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What does it mean for a boundary condition to be symmetric with respect to a noninvertible global
symmetry? We discuss two possible definitions in 1þ 1D QFTs and lattice models. On the one hand, we
call a boundary weakly symmetric if the symmetry defects can terminate topologically on it, leading to
conserved operators for the Hamiltonian on an interval (in the open string channel). On the other hand, we
call a boundary strongly symmetric if the corresponding boundary state is an eigenstate of the symmetry
operators (in the closed string channel). These two notions of symmetric boundaries are equivalent for
invertible symmetries, but bifurcate for noninvertible symmetries. We discuss the relation to anomalies,
where we observe that it is sometimes possible to gauge a noninvertible symmetry in a generalized sense
even though it is incompatible with a trivially gapped phase. The analysis of symmetric boundaries further
leads to constraints on bulk and boundary renormalization group flows. In 2þ 1D, we study the action of
noninvertible condensation defects on the boundaries of Uð1Þ gauge theory and several TQFTs. Starting
from the Dirichlet boundary of free Maxwell theory, the noninvertible symmetries generate infinitely many
boundary conditions that are neither Dirichlet nor Neumann.
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I. INTRODUCTION

Global symmetries serve as a powerful tool to study
the nonperturbative dynamics of quantum field theories
and lattice models, providing us with a general organ-
izing principle for the physical observables. A particu-
larly fruitful application is the interplay between global
symmetries and boundary conditions. Oftentimes, boun-
dary conditions are sensitive to the fine algebraic data
associated with a global symmetry, such as its ’t Hooft
anomalies, and the spectrum of boundary conditions can
correspondingly be greatly constrained. For instance,
nontrivial ’t Hooft anomalies are known to obstruct
the existence of a symmetric boundary condition (see,
for instance, [1–11]).
The notion of a global symmetry has been generalized

in various directions in the past decade to include
higher-form symmetries [12] and noninvertible sym-
metries. See [13,14] for recent reviews. In 1þ 1D,
noninvertible symmetries are generated by topological
defect lines [15–40], and are described by the math-
ematical theory of fusion categories.

In this paper, we study the interplay between boundary
conditions and finite noninvertible global symmetries in
diverse spacetime dimensions, with a particular focus
on 1þ 1D and 2þ 1D bulk field theories and lattice
systems. In 1þ 1D, relationships between boundary
conditions and generalized global symmetries have been
discussed, for example, in [25,41–48]. Boundary con-
ditions for noninvertible symmetries in 3þ 1D lattice
gauge theory have recently been analyzed in [49] based
on the model in [50].
We begin by asking the most basic question: What does

it mean for a boundary condition to be symmetric under a
noninvertible global symmetry? Interestingly, we find that
such a simple question does not have a unique natural
answer in the case of noninvertible symmetries.
We call a boundary condition weakly symmetric if the

corresponding defect lines can topologically terminate on
the boundary. Such a definition is natural in the open string
channel, as it implies that the topological defect lines
commute with the Hamiltonian on the interval with the
boundary condition imposed at its two endpoints, leading
to conserved quantities. This definition applies equally well
to 1þ 1D lattice systems, where we call a boundary
condition weakly symmetric if the Hamiltonian on an open
chain commutes with operators which locally look like the
symmetry operators in the bulk.
There is an alternative way to define a symmetric

boundary condition, which is more natural in the closed
string channel. In the context of 1þ 1D conformal field
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theory (CFT), boundary conditions1 define a special
class of quantum states, called boundary states, which
are subject to consistency conditions known as the Cardy
conditions [52]. We call a boundary condition strongly
symmetric if the corresponding boundary state is a simul-
taneous eigenstate under the action of the topological defect
lines. This definition may also be extended to lattice
systems by requiring that the boundary condition is
invariant (up to a positive number) with respect to parallel
fusion with the symmetry defects.2 See Fig. 1 for an
illustration of these two notions.
The two definitions of what a symmetric boundary is

turn out to be equivalent when the symmetry is invertible.
However, we find that this is not the case for general
noninvertible symmetries described by fusion categories,
and the very notion of a symmetric boundary condition
bifurcates. In particular, as the names suggest, a strongly
symmetric boundary condition is always also weakly
symmetric, but not necessarily the other way around.
Fusion categories therefore fall into three types, based
on the kinds of boundary conditions with which they
are kinematically compatible.3 See Table I. In the main
text, we discuss CFTs and lattice models which realize
these symmetries and their corresponding boundaries.

The specific lattice models we will study are the golden
chain and other anyonic chains.4

We further discuss the relation to anomalies. For invert-
ible symmetries, ’t Hooft anomalies can be equivalently
defined either in terms of (1) the incompatibility with a
symmetry-preserving, trivially gapped phase5 (which will
be our definition of an anomaly throughout), or (2) the
obstruction to gauging. For noninvertible symmetries, we
point out that these two notions of anomaly again bifurcate.
It is possible that a fusion category C can be “gauged” in a
generalized sense by inserting a mesh of all the topological
defects of C [20–22,24], and yet is incompatible with a
trivially gapped phase. The simplest such example is the
Fibonacci fusion category. We show that a fusion category
kinematically admits a strongly symmetric boundary if
and only if it is free of anomaly (in the sense that it is
compatible with a trivially gapped phase), while it admits
a weakly symmetric boundary if and only if it can be
“gauged.”
By employing the relation between renormalization

group (RG) boundaries and relevant deformations, the
analysis of symmetric boundary conditions leads to new
constraints on bulk RG flows beyond those from anomaly
matching. In particular, we find that the tetracritical
Ising CFT cannot be trivially gapped by any relevant
deformation while preserving the RepðS3Þ fusion cat-
egory, even though that symmetry is nonanomalous in the
sense that it is kinematically compatible with a trivially
gapped phase.

FIG. 1. We call a boundary condition strongly symmetric if the corresponding boundary state is an eigenstate under the action of the
symmetry, as shown in the figure on the left (closed string channel). Here hLi ≥ 1 is the quantum dimension of the topological line. On
the other hand, we call a boundary condition weakly symmetric if the topological defect lines can topologically end on the boundary, as
shown in the figure on the right (open string channel).

1Throughout the paper, for 1þ 1D CFTs, we only consider
compact boundary conditions of a compact CFT, i.e., those
boundary conditions B for which the Hilbert space HBB, defined
on an interval with a finite length L with boundary conditions B,
has a discrete spectrum. For instance, the c ¼ 1 compact boson
CFT at an irrational multiple of self-dual radius has a family of
noncompact boundaries [51]. We thank P. Boyle Smith for the
discussions on this point.

2See, for example, [31] for such fusion processes of defects
and boundaries on the lattice.

3As is common in high energy physics, we refer to theory-
independent consequences of symmetries and anomalies as
“kinematics,” and to effects that depend on the specific choice
of a Hamiltonian or Lagrangian as “dynamics.” This is to be
contrasted with terminology in other fields, where “dynamics”
often refers to evolution under real time.

4For more general lattice models, the relation between non-
invertible symmetries and boundary conditions can be more
intricate since the structure of noninvertible symmetries on the
lattice can be fundamentally different from the corresponding
symmetries in the continuum. For instance, in some cases, the
noninvertible symmetry on a tensor product Hilbert space can
mix with the lattice translation symmetry [53,54]. We leave the
analysis for such noninvertible lattice translations for the future.

5A symmetry-preserving trivially gapped phase is a gapped
phase with a unique ground state which is invariant under the
symmetry action. It is the low energy limit of an SPT phase.
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In higher spacetime dimensions, generalized global
symmetries act on boundary conditions as a matrix repre-
sentation with “coefficients” valued in topological quantum
field theories (TQFTs). This generalizes the non-negative
integer matrix representation in 1þ 1D [41]. We demon-
strate this general structure by focusing on a special kind of
noninvertible global symmetry, known as a condensation
defect [55–59] (see also [60–72]). More specifically, we
study the action of noninvertible condensation defects on
boundary conditions in 2þ 1D Uð1Þ gauge theory, Z2

gauge theory (i.e., the low energy limit of the toric code),
and other TQFTs. Starting from the ordinary Dirichlet
boundary of the 2þ 1D Uð1Þ Maxwell gauge theory, the
noninvertible symmetry surfaces lead to infinitely many
boundary conditions BN (indexed by a positive integer N)
that are neither Dirichlet nor Neumann. We call them
partially Dirichlet boundaries, because while a minimally
charged Wilson line cannot terminate on BN , a charge N
Wilson line can.
The rest of this paper is organized as follows. In Sec. II,

we explain in more detail the two notions of symmetric
boundary conditions. In Sec. III, we discuss the relation
between the existence of strongly/weakly symmetric boun-
dary conditions, ’t Hooft anomalies, and gauging in the case
of noninvertible symmetries. In Sec. IV we provide several
examples of strongly and weakly symmetric boundaries
in 1þ 1D CFTs and anyonic chains. In Sec. V, we discuss
applications to bulk and boundary RG flows. Intriguingly,
we find that the analysis of strongly symmetric boundary
conditions can sometimes lead to nontrivial constraints
on bulk RG flows. In Sec. VI, we discuss the interplay

between noninvertible symmetries and boundary condi-
tions in 2þ 1D, and provide examples in Uð1Þ and Z2

gauge theories. In Appendix A, we review some con-
cepts in category theory which are used in the main text.
Appendix B proves a basic fact about non-negative integer-
valued matrix representations of finite groups.

II. SYMMETRIC BOUNDARIES IN 1 + 1D

A. Simple boundaries

We start with a discussion on the basic structure of the
space of conformal boundary conditions of a 1þ 1D CFT.
First, we note that there is a well-defined notion of taking

a direct sum of boundaries. Indeed, the direct sum B1 ⊕ B2

of two boundary conditions B1, B2 is defined so that every
Euclidean correlation function in the presence of B1 ⊕ B2

is a sum of those in the presence of B1 and B2. Given a
pair of boundary conditions ðB1;B2Þ, we can quantize the
theory on an interval, placing B1 and B2 on its two ends,
to obtain a Hilbert space of states HB1;B2

. The Hilbert
space associated with the pair ðB1 ⊕ B0

1;B2Þ is then
HB1⊕B0

1
;B2

¼ HB1;B2
⊕ HB0

1
;B2
. We can define any non-

negative integer linear combination of a finite set of valid
boundary conditions analogously.
In a 1þ 1D CFT, any conformal boundary condition B

can be mapped to a (non-normalizable) state jBi in the
Hilbert space of the theory on a circle. This is known as the
boundary state corresponding to B. However, general linear
combinations of boundary states

P
i cijBii with ci ∈C are

generally not valid boundary conditions because there is no
well-defined Hilbert space associated with them.6 In other
words, the set of all conformal boundary states does not
form a vector space over the complex numbers. Rather, it
forms a set which is closed under taking linear combina-
tions with coefficients in Z≥0.
An alternative way to understand this is to note that a

generic complex number is not a local counterterm that
one can add along a conformal boundary. On the other
hand, multiplying a boundary state by a non-negative
integer n is equivalent to stacking a decoupled n-state
quantum mechanics, i.e., a free qunit, along the boundary,
which respects locality. (For boundaries that are not
necessarily conformal, there exist more general local
counterterms, such as the boundary cosmological constant
term, i.e., the length of the boundary. They are forbidden
by conformal invariance in the case of conformal boun-
daries.) The constraint of locality plays a crucial role
in Cardy’s construction of boundary states in rational
CFTs [52].
A boundary condition B is said to be simple (also called

elementary) if the interval Hilbert space HB;B has a unique

TABLE I. Various fusion category symmetries and boundary
conditions. The fusion categories on the first row are compatible
with a trivially gapped phase, and admit a strongly symmetric
boundary condition, whereas the ones on the second row only
admit a weakly symmetric boundary condition but not a strongly
symmetric one. The fusion categories on the third row do not
admit any symmetric boundary. Here VecωG stands for an ordinary
global symmetry based on a finite group G with an ’t Hooft
anomaly ω∈H3ðG;Uð1ÞÞ, while VecG ¼ Vecω¼0

G . Fib and TY
stand for the unitary Fibonacci and Tambara-Yamagami fusion
categories. ðA1; kÞ is the fusion category realized by the Verlinde
lines of the diagonal SUð2Þk WZW model, and ðA1; kÞ1

2
is its

fusion subcategory which is generated by lines corresponding to
primary operators with integer SUð2Þ spin. Finally, RepðGÞ is the
(untwisted) fusion category whose fusion rule is the representa-
tion ring of G.

