L) generically cannot
be induced via (4.1). Instead, according to viewpoint ii.
we consider as an extra structure maps 1L, — L and
Ty : Ly = Ly and define

Hy(Fy)= Z FM(’”)HM(m)::JLH(TMFM)JM (4.2)

meZy
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This is consistently defined

HM(FM) = JLM/HM’(IMM’FM)JMM’ (4-3)
due to JypJyy = Jy and provided that Tyl = 1,
We may reduce the ambiguity and actually consider
Iy = Ly, Ly = Ly however, this choice is inconven-
ient for the following reason: While we can certainly
compute the commutator [Hy(Fy), Hy(Gy)] directly,
which is well-defined, one would like to see the deviation
from the continuum computation by using the identity

[Hy(Fy), Hy(Gy)
= Ty A[H(IyFy), H(Iy Gy
— H(IyFy)(1y = Py )H(IyGy)

+ H(IyGu)(1y = Py)H(Iy Fig) }yy,  (4.4)
where we defined Py, = J MJL, which is a projection in ‘H
due to the isometry of Jj,. The first term gives the
cylindrical projection of the continuum algebra, which in
our case is the Virasoro algebra. The second and third terms
should vanish as M — oo because J,; becomes the identity
in ‘H. Therefore, Eq. (4.4) appears to be an appropriate way
to monitor how the cylindrically projected theories ap-
proach the correct continuum. The catch is that we know
that in PFT the commutator [H (1) F ), H(1),G)] depends
on the first and third derivatives of the I,,F,;, 1,,G;; which
are, however, not even continuous. Accordingly, if we want
to use (4.4) we should instead use I, and I,,;, which are at
least C* and which share all the properties of I,, and I,
Thus such maps constructed from wavelets [30] suggest
themselves, and we will give more details below.

To summarize this part of the discussion, for the purpose
of this paper we take viewpoint i. and leave F and G
undiscretized, and then with H,,(F) = Ji,H(F)J, the
computation

[Hy (F). Hy (G)] = T3 {[H(F). H(G)]
— H(F)(ly = Py)H(G)

+H(G)(ly = Py)H(F)}jy  (45)
is unproblematic. To avoid confusion note that (4.5) is
supposed to yield the Virasoro algebra, as M — oo,
including the central term; i.e., the anomaly as compared
to the classical computation (Witt algebra) should be
present. We thus want to check that the Virasoro algebra
is recovered without anomaly, not the Witt algebra.

(2) As noted in the previous section, due to the central
term in the Virasoro algebra, there cannot be a joint
vacuum Q for all the constraints H(F). This is even
more the case for the Hy(F) at finite resolution
because they typically do not close as it is plain to
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see from (4.5); hence, the states ,, that arise at the
fixed point cannot be joint vacua for the H,,(F).
This is no obstacle for the renormalization scheme
when applied separately to the H(F) because the
H ;(F) are operators (and not only quadratic forms)
of systems with finitely many degrees of freedom,
and thus one does not expect the usual problems in
finding a domain that is typical for QFT (infinitely
many degrees of freedom) especially if H(F), even
when normal ordered, contains terms that are mono-
mials made solely from creation operators. Thus, we
expect to find dense domains Dy, (F) for Hy(F)
and by construction Jy;, Dy (F) C Dyy(F). How-
ever, a problem may occur when we compute
commutators such as (4.5) because the domains
Dy, (F) may depend on F and it may be the case
that Hy (F)Dy(F)ZDy ) [31]. At least it is true
that at finite M the domains are invariant
Hy (F)Dy/(F) C Dy (F) because they are just finite
linear combinations of monomials [and not infinite
linear combinations as in the case of H(F)] of
creation and annihilation operators. Thus a minimal
requirement for (4.5) to be meaningful is that the
Hy;(F) have a dense, invariant domain D,, indepen-
dent of F and then by construction J Dy C Dy
Since the span D of the Jy,D,, is dense in the
inductive limit H on which by construction is a form
domain of H(F), this then also makes the fixed point
H(F) densely defined as a quadratic form. However,
this does not ensure that the commutators of the
H(F) are well-defined because matrix elements of
the formal expression H(F)H(F'), which can be
formally computed by invoking resolutions of the
identity in terms of an ONB made from vectors in D,
may diverge, which is a potential danger even if H(F)
can be promoted to an operator especially if D is not
invariant for H(F). It is here where a joint cyclic
vacuum would be very convenient to build a common
dense operator domain upon. In the absence of it, the
construction of such adomain may be very difficult, if
it exists at all. In PFT we know that this problem does
not occur, despite the nonexistence of such a joint
vacuum, as a common dense (but not invariant)
operator domain is given explicitly by the span of
the chosen Fock states. However, it may be in more
complicated theories, especially if the domains de-
pend on F, which in unfortunate cases can have
nondense intersections [31].
Note that our renormalization scheme constructs a
single Hilbert space H (or measure v) but an infinite
number of quadratic forms H(F) if a simultaneous
fixed point of the respective flow equations exists at
all. While the flow equations for v and H(F) are
tightly coupled, the flow equations for the various
H(F) are treated as independent for each choice
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of F. Now it could happen that these latter equations V. HAMILTONIAN RENORMALIZATION OF PFT
have several different fixed points for each choice of
F that are reached depending on the choice of initial
discretization H'\” (F). Then the corresponding s .o 5
fixed point famﬂ[;[ H,(F) may depend rather dis- Di=[Ai-AZJ® 1@ 1c+14®15®CY,
continuously on F and thus would probably not D, =1,Q[B2-B%|®1,-1,01;®C%,  (5.1)
coincide with the result of blocking from the

continuum Hy(F) := JyyH(F)J),. We will see that it will be sufficient to consider one of the sectors A, B, C

this does not happen because the flow acts directly  only, say C. Our first task is to pick initial discretizations of

on the constraint function which does not depend on the ' and corresponding Hilbert space measures 9 on
F during the flow if the initial discretization +M M

Since the constraint operators are of the form

Ky = RM. As suggested by the considerations of Sec. II

does not.
In the next section we examine whether these issues arise in ~~ we build C i))M out of C((f,{,, and Cﬁg). We define in parallel to
the Hamiltonian renormalization of PFT. the continuum [see (2.24) and (2.25)]
@, = I},@,
I, = I}11,
oM fy = (L, fm)r, 1,
QM = 1LM - QT,
cl) = 1 [ [0, QM D, — L QTMHM] ,
’ V2 V@0
C(O) = i w(o) QMCDM — 1 QMHM
SRV /[ 0
W)y
0 . 0 0 . 0)1,AM(0) ~(0 M(0) (0
Cl = iV o 2(Ch = (Cou) ] + iy 20 [0l — (0" €)1,
0 0
(03 ) = =(3 ).
(98 Far)(m) = (M) [fag(m + 1) = fau(m = 1),
(0)
1 d
o = - [1 - isi] oM,
2 T L0
DY) = [cO . (5.2)

Here the adjoint operation and normal ordering is with respect to the Fock Hilbert space structure HE\S) defined by the

annihilation operators C (Oj)w and ng) with Fock vacuum Q(U) Note that QM, O™, id,,, w), are self-adjoint on L,; and that

Q.,0M, OM are orthogonal projections in L, with QY QM YoM =0and 1, = O + O™, O™ = QY + QY. Note
that QY is the projection on the constant function 1 that equals unity.
An immediate observation is that

YDy = (1,y), :—21 0 (m) =251}y =Y pe) =10 =00 (53

m

and similarly for Q¥T1), = QI so that in fact

C(()% =G (5.4)

is actually the same as in the continuum in the initial discretization. We will see that this property is preserved by the
renormalization flow so that the zero modes remain unrenormalized.
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We proceed to the flow equation for the Fock measure. We have

(fu®u)r, = OV fars ®u)y,, +

= (12072 QM f1. C)y
+ (20} 7120M fr O,

<QMfM’®MhM
>LM + (200 20N £y, (()Ol)l;>LM

+ {20y 120" far, €)1,

Thus, the initial measure family has generating functional of moments

V) wulfu)) =

QY exp(i{fu- du))

= exp <_Z (O far 05" QY fu),, +

It is a family of Gaussian measures with covariances
(kernels on L)
1
Ky =510V w5' QY + Q¥[wyy) ' QM) (5.7)
This is exactly as for the 1 + 1 Klein-Gordon field treated
in the first reference of [6] except that there we assumed a
nonvanishing mass p so that the projections Q4 and Q¥
are not necessary and the initial covariance is just
0 1o 0 0

2wy (p))™ with [wyy (p)? = o}y + p*.