Type of boundary
Examples of fusion

categories

Strongly symmetric boundary VecG, RepðGÞ,
TYðZ2 × Z2; χ;þÞ

Weakly symmetric boundary Fib, ðA1; kÞ1
2
for k > 4

No symmetric boundary Vecω≠0G , TY�ðZ2Þ

6For instance, 1
7
jBi is generally not a valid boundary state

because we cannot divide a Hilbert space by 7. Similarly, jB1i −jB2i is also generally not a boundary condition.
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ground state.7 By a conformal map (or equivalently, the
operator-state correspondence), this is equivalent to the
condition that there is a unique topological point operator
(which can be thought of as the restriction of the bulk
identity operator) on the boundary B. A simple boundary
cannot be written as a sum of other boundary conditions
with non-negative integer coefficients. A more detailed
mathematical description is given in Sec. II C.

B. Review of invertible symmetries and boundaries

Suppose a bulk 1þ 1D CFT has an ordinary, finite
global symmetry group G. What kind of representations do
conformal boundary states form? Since only non-negative
integer linear combinations of boundary states are valid,
boundary states cannot be in a general representation of G.
Rather, they are necessarily in matrix representations with
non-negative integer entries. These are known as non-
negative integer matrix representations, or NIM-reps for
short [41]. In fact, all finite-dimensional NIM-reps of a
group are permutation representations (see Appendix B). In
contrast, the local operators of a CFT can be in general
irreducible representations of G.
There are two possible definitions of a G-symmetric

boundary. One definition is that a conformal boundary B is
G-symmetric if

L̂gjBi ¼ jBi; ∀ g∈G; ð2:1Þ

where L̂g is the unitary operator that implements the
symmetry transformation labeled by g∈G.8 This definition
is natural in the closed string channel. Another definition
involves requiring the existence of a topological junc-
tion between the symmetry line Lg and the boundary B.
This junction leads to a conserved operator that commutes
with the interval Hamiltonian. This is more natural in the
open string channel. These two definitions are equivalent
for invertible finite symmetries. We will elaborate more on
this point in Sec. II C.
Given a CFTwith a finite global symmetryG, it is natural

to ask if it admits aG-symmetric boundary. However, given
any boundary jBi, one can always add to it the images of the
G action to construct a symmetric but nonsimple boundaryP

g∈G L̂gjBi. Therefore, the more interesting question is
whether there is a simpleG-symmetric boundary condition.
Below we illustrate some of the main ideas and themes

that we explore throughout the rest of the paper in the
context of familiar models with basic invertible symmetry
groups.

1. Ising model and its Z2 spin-flip symmetry

As an invitation, we begin with the 1þ 1D Ising CFT.
The Ising model has a nonanomalous Z2 symmetry,

whose generator we denote by η. There are three primary
operators in the bulk theory: the identity operator 1, the spin
field σ of dimension ðh; h̄Þ ¼ ð 1

16
; 1
16
Þ, and the energy/

thermal operator ϵ of dimension ðh; h̄Þ ¼ ð1
2
; 1
2
Þ. The Z2

symmetry acts on the spin field and its descendants as
σ → −σ, and leaves the descendants of the identity and ϵ
invariant.
First, we study the conformal boundary states and ask

whether they are eigenstates of η, a question which is
natural from the perspective of the closed-string channel.
Recall that the Ising CFT has three simple conformal
boundary conditions [52], in correspondence with the three
bulk primary operators, 1; ϵ; σ. We denote the correspond-
ing Cardy states as j↑i, j↓i, jfi, respectively. From the
point of view of the lattice, j↑i corresponds to the boundary
condition in which the boundary spin is pinned so that it
points up, and similarly for j↓i; on the other hand, jfi
corresponds to the free boundary condition in which the
boundary spin is allowed to fluctuate. The action of the Z2

symmetry on the Cardy states is as follows,

η̂j↑i ¼ j↓i; η̂j↓i ¼ j↑i; η̂jfi ¼ jfi: ð2:2Þ

We find that η exchanges the two fixed boundaries j↑i; j↓i
and leaves the free boundary jfi invariant. In particular, j↑i
and j↓i form a 2-dimensional NIM-rep (the smallest
nontrivial permutation representation of Z2) and the free
boundary jfi forms the trivial representation. We conclude
that jfi is a Z2-symmetric boundary, while j↑i and j↓i
are not.9

Let us reproduce this result in another way, which is
natural in the open string channel. It is convenient to work
directly on the lattice, where a Hamiltonian realization of
the transverse field Ising model with its free boundary
condition can be obtained as follows,

Hf ¼ −J
�XN−1

i¼1

ZiZiþ1 þ
XN
i¼1

Xi

�
: ð2:3Þ

In the above expression, we have placed a qubit C2 on the
N sites of an open spin chain, and Xi=Zi denote the Pauli-
X/Z operators supported at site i. We note that the above
Hamiltonian commutes with the standard Z2 spin-flip
operator,

½Hf;U� ¼ 0; U ¼
YN
i¼1

Xi: ð2:4Þ
7Throughout the paper, we assume that the bulk theory has a

unique vacuum on the S1 Hilbert space. In particular, there is no
nontrivial bulk topological local operator except for the identity
operator.

8We use L for a topological line in Euclidean spacetime, and L̂
for the corresponding operator acting on the Hilbert space.

9Note that it is inconsistent to have a boundary state trans-
forming in the sign representation of Z2, i.e. ηjBi ¼ −jBi, since
it is not a NIM-rep.
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This is a lattice manifestation of the continuum fact that the
Z2 line η is capable of ending topologically on the free
boundary jfi. For this reason, we again conclude that jfi is
Z2-symmetric.
On the other hand, the boundary conditions j↑i and j↓i

can be implemented on the lattice by adding a boundary
pinning field to the Hamiltonian (see, for instance, [73]),

H↑ ¼ Hf − αðZ1 þ ZNÞ; H↓ ¼ Hf þ αðZ1 þ ZNÞ;
ð2:5Þ

where α is an arbitrary positive coupling constant.
Alternatively, one could implement the pinning as a
constraint on the Hilbert space, as opposed to energetically
as we have done above. It is straightforward to see that the
spin-flip operator U does not commute with H↑ nor H↓.
In fact, no modification of U close to the boundary will
remedy the situation. This is a lattice manifestation of the
continuum fact that the Z2 line cannot end topologically on
the pinned boundaries, and so we conclude again that they
are not Z2-symmetric.
To summarize, whether we use open string reasoning or

closed string reasoning, we are led to the same conclusions
about the structure of Z2-symmetric boundaries in the
Ising model. In Sec. II C, we will see that the equivalence
of these two criteria holds in general for invertible finite
symmetries.

2. Compact free boson and Uð1Þ momentum
and winding symmetries

Consider a compact free boson ϕ with radius R, i.e.,
ϕ ∼ ϕþ 2πR. At generic radius, the theory possesses aUð1Þ
Kac–Moody chiral algebra, and the boundary conditions
which preserve this chiral algebra are the Dirichlet and
Neumann boundary conditions. The Dirichlet boundary
conditions come in a continuous family parametrized by S1,

ϕj ¼ θR; ð2:6Þ
whereθ∈ ½0; 2πÞ. In the string theory context, θ parametrizes
the position of the correspondingDirichlet brane in the target
space circle. Here jmeans the restriction to the boundary.We
label the corresponding boundary states as jθiD.
On the other hand, ϕ at a Neumann boundary condition

obeys ∂nϕj ¼ 0, where ∂n is the partial derivative in the
direction normal to the boundary. Since ϕ is unconstrained
on a Neumann boundary, one can add a boundary theta
angle term,

iθ̃
2πR

I
dϕ: ð2:7Þ

Therefore, the Neumann boundary conditions also come in
an S1 family, which we denote by jθ̃iN with θ̃∈ ½0; 2πÞ.
Neumann boundaries for ϕ are equivalent to Dirichlet

boundaries of the T-dual compact scalar field ϕ̃ ∼ ϕ̃þ 2π
R ,

defined by −idϕ ¼ ⋆dϕ̃,

ϕ̃j ¼ θ̃

R
: ð2:8Þ

In the string theory picture, there is a Dirichlet brane
wrapping the target space circle which supports a Uð1Þ
gauge field on its world volume, and θ̃ is the corresponding
holonomy of this gauge field.
The free boson at generic radius has a ðUð1ÞðmÞ ×

Uð1ÞðwÞÞ⋊Z2 global symmetry, and we may contemplate
how it acts on the boundary conditions that we have
identified. The Uð1ÞðmÞ momentum symmetry shifts the ϕ
field while theUð1ÞðwÞ winding symmetry shifts the ϕ̃ field.
Therefore, Uð1ÞðmÞ acts on the two sets of boundaries as

UðmÞ
α jθiD ¼ jθ þ αiD; UðmÞ

α jθ̃iN ¼ jθ̃iN: ð2:9Þ

In particular, we see that the Neumann boundaries are
invariant under the Uð1ÞðmÞ symmetry. Similarly, the
Dirichlet boundaries are invariant under the Uð1ÞðwÞ sym-
metry. If however we consider the diagonal Uð1ÞðDÞ sub-
group of Uð1ÞðmÞ ×Uð1ÞðwÞ, we see that there is no
symmetric boundary.
The discussion above exemplifies a general connection

between symmetric boundaries and ’t Hooft anomalies
[2–4,7,9]. The Z2 symmetry of the Ising CFT, and the
Uð1ÞðmÞ (orUð1ÞðwÞ) symmetry of a compact boson are both
free of ’t Hooft anomaly. As we describe in more detail in
Sec. III, this means that these nonanomalous symmetries
kinematically admit simple, symmetric boundaries, and in
the above examples they are furthermore dynamically real-
ized in these CFTs. In contrast, the diagonal Uð1ÞðDÞ
symmetry is anomalous and it is kinematically incompatible
with a simple, symmetric boundary. See, for example, [28,74]
for a review of this anomaly and for a related discussion on its
implications for the operator spectrum.

C. Strongly and weakly symmetric boundaries

We now extend the discussion of symmetric boundary
conditions to noninvertible global symmetries in 1þ 1D
CFTs.
We denote the set of simple boundary conditions as

fBaga∈J where J ¼ fa; b; c; � � �g is a set of labels for
these boundaries.10 The corresponding boundary states are

10Generally, there are infinitely many, or even continuous
families of, simple conformal boundary conditions in a 1þ 1D
CFT. However, given a finite symmetry category C, we are always
free to restrict attention to a set of finitely many simple
boundaries which transform into one another under the action
of C. Thus, for ease of exposition, we take the indexing set J to
be finite.
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denoted as fjBaiga∈J . We focus only on conformal
boundary conditions.
A finite generalized global symmetry of a 1þ 1D CFT is

characterized by a fusion category C of topological defect
lines [17,20,24,25], encompassing both the invertible and
noninvertible cases. As with boundary conditions, we call a
topological defect line simple if the only topological point
operator on the line is the identity operator [25]. The set of
simple lines is denoted as fLigi∈ I where I ¼ fi; j; k; � � �g
is a set of labels. The fusion algebra takes the following
form,

Li ⊗ Lj ¼ ⨁
k∈ I

Nk
ijLk; ð2:10Þ

where Nk
ij ∈Z≥0 are non-negative integer-valued fusion

coefficients. We review some basic facts (including
F-symbols) about fusion categories in Appendix A.
The bulk topological defect lines naturally act on

boundary conditions by parallel fusion, as in the left of
Fig. 1. Such a parallel fusion of a topological line with a
conformal boundary yields another conformal boundary
condition, which in general can be written as a linear
combination of simple conformal boundaries with non-
negative integer coefficients. We denote the action of a
topological line L on a conformal boundary B by parallel
fusion as L ⊗ B, using the same product symbol as for the
fusion of lines. In the closed string channel, this corre-
sponds to acting with L̂ as an operator on the boundary
state jBi, which yields another boundary state L̂jBi. We
will use L ⊗ B and L̂jBi interchangeably.
When a simple line Li acts on a simple boundary Ba, we

can decompose the result as

Li ⊗ Ba ¼ ⨁
b∈J

Ñb
iaBb; ð2:11Þ

where Ñb
ia ∈Z≥0. In other words, the set of simple

boundary conditions forms a non-negative integer-valued
matrix representation (NIM-rep) of the fusion algebra
(2.10) of lines, and Ñb

ia are the NIM-rep coefficients.
Namely,

X
b∈J

Ñc
ibÑ

b
ja ¼

X
k∈ I

Nk
ijÑ

c
ka: ð2:12Þ

On top of the data of the NIM-rep, there are various
consistency conditions that the set of boundary condi-
tions must satisfy with respect to the action of the bulk
topological lines. These conditions are packaged into the
mathematical theory of module categories. The objects of a
module category are the conformal boundary conditions
that are related by the action of the fusion category C of
topological lines. As a simple example, the two fixed
boundary conditions j↑i and j↓i of the Ising model form a

module category of the Z2 global symmetry. We review the
concept of a module category in Appendix A. We denote
the module category of boundary conditions as M.
It is well-known that the fusion coefficients Nk

ij them-
selves furnish a NIM-rep, i.e.,

X
p∈ I

Np
ijN

s
pk ¼

X
q∈ I

Nq
jkN

s
iq: ð2:13Þ

In particular, this NIM-rep is realized by the regular
module category, whose simple objects are those of C
(i.e., J ¼ I) and whose NIM-rep coefficients are given
by the bulk fusion coefficients (i.e., Ñk

ij ¼ Nk
ij). More

details are given in Appendix A. Regular module catego-
ries are familiar in the study of RCFTs. Indeed, the Cardy
boundary conditions in any diagonal RCFT arrange them-
selves into the regular module category over the fusion
category formed by the Verlinde lines [17,52]. Relatedly,
both the Cardy boundary conditions as well as the Verlinde
lines are labeled by the bulk primary operators (that
is, I ¼ J ).
In the case of topological line defects, the fusion

coefficient Nk
ij measures the dimension of the vector space

of topological point operators at the trivalent junction
where the three simple lines Li, Lj, and Lk meet, as in
Fig. 2. Such a vector space corresponds to the Hom space
HomCðLi ⊗ Lj;LkÞ in the abstract fusion category C, and
the statement is that

Nk
ij ¼ dimC HomCðLi ⊗ Lj;LkÞ: ð2:14Þ

Using a conformal map, the topological point operators at a
trivalent junction correspond to dimension-zero states in
the S1 Hilbert space twisted by the three lines Li, Lj, and
Lk. See Fig. 2.
Similarly, the NIM-rep coefficient Ñb

ia corresponds to
the dimension of the vector space of topological point
operators at the junction where the two simple boundaries
Ba and Bb meet with the simple line Li, as in the left of

FIG. 2. Left: a topological junction operator v in
HomCðLi ⊗ Lj;LkÞ. Right: by a conformal map, it is mapped
to a dimension-zero state in the S1 Hilbert space twisted by Li,
Lj, and Lk.
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Fig. 3. This vector space corresponds to the Hom space
HomMðLi ⊗ Ba;BbÞ in the module category M. Thus,
we have

Ñb
ia ¼ dimCHomMðLi ⊗ Ba;BbÞ: ð2:15Þ

Upon a conformal map, the topological point operators at
the junction of Ba, Bb, and Li correspond to dimension-
zero states in the interval Hilbert space twisted by the line
Li and with the boundary conditions Ba and Bb imposed at
the two ends.11 See the right of Fig. 3. We denote such a
Hilbert space as Hi

ab. When i ¼ 1 is the identity line, we
simply write Hab ≡H1

ab.

1. Weakly symmetric boundaries

When Ña
ia ≥ 1 for a boundary Ba and a topological line

Li, the line Li can topologically end on the boundary Ba.
The topological endpoint of the line at the boundary is
generally not unique. The choice of junction operator lives
in HomMðLi ⊗ Ba;BaÞ in the case that the line is oriented
pointing into the boundary; similarly, the choice of junction
operator lives in HomMðL̄i ⊗ Ba;BaÞ in the case that the
line is oriented pointing out of the boundary.
Consider the theory defined on an interval with the Ba

boundary condition imposed at the two ends. Because the
line Li is able to end topologically on Ba, it is free to move
up and down along the (Euclidean) time direction, and
defines a conserved quantity on the interval. To be more
precise, every triple12 ðLi; v; ūÞ of a topological line Li and

topological junction operators13 v∈HomMðLi ⊗ Ba;BaÞ
and ū∈HomMðL̄i ⊗ Ba;BaÞ at the boundaries gives rise
to an operator L̂ū

i;v acting on the interval Hilbert spaceHaa,
which commutes with the corresponding Hamiltonian Haa,

½L̂ū
i;v; Haa� ¼ 0: ð2:16Þ

See Fig. 4.
Motivated by this, we make the following definition. We

say that a simple conformal boundary condition Ba is
weakly symmetric under the fusion category symmetry C if
every topological line in C can end topologically on Ba. In
other words, Ba is weakly symmetric under C if Ña

ia ≥ 1 for
every simple line Li in C. Equivalently, Ba is weakly
symmetric if

L̂ijBai ¼ jBai þ � � � ð2:17Þ

for all i∈ I (where � � � may contain more copies of jBai, if
Ña

ia > 1). If a boundary condition Ba is weakly symmetric
under C, then every topological line in C gives rise to at
least one conserved operator acting on the interval Hilbert

FIG. 3. Left: a topological junction operator ṽ in HomMðLi ⊗ Ba;BbÞ. Right: by a conformal transformation, it is mapped to a
dimension zero state in the interval Hilbert space with the boundary conditions Ba and Bb imposed at the two ends, and twisted by the
line Li.

FIG. 4. A topological line Li ends topologically on a weakly
symmetric boundary Ba, giving a conserved operator that
commutes with the Hamiltonian on an interval.

11The boundary conditions on the right end of the interval
forms the left module category M over C, since the topological
lines act from the left. On the other hand, boundary conditions on
the left end of the interval forms the dual category M∨ (which
has the same set of objects as M but with the direction of all the
morphisms reversed) which is a right module category over C,
since the topological lines act from the right. See [[75] Remark
7.1.5].

12More generally, every triple ðLi; v; ūÞ of a topological line Li
and topological junction operators v∈HomMðLi ⊗ Ba;BaÞ and
ū∈HomM∨ðBb;Bb ⊗ LiÞ ≅ HomMðL̄i ⊗ Bb;BbÞ gives rise to
an operator L̂ū

i;v which commutes with the Hamiltonian Hab on
the interval Hilbert space Hab.

13More precisely, the junction ū on the left boundary is
an element of HomM∨ðBa;Ba ⊗ LiÞ which is isomorphic to
HomMðL̄i ⊗ Ba;BaÞ.
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spaceHaa.
14 One may regard this as an open string channel

definition of a symmetric boundary condition. The defi-
nition of a weakly symmetric boundary condition is
especially natural in the context of an open quantum chain,
such as the golden chain [76]. We will discuss this example
in detail in Sec. IV B 4.
Given a boundary Ba which is weakly symmetric with

respect to a fusion category C, we can consider the fusion
algebra of the operators L̂ū

i;v. In other words, we are looking
for the fusion algebra of the lines Li on an interval with the
boundary condition Ba at both ends, as shown in Fig. 5.
This algebra generally depends on the choice of topological
junction operators v and ū. A natural question to ask is how
this fusion algebra compares to the fusion algebra of lines
Li ∈ C in the bulk. In particular, one may ask if there is
always a choice of topological junction vectors v and ū
such that the fusion algebra in the presence of the boundary
Ba agrees with the fusion algebra in the bulk. It turns out
that this is not always possible. In particular, when the
fusion of two operators L̂ū

i;v and L̂ū0
j;v0 is expressed as a

linear combination of the operators fL̂ū00
i;v00g, there may be

some (possibly noninteger) coefficientsCū;ū0;k;v00
i;v;j;v0;ū00 [44,45,77],

L̂ū
i;v × L̂ū0

j;v0 ¼
X
k;v00;ū00

Cū;ū0;k;v00
i;v;j;v0;ū00L̂

ū00
k;v00 : ð2:18Þ

This is in contrast with the bulk fusion of lines (2.10), where
the coefficients are always non-negative integers. This is
reminiscent of projective representations of a group, where
the usual group multiplication law is modified by phase
factors which cannot always be removed by a group element
redefinition.15

A simple example of such a “projective” algebra on
the interval can be found, for instance, for the Fibonacci
fusion category symmetry, which we denote as C ¼ Fib.
The simple objects in this category are the identity line 1

and the Fibonacci line W, satisfying the fusion algebra
W ⊗ W ¼ 1 ⊕ W. This Fibonacci fusion category admits
a weakly symmetric boundary condition. To see this,
consider the regular module category of Fib, whose simple
objects (i.e., boundary states) we write as j1i and jWi. It is
straightforward to see that jWi is weakly symmetric, since
1̂jWi ¼ jWi and ŴjWi ¼ jWi ⊕ j1i. As will be discussed
in Sec. IV B, this weakly symmetric boundary of Fib is
realized in many models, including the open golden
chain, the tricritical Ising model, and the diagonal WZW
models based on ðG2Þ1, ðF4Þ1, and SUð2Þ3. We can define
a symmetry operator Ŵū

v acting on the interval Hilbert
spaceHWW with the weakly symmetric boundary condition
imposed on both ends, where v and ū are junction operators
which are unique up to an overall scale in this case. With an
appropriate choice of the normalization of the junction
operators v and ū, one can show that

Ŵū
v × Ŵū

v ¼ 1þ φ−3=2Ŵū
v; ð2:19Þ

where φ ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio. This can be
derived from the F-symbols following [44,45]. It is easy to
see that no rescaling of the junction opeartors v and ū can
recover the bulk fusion algebra W ⊗ W ¼ 1 ⊕ W.

2. Strongly symmetric boundaries

Another definition of a symmetric boundary is in terms
of boundary states. We say a simple conformal boundary
condition B is strongly symmetric with respect to the fusion
category symmetry C if the corresponding boundary state
jBi is an eigenstate under the action of C with eigenvalues
given by the quantum dimensions hLii,

L̂ijBi ¼ hLiijBi for all i∈ I : ð2:20Þ
To be more precise, a strongly symmetric boundary
condition B forms an indecomposable module category
M ¼ Vec over C by itself.16 That is, the only simple object

FIG. 5. Fusion of two topological lines Li and Lj on the interval with boundary conditions Ba at both ends depends on the junction
vectors v, ū, v0, and ū0. It is written as a linear combination of topological lines Lk on the interval with junction vectors v00 and ū00 with,
possibly, noninteger coefficients Cū;ū0;k;v00

i;v;j;v0;ū00 .

14A single topological defect line Li may give rise to multiple
conserved operators if the choice of the topological junction
vector v is not unique (up to rescaling).

15See [78] for a related lattice discussion.

16A module category is called indecomposable if it cannot be
written as a direct sum of two module categories. See [79] for
more details.
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in M is B, and all the other objects are direct sums of
several copies of B. In particular, a strongly symmetric
boundary condition B forms a one-dimensional NIM-rep
under the fusion algebra (2.10) of topological lines. In
contrast with the previous definition, one may regard this as
a closed string channel definition of a symmetric boundary
condition.
One immediate observation is that a strongly symmetric

boundary condition cannot exist unless every topological
line in the fusion category C has an integer quantum dimen-
sion, since otherwise (2.20) does not define a NIM-rep.
Let us compare these two notions of symmetric boun-

daries. For a general fusion category, we note that if a
boundary is strongly symmetric, then it is also weakly
symmetric. Indeed, for a strongly symmetric Ba, we have

Ña
ia ¼ hLii ≥ 1; ∀ i∈ I ð2:21Þ

which implies that the defect line Li can terminate
topologically on Ba in hLii linearly independent ways.17

One can reach the same conclusion pictorially. Indeed, by
bending the line Li into a right angle and pushing it onto
the boundary Ba as in Fig. 6, one produces a trivalent
topological junction v1 between Li, Ba, and hLiiBa.