To study the flow of (5.7) we can borrow the results
of [6] as follows: In [6] we used the spectral theorem
to write

Lon(p) = [ TR+ @) (59

by the residue theorem where due to p # O there is no real
pole of the holomorphic integrand. Here, instead of
integrating over the real line, we consider the path

k |k| > p

—peH) k| =p’

¢, R—=Cic,(k) = { (5.9)

O Lynr fFrr = (LIvwfude,, =5

:_ZfM [

meZy

>

=0

= O fu = Luw QY fu.

M /M—-1

)50

0"ty [wz(xg)]‘lQMthM])- (5.6)

where p > 0 is arbitrarily small thus avoiding the real pole
k = 0. Then

(0)7-1 _ 1 2 4 (0211
Q"o Q" = lig [ 3R+ VI (510
By the flow equation
ot (Fan)) = U nran Doy Fa)) - (5.11)

the measure family stays always inside the Gaussian class
and (5.12) translates into a flow of covariances

n _ gt (n)
K" = L on Kp oy I ) (5.12)

where M'(M) > M is the fixed higher resolution that enters
the concrete implementation of the blocking equations. As
in [6] we will choose M'(M) = 2M for simplicity.

We note that

w2, D

]:

> fulm

meZy

(L.fum)w,

(5.13)

where in the last step we used that /¢ = c if ¢ is a constant. Thus,

M — M.
Qi,LWM’_‘IMNWQLv

(5.14)
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i.e., the family of projections QY is equivariant with respect
to the coarse-graining maps /,;,. Similarly

O ypy = Iypy — Lygpw O

QT) = IMM’QM-

oM Iy = (lLM/ -
- IMM’(lLM - (515)

It follows from (5.7) and (5.12) that the covariance always
takes the form

Ky =2 107 0Y + Qa1 0" (s.16)

in particular, the projections QY and QY are not
changed under the flow. Moreover, we have separated
the flow

n+1 n —
[w(g,M )] _ILM'( )[‘U((),/?/z'(M)] i )
n+1 n —
[601(\4+ )] _I}LVIM/( )[a’z(w)(M)] 1]MM’(M)’ (5.17)

The obvious fixed point of the first equation in (5.17) is

(5.18)

D,(F) = / dxF(x) / dy / dafe! (1. 2)C)C() +

where «!(x;y,2)* = «!(x;2,y) 5

K2 (x:y,2)C(y)C(2) + k2(x;3,2)*C(y) C(2)].

and «2(x;v,z) = k2(x;2,y). We

i.e., the zero modes remain unrenormalized as promised.
As for the second equation, we can in view of (5.10)
immediately copy the results of [6]: Instead of the param-
eter g> == k*> + p? used there we just use ¢> = k*. All other
relations remain literally identical. As the flow equations
in [6] depend analytically on ¢”, we infer that the fixed
point covariance @y, is the same as in [6] except that p = 0
and that it appears sandwiched between Q"

1
Ky = 5[foaog‘Qﬁf + OMwy} OM], (5.19)

and moreover K, agrees with the covariance obtained by
blocking from the continuum.

Next we turn to the smeared constraints. Here we enter
new territory as com?ared to [6], first due to the presence of
the projections Qv and second because the constraints do
not annihilate the Fock vacuum. We focus just on the part of
D, (f) quadratic in the nonzero mode fields as this term by
itself also satisfies the Virasoro algebra [see Sec. Il where
this term was denoted by T2(f)], and it is also this term
alone that leads to the anomaly. The other terms denoted
T9(f) and T}(f) can be treated by similar methods. We
start with the continuum expression and write it in terms of
integral kernels

(5.20)

block from the continuum and compute

[Dy(f)]p = JLDs(f)JMv
Wl m] [Ds(F)]MWM[QM]QmHM = Wy f ul2 Dy (F)W[Lygu) ) (5.21)
We have for any f, g
(Wlf]1Q, Dy(F)w[g]€2)3, :/dXF(x)/dy/dZ[Ki(x;y,ZNC(y)W[f]Q, C(z)w[g)Q)
+ k5 (x5 3, 2) (W[f1Q, C(y)C(2)w[g]Q) + K5 (x3y, 2)(C(y) C(2)w(f]Q, w[g]Q) (5.22)
and
Cy)w[fIQ = wlfIwlf]'Cy)w[f1Q = w[f](C(x) = i[¢(f). C(»)]))Q = i[C(x), p(f)]w[f]Q
= [20)™'20f](y)wlf]Q
C(y)C(2)w[f1Q = [20)720f](2) C(y)W[f1Q = [(2w) >0 f1(2)[(2w) /201 (y)w[f1Q (5.23)
Abbreviating ¢ = (2w)~/?Q we thus find
(w1120, (F)wlgl) = (w11l ) [ dxr () [ dy [ dzlor))(o0) @i rin2) +3x2) + iy, (5:29)

Applied to f = I,,fy and g = I;9,, we obtain due to JLJM = ly,,
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Wil sl @5 IDs(F)] W (98] )

— (o[ ar] 2 warlgar]2a0) / dxF(x) / dy / d2(oTf ) 0) (ol ngan) @I (153 2) + k(3. 2) + K23y, 2)"]

= (Wl s warloml @) D Falmy gM(m2)/dXF(x)/dY/dZUM(y’ml)6M<va2)

my,my €Zy
x [kl y,2) + 12 (x5, 2) +x2(x; v, 2)7]

=t (War[f ] Q. war [90]Qmr)

X z fM(ml)gM(mz)/dXF( Mg g (s 01, m) + 5 g (o3 11y ) + K3y (x5 11y )] (5.25)

my,my €Zy
with 6y, (x, m) := (6x™)(x). Now in terms of
1 . _
Cy = 7§ [v Wy QM @y — VA IQMHM]a (5.26)

where ;] is the fixed point covariance that we obtained from the flow of the measures and which annihilates Q,,. We find
with the abbreviation &,, = [2w,,]""/>Q and the Ansatz

DNy = 30 [ AxFCOlRLy i) o) o)
iy, iy €Zy
+ Ry (X3 g 7ty ) Cog () Cog (1) + &5 g (o 7ty 1) * g (71 ) T Cpg (1) ] (5.27)
with
’%;M(x iy, )" = ki,M(X;’/h%ﬁll)vfcg,M(X;ﬁll’ﬁ'lZ) = k?,M(X; iy, 1y ) (5.28)

by exactly the same calculation
Wulf m] Qs [DS(F)}MWM[QM]QM>HM

= (Wl m]Rar. war[gna]Qur) % Z Fu(m QM(mz)/dXF(x)

my,my €Zy

X Z Sag (1, my)yg (Fg, mo )[R g (03 iy, 1) 4 R g (0 iy, 1) 4 Ry (o 7y, 1 )]
iy iy

= (Wi [ m]ars War (9] Q) X Z fM(ml)gM(mz)/dxF(x)

my,my €Zy

X (R (s my my) + Ry (xsmy my) + i3y (s my ., my)*]. (5.29)

Comparing (5.25) and (5.29) we obtain an exact match iff for j =1, 2

R (s ma) = Ky (s my ) & / dy / dzxd (523, 2)0 (3 m1 ) (2. m3)

= Z ’%i,M(xéﬁ?h"A’lz)&M(ﬁ?l»ml)&M(fhz,mz), (5.30)

7y iy

which determines the discrete kernels &/, (x; 71, /i1,) in terms of the continuum kernels «J(x, ; y, z).
The question is whether the flow n > [D")(F)],, starting from (5.2) actually yields this fixed point. Before we answer
this question we note that (5.27) is simply not of the form

/ dxF(x)Y "Ep(x;m)Dy p(m), (5.31)
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which would yield a natural map (kernel) E,;; L +— Ly,
(see the discussion of item 1, viewpoint i. in Sec. IV). It is
not even of the form

/dxF ZEM x;my,my)Dg y(my,my)  (5.32)

my,my

in terms of a bikernel E,,;: L — L,; X L;,; because there
are three independent monomials of annihilation and
creation operators involved, not only one. Thus, blocking

|

from the continuum does not give rise to such a natural
kernel or bikernel which would allow us to consider the
discretized constraints as [C(F)],, as smeared with a
discretized function or bifunction. However, one may
introduce such an interpretation by hand by restricting F
to be of the form I,,F,, where I,, should be sufficiently
differentiable and has all the properties of /,, (see again the
discussion of item 1, viewpoint ii. in Sec. IV). Such 1,, will
indeed be provided in [21].