Furthermore, calling v2 any of the hLii topological
junctions between hLiiBa and Ba, we may obtain the
desired topological endpoint v of Li on the boundary Ba
by fusing v1 with v2, thereby proving that Ba is weakly
symmetric.
The converse is not true in general because there are

examples of weakly symmetric boundaries (for noninver-
tible fusion categories) that are not strongly symmetric.
This happens if Li ⊗ Ba ¼ niaBa ⊕ � � � contains some
copies of Ba, but there are also other boundaries on the
right-hand side. In Sec. IVA and Sec. IV B, we will provide
examples of symmetric boundaries of both kinds.
However, if we restrict attention to invertible sym-

metries, the converse does become true. For a finite
group symmetry G, every irreducible NIM-rep of G is
given by a set of permutation matrices (see Appendix B).
Furthermore, the quantum dimension of an invertible line
is always equal to 1. This implies that, for the case of
invertible symmetries, a weakly symmetric boundary is
also strongly symmetric, and the two notions of sym-
metric boundary conditions coincide. Again, it is also
possible to see this pictorially. Indeed, given a junction
between an invertible line Li and a simple boundary Ba,
one may deform the line until it fuses with half of the
boundary, producing a topological junction between Li ⊗
Ba and Li. See Fig. 7. The invertibility of Li implies
that Li ⊗ Ba is simple,18 and by Schur’s lemma there
can only exist a topological junction between two
simple boundaries if the boundaries are in fact equal,
so we conclude that Li ⊗ Ba ¼ Ba. Thus, if Ba is weakly
symmetric with respect to an invertible Li, then it is an
eigenstate of Li and hence strongly symmetric as well.

FIG. 6. A topological line Li can be bent into a right angle and
fused with a strongly symmetric boundary Ba to produce a
boundary junction v1 (top figure). This junction may then be
fused with another junction v2 from hLiiBa to Ba (which always
exists) to produce a topological endpoint v for the line Li on the
boundary Ba (bottom figure).

FIG. 7. An invertible line Li which terminates on a weakly
symmetric boundary Ba can be fused with half of the boundary to
produce a topological junction between Li and Li ⊗ Ba, which
implies that Li ⊗ Ba ¼ Ba.

17We focus on unitary conformal field theories, where the
fusion category C is unitary. In a unitary fusion category, the
quantum dimension of a simple line is always greater than or
equal to 1.

18Assume counterfactually that Li ⊗ Ba is not simple. This
means that it can be decomposed (not necessarily uniquely)
into the sum of two not necessarily simple boundaries,
Li ⊗ Ba ¼ B ⊕ B0. Applying the inverse line L̄i to the left-hand
side of this equation recovers the simple boundary Ba, but
applying it to the right-hand side recovers the nonsimple
boundary ðL̄i ⊗ BÞ ⊕ ðL̄i ⊗ B0Þ, a contradiction.
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III. RELATION TO ANOMALIES
AND GAUGING

For internal, invertible symmetries, ’t Hooft anomalies
admit two equivalent definitions. One is as an obstruction
to a symmetry-preserving, trivially gapped phase, and the
other is as an obstruction to gauging. In this section, we
argue that these two notions bifurcate for noninvertible
symmetries: sometimes it is possible to “gauge” a fusion
category C (by inserting a mesh of lines) even if it is not
compatible with a trivially gapped phase. Correspondingly,
we will see that the first notion is related to the kinematic
existence of a strongly symmetric boundary, while the
second notion is related to the kinematic existence of a
weakly symmetric boundary.

A. Strongly symmetric boundaries and anomalies

In this paper, we adopt the definition that a fusion
category symmetry C is anomalous if C is incompatible with
a trivially gapped phase.
This physical definition can be translated to a math-

ematical condition on C. We recall that there is a one-to-one
correspondence between 1þ 1D C-symmetric TQFTs and
module categories for C [26,33]. In this correspondence,
the module category arises as the category of boundary
conditions for the TQFT, and the content of [33] is that the
entire structure of the theory, including its bulk correlators,
can be reconstructed just from this initial data. In particular,
the dimension of the S1 Hilbert space is equal to the number
of simple objects of the corresponding module category. In
a trivially gapped phase, this Hilbert space should be one-
dimensional, and so we conclude that the trivially-gapped
C-symmetric phases are in correspondence with indecom-
posable module categories for C with one simple object,
which in turn are in correspondence with fiber functors
C → Vec [[75] Example 7.4.6]. If C does not admit a fiber
functor, we say that C has an anomaly [26].
Recall that a strongly symmetric boundary corresponds

to the unique simple object of an indecomposable module
category M. We therefore conclude that a fusion category
is nonanomalous (i.e., admits a fiber functor) if and only if
it admits a strongly symmetric boundary condition. This
generalizes the familiar relation between ’t Hooft anomalies
and symmetric boundary conditions to the case of general
noninvertible symmetries in 1þ 1D.
On the other hand, the anomaly of C does not necessarily

forbid the existence of a weakly symmetric boundary
condition. For instance, the Fibonacci fusion category
Fib, whose simple objects are 1 and W satisfying the
fusion algebra W ⊗ W ¼ 1 ⊕ W, is known to be anoma-
lous [25], and yet it admits a weakly symmetric boundary
as we briefly explained in Sec. II and discuss more in
Sec. IV B. What is special about fusion categories
that admit a weakly symmetric boundary? For such a
category C, we will see that one can “gauge C” in a

generalized sense, even though it is incompatible with a
trivially gapped phase.

B. Weakly symmetric boundaries and gauging

We briefly review how to gauge finite (noninvertible)
symmetries in 1þ 1D, following [17,20–22,24]. Gauging
an invertible finite group symmetry G is defined as
summing over flat G-connections on the spacetime mani-
fold. This is equivalent to inserting a network of G
symmetry lines along the dual triangulation of the mani-
fold. There is also a freedom in assigning phases at the
trivalent junctions associated with a choice of discrete
torsion in H2ðG;Uð1ÞÞ. The gauging is consistent if the
resulting partition function does not depend on the choice
of the triangulation; the obstruction is called a ’t Hooft
anomaly, and is labeled by an element of H3ðG;Uð1ÞÞ.
This definition of gauging can be extended to a general
fusion category C by inserting a mesh of topological lines.
The generalization to the noninvertible setting involves the
choice of an algebra object in C, as we explain below.
An algebra object consists of a triple ðA; μ; uÞ. First, A

is an object in C which is not necessarily simple. Every
object of C can be expressed as a non-negative integer
linear combination of the simple lines of C, and we denote
these coefficients for A as hLi;Ai:

A ¼ ⨁
i∈ I

hLi;AiLi; hLi;Ai∈Z≥0; ð3:1Þ

where I denotes the set of labels for the simple lines in C.
The coefficient hLi;Ai is called the multiplicity of Li inA,
and we say Li is a subobject of A if hLi;Ai ≥ 1. Next,
μ∈HomCðA ⊗ A;AÞ is called the multiplication mor-
phism, and u∈HomCð1;AÞ is called the unit morphism.
Together, the triple ðA; μ; uÞ must satisfy the consistency
conditions which are diagrammatically depicted in Fig. 8.
We explain this in more detail in Appendix A.
We restrict attention to algebra objects A for which the

multiplicity of the identity line in A is equal to 1, that is,
h1;Ai ¼ 1. An algebra object satisfying h1;Ai ¼ 1 is
called haploid (or connected).19 A haploid algebra object
obeys the property [80]

hLi;Ai ≤ hLii; ð3:2Þ

where hLii is the quantum dimension of Li. We briefly
explain this in Appendix A as well. Finally, for a
haploid algebra object, the choice of the unit mor-
phism u∈HomCð1;AÞ is unique up to rescaling, since
dimC HomCð1;AÞ ¼ 1.
A haploid algebra object is the noninvertible generali-

zation of an anomaly-free subgroup with a specific choice

19Every semisimple indecomposable algebra object is Morita
equivalent to a haploid algebra object [79].
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of discrete torsion. In the invertible case, a subgroupG ofH
is free of ’t Hooft anomalies if ðA; μ; uÞ is an algebra
object, where

A ¼ ⨁
g∈G

Lg ð3:3Þ

and μ is given by an element of H2ðG;Uð1ÞÞ. The
consistency conditions obeyed by ðA; μ; uÞ guarantee that
when we insert a mesh of A on any spacetime manifold
with μ at the trivalent junctions, the resulting correlation
functions are independent of the choice of the triangulation
of the manifold.20

Interestingly, the subobjects of A might not be closed
under fusion, i.e., they need not form a fusion subcategory
of C. In other words, when it comes to gauging, the
noninvertible generalization of a subgroup is not a sub-
category, and one must truly contend with algebra objects.

Now, we claim that if a fusion category symmetry C
admits a weakly symmetric boundary condition, then there
exists an algebra object ðA; μ; uÞ that contains all the
simple lines in C. Namely, there exists an algebra object
A ¼ ⨁i∈ IhLi;AiLi with hLi;Ai ≥ 1 for all i∈ I . Since
A contains all the simple lines in C, gauging A may be
thought of as “gauging C.” In this sense we say C is
“gaugeable,” because we can consistently insert a mesh of
lines in which every object of C participates. To prove this
claim, an essential ingredient is the concept of the internal
Hom [79].21

Recall that the set of boundary conditions in a 1þ 1D
theory with a fusion category symmetry C forms a module
category M over C. Given an object B in M (that is, a
boundary condition), the internal Hom from B to B,
denoted as HomðB;BÞ, is an object in C (that is, a
topological line) with the property that

HomMðL ⊗ B;BÞ ≅ HomCðL;HomðB;BÞÞ ð3:4Þ

for every L∈ C. In other words, the topological line A≡
HomðB;BÞ satisfies

hLi;Ai ¼ dimC HomMðLi ⊗ B;BÞ; ∀ i∈ I : ð3:5Þ

Importantly, such an internal Hom A is always equipped
with the structure of an algebra object for any choice of the
object B in M. Moreover, if B is a simple boundary
condition, then

h1;Ai¼ dimCHomMð1⊗B;BÞ¼ dimCHomMðB;BÞ¼ 1:

ð3:6Þ

In particular, when B is simple, A≡ HomðB;BÞ is a
haploid algebra object. For more details on the explicit
construction of the internal Hom algebra object, see
Appendix A.
Now, assume that C admits a weakly symmetric boun-

dary condition. This means that there exists a module
category M over C which contains a simple object B for
which

dimC HomMðLi ⊗ B;BÞ ≥ 1; ∀ i∈ I : ð3:7Þ

It follows from (3.5) that the internal HomA ¼ HomðB;BÞ
is a haploid algebra object that contains all the simple
lines of C.22 This proves the claim that if C admits a weakly
symmetric boundary, then it is “gaugeable.”

(a) Associativity condition for an algebra object.

(b) Compatibility with the unit morphism.

FIG. 8. Consistency conditions satisfied by an algebra object.

20To be more precise, to be able to consistently gauge an
algebra object, the algebra object must be equipped with an
additional structure of a coalgebra such that it becomes a
symmetric Δ-separable Frobenius algebra object [17,81]. How-
ever, every semisimple haploid algebra object admits a unique
coalgebra structure such that it automatically becomes symmet-
ric, Δ-separable, and Frobenius (this can be seen by combining
Proposition 2.(ii) of [79] with the discussions in Sec. 3 of [17]).
Thus, we will not worry about these additional structures.

21Many of the category theory concepts we use here, including
internal Hom, are reviewed in [24]. We also briefly review them
in Appendix A.

22We will assume that the module category M arising from
boundary conditions is semisimple. Physically, this means that
every boundary condition is a direct sum (superposition) of
simple boundary conditions. This then implies A is semisimple.

REMARKS ON BOUNDARIES, ANOMALIES, AND … PHYS. REV. D 108, 125005 (2023)

125005-11



Some remarks are in order. First, recall that physically
distinct gaugings correspond to Morita equivalence classes
of algebra objects in C (see, for instance, [24]). An algebra
object obtained from the internal Hom of a weakly sym-
metric boundary condition is generally Morita equivalent
to another algebra object which does not contain all the
simple lines in C. For instance, as mentioned previously,
the Fibonacci fusion category admits a weakly symmetric
boundary condition jWi which belongs to the regular
module category, and the internal Hom of jWi produces

A ¼ 1 ⊕ W; ð3:8Þ

which is equipped with a structure of an algebra object.
Therefore, the Fibonacci fusion category is “gaugeable”
even though it is incompatible with a trivially gapped phase
because of the nonintegral quantum dimension of W.
However, this algebra object is Morita trivial. Indeed, as
explained in Appendix A, the internal Hom based on the
regular module category always produces a Morita trivial
algebra object. More intuitively, the fact that A ¼ 1 ⊕
W ¼ W ⊗ W admits a Morita trivial algebra structure is
because a mesh ofA can be dissolved into a mesh of double
lines of W, which can then be shrunk to nothing. See
Fig. 9.23 Physically, it means that any CFTwith a Fibonacci
category is invariant under gauging A ¼ 1 ⊕ W.24

Second, one can similarly relate the existence of a
strongly symmetric boundary condition to gauging using
the internal Hom construction. If the fusion category C
kinematically allows a strongly symmetric boundary con-
dition, then there is a module category M over C which
contains a unique simple object B, satisfying

dimC HomMðLi ⊗ B;BÞ ¼ hLii; ∀ i∈ I : ð3:9Þ

This implies that

A ¼ HomðB;BÞ ¼ ⨁
i∈ I

hLiiLi ð3:10Þ

is an algebra object. Since hLi;Ai ≤ hLii for all i∈ I [80]
(see also Appendix A), the object (3.10) has the maximum
quantum dimension among all the haploid algebra objects
in C. More specifically, the quantum dimension of A is
equal to the total dimension of the fusion category C, i.e.,
hAi ¼ P

i∈ IhLii2. Intuitively, one may say that the fusion

category C can be “maximally gauged” if it admits a
strongly symmetric boundary condition, or equivalently, if
it is anomaly-free. Furthermore, in the case of a strongly
symmetric boundary condition, the algebra object (3.10) is
never Morita equivalent to another algebra object which
does not contain all the simple lines of C.
To conclude, we find that sometimes it is possible to

“gauge” a fusion category C (by inserting a mesh of lines)
even if C is not compatiblewith a trivially gapped phase. This
happens precisely for those fusion categories which only
admit a weakly but not strongly symmetric boundary. One
may thus call a fusion category C strongly anomaly-free if it
admits a fiber functor (i.e., if it is compatible with a trivially
gapped phase), and weakly anomaly-free if there exists an
algebra object containing all the simple objects of C as
subobjects (i.e., if C can be “gauged”). In this terminology, a
fusion category symmetry C kinematically allows the exist-
ence of a weakly/strongly symmetric boundary condition if
and only if it is weakly/strongly anomaly-free.25

IV. EXAMPLES

In this section, we provide several examples of strongly
and weakly symmetric boundaries in 1þ 1D CFTs and
lattice models.

A. Strongly symmetric boundaries

We begin with strongly symmetric boundary conditions,
where we offer two examples. The first involves a certain

FIG. 9. An object of the form A ¼ X ⊗ X̄ can be lifted to
an algebra object ðA; μ; uÞ that is Morita equivalent to a trivial
object [75][Example 7.8.4]. Physically, it means that gauging
such an algebra object leaves the CFT invariant. Intuitively, this is
because a mesh of A can be desolved into the double lines of X,
which can be shrunk to nothing. Examples include A ¼ 1 ⊕
W ¼ W ⊗ W of Fib and A ¼ 1 ⊕ η ¼ N ⊗ N of TY�ðZ2Þ.

23It is easy to give examples of Morita nontrivial algebra
objects that contain all the simple lines for a fusion category that
doesn’t admit a fiber functor. For instance, consider the tensor
product of Fib ⊠ VecZ2

, then the algebra object ð1 ⊕ WÞ ⊗
ð1 ⊕ ηÞ is one such an example.

24This is analogous to the self-duality under gauging a Z2

symmetry in any CFT with a TY�ðZ2Þ category, in which case
there is an algebra object A ¼ 1 ⊕ η ¼ N ⊗ N which is Morita
trivial (see [[75] Example 7.8.18]). Here η is the Z2 line andN is
the Kramers-Wannier duality line.

25We have not shown that if C is weakly anomaly-free then it
admits the existence of a weakly symmetric boundary condition.
Suppose C is weakly anomaly-free, so that there exists an algebra
object A containing all the simple objects in C as subobjects. The
algebra objectA defines a simple object in a module categoryM
over C such that A ¼ HomðA;AÞ [[75] Exercise 7.10.6]. This
implies that A as an object in M defines a weakly symmetric
boundary condition under the action of C.
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Tambara–Yamagami category in a c ¼ 1 orbifold model.
The second involves G and RepðGÞ symmetries in hol-
omorphically factorized CFTs constructed from permuta-
tion orbifolds.

1. Ising2 and a Z2 × Z2 TY category

Let us begin with the first example one might think to
consider, the Ising model, and show that it does not admit a
strongly symmetric boundary with respect to its full fusion
category of Verlinde lines, which includes a noninvertible
symmetry. Recall that the topological line defects of the
Ising model are in one-to-one correspondence with its three
primary operators and obey the same fusion rules, i.e.,

η ⊗ η ¼ 1; η ⊗ N ¼ N ⊗ η ¼ N ;

N ⊗ N ¼ 1 ⊕ η: ð4:1Þ

Here, η is an invertible Z2 line and N is the noninvertible
Kramers-Wannier duality line [18]. The fusion category
generated by these lines is TYþðZ2Þ, also known as the
Ising category.26 Here TY�ðZ2Þ are the two Tambara–
Yamagami (TY) fusion categories [82] based on Z2.
These two TY categories have the same fusion rules but
are distinguished by the sign � of the Frobenius-Schur
indicator of the line N .27

The boundary conditions j↑i, j↓i, and jfi (described in
Sec. II B 1) generate a module category of this TYþðZ2Þ
fusion category. In fact, because the Ising model is a
diagonal RCFT, this module category is the regular module
category of TYþðZ2Þ. This means that there is a one-to-one
correspondence between the boundary conditions and the
topological lines (and also with the local primaries), i.e.
j↑i ↔ 1; j↓i ↔ η; jfi ↔ N . The action of the lines on
the boundaries is the same as the fusion of the corres-
ponding lines (see (4.14) below for generalizations to
minimal models):

η̂j↑i ¼ j↓i; η̂j↓i ¼ j↑i; η̂jfi ¼ jfi;
N̂ j↑i ¼ jfi; N̂ j↓i ¼ jfi; N̂ jfi ¼ j↑i ⊕ j↓i: ð4:2Þ

We discover that there are neither strongly symmetric
boundary conditions, nor weakly symmetric ones. Indeed,
the absence of strongly symmetric boundary conditions
could have been anticipated even on kinematic grounds
due to the fact that the category is not integral and thus
anomalous (the duality line has a noninteger quantum
dimension, hN i ¼ ffiffiffi

2
p

). Furthermore, it is straightforward

to see from (4.2) thatN cannot end topologically on any of
the simple boundary conditions either.
Instead, let us consider the simplest TY category which

is kinematically compatible with a strongly symmetric
boundary condition. Take the 1þ 1D CFT which, in
the bulk, is described by stacking two decoupled Ising
models. We refer to this CFT as Ising2. Because it has
central charge c ¼ 1, it should arise somewhere in the
(conjecturally completely classified [83]) conformal mani-
fold of c ¼ 1 CFTs. In fact, it turns out to correspond to
the theory obtained by performing an ϕ → −ϕ orbifold of
the compact free boson with radius R ¼ ffiffiffi

2
p

, in conven-
tions where R ¼ 1 is the radius which is self-dual under
T-duality.
This theory admits at least a TYþðZ2Þ⊠TYþðZ2Þ fusion

category of topological line defects, one factor coming
from each of its two Ising constituents. We work with
the subcategory generated by 1; η1; η2; η1 ⊗ η2, and N 0 ≡
N 1 ⊗ N 2, where ηi and N i are the Z2 symmetry and
duality lines respectively of the ith Ising factor. Note that the
noninvertible line N 0 has integer quantum dimension,
hN 0i ¼ 2. This subcategory is equivalent to the Tambara-
Yamagami category TYðZ2 × Z2; χ;þÞ based on Z2 × Z2

with the following choice of the bicharacter χ,

χða1; a2; b1; b2Þ ¼ ð−1Þa1b1þa2b2 ; ð4:3Þ

where we use ða1; a2Þ; ðb1; b2Þ with ai; bi ¼ 0, 1 to denote
the elements of Z2 × Z2. Theþ stands for the choice of the
Frobenius-Schur indicator of the lineN 0. Its fusion rules are
correspondingly

g⊗N 0 ¼N 0 ⊗ g¼N 0; N 0 ⊗N 0 ¼ ⨁
g∈Z2×Z2

g: ð4:4Þ

Here g runs over the lines 1, η1, η2, and η1 ⊗ η2, which
furnish the fusion rules of Z2 × Z2. Another way to des-
cribe this subcategory is that it is equivalent to RepðH8Þ,
where H8 is the nongrouplike Hopf algebra of dimension 8
known as the Kac-Paljutkin algebra [84].
We would like to show that—unlike for a single copy

of the Ising model, which does not admit a strongly or
weakly symmetric boundary condition with respect to its
noninvertible symmetry—this theory does admit a strongly
symmetric boundary condition with respect to RepðH8Þ.
The boundary condition we study can be obtained as
follows. Consider the duality line N in one copy of the
Ising model. By the folding trick, this becomes a boundary
condition in Ising2, which we denote by jN i. We can
calculate the action of RepðH8Þ on jN i by unfolding to one
copy of the Ising model as illustrated in Fig. 10. For
example, the fusion of η1 with jN i in Ising2 corresponds
in the unfolded theory to computing the fusion rule of η
(say, from the left) withN . In particular, we conclude from
(4.1) that

26The Ising fusion category generated by these topological
line defects can be obtained from the modular tensor category
(MTC) of the c ¼ 1

2
Virasoro algebra (often called the Ising

MTC) by forgetting its braiding and twist.
27Incidentally, the other Z2 Tamabara-Yamagami category

TY− is realized in the SUð2Þ2 WZW model.
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η ⊗ N ¼ N in Ising ⇒ η̂1jN i ¼ jN i in Ising2: ð4:5Þ

Similarly, the fusion rule of η2 with jN i in Ising2 can be
computed in the unfolded theory by fusing η withN again,
but this time from the right, and the same argument shows
that η̂2jN i ¼ jN i. Finally, because N 1 goes over in the
unfolded theory to N to the left of the interface, while N 2

goes over to N to the right of the interface, we can deduce
the action of N 0 on jN i by calculating

N ⊗ N ⊗ N ¼ N ⊗ ð1 ⊕ ηÞ ¼ 2N in Ising ⇒ N̂ 0jN i
¼ 2jN i ¼ hN 0ijN i in Ising2: ð4:6Þ

Thus, we conclude that jN i is a strongly symmetric
boundary condition for the noninvertible symmetry
RepðH8Þ in the Ising2 CFT.

2. CFTs from permutation orbifolds
and RepðGÞ symmetry

Recall that a holomorphic vertex operator algebra (VOA)
V is a VOA with exactly one irreducible representation.
The unique character

chVðτÞ ¼ TrVqL0−c=24 ð4:7Þ

of a holomorphic VOA is modular invariant up to a phase,

chVð−1=τÞ ¼ chVðτÞ; chVðτ þ 1Þ ¼ e−πic=12chVðτÞ:
ð4:8Þ

When c is a multiple of 24, this character is completely
modular invariant, and we may think of V as a consistent
chiral CFT in its own right, and chVðτÞ as its torus parti-
tion function. Examples of holomorphic VOAs include
the monster CFT V♮ [85], the 70 Schellekens CFTs [86],
and any chiral boson theory based on an even unimodular
lattice.
Now, let V be a holomorphic VOA and G a solvable

finite group.28Using Cayley’s theorem, we can realize G as
a subgroup of the symmetric group Sn for some positive
integer n. Then, G acts by permutation symmetries on the
holomorphic VOA

T 0 ≡ V⊗n: ð4:9Þ

If the central charge of V is a multiple of 24 (so that it
is a chiral CFT), then it is guaranteed that this action

FIG. 10. Folding the Ising CFT with the Kramers-Wannier duality line N inserted at the crease creates a conformal boundary in the
Ising2 CFT, denoted jN i. This boundary jN i is strongly symmetric under the noninvertible RepðH8Þ symmetry of the Ising2 CFT. In

particular, the diagram illustrates that N̂ 0jN i ¼ 2jN i, where N 0 ¼ N 1 ⊗ N 2 is the fusion of the two duality lines in the two copies
of Ising.