To study the actual flow of the constraints we note that

K (x;y,2) = Ko (x, ) (%, 2), K2(x; v, 2) = kg (x, )k, (x, 2), Kks(x,y) = [0,V20](x, y), (5.33)
while ¢ = (20)7"/2Q and 6, = 60 I, so that
K;,M(X;mlamZ) = kg (%, my ) K pr (3, M), K%.M(X;mlst) = K p (X, my )k (x, my),
Ko (X, m) = [Kg op](x,m) = [Q 0 L] (x, m). (5.34)
Accordingly we conclude that
’%i,M(X;mh mz) = i%s,M(x7 ml)*’?s,M(X, mz),
k?,M(X;mhmz) = Ry (x, my)Ry(x, my), o (x.m) = [QIy/ 2w (x, m) (5.35)
because with 6, = (2w,,)~"/?Q,, we have
(Rt © Gu)(x,m) = [Q Iy Oyl (x,m) = [Q, 01 y](x,m) = [Qup](x,m) = Ky pr(x, m). (5.36)
To see whether these fixed point values of the kernels are reached from the initial discretization we write
Ry (v ma) = Ry (o) R (. ms).
A2(n) . — ~(n) ~(n) A (n) I 2 (n) 5.37
Rom (smy ma) = Rop (e, m)RS (xomy), Ry (xom) = 1 Qsly\/ 20y | (x.m), (5.37)
I
and by the literally identical calculation we obtain or
n+1 A(n n)j— n
&(Mn) (x,m) = [2a) 120, (5.38) Kﬁﬂ oy = Kgylf,l, o [wl(w,)] 172 4 IMM,[a)g/]lﬂ o Qus
(5.41)
in terms of which the flow equation reads
where the sequence n — a)(M") was constructed explicitly
Z 0D (e g )6\ (g my )8\ (. my) from the measure flow and satisfies for M'(M) = 2M,
iy iy
j(n n N i (n) - (n+1)
- Ki?ﬁxf)’(x”ﬁ”/l’mlz)(ﬁz(w) o Iy (1, my)) Lyne |0 ()] Uy = oy ]! (5.42)
) Az(n) Ny Starting with
x (8] 0 Ly ity m)). (5.39)
~(0) ©) 1 (0)y1/2
which is equivalent to R =InQplow ', (5:43)
. . " n finds fi 5.41) using th ist f th
KE,AJ;I) Swﬂ) _ 'A<§A>4/ 08;4/) oLy (5.40) one finds from ( ) using the consistency of the maps

IM2M31M]M2 :IM|M3 for Ml < M2 < M3
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~ 0
R =1 2”MQ§A,2)”MI oy ]2,

B

(5.44)

Taking the limit n — oo we get due to limit values I, = 1;,
0\% = o, I =1y, wﬁf’ formally

R =%
sM T RsM-

(5.45)
However, it must be shown if and in what sense the
sequence (5.44) actually runs into the limit (5.45) which
coincides with that blocked from the continuum. This will
be done in the next section.

ay(F,5:G,1) = Doy (F), Dy (G)] = Jy[Dy(F), D,(G)Jyy = =T}y [Ds(F)Py;D,(G) = D,(G)PyD(F) .

where

Ph=1y—-Py.  Py=Jyli=pP, =P,  (63)
is an orthogonal projection thanks to the isometry
J ,TV,J m = lyy,,- The finite resolution anomaly vanishes only
when the constraint operators preserve the subspaces P, H
of H which is generically not the case and certainly for PFT
it is not.

Heuristically the anomaly vanishes as we increase the
resolution M — oo as we expect that Py; — 0. The rest of
this section is devoted to showing that this is the case
rigorously in a suitable operator topology. In fact, showing
that ay(s, F;1,G) as M — o is a delicate issue and must
be defined appropriately. This is because we change the
Hilbert space H,,; on which a;, is defined. Hence we cannot
simply probe the anomaly, say with respect to the weak
operator topology on H,,, that is, fixing wy, w), € Hy,
considering the matrix elements

W am (s, Fi 1, Gy )n,, (6.4)
and taking M — oo at fixed ), as these depend
themselves on M. However, what we can do is to consider
fixed y, y' € H independent of M and probe the anomaly
with yy, = J}w. ), = Jiw'. Accordingly we study the
large M behavior of

(Thw au (s, F5 1,G) )y, (6.5)
It will be sufficient to study one of the two terms in (6.2),
1.e., the matrix element

(w, PyDy(F)P3yD,(G) Py )
= (D,(F)Pyy. P3D(G)Pyy')y,.  (6.6)

where it used the symmetry of all operators involved.

VI. DISCRETE VIRASORO ALGEBRA

The current section is the most important one of the
present paper as it answers the question whether the
continuum algebra is visible at finite resolution, how large
its finite resolution anomaly is, and in what sense that
anomaly is simply a finite resolution artifact and converges
to zero as we increase the resolution. We thus consider the
finite resolution M constraint operators on H,,,

Dy (F) = Jva:Ds(F)J% (6.1)

and compute the finite resolution anomaly

(6.2)

There are several issues with (6.6) that require
clarification: First of all, one would like to take w,y’
from the dense domain D given by the span of the Weyl
vectors w[f]Q; however, to be useful we need an explicit
formula for JLz//, Py for w €D, which is not available
from [4,6,7]. We derive this formula below. Next, as
expected, the range of JLD is in D,;, which is the span
of the w[l, f,]Q that is dense in Py, H. However, as I, f
is a step function, it is not clear that D (F)w[lyf]|Q is
well-defined, i.e., a normalizable element of . It is for this
reason that we considered also the case of discontinuous
functions f such as I,,f,, as the domain of the constraint
operators in Sec. II, and we showed that after suitable
regularization we have indeed D (F)w[l fy]Q€H.
Finally, the image of D or PyD is not invariant under
the constraints so that evaluation of the matrix elements of
Pi; between vectors in D is again not directly possible. In
fact, in order to evaluate Py; on say D(F)Pyw[f]Q one
would need to know how to write it as a linear combination
of the w[g]Q, a task which has no obvious solution. One
could think that one can avoid this complication and use the
fact that D is dense in H. Thus given € we find ¢ € D which
differs in norm from D (F)Pyw[f]Q by at most e. If
that ¥ would only depend on s, F, ¢ one could indeed
restrict consideration to the limit of the matrix elements
(r, P’y with @, ' € D because ||Py;|| = 1 is bounded.
Unfortunately, such { does depend on M, and without
explicitly knowing how it does so, it is not possible to
estimate the limit of (6.6). The fact that also ||Py|| =1
does not help as P, stands between D (F) and .

We are therefore forced to have a detailed look at (6.6). A
simplification can be obtained by observing that

(D (F) Py, PyiD.(G)Pyy)|
< <Ds(F>PMl//7 PIJI_/IDS<F)PMW>1/2

% (D(G)Pyy, PD(G)Pyy') 1> (6.7)
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thanks to the CS inequality and the projector property
(P3;)? = (Pi;)T = P3;. Thus (6.6) converges to zero as
M — oo for all s, F,y,t,G,y' if and only if

(Dy(F)Py, PyDs(F)Pyp) (6.8)

converges to zero for all s, F,y € D: That convergence of
(6.6) implies convergence of (6.8) followed by choosing
t =s,G = F,y' = y. The next convergence of (6.8) for all
w €D implies in particular convergence of

(Ds(F)Pywl[f1Q. Py;Dy(F)Pywl[f]Q)  (6.9)

for the choice y = w[f]Q and conversely convergence
of (6.9) implies convergence of (6.8) for finite linear
combinations of the w[f]Q, that is, general w €D again
by the CS inequality.

Accordingly we will prove that (6.9) converges to zero.
Our first task is to compute Pyw[f]Q. We begin by

computing J},w[f]Q,
(Walgm]Qu, JLW[f]QMM
= (Juwu[9m]Qu. wf1Q) 3
= (Wl gu)Q w(f1Q)x
= (Qw[f = Iygu]Q)y

= EXP(_%CU—IMQM’}C—IMQM))’ (6.10)

where we have written out the continuum covariance

exp(=5.C = I = ) ) = () exp( =5 CuFulh) = v Ful) = L) ).

which is uniquely solved by

Fulf) = G T CF o (f) = exp(

Note that ky,(f) can be simplified

1
2

2C = Qtw;' 0t + Qw710 (6.11)

as a symmetric bilinear form on L x L. We can also
consider it as an operator defined by

We will make use of these two meanings of C as
appropriate, and it is clear from the context which meaning
is used, respectively. We also remind the reader of the
covariance at resolution M,

2Cy = 12CLy = Qo' Qiz + Quwy! Qu. (6.13)
where equivariance QI;, = I;,Q,, was used. Note that both
C and C); considered as operators on L and L, respec-
tively, have, in contrast to @ and w,,; an inverse, explicitly

1
5 Cit = 142C1y = Qo0 + QuonQu  (6.14)
and similar for C~.
We make the Ansatz
Tawlf1Q = ku (F)walfr (F)] @t (6.15)

for numbers «,,(f) and vectors fy,(f) €Ly to be deter-
mined. Plugging (6.15) into (6.10) we find

CM(fM(f)’fM(f)) = C(IMfM(f)JMfM(f)) = <IMfM(f)’CIMfM(f)>L

= (fu(f).1},CF)p,, = (. [CUuCH I})CIf)L.

It follows

(6.16)
Cf 1) - cM<fM<f>,fM<f>>]). (6.17)

= <fM(f)’ IzTuCIMfM(f))LM = <fM(f)7 CMfM(f)>LM
(6.18)
M) = Lufulf) = (InCy 1,)CY. (6.19)

PywlflQ =k (F)wlf™ ()],

It is instructive to verify the projection property P3, = P,, and the isometry property J}LWJ w = ly,,, which relies on

k(I fs) = 1and fM(1yfa) = Ly fu for any fi €Ly
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The next task is to compute D (F)Pyw[f]Q, which
given (6.19) can be done, of course, using the explicit
expression of D (F) in terms of creation and annihilation
operators. However, to be useful, we must write
D (F)Pyw[f]Q in the form of linear combinations of
w[h]Q again because in order to apply Pj; to it, whose
action follows from (6.19), its action is only known in
closed form on vectors in D and not on Fock states. The
other option would be to expand P,w[f]Q into Fock states.
While this is possible, it leads to very complex expressions.
We therefore choose the former route which also has
the advantage to maximally benefit from the identity
PPy = 0.

We note that (we pick the C sector for definiteness and
focus only on the corresponding contribution to the con-
straints)

wlh]Q=exp(i(h,®))Q=exp(i(C~V2h,AL+Ac), )Q

1
_exp(—§<h,Ch>exp(i<c‘/2h,ATC+>L)Q, (6.20)

using well-known Fock space techniques (Baker Campbell
Hausdorff formula). Here we have denoted the annihilation
operator of the C sector by A, in order not to confuse it with
the covariance C. Thus, we find the functional derivatives

LW[C‘Ih +91Q = [~g(y) = (CT'h)(y) + i(CTPAL) (W)WIC'h + gl

Sh(y)
2
[6h(y)][6h(2)]

w[Ch 4+ glQ = {-C7'(y,2) + [-g(y) — (C'h)(y) + i(C7'/2AL) (y)]

x [=9(2) = (C7'h)(z) + i(CT AL (2)W[C'h + gJ2., (6.21)
ie,ath=0
(GagiC i) = g) + it A Gl
Sh(y) h=0 ¢
L _ i el P
(T MIC 4 dR) = (-C102) + [=900) +1(C AN Wl=a(2) + HC AP iR (622
Here we used that all expressions just depend on creation operators that mutually commute.
Recall the constraint operator
~D,(F) = [ axr() [ dy [ d=(0,x )0, A WNC A )
+ 05 (x,3) Qi (%, 2) (CT2AL) (y) (CT2AL) (2) = 203 (%, 3) Q5 (%, 2) (CT2AL) (0)(CT?Ac) (2)}, (6.23)
where Q,(x,y) is the integral kernel of the projection Q. We have explicitly
[C12AL] ()wlgl = wlg)(w[=g][CT'2Ac](v)wlg)) 2 = wlg)([CT'2Ac](v) = i[¢lg). (CT2Ac) (V)]
= —iw[g][AL[C"?g]. (CT'2Ac) ()@ = ~ig(y)w[g]. (6.24)

whence

D (F)wlg)Q = / dxF(x) / dy / dz{=0,(x. )0, (x. 2)9()9(2)
+ 05 (. 9) 05 (x, 2)(CTV2AL) () (C712AL ) (2) = 2i Q% (x, ¥) Oy (x, 2) (CTV2AL) (v) g(2) hw(g) @
- / dx / dy / dz{{(~0,(x.9)0, (x.2) + 0} (x.¥) 0} (x. 2) = 20,(y. 2)"Q(x. 2))g(1)g(z) - C(x.3)}

+ 03 (x. ) Q5 (x. ){(CTVPAL) () (CT1PAL) (2) + 2ig(y) (CT'AL) (2) + €2 (3. 2) — 9(v)9(2)}

= 2{(Q5(x.9)Q(x, 2) + Qi (x.¥) Q% (x. 2)[i(C™2AL) (v) — 9(»)]9(2) } wlg]

(6.25)

with Q = Q, + Q}. We evaluate (6.25) for g = fM(f), multiply it from the left with x,,(f)P;5;, and use (6.22) to obtain

the identity
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P trPwsifi={ Py [ar) [ay [ad 0y 0.nar gt =20 o oM @5

xKM<f>w[c-1h+fM<f>19} , (6.26)

h=0

where the terms in (6.25) that do not involve creation operators could be dropped because at h =0 we
get Py (/)W[Ch + fy(f)]Q = Py Pywl[f]Q = 0.

Formula (6.26) is the desired expression because Pj; can be pulled past the functional derivatives where it hits w[C~'h +
fM(£)]Q and can be evaluated. Let i’ = C~'h, g = fM(f). Then due to the projector property f¥(g) = g and k), (g) = 1
whence

Pywlh' + g]Q = wlh' + g|Q — ky (W + g)w[f™ (1 + 9)]Q.
I +g) = M) + g,
k(W + g) = kg (W )ka (9) exp (W', C(1 = 1 Cif i) 9)1) = ks ()3 (6.27)

therefore,

km (F)Pywlh' + glQ = ry () W' + g] = kpg (R )W (1) + g])Q = [wlh'] = xpy (W) Jw[ £ ()] Pyw(f]Q.  (6.28)

We can now evaluate (6.8):

|PLD(F)PywlfIQI = {/dxF x)/dy/dz/dx F(x’)/dy /dz

9 {Qs(x 1oL Z)W 20,(x.7)0(x.2)g <z>i}

. {Q?(X’,y’)Q}‘(X’,Z’)#—2Q}‘(X’,y’)Q(X’,Z’)9(Z’) o }
ohO ) oh()] )

x (W' = reug (R IW LM (1) Paywl 1€, [wli'] — KM(il/)]W[fM(il/>]PMW[ﬂQ>H} (6.29)

h=h=0

with g = fM(f),h' = C~'h, and ' = C~'h. We have

(I = reag ()W M (W) Pagw 12 W] = kg ()W (R) Pyl 1)
= K (F) '] = kag (W) Iw £ (W) Iwlgl €. [wlh'] =y ()Wl (7)) w(g]€2)
:KMf2<[W[ ] K (B )]W[fM(h’)] W] = ra ()Wl (7))

f )