28A longstanding conjecture in the mathematics community is
that if V is a completely rational VOA with an action of G by
symmetries, then so is its corresponding fixed-point subalgebra
VG ¼ fv∈Vjgv ¼ v for all g∈Gg. This has been proven when
G is a solvable finite group [87]. If the conjecture is true for
general finite groups, then we can relax our assumption of
solvability as well.
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is nonanomalous [88] and we may contemplate the
gauged theory T 0=G, which has a quantum RepðGÞ
symmetry [24,89].
Next, we form a topological interface N between T 0

and T 0=G by considering the theory T 0 and gauging G in
half of spacetime, taking Dirichlet boundary conditions
for the gauge field at the interface [60]. The Dirichlet
boundary conditions guarantee that the fusion rules of the
G topological lines in T 0 with the interface N are

g ⊗ N ¼ N for all g∈G: ð4:10Þ

Similarly, the fusion rules of the RepðGÞ topological lines
in T 0=G with the interface are

N⊗ρ¼hρiN for all irreducible representations ρ∈RepðGÞ;
ð4:11Þ

where hρi ¼ dimðρÞ. By the folding trick, the interface N
can be thought of as a conformal boundary condition in the
theory T ¼ T 0 ⊗ T 0=G as shown in Fig. 11. By the fusion
rules in (4.10) and (4.11), this boundary condition is
strongly symmetric with respect to both G and RepðGÞ
in the CFT T .
Hence, this construction furnishes an infinite family of

examples which realize strongly symmetric boundary
conditions for both invertible and noninvertible global
symmetries. See Sec. IV C for a generalization of this
construction which produces boundary conditions in an
arbitrary module category of a fusion category.

B. Weakly symmetric boundaries

Next, we turn to weakly symmetric boundary conditions
in a variety of models, including minimal models in
Sec. IV B 1, SUð2Þk WZW models in Sec. IV B 2, general
diagonal RCFTs in Sec. IV B 3, and the golden anyon chain
in Sec. IV B 4.

1. Minimal models and their topological lines

There are many examples of weakly symmetric boun-
daries in Virasoro minimal models. We restrict to unitary
diagonal minimal models for simplicity. We first review
some basic facts. The unitary diagonal minimal models
Mðmþ 1; mÞ are labeled by an integer m ≥ 3. Their cen-
tral charge is c ¼ 1 − 6

mðmþ1Þ and they contain 1
2
mðm − 1Þ

primary operators. We denote the primary operators as
ϕðr;sÞ, where ðr; sÞ is a pair of integers obeying 1 ≤ r < m,
1 ≤ s < mþ 1, and sm < rðmþ 1Þ. We use the index i to
denote such a pair ðr; sÞ, and write ϕi for the corresponding
primary operator. In particular, i ¼ 0 corresponds to the
identity operator with ðr; sÞ ¼ ð1; 1Þ.
The simple topological lines (which are also the Verlinde

lines29) are in one-to-one correspondence with the local
primary operators [90] and we denote them by Li. They act
on the jth primary jϕji (or any of its descendants) as

L̂ijϕji ¼
Sij
S0j

jϕji ð4:12Þ

where Sij is the modular S-matrix. Equation (4.12) shows
that all of the topological lines can be simultaneously
diagonalized, and hence commute with one another. The
fusion of two lines is given by

Li ⊗ Lj ¼ ⨁
k
Nk

ijLk ð4:13Þ

where Nk
ij are the fusion coefficients of primary operators.

The simple boundary states in the diagonal minimal
models (also known as Cardy states) are also in one-to-one
correspondence with the local primary operators [52].

FIG. 11. The holomorphic CFT T 0 ¼ V⊗n and its gauged theory T 0=G are folded around an interface N which is obtained by
gauging T 0 by a group G in half of the spacetime. The resulting boundary B in the folded theory T 0 ⊗ T 0=G is strongly symmetric
under the action of G ⊠ RepðGÞ.

29In an RCFT, the topological lines that commute with the
extended chiral algebra are known as the Verlinde lines. Since
the chiral algebra of a diagonal Virasoro minimal model is just the
Virasoro algebra, all of the topological lines are Verlinde lines.
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We label the ith Cardy state jLii using the corresponding
topological line. This is natural in light of the fact that they
form the regular module category over the fusion category
of Verlinde lines, i.e.,

L̂ijLji ¼ ⨁
k
Nk

ijjLki; ð4:14Þ

as is the case for any diagonal RCFT.
A structural fact about the diagonal minimal models is

that they do not admit simple boundary conditions which
are strongly symmetric with respect to any of their non-
invertible symmetries. Indeed, consider a noninvertible line
Li, which necessarily has quantum dimension hLii > 1. By
definition (2.20), a strongly symmetric boundary must be
an eigenstate of Li with eigenvalue hLii. However, the
fusion coefficients Nk

ij are all either 0 or 1 in the Virasoro
minimal models, so we see from (4.14) that no simple
boundary jLji will ever be strongly symmetric with respect
to a noninvertible Li.
As an example, consider the diagonal minimal model

Mð5; 4Þ, i.e., the tricritical Ising model. The theory has 6
primary operators, and therefore also 6 Verlinde lines and 6
Cardy states. The topological lines are

1; η; N ; W; ηW; NW ð4:15Þ

and their fusion rules are

η ⊗ η ¼ 1; η ⊗ N ¼ N ⊗ η ¼ N ;

N ⊗ N ¼ 1 ⊕ η; W ⊗ W ¼ 1 ⊕ W: ð4:16Þ

The quantum dimensions of the lines η, N , and W are 1,ffiffiffi
2

p
, and 1þ ffiffi

5
p
2

, respectively. The pair f1;Wg generates a
subcategory equivalent to the Fibonacci category Fib, the
unique noninvertible unitary fusion category with two
simple lines. Using (4.14), we see that the Cardy states
jWi, jηWi, and jNWi are weakly symmetric with respect
to this Fibonacci symmetry,

ŴjWi ¼ jWi ⊕ j1i; ŴjηWi ¼ jηWi ⊕ jηi;
ŴjNWi ¼ jNWi ⊕ jN i; ð4:17Þ

but not strongly symmetric. Similarly, one can check that
none of the boundaries are strongly nor even weakly
symmetric with respect to the Z2 Tambara-Yamagami
category generated by f1; η;N g. On the other hand,
invertible symmetries evade the arguments of the previous
paragraph. Indeed, the boundaries jN i and jNWi are both
strongly and weakly symmetric with respect to the invert-
ible Z2 generated by η.
As another example, consider the tetracritical Ising

model, Mð6; 5Þ. It contains 10 primary operators, and
hence 10 Verlinde lines and 10 Cardy states. The Verlinde
lines are denoted as

1; η; M; N; ηN; W; ηW; MW; NW; ηNW

ð4:18Þ

and their fusion rules are given by

η ⊗ η ¼ 1; M ⊗ M ¼ 1 ⊕ η ⊕ M; η ⊗ M ¼ M ⊗ η ¼ M;

N ⊗ N ¼ 1 ⊕ M; M ⊗ N ¼ N ⊗ M ¼ N ⊕ ηN; W ⊗ W ¼ 1 ⊕ W: ð4:19Þ

The quantum dimensions of the lines η, M, N, and W are 1, 2,
ffiffiffi
3

p
, and 1þ ffiffi

5
p
2

, respectively. The lines f1; η;Mg generate a
nonanomalous symmetry which is equivalent to RepðS3Þ. The boundaries jMi and jMWi are weakly (but not strongly)
symmetric under this RepðS3Þ fusion category, as can be seen below,

η̂jMi ¼ jMi; η̂jMWi ¼ jMWi;
M̂jMi ¼ j1i ⊕ jηi ⊕ jMi; M̂jMWi ¼ jWi ⊕ jηWi ⊕ jMWi: ð4:20Þ

Similarly, the boundaries jWi, jηWi, jMWi, jNWi, and
jηNWi are weakly but not strongly symmetric under the
unitary Fibonacci fusion category generated by f1;Wg.

2. SUð2Þk WZW models and their Verlinde lines

Next, we turn to WZW models. For simplicity, we
restrict attention to diagonal RCFTs modeled on the
SUð2Þk chiral algebras, where k is quantized to be a
positive integer. Such theories possess a fusion category

symmetry ðA1; kÞ which commutes with the full SUð2Þ
current algebra. This category possesses kþ 1 simple
lines Lj which we label by an SUð2Þ spin j¼ 0; 1

2
;…; k

2
.

Their fusion rules are

Lj1 ⊗ Lj2 ¼ Ljj1−j2j ⊕ Ljj1−j2jþ1 ⊕ � � �⊕ Lminðj1þj2;k−j1−j2Þ

≡⨁
j3

Nj3
j1j2

Lj3 : ð4:21Þ
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The Cardy boundary conditions jji, which by definition are
required to preserve (the half of) the full chiral algebra, are
also labeled by a spin j and transform in the regular module
of ðA1; kÞ, i.e.,

L̂j1 jj2i≡⨁
j3

Ñj3
j1j2

jj3i ð4:22Þ

where Ñj3
j1j2

¼ Nj3
j1j2

. In particular, the fusion coefficients
are all equal to 0 or 1. Thus, for the same reason as in the
case of the diagonal minimal models, none of the Cardy
states of the diagonal SUð2Þk WZW models are strongly
symmetric with respect to the ðA1; kÞ Verlinde lines.30

It turns out that the diagonal SUð2Þk WZW models do
not have weakly symmetric Cardy states with respect to
their Verlinde lines either. Indeed, a line Lj1 with half-
integer spin j1 can never topologically terminate on any
Cardy state j2 because in such cases Ñj2

j1j2
¼ 0.

However, we may instead consider the subcategory
ðA1; kÞ1

2
which by definition is generated by the subset

of lines Lj with integer spin j. For small values of k,
familiar symmetries are recovered,

ðA1; kÞ1
2
¼

8>>>>>>>><
>>>>>>>>:

Vec; k ¼ 1

VecZ2
; k ¼ 2

Fib; k ¼ 3

RepðS3Þ; k ¼ 4

..

.

ð4:23Þ

Because we have disposed of the problematic lines with
half-integer spin, there is a chance that there are Cardy
states which are weakly symmetric under ðA1; kÞ1

2
. In fact,

we claim that when k is even, the Cardy state j k
4
i is weakly

symmetric, while when k is odd, the two Cardy states
j k
4
� 1

4
i are weakly symmetric. For example, when k is even,

showing that all the Lj in ðA1; kÞ1
2
can topologically

terminate on j k
4
i amounts to showing that k

4
≥ jj − k

4
j and

k
4
≤ minðjþ k

4
; 3k
4
− jÞ for all j ¼ 0; 1;…; k

2
. We leave this

as a straightforward exercise for the reader.
We comment that, on kinematic grounds, weakly sym-

metric boundaries for ðA1; kÞ1
2
are the best one could hope

for, at least when k ≠ 1, 2, 4. Indeed, consider the quantum
dimensions of the lines Lj,

dimðLjÞ ¼
sinðð2jþ 1Þπ=ðkþ 2ÞÞ

sinðπ=ðkþ 2ÞÞ : ð4:24Þ

The dimension of the j ¼ 1 line simplifies to the expression

dimðL1Þ ¼ 2 cosð2π=ðkþ 2ÞÞ þ 1 ð4:25Þ

from which it is straightforward to see that 2<dimðL1Þ<3
when k > 4. In particular, when k > 4, the dimension is
nonintegral, and hence the category is kinematically
incompatible with the existence of a strongly symmetric
boundary. The same argument can be invoked for
ðA1; 3Þ1

2
¼ Fib. On the other hand, from (4.23) we see that

the ðA1; kÞ1
2
categories corresponding to k ¼ 1, 2, 4 have all

been considered in previous sections, where it was shown
that they do admit strongly symmetric boundaries.
Finally, we note that the full ðA1; kÞ fusion category is

never kinematically compatible with a strongly symmetric
boundary. Because ðA1; kÞ1

2
is a subcategory of ðA1; kÞ, the

previous paragraph demonstrates this fact when k ≠ 1, 2, 4.
When k ¼ 2 or 4, it can be checked by hand that there
are lines with noninteger quantum dimensions; when
k ¼ 1, we have ðA1; 1Þ ≅ VecωZ2

with ω ≠ 0, and hence
the category is obstructed from admitting a symmetric
boundary by its ordinary ’t Hooft anomaly.