= ke () (. Wl = B) = ey (R)WIFM () = W)Q)

1. -~ A 1 A ~
=l exp (= (= . QO = ) ) = ) exp( =5 0G0 = . ) =) | (630
Before evaluating the functional derivatives we can simplify (6.30):
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(W.CRM@I)) = (fM (1), Cl')

(), €)= 0 P ) exp (=5 G0 = ) = ) )

1. 4 A o o o
—exp( - 3100 ClI = P + L) - P ) - )
1., . A N R
=exp (—5 [([A = W|C[h = W']) +2(h',C(h - fM(h’))]). (6.31)
Accordingly, Eq. (6.30) can be rewritten as (reintroducing h = CI/, h= Ciz’)

)7 exp (=5 (o €= ) ) 1 = exp( (0, (€)= C3 )L (632)

It will be convenient to define the symmetric kernels K = C~!,AK = C! -] MCVIL. In carrying out the double, triple,

and fourfold functional derivatives of (6.32) at h = h = 0 we use arguments familiar from Wick’s theorem in perturbative
QFT: as (6.32) is a linear combination of two exponentials E(H) = exp(B(H,H)/2) of a quadratic polynomial B in
H = (h, n ), their derivatives are schematically

E' = (BH)E,E" = B+ (BH)?|E,E" = [3B’H + (BH)*|E,
E" = [3B*> + 3(BH)*B + 3(B>H)(BH) + (BH)*|E, (6.33)

so that at H = 0 only second and fourth derivatives survive. To simplify the notation we set

E, = exp <—% (h—h,K[h - h})), E, =exp(—(h,[AK]R),  E;, =—— Ejy= . (634

with j = 1, 2 and similar for z, 7. Then

(ElEz)’),y/ = El,yy'EZ =+ E1E2,yy’ + El,yEZ.y' + El,y/E2,y’
(E\Ey) yyoo = [Elyyer By + EyyEs o] + [E| 2 Ep yy + E\Ey ]
+ [El.yZEZ,y’z’ = Elq}'Z/Ezs}'/Z] + [Elq}'IZEZ,yZI + El,y’z’E2,yz] + tt (6.35)

where - - - denotes odd order derivatives which vanish at H = 0. We have at H =0

E\y,=-K(y.,2), Eys=-K(.7), Ei,w=K0(.7),
E,,, =0, Ey, s =0, E, o = [AK](y.2).
E\ . =Ky, 29K )+ K(y,Y)K(z, ') + K(y,2)K(z. '),
Eyyy.o = [AK](y,Y)[AK](z, Z') + [AK](y, Z)[AK](2, ). (6.36)

Collecting all terms we find at H =0
[E\(1 = E3)],y = [AK](y,Y), (6.37)

[Ei(1 = E3)] yyr = K(y,Y)[AK](z,2') + K(y, Z)[AK](z, ) K (2, Y") [AK](y, Z)
- [AK](y,¥)[AK](z, ') — [AK](y, 2)[AK](z, ), (6.38)

where importantly both terms proportional to E ,.» have canceled so that all functional derivatives contain at least one
factor of AK, which we expect to imply the convergence to zero of (6.8), which now can be vastly simplified to
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ku(f)? / dxF(x) / dx'F(x') (3K, (x. ") [AK], (x. ¥') — 2([AK], (x. ¥))* + 4 (x)¢ (¢)[AK], (x. )}, (6.39)
where using Q% (y,z) = O_;(y,z) = O(z,y),

K,(x.x) = / dy / d20,(x.)0, (V. K (y.2) = [0,KO,](x.x). (6.40)

and similar for [AK],(x,x’). Here

/) = QICIL,CA = QK = BKNCNG).  wu() =exp( -3 (CAIKICH ). (641
Since P, is a projection, we have ||Py,|| = 1; thus,

1PawlA1QI = ks (N IWI(IRI = kaa (NI < 1P ll[wlAIQI = 1. (6.42)

and it will be sufficient to show that the integral term in (6.39) converges. Also we focus on s = +, the case s = — being
completely analogous. Obviously then, the convergence or not of (6.8) rests on the properties of Ax and ¢'. We begin with
the term

/ dx / AXF(x)F(x)K . (v, ¥)[AK]., (x,¥) = / dx / dX'F(x)F(x)K , (x, ) [AK]_ (¥, %), (6.43)

where in the second step we used that [AK](y, z) = [AK](z,y) and Q(y.z) = Qi(z,y) = Q_,(z,y). We expand into the
Fourier basis

K (x.x) = Z en(x){e,, O KQ ey)e_y(x') = Z en(x)(en, Key)e_y(X'),

nn €Z n,n'>0

[AK]_(¥.x) = ) en(¥)(e,, [AK]e, e (x).

n,n' <0

F(x) = Z F(n)e,(x) = F*(x), F*(n) = F(=n), (6.44)

[n]<ng

where we assume that F has compact momentum support |n| < ngy. Presumably what follows can also be shown under

milder decay assumptions on the Fourier modes F(n) (e.g., rapid decrease in 1 € Z), but we will be satisfied if convergence
can be proved for this class of smearing functions of the constraint. Then (6.43) turns into

F(n): Fr(n2) ) (ew-Ken) D [AK] By st O—nyonim- (6.45)

[ny || <ng m.n>0 m',n' <0
This implies the constraints on the range of m,n,m’, n’,
n=n+m<0, m=n+n<0, m=n-n >0, n=m—-ny, >0
=0<m<-n<ny, O0<n<-ny<ny, 0>n>n >-ng, 0>m>n,>—ny; (6.46)
thus, the compact momentum support propagates to the m, n, m’, n’ modes. For bounded values of m, n the modulus of the

matrix element |(e,,, Ke,)| is uniformly bounded, and we are left to study the behavior of (e,, [AK]e, ) at fixed values of
n,n’ # 0 (of equal sign). We have

<env [AK}en’> = <en7 [C_l - IMCIT/IIIZVI]en’>
= 2[0)(71)5,,’,,/ - Z (’)M(ﬁ)<en71MeIF‘z/l> <IMeﬁ"‘z/I’ ew)s (6.47)
REZy
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where in the second step we expanded into the spectral
basis X € Ly, of w), given by e¥ (m) = e;(xp1), xpt =12,
m € Z ;. The eigenvalues @y, (7) follow from the definition
CM = I]LCIMs i.e.,

Opwy; QM—I Qw™'0Iy (6.48)

from which

Z I;r\/[en <en’w_len’> <en’»IMeln'w>
0#n.n' €7

:Ze{”

ez,  n#0

Onwy Oyey =
<IM€%,€H>CU_1 (n)<envIMe§z4>‘

(6.49)

Here we need the Fourier modes of the characteristic
functions y}! of the interval [x)/,x™ ),

etkun _ 1 2
(Fyen) ) = M) =M () oty =22,
(6.50)

We note that (6.50) does not have compact momentum
support and also does not decay rapidly. This has some
bearing further below. It follows

< € ’Ij}we > = <IMe%4’en>

ikyn _ 1
- M ()] e (m) €
3 ety
ikyn
B M etfm — 1
- [zm:e"—"( )] 2zin
eian -1
= My (6.51)

fen [8Kley) =2 0013~ 3 @) S

where 7€ Zy, and n =n+IM,l€Z uniquely decom-
poses a general integer n into a multiple / of M and a
remainder 7 € Zy; = {0, 1,...,M — 1}. Accordingly

Ouwy Quey —ZEMZ(U 8540w 4
i n#0
2M2[1 cos(ky )]
[27n)?
=[1=8; el “w(it+IM)~
lez
2M?[1 —cos(kyii)]
R2r(i+IM)*> (6:52)
whence for M > n > 0,
1 2[1 = cos(kyn)]
Za) n—+IM)” —[ (n+ IM)]
B _1 2[1 = cos(kyn)]
= w(n) 1—[an}2
+ o(n+ M) 21— costhyn)] ¢ o3

o [ky(n + IM)]?