3. Diagonal RCFTs and their Verlinde lines

We now consider general diagonal RCFTs. Let C be
the MTC associated with such a theory. Then the Verlinde
lines (i.e., those topological lines that commute with the
extended chiral algebra) form a fusion category given by
forgetting the braiding and twist structures of C. Similarly,
the Cardy states (i.e., those conformal boundary conditions
that respect the extended chiral algebra) form the regular
module category of C.
If there is a simple object X in C that obeys

dimCHomCðY ⊗ X;XÞ ≥ 1 for all Y in C; ð4:26Þ

TABLE II. Examples of RCFTs with low central charge and
few primary operators which admit weakly symmetric boundary
conditions. More specifically, the diagonal RCFT built out of
the chiral algebra V admits a weakly symmetric boundary
condition with respect to its category of Verlinde lines, which
is the MTC C thought of as a fusion category by forgetting its
braiding and twist.

C V

Fib ðG2Þ1
Fib ðF4Þ1
ðA1; 5Þ1

2
Ex½ðE6Þ1L6=7�

ðA1; 5Þ1
2

Ex½ðA1Þ5ðE7Þ1�
ðA1; 7Þ1

2
Ex½ðA1Þ1ðA1Þ7�

ðA1; 7Þ1
2

ðG2Þ2
Fib ⊠ Fib ðG2Þ21
Fib ⊠ Fib Ex½ðA1Þ8�
Fib ⊠ Fib ðG2Þ1ðF4Þ1

30For k ¼ 1, the Verlinde lines generate an invertible Z2

symmetry, and there is still no symmetric boundary condition
as explained later.
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then the corresponding Cardy state is a weakly symmetric
boundary with respect to the Verlinde lines C.
The simplest example of this is obtained by taking C to

be either of the two Fibonacci modular categories, both of
which have fusion rules

W ⊗ W ¼ 1 ⊕ W: ð4:27Þ

They arise, for instance, as the MTCs associated to the
affine Kac-Moody algebras ðG2Þ1 and ðF4Þ1, respectively.
They reduce to the same unitary Fibonacci fusion category
if we forget the braiding and twist structures. In the WZW
model obtained as the diagonal RCFT corresponding to,
say, ðG2Þ1, the Cardy state jWi labeled by the nonvacuum
primary is then a weakly symmetric boundary condi-
tion with respect to the symmetry lines in C. Indeed, the
nontrivial Fibonacci line acts on the two Cardy states j1i
and jWi as

Ŵj1i ¼ jWi; ŴjWi ¼ j1i ⊕ jWi ð4:28Þ

which reveals that the topological line W can end topo-
logically on the boundary condition jWi.
More generally, of the MTCs C with rankðCÞ ≤ 4, which

were classified in [91], it is straightforward to compute that
it is precisely the ones which appear in Table II that satisfy
(4.26). Here, C̄ is the complex conjugate of the MTC C,
obtained by reversing the braiding and conjugating the
twist. We comment that complex conjugate MTCs have the
same underlying fusion category.
In [92] (see also [93–96] for prior related work) it was

shown that, for each MTC C with rankðCÞ ≤ 4, the lowest
value of c which supports a chiral algebra with MTC given
by C actually supports a unique one. For each MTC in
Table II, we report this corresponding chiral algebra V,
which typically involves products of WZW models (with
the exception of the chiral algebra corresponding to
ðA1; 5Þ1

2
, which involves the Virasoro algebra L6=7 with

c ¼ 6=7). The notation Ex½W� denotes a VOA extension of
W31; equivalently, one could just as well apply a non-
diagonal modular invariant to W instead of using the
diagonal modular invariant for Ex½W�. For example, the

theory obtained using the diagonal modular invariant
on Ex½ðA1Þ8� is the same as the theory obtained using
the D-type modular invariant on ðA1Þ8.
It follows that, for each of these chiral algebras, the

corresponding RCFT admits a boundary condition which
is weakly symmetric with respect to its Verlinde lines.
Appendix E of [92] provides many more examples of
chiral algebras with these MTCs, to which the same
conclusions apply.

4. Golden chain and Fibonacci category

Examples of weakly symmetric boundaries for non-
invertible symmetries are natural in anyonic chains
[76,97,98]. As an illustration, we first examine the golden
chain [76], which is a lattice model with the Fibonacci
fusion category symmetry Fib ¼ h1;Wi. An open golden
chain can be described by a fusion tree where each link is
labeled using the simple lines f1;Wg, as shown on the left
of Fig. 12. There is an array of N Fibonacci anyons W
shown as vertical edges. The horizontal edges x0; x1;…; xN
take values in 1;W and are constrained by the fusion rule
of the Fibonacci fusion category

W ⊗ W ¼ 1 ⊕ W; 1 ⊗ W ¼ W ⊗ 1 ¼ W: ð4:29Þ

The horizontal edges x0 and xN at the ends define a choice
of the boundary conditions. The Hilbert space with a par-
ticular choice of x0; xN consists of states jx1; x2;…; xN−1i
compatible with the fusion rule, and it is not a tensor
product of local Hilbert spaces.
To define the Hamiltonian, we introduce another basis

of states. One fuses the lth and ðlþ 1Þth W anyons (vertical
lines) using the F-symbols32 (see Appendix A) as illus-
trated in Fig. 12 for l ¼ 2. This defines a change of
basis of the Hilbert space from j…; xl−1; xl; xlþ1;…i to
j…; xl−1; x0l; xlþ1;…il as

FIG. 12. Left: The state jx1; x2;…xN−1i in the open golden chain with boundary conditions x0; xN on the two ends. Right: The state
jx1; x02;…xN−1i2 written in a basis where the 2nd and 3rd W anyons are fused in the x02 channel. One can go back and forth between these
two bases using the F-symbols.

31The precise extensions are recorded in Appendix D. 1
of [92].

32Since the trivalent junction vector spaces consisting of the
topological lines 1;W are at most 1 dimensional, we suppress the
indices for the junction vectors in the F-symbols, once we pick a
basis for them. Specifically, we write ½FW

xl−1xlþ1W
�ðxl;δ;λÞðx0l;ρ;σÞ ≡

½FW
xl−1xlþ1W

�
xlx0l

suppressing redundant the labels δ,λ,ρ and σ for

the junction vectors.
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j…; xl−1; xl; xlþ1;…i
¼

X
x0l¼1;W

½FW
xl−1xlþ1W

�
xlx0l

j…; xl−1; x0l; xlþ1;…il; ð4:30Þ

where the subscript l on j…:il denotes the basis in which
the lth and (lþ 1)th anyons are fused. One can go back and
forth between these two bases using the F-symbols.
There is a pairwise interaction between every two

consecutive W anyons governed by a Hamiltonian H ¼P
l Hl where Hl denotes the interaction between the lth

and (lþ 1)th W anyons. Hl is easily described in the latter
basis j…; xl−1; x0l; xlþ1;…il as

Hlj…; xl−1; x0l; xlþ1;…il ¼ −δx0l;1j…; xl−1; x0l; xlþ1;…il:
ð4:31Þ

In other words, it assigns an interaction energy E ¼ −1
between the lth and (lþ 1)th W anyons when their
fusion is in the trivial channel, and E ¼ 0 when the fusion
is in the W channel. Therefore, Hl is a projector in the
j…; xl−1; x0l; xlþ1;…il basis

Hl ¼ −Π1
l;lþ1; ð4:32Þ

where Π1
l;lþ1 is a projection operator that projects onto the

subspace of states in which the fusion of lth and (lþ 1)th
W anyons is in the trivial channel x0l ¼ 1.
Depending on the boundary conditions x0 and xN ,

the open golden chain may or may not have a conserved
operator that commutes with the Hamiltonian H. Speci-
fically, we show that there is a nontrivial conserved
operator Ŵ which commutes with the Hamiltonian if

(and only if) both of the boundary conditions x0 and xN
are set to W. It is a nonlocal operator and is commonly
called the “topological symmetry” in the literature. Its
action on the Hilbert space is most easily described
pictorically as in Fig. 13. We attach an additional W line
to the fusion tree that ends at the boundaries x0 ¼ W and
xN ¼ W as shown in the top left of Fig. 13. Using a
sequence of moves shown in the figure, the action of Ŵ on
a state jx1; x2;…; xN−1i can be explicitly written using the
F-symbols as

Ŵjx1; x2;…; xN−1i

¼ hWi½FW
WWW �W1

X
y1;y2;…;yN−1¼1;W

YN−1

l¼0

½Fyl
Wxlþ1W

�
xlylþ1

× jy1; y2;…; yN−1i ð4:33Þ
where y0 ≡W and yN ≡W, and hWi is the quantum
dimension of the W line. Note that the attachment of
this W line does not change the boundary edges because
W ⊗ W contains a W channel.
To see that Ŵ commutes with the Hamiltonian, we first

define a subspace Hl;x0l
of the Hilbert space H as the linear

span of the basis states j…; xl−1; x0l; xlþ1;…il for a fixed
value of l and x0l. The full Hilbert space H can then be
decomposed into a direct sum

H ¼ ⨁
x0l¼1;W

Hl;x0l
ð4:34Þ

Now, consider the action of Ŵ and Hl on the Hl;x0l
for a

fixed l and x0l. The action of Ŵ on the j…; xl−1; x0l; xlþ1;…il
basis corresponds to attaching an additionalW line onto the
fusion tree, similar to the action on the jx1; x2;…; xN−1i

FIG. 13. The action of the “topological symmetry” operator Ŵ on the state jx1; x2;…; xNi shown by attaching an additionalW line to
the fusion tree. On the top left, we use the F-symbol to sweep the left end of theW line to obtain the figure on the top right. We continue
sweeping it through other edges using the F symbols until we get a loop ofW as shown in the bottom left. Shrinking the loop then gives
the final state after the Ŵ action (bottom right). We have suppressed the F-symbols in the figure.
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basis, as shown in the top left of Fig. 14. Such a fusion
cannot affect the channel x0l into which the lth and
(lþ 1)th anyons fuse; it only changes the values of
fx1; ::xl−1; xlþ1;…xN−1g. This implies that Hl;x0l

is an

invariant subspace under the action of Ŵ. On the other
hand, Hl acts like a c-number on Hl;x0l

as shown in (4.31).
Therefore, when restricted to the subspace Hl;x0l

, Hl

commutes with Ŵ. See Fig. 14. However, since x0l and l
are arbitrary, we get ½Ŵ;Hl� ¼ 0 for all l∈f1;2;…;N − 1g
in the full Hilbert space H. In other words,

½Ŵ;H� ¼ 0: ð4:35Þ

In the continuum limit, the golden chain is described by
the tricritical Ising CFT with central charge c ¼ 7=10. The
“topological symmetry” Ŵ flows to a topological lineW in
space-time that generates a unitary Fibonacci fusion cat-
egory. The boundary corresponding to x0 ¼ W (and sim-
ilarly for xN ¼ W) on the golden chain, which we denote as
BW , flows to a conformal boundary in the tricritical Ising
CFT. Since Ŵ is a conserved operator on the open golden
chain, this means that in the continuum, the topological line
W admits a topological junction on the boundary. In other
words, the boundary BW, in the continuum limit of the
golden chain, is weakly symmetric under the topological
line W. If it is simple, it must therefore be one of the three
weakly symmetric boundaries appearing in (4.17).
This idea can be generalized to any anyonic chain based

on a fusion category C. For simplicity, we assume the fusion
coefficients Nk

ij are no greater than 1, and we refer the
readers to [72] for the more general cases. We first pick a
reference anyon L0 in C, and consider a fusion tree with N
vertical L0 anyons. For the open anyonic chain, we pick
two boundary horizontal edges labeled by some anyons

x0 and xN . The Hilbert space H consists of all states
jx1; x2;…; xN−1iwith the edge variables xi compatible with
the fusion rule of C. F-symbols are used to fuse two nearby
anyons to go to another basis j…; xl−1; x0l; xlþ1;…il where
the lth and (lþ 1)th anyons are fused in the x0l channel. To
define a Hamiltonian, we choose a second reference anyon
LH (which may or may not be the same as L0), and define
H ¼ −

P
lΠ

LH
l;lþ1 in the j…; xl−1; x0l; xlþ1;…il basis.