Since w(n) = 2x|n|, at fixed n the first term in (6.53)
converges to ™! (n) as M — oo while the modulus of the
second is bounded by the series

4 K[ 1 1
(2n)3Ml§;[[l+"] [l——

3A4Z[13+ ; 3}

=1
(6.54)

for n<M/2 and thus converges to zero as M~!.
Accordingly wy,(n) —w(n) = O(1/M) at fixed n. Then
(6.47) becomes

eian’ -1 |:eian —17*

} eil, (my)ey_; (ms)

2rin’ 2rin

. 2[1 = cos(kyt)]
=2 S, 07 105 1 ——————— 2| 6.55
0= 3 ot T (659
where n =+ IM,n' =#' + 1M, and it, i’ € Zy;. Since 0 > n,n’ > —ny, and eventually M > n,, we have [ =1’ = —1
and =M +n=n,A =M + n' = ii; therefore, n = n’ in the second term of (6.56) and 7 = n + M
211 — k
(e [8KJeg) = 28, [o0) = (41 -+ ) 21 =] (6.56)
mn

Note that for —-M < —ny < n < 0 we have
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oy (M +n)”
lez

= Za)(n+lM)‘l

lez

as M — oo. Thus, indeed, Eq. (6.43) converges to zero.
Next consider

[ ax [[avror

By the same argument as above, if F has compact
momentum support, then (6.58) is a quadratic polynomial
in the (e,, [AK],/) with M independent coefficients where
either ny > n,n’ > 0 or —ng < n,n’ <0 and hence con-
verges to zero.

Finally consider

/dxF(x)/dx’F(x’)g’(x)g’(x’)[AK]S(x, x),  (6.59)

where
|

Z Za)M it)ey (e, Iyed)(Iyed,

nn'#0 7

= oM +n+IM)"!

2[1
ey (n + M)~

1 2[1 = cos(ky (M + n))]
[ky (M + n + IM)]?

— cos(kyn)]

= w(-n)! (6.57)

x)[AK], (x, x')[AK] (x, x) /a’x/dx’F F(x)[AK], (x,x)[AK]_(x', x). (6.58)
I

g (x) = (@1 C3 1,C1(x). (6.60)

We note that QI =1I1y0uy,[Cy.Oul =[C,0] =0

implies that ILQ =q- mlj\,, whence by the now familiar
argument

Z ZwM(n n+le2 (i[z IM

L'ez n

It follows that ¢’ does not have compact momentum support
n' even if f does. Therefore, F(x)¢ (x) also does not have
compact momentum support even if F' does. It is not even
clear that (6.62) converges. This feature of f’ is again due
to the fact that the functions y¥ are discontinuous. If one

g no

would replace them by )(% where f(%] is the Fourier

expansion of y¥ restricted to modes || < ng, then yp ™ —
M in the L norm, and if we define 179, [I}9]" like Iy, I},
with ¥ replaced by yh™ and first take the limit M — oo
in (6.59) and then ny — oo, then (6.59) vanishes as
M — oo. This regularization using the momentum cutoff
ng is similar to the zeta function regularization of Sec. III
and is justified by the following argument: while the y¥
have all the necessary features in order to define a
renormalization flow, they are not the only choice. There
are other, smoother choices [21] satisfying the same
necessary requirements but those have a built-in compact
momentum support of order M. In that case the sum over /,
!' in (6.62) disappears and the compact momentum support
of f propagates to that of g, and then, e.g., g = Qf even
exactly for sufficiently large M. Then also Fg have
compact momentum support, and the same argument as

J(x) = [01uCy/ T}, COf](x) (6.61)
so that
e,y (n)™ f(n)
— cos(kyi1)] . RPN
CEN] )a)(n+lM) f(a+1IM). (6.62)

I
was made for (6.43) and (6.58) can be used to show that
(6.59) converges to zero without any regulator. Since the
choice of the y¥ is quite arbitrary subject to a minimal set
of requirements and since one wants to probe functions f of
compact momentum support using their / MIL | approx-
imants, such a smooth choice of y¥ is simply more
convenient. With respect to any choice we have conver-
gence of [ MIL — 1, in the L, sense, but the finite
resolution approximants have additional smoothness or
momentum compactness properties while others do not
and those additional properties turn out to be important in
the present convergence analysis. The strict proof that with
the choice of 7,; made in [21] expression (6.59) converges
to zero is given in Sec. 5 of [21] and also provides the
argument that was missing at the end of the previous
section to establish convergence of the flow of constraints.
We conclude this section with the remark that the
functions y¥ wused in [21] are smooth with compact
momentum support and that smooth smearing functions
F, f of constraints and Weyl elements, respectively, are of
rapid decrease in the momentum mode label n. Thus, with
respect to those functions all estimates of this section pass
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through without any regularization and convergence is
established.

VII. DISCRETIZED SMEARING FUNCTIONS
OF THE CONSTRAINTS

As we have seen, the embeddings J,; do not induce a
canonical map E,,: L — L, such that (we drop the index s
for the purpose of this section)

Dy (F) = JyD(F)Jy; = Dy (EyF). (7.1)

However, we may use the map Ej := I}, to define the
family of discretized smearing functions F; := ILF ,

DM(FM> = JLD(IMFM)JM = Dy(puF). (7.2)

[DM<FM)7DM(GM)] = JL([D(PMF)’D(PMGN = D(puF)(1 = Py )D(pyG) + D(pyuG)(1 = Py)D(pyF))J

and modulo the central term we have in our case

[D(puF), D(puG)] = D([puF, puGl).

The new smearing function in (7.6) is given by

[PuF, puGl = [puF' [PuG| = [PuFllpuG) = pu(lpuF, puGl) + (1 = pu)([puF PuGl).

Thus (7.5) becomes

[DM(FM)’DM(GM)] = DM(KM(FMv Gy)) (7.8)

modulo the central term and the corrections involving
14y — Py and 1, — py. Here the discretized structure
functions are defined by

k(F,G) =[F,G],
(7.9)

ki (FarsGy) = Lyk(Iyy F g 1y Gy).

which are well-defined if the functions y defining 1,, are
sufficiently differentiable. We have already seen in the
previous section that the correction involving 14 — Py,
converges to zero if F' has compact momentum support.
That is no longer the case for F replaced by p,F if the
functions ¥ are step functions, but it is the case when
those functions themselves have compact momentum
support as those in [21]. The functions y7}; in general span
a closed, finite dimensional subspace V,, C L and their
derivatives [y}]’ may or may not lie in V', (for the case [21]
they actually do). However, the products y”,[y)1]" are no
longer in V), so that the term proportional to 1; — p,, does
not vanish automatically. If, however, F, G have compact
momentum support, then the projections p,F coincide

where
pu=1Iyll,: L =L (7.3)

is a projection due to isometry ILI w = 1, This defines a
consistent family of quadratic forms in the sense that for
any M < M,

Ty Do Laase Far) i = Diag(Fg) (7.4)

with Iy = IL,IM thanks to Iy lyuy =1y and
Iy Iy = Jy- We can therefore compute
(7.5)

(7.6)

(7.7)

|

with F for sufficiently large M because V,, roughly
involves all Fourier modes up to order |n| < M and thus
also [F,G]| eventually lies in V,, and the correction
involving 1 — p,, eventually vanishes.

If F, G do not have compact momentum support but are
smooth, then their Fourier transforms are of rapid decrease
in the mode label n. In this case the terms involving
1; — py are not exactly zero for sufficiently large M but do
converge to zero rapidly. Thus we see that with respect to
the coarse-graining maps of [21] the correction terms of
type 1y — Py, 1, — py of the discrete Virasoro algebra
converge to zero in the weak operator topology of H and
that in particular the central term of the Virasoro algebra is
correctly reproduced.

VIII. CONCLUSION AND OUTLOOK

In the present work we have investigated the question
whether Hamiltonian renormalization in the sense of
[4,6,7,11], while derived in the context of ordinary
Hamiltonian systems, can be “abused” to study also
generally covariant Hamiltonian systems with an infinite
number of Hamiltonian constraints rather than a single
Hamiltonian. We have chosen parametrized field theory on
the 1 4 1 cylinder to test related questions where the exact
quantum theory is known.
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We have explicitly demonstrated that indeed the general
framework of [11] can be applied, although the system does
not exhibit a common vacuum vector Q for all constraint
operators due to the central term in the Virasoro algebra.
The renormalization flow indeed finds the correct fixed
point theory. This enabled us to study the constraint algebra
at finite resolution. That finite resolution algebra generi-
cally does not close (including the central term). However,
it does not close for a simple mathematical reason: The
constraints at finite resolution are forced to map states in
the Hilbert space of given finite resolution to themselves.
However, to achieve closure, matrix elements with states
at higher resolution are needed. These are restored as we
increase the resolution and explains why the failure of
closure is parametrized by the projection 1, — Py, where
P, projects on the given finite resolution subspace. In that
sense the failure to close does not represent an anomaly but
just a finite size artifact. In QFTs that are not exactly
solvable one can distinguish between true anomalies and
these artifacts by studying whether their size decreases as
we increase the resolution.

In addition, we could address the question if and in what
sense smearing functions of constraint operators can or
should also be discretized when probing them at finite
resolution. Namely, while it is not necessary or even natural
to do so, one can use the coarse-graining map that was
employed for reasons of renormalization also for those
smearing functions. This leads to an additional finite

size artifact in the finite resolution constraint algebra
parametrized by 1; — p,; where now p,, projects on
smearing functions (rather than Hilbert space states) of
finite resolution. This is because the commutator of
constraints is smeared by a bilinear expression in two
smearing functions and typically derivatives thereof of
finite order. Those aggregates generically leave the sub-
space py,L. However, again these corrections converge to
zero as we increase the resolution for coarse-graining maps
with sufficient smoothness.

In the convergence proofs that we supplied it was
important that the functions that define the coarse-graining
maps of the renormalization flow display sufficient smooth-
ness as otherwise the estimates that were needed do not
hold: the Fourier transform of a merely piecewise smooth
function is not of rapid decrease and displays the Gibbs
phenomenon at the discontinuities [32]; i.e., the partial
Fourier transform of the function at finite resolution has
points within the resolution size away from the disconti-
nuity that differ from the function by a size independent of
the resolution.

We will use the lessons learned for more complicated and
physically more interesting constrained QFT such as PFT
in higher dimensions and the U(1)® model for quantum
gravity [33] which present the next logical step in the
degree of complexity as in these models the constraint
algebra (hypersurface deformation algebra) no longer
closes with structure constants but only structure functions.

[1] K. G. Wilson, The renormalization group: Critical pheno-
mena and the Kondo problem, Rev. Mod. Phys. 47, 773
(1975).

[2] Y. Yamasaki, Measures on Infinite Dimensional Spaces
(World Scientific, Singapore, 1985).

[3] J. Glimm and A. Jaffe, Quantum Physics (Springer Verlag,
New York, 1987).

[4] T. Lang, K. Liegener, and T. Thiemann, Hamiltonian
renormalisation I. Derivation from Osterwalder-Schrader
reconstruction, Classical Quantum Gravity 35, 245011
(2018).

[5] F.J. Wegner, Corrections to scaling laws, Phys. Rev. B 5,
4529 (1972); Flow equations for Hamiltonians, Phys. Rep.
348, 77 (2001); S.D. Glazek and K. G. Wilson, Renorm-
alization of Hamiltonians, Phys. Rev. D 48, 5863 (1993); M.
Weinstein, Hamiltonians, path integrals, and a new renorm-
alization group, Phys. Rev. D 47, 5499 (1993); Joan
Elias-Miro, Slava Rychkov, and Lorenzo G. Vitale, NLO
renormalization in the Hamiltonian truncation, Phys. Rev. D
96, 065024 (2017); S. R. White, Density-matrix algorithms
for quantum renormalisation groups, Phys. Rev. B 48,
10345 (1993); G. Vidal, Entanglement renormalization,
Phys. Rev. Lett. 99, 220405 (2007).

[6] T. Lang, K. Liegener, and T. Thiemann, Hamiltonian
renormalisation II. Renormalisation flow of 1 + 1 dimen-
sional free, scalar fields: Derivation, Classical Quantum
Gravity 35, 245012 (2018); Hamiltonian renormalisation
III. Renormalisation flow of 1 + 1 dimensional free, scalar
fields: Properties, Classical Quantum Gravity 35, 245013
(2018); Hamiltonian renormalisation IV. Renormalisation
flow of D+ 1 dimensional free scalar fields and
rotation invariance, Classical Quantum Gravity 35, 245014
(2018).

[7] K. Liegener and T. Thiemann, Hamiltonian renormalisation
V. Free vector bosons, Front. Astron. Space Sci. 7, 547550
(2021); 0, 98 (2021); T. Thiemann, following paper,
Hamiltonian renormalisation VII. Free fermions and dou-
bler free kernels, Phys. Rev. D 108, 125007 (2023).

[8] C. Rovelli, Quantum Gravity (Cambridge University Press,
Cambridge, England, 2004); T. Thiemann, Modern Canoni-
cal Quantum General Relativity (Cambridge University
Press, Cambridge, England, 2007); J. Pullin and R.
Gambini, A First Course in Loop Quantum Gravity (Oxford
University Press, New York, 2011); C. Rovelli and F.
Vidotto, Covariant Loop Quantum Gravity (Cambridge
University Press, Cambridge, England, 2015).

125006-33


https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1088/1361-6382/aaec56
https://doi.org/10.1088/1361-6382/aaec56
https://doi.org/10.1103/PhysRevB.5.4529
https://doi.org/10.1103/PhysRevB.5.4529
https://doi.org/10.1016/S0370-1573(00)00136-8
https://doi.org/10.1016/S0370-1573(00)00136-8
https://doi.org/10.1103/PhysRevD.48.5863
https://doi.org/10.1103/PhysRevD.47.5499
https://doi.org/10.1103/PhysRevD.96.065024
https://doi.org/10.1103/PhysRevD.96.065024
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1088/1361-6382/aaec54
https://doi.org/10.1088/1361-6382/aaec54
https://doi.org/10.1088/1361-6382/aaec3a
https://doi.org/10.1088/1361-6382/aaec3a
https://doi.org/10.1088/1361-6382/aaec43
https://doi.org/10.1088/1361-6382/aaec43
https://doi.org/10.3389/fspas.2020.547550
https://doi.org/10.3389/fspas.2020.547550
https://doi.org/10.1103/PhysRevD.108.125007

T. THIEMANN and E.-A. ZWICKNAGEL

PHYS. REV. D 108, 125006 (2023)

[9] A. Eichhorn, An asymptotically safe guide to quantum
gravity and matter, Front. Astron. Space Sci. §, 47 (2019).

[10] T. Thiemann, Anomaly-free formulation of non-
perturbative, four-dimensional Lorentzian quantum gravity,
Phys. Lett. B 380, 257 (1996); Quantum spin dynamics
(QSD), Classical Quantum Gravity 15, 839 (1998); Quan-
tum spin dynamics (QSD): II. The kernel of the Wheeler-
DeWitt constraint operator, Classical Quantum Gravity 15,
875 (1998); Quantum spin dynamics (QSD): IV. 2+ 1
euclidean quantum gravity as a model to test 3 + 1
Lorentzian quantum gravity, Classical Quantum Gravity
15, 1249 (1998); Quantum spin dynamics (QSD): V.
Quantum gravity as the natural regulator of the Hamiltonian
constraint of matter quantum field theories, Classical
Quantum Gravity 15, 1281 (1998).

[11] T. Thiemann, Canonical quantum gravity, constructive QFT
and renormalisation, Front. Phys. 8, 548232 (2020); 0, 457
(2020).

[12] B. Bahr and K. Liegener, Towards exploring features of
Hamiltonian renormalisation relevant for quantum gravity,
Classical Quantum Gravity 39, 075010 (2022).

[13] J. D. Brown and K. V. Kuchar, Dust as a standard of space
and time in canonical quantum gravity, Phys. Rev. D 51,
5600 (1995); K.V. Kuchar and C.G. Torre, Gaussian
reference fluid and interpretation of quantum geometrody-
namics, Phys. Rev. D 43, 419 (1991); V. Husain and T.
Pawlowski, Time and a physical Hamiltonian for quantum
gravity, Phys. Rev. Lett. 108, 141301 (2012); K. Giesel and
T. Thiemann, Scalar material reference systems and loop
quantum gravity, Classical Quantum Gravity 32, 135015
(2015).

[14] S. A. Hojman, K. Kuchar, and C. Teitelboim, Geometro-
dynamics regained, Ann. Phys. (N.Y.) 96, 88 (1976).

[15] P. Hajicek and K. Kuchar, Constraint quantization of para-
metrized relativistic gauge systems in curved spacetimes,
Phys. Rev. D 41, 1091 (1990).

[16] A. Laddha, Hamiltonian constraint in Euclidean LQG
revisited: First hints of off-shell Closure, arXiv:
1401.0931; A. Ashtekar and M. Varadarajan, Gravitational
dynamics—A novel shift in the Hamiltonian paradigm,
Universe 7, 13 (2021); M. Varadarajan, Euclidean LQG
dynamics: An electric shift in perspective, Classical Quan-
tum Gravity 38, 135020 (2021); Anomaly free quantum
dynamics for Euclidean LQG, arXiv:2205.10779.

[17] M. Varadarajan, Propagation in polymer parameterised field
theory, Classical Quantum Gravity 34, 015012 (2017); A.
Laddha and M. Varadarajan, The Hamiltonian constraint in
polymer parametrized field theory, Phys. Rev. D 83, 025019
(2011); Polymer quantization of the free scalar field and its
classical limit, Classical Quantum Gravity 27, 175010
(2010).

[18] T. Thiemann, Lessons for loop quantum gravity from
parametrised field theory, arXiv:1010.2426.

[19] O. Bratteli and D. W. Robinson, Operator Algebras and
Quantum Statistical Mechanics (Springer Verlag, Berlin,
1997), Vol. 1, 2.

[20] H.B. Nielsen and M. Ninomiya, A no-go theorem for
regularizing chiral fermions, Phys. Lett. 105B, 219 (1981).

[21] T. Thiemann, this issue, Renormalisation, wavelets and the
Dirichlet-Shannon kernels, Phys. Rev. D 108, 125008
(2023).

[22] K. Kuchar, Dirac constraint quantization of a parametrized
field theory by anomaly—free operator representations of
space-time diffeomorphisms, Phys. Rev. D 39, 2263 (1989);
Parametrized scalar field on openR > 1: Dynamical pic-
tures, space-time diffeomorphisms, and conformal isome-
tries, Phys. Rev. D 39, 1579 (1989).

[23] T.J. Osborne and A. Stottmeister, Conformal field theory
from lattice fermions, arXiv:2107.13834; quantum simula-
tion of conformal field theory, arXiv:2109.14214.

[24] M. B. Green, J.H. Schwarz, and E. Witten, Superstring
Theory (Cambridge University Press, Cambridge, England,
1986), Vol. 1.

[25] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and
S. Zerbini, Zeta Regularization Techniques with Applica-
tions (World Scientific Publishing, Singapore, 1994).

[26] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal
Field Theory, Graduate Texts in Contemporary Physics
(Springer-Verlag, New York, 1997).

[27] T. Thiemann, Quantum spin dynamics. VIII. The master
constraint, Classical Quantum Gravity 23, 2249 (2006).

[28] M. Henneaux and C. Teitelboim, Quantisation of
Gauge Systems (Princeton University Press, Princeton,
NJ, 1992).

[29] B. Bahr, R. Gambini, and J. Pullin, Discretisations, con-
straints and diffeomorphisms in quantum gravity, SIGMA 8,
002 (2012); M. Campiglia, C. Di Bartolo, R. Gambini, and
J. Pullin, Uniform discretizations: A new approach for the
quantization of totally constrained systems, Phys. Rev. D
74, 124012 (2006); R. Gambini and J. Pullin, Consistent
discretization and loop quantum geometry, Phys. Rev. Lett.
94, 101302 (2005).

[30] I. Daubechies, Ten Lectures of Wavelets (Springer Verlag,
Berlin, 1993).

[31] M. Reed and B. Simon, Methods of Modern Mathematical
Physics (Academic Press, New York, 1980), Vol. L.

[32] W.J. Thompson, Fourier series and the Gibbs phenomenon,
Am. J. Phys. 60, 425 (1992).

[33] L. Smolin, The Gy,yon to O limit of Euclidean quantum
gravity, Classical Quantum Gravity 9, 883 (1992); M.
Varadarajan, Constraint algebra in Smolins’ G — 0 limit
of 4d Euclidean gravity, Phys. Rev. D 97, 10 (2018); C.
Tomlin and M. Varadarajan, Towards an anomaly-free
quantum dynamics for a weak coupling limit of Euclidean
gravity, Phys. Rev. D 87, 044040 (2013); S. Bakhoda and T.
Thiemann, Reduced phase space approach to the U(1)?
model for Euclidean quantum gravity, Classical Quantum
Gravity 38, 215006 (2021); Asymptotically flat boundary
conditions for the U(1)® model for Euclidean quantum
gravity, Universe 7, 68 (2021); Covariant origin of the
U(1)? model for Euclidean quantum gravity, Classical
Quantum Gravity 39, 025006 (2022).

125006-34


https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.1016/0370-2693(96)00532-1
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1088/0264-9381/15/4/012
https://doi.org/10.1088/0264-9381/15/4/012
https://doi.org/10.1088/0264-9381/15/5/011
https://doi.org/10.1088/0264-9381/15/5/011
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.3389/fphy.2020.548232
https://doi.org/10.1088/1361-6382/ac5050
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.43.419
https://doi.org/10.1103/PhysRevLett.108.141301
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1016/0003-4916(76)90112-3
https://doi.org/10.1103/PhysRevD.41.1091
https://arXiv.org/abs/1401.0931
https://arXiv.org/abs/1401.0931
https://doi.org/10.3390/universe7010013
https://doi.org/10.1088/1361-6382/abfc2d
https://doi.org/10.1088/1361-6382/abfc2d
https://arXiv.org/abs/2205.10779
https://doi.org/10.1088/1361-6382/34/1/015012
https://doi.org/10.1103/PhysRevD.83.025019
https://doi.org/10.1103/PhysRevD.83.025019
https://doi.org/10.1088/0264-9381/27/17/175010
https://doi.org/10.1088/0264-9381/27/17/175010
https://arXiv.org/abs/1010.2426
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1103/PhysRevD.108.125008
https://doi.org/10.1103/PhysRevD.108.125008
https://doi.org/10.1103/PhysRevD.39.2263
https://doi.org/10.1103/PhysRevD.39.1579
https://arXiv.org/abs/2107.13834
https://arXiv.org/abs/2109.14214
https://doi.org/10.1088/0264-9381/23/7/003
https://doi.org/10.3842/SIGMA.2012.002
https://doi.org/10.3842/SIGMA.2012.002
https://doi.org/10.1103/PhysRevD.74.124012
https://doi.org/10.1103/PhysRevD.74.124012
https://doi.org/10.1103/PhysRevLett.94.101302
https://doi.org/10.1103/PhysRevLett.94.101302
https://doi.org/10.1119/1.16895
https://doi.org/10.1088/0264-9381/9/4/007
https://doi.org/
https://doi.org/10.1103/PhysRevD.87.044040
https://doi.org/10.1088/1361-6382/ac2721
https://doi.org/10.1088/1361-6382/ac2721
https://doi.org/10.3390/universe7030068
https://doi.org/10.1088/1361-6382/ac37a4
https://doi.org/10.1088/1361-6382/ac37a4