For simplicity, we choose the boundary conditions on the
two ends to be the same, given by a choice of an anyon LB,
i.e., x0 ¼ xN ¼ LB. If there exists a line L which obeys
L ⊗ LB ¼ LB ⊕ � � �, then we can define a topological
symmetry operator L̂ on the Hilbert space H by attaching
an L line to the open chain. By a similar argument in the
golden chain case, it commutes with the Hamiltonian. In
the continuum, the boundary conditions corresponding to
x0 ¼ xN ¼ LB will be weakly symmetric under the topo-
logical line L.

C. Boundary conditions in arbitrary
module categories

Suppose that we are given a 1þ 1D CFT T with fusion
category symmetry C. Let B be an object in an arbitrary
module category M of C. The theory T may not admit a
physical boundary condition which transforms like B under
the action of C. However, we show in this subsection that
there exists another CFT T B, which also has symmetry
category C, and which moreover does have a boundary
condition transforming like B in M.
Before we provide the derivation of this result, we pause

to explain how one might obtain a 1þ 1D CFT T with
arbitrary fusion category symmetry C in the first place. In
the case that C ¼ VecG for some finite group G, we
described in Sec. IVA 2 how to obtain such a theory from
products of holomorphic VOAs (subject to a particular

FIG. 14. A commutative diagram showing that the topological symmetry operator Ŵ and the local Hamiltonian Hl commute for
every l.
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conjecture in the case that G is not solvable, see
Footnote 28). What about a more general fusion category?
One construction is the following. We assume the widely
believed conjecture that any modular tensor category is
realized as the representation category of some VOA. In
the present situation, we apply this conjecture to the
Drinfeld center ZðCÞ to obtain a VOA V. Then, it is
known that there exists a Lagrangian algebra in ZðCÞ
whose fusion category of modules is precisely C. By the
results of [99], such a Lagrangian algebra defines a
holomorphic VOA T containing V as a subalgebra.
Furthermore, the fusion category of topological lines of
T which commute with the operators in V is precisely C
(see [92,100] for further details on this idea).
Now, assume that T is some CFTwith an action of C by

symmetries, constructed either as in the previous paragraph
or by some other method. In Appendix A we explain that,
given an object B in a module category M, one can obtain
an algebra A ¼ HomðB;BÞ in C via the internal-Hom
construction such that M ≅ CA. In other words, M is
equivalent to the category of A-modules in C, and under
this equivalence,A in CA is sent to B inM. Let us consider
gauging this algebra object A by inserting a mesh of it in
(say, the right) half of spacetime, using the rules of [24].
With respect to the C lines in the theory T to the left, the
interface behaves like the object B inM (or equivalently,A
in CA). Upon folding, we then obtain a boundary condition
in the theory T B ¼ T ⊗ T =A. The theory T B also admits
an action of C by symmetries, simply because T does, and
furthermore the boundary condition just described behaves
with respect to the lines in C like the object B in the module
category M. This completes the construction.
One interesting consequence of this line of thinking is

the following. Assume the conjecture that any fusion
category is realized as the symmetries of some CFT.
Then, for any fusion category C, and for any object B in
one of its module categories M, there exists a theory T B
with symmetry C and with a boundary condition which
transforms like B. In particular, if C is a category which
kinematically admits a strongly symmetric boundary con-
dition, then there is a theory which dynamically does so as
well. Similarly, if C is a category which kinematically
admits a weakly symmetric boundary condition, then there
is a theory which dynamically does so as well. This may be

viewed as a much weaker version of the conjecture
discussed in Sec. V B 1.

V. APPLICATIONS

In this section, we describe applications of strongly and
weakly symmetric boundaries to bulk and boundary RG
flows, respectively.

A. Weakly symmetric boundaries and constraints
on boundary RG flows

We start by reviewing [45], where it was shown that
weakly symmetric boundaries can be used to constrain
boundary RG flows. Consider a conformal boundary
BUV which admits a relevant boundary operator ψ. One
can trigger a boundary RG flow using ψ by adding
expð�λ

R
ψðxÞdxÞ to the action with λ > 0, where the

integral is taken along the boundary. In the IR, one obtains a
conformal boundary BIRþ or BIR

− depending on the sign in
front of λ. In general, the conformal boundaries arising
from these boundary RG flows might be nonsimple. The
g-theorem [101,102] constrains the g function of the IR
conformal boundary to be strictly less than that of the UV
conformal boundary, i.e., gðBUVÞ > gðBIR

� Þ.
If BUV is weakly symmetric under a topological line L,

and if the relevant deformation ψ commutes with L, then
the resulting conformal boundary BIR

� will also be weakly
symmetric, as shown in Fig. 15. In other words, if L admits
a topological junction on BUV, then the boundary RG
flow triggered by such a relevant boundary operator results
in a boundary BIR

� on which L also admits a topological
junction.
On the other hand, if ψ anticommutes with L, then one

can trigger a boundary RG flow in the presence of L with
one sign of the coupling to the left of L, and with the
opposite sign of the coupling to the right of L. In the IR, L
intersects at a topological junction between BIRþ and BIR

− ,
as shown in Fig. 16. This, along with the g-theorem, can
be used to narrow down the possibilities for the IR
conformal boundaries. Moreover, if there is more than
one line that commutes or anti-commutes with ψ on the
boundary BUV, one can also match the algebra (2.18) for
those lines in the UV and in the IR to obtain additional
constraints.

FIG. 15. A relevant boundary deformation eλ
R

ψðxÞdx (or e−λ
R

ψðxÞdx) is applied on the conformal boundary BUV in the presence of a
topological line L which admits a topological junction on BUV. Here we assume ψ commutes with L. In the IR, L admits a topological
junction on the corresponding boundary BIRþ (or BIR

− ).
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As an example, consider the boundary corresponding
to the primary operator labeled by ðr; sÞ ¼ ð3; 3Þ in the
tetracritical Ising model (see Sec. IV B 1 for our notation
and conventions on minimal models). To make the action
of the topological lines more transparent, we label this
boundary using its corresponding Verlinde line, jMWi. It
is then straightforward to see that jMWi isweakly symmetric
with respect to η, M, W, ηW and MW. This boundary
supports a relevant boundary operator ψ2;1 with conformal
dimension h ¼ 2

5
that commutes with η and anti-commutes

with M. Upon triggering a boundary RG flow using
expð�λ

R
ψ2;1ðxÞdxÞwith λ > 0, the resulting IRboundaries

BIRþ andBIR
− will beweakly symmetric under η. Moreover,M

will have a topological junction between BIRþ and BIR
− .

These constraints, along with the g-theorem, narrow down
the possibilities to either ðBIR

− ;BIRþ Þ ¼ ðjMi; j1i ⊕ jηiÞ or
ðBIR

− ;BIRþ Þ ¼ ðjMi; jMiÞ (up to swapping BIR
− and BIRþ ).

Using TCSA technique, it can be shown that the flow in
fact goes over to ðBIR

− ;BIRþ Þ ¼ ðjMi; j1i ⊕ jηiÞ [45].

B. Strongly symmetric boundaries and constraints
on bulk RG flows

In Sec. III, we discussed the kinematic relation between
symmetric boundary conditions and anomalies. We now ask
if such a boundary condition is dynamically realized in a
given CFT. More generally, in a given 1þ 1D CFT with a
generalized global symmetry, we discuss the relations
between the following three properties: (1) the existence of
a (strongly orweakly) symmetric conformal boundary, (2) the
existence of a symmetric relevant deformation that trivially
gaps the CFT, and (3) the anomaly of the global symmetry.
Using these relations, the analysis of strongly symmetric

boundary conditions leads to constraints on bulk renorm-
alization group flows. Specifically, we find an example
among the minimal models where the CFT cannot be
trivially gapped by any relevant deformation preserving a
fusion category symmetry, even though that symmetry is
nonanomalous.

1. Is there a symmetric boundary for every
nonanomalous symmetry?

Given a CFT with an invertible global symmetry, is
there always a simple, symmetric conformal boundary

condition?33 There are obstructions to boundary conditions
from anomalies. First, the gravitational anomaly (such as a
nonzero chiral central charge cL − cR in a 1þ 1D CFT)
presents an obstruction to the existence of any con-
formal boundary condition (see, for example, [103] for a
recent discussion). Second, the ’t Hooft anomaly of an
internal global symmetry presents a kinematic obstruc-
tion to the existence of a symmetry-preserving boundary
condition [2–4,7,9].
A natural question is then the following: given a CFT

with an internal global symmetry that is free of gravita-
tional and ’t Hooft anomalies, is a simple, symmetric
boundary condition always dynamically realized by the
theory? For invertible symmetries in 1þ 1D, this question
was studied in [1,2,5,6,8–11], where it was found that the
answer is positive for a large class of CFTs including the
minimal models.
In this subsection, we extend this discussion to non-

invertible symmetries. We will discuss an example of a
CFT with a nonanomalous, internal fusion category sym-
metry, where there is no strongly symmetric boundary
condition, only a weakly symmetric one.
Consider the c ¼ 4=5 tetracritical Ising CFT. As dis-

cussed in [25], it has a fusion category symmetry
C ¼ RepðS3Þ, one of the simplest noninvertible fusion
categories. It has three simple topological lines, 1; η;M,
corresponding to the trivial, sign, and standard irreducible
representations of S3. Their quantum dimensions are 1,1,2,
respectively, which are the dimensions of the correspond-
ing representations. They obey the fusion rule of the
representation ring of S3,

η ⊗ η ¼ 1; η ⊗ M ¼ M ⊗ η ¼ M;

M ⊗ M ¼ 1 ⊕ η ⊕ M: ð5:1Þ

We see that η is a Z2 line and M is a noninvertible line.

FIG. 16. A relevant boundary deformation eþλ
R

ψðxÞdx is applied on the conformal boundary BUV to the left of L and e−λ
R

ψðxÞdx is
applied on BUV to the right of L, where L is a topological line which admits a topological junction on BUV. Here we assume ψ
anticommutes with L. In the IR, this becomes a topological junction between L, BIRþ and BIR

− .

33The adjective “simple” appearing in this question is im-
portant, especially for a finite symmetry. Otherwise, one can
always construct a nonsimple, symmetric boundary condition by
starting with an arbitrary boundary condition, and adding its
images under the symmetry action. For instance, starting from the
fixed boundary j↑i in the Ising CFT, we can add to it itsZ2 image
j↓i to obtain a nonsimple, Z2-symmetric boundary j↑i ⊕ j↓i.
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The origin of the noninvertible symmetry RepðS3Þ in
the tetracritical Ising CFT can be seen as follows. The
tetracritical Ising CFT is a diagonal minimal model which
can be obtained from the nondiagonal 3-state Potts CFT
by gauging the S3 symmetry. The quantum symmetry
[24,89,104] which arises from this gauging is the non-
invertible RepðS3Þ symmetry. Conversely, following the
generalized orbifold procedure in [17,22,24], one can
gauge the RepðS3Þ symmetry of the tetracritical Ising
CFT to obtain the 3-state Potts model.
The fusion category RepðS3Þ is anomaly-free and is

kinematically compatible with a trivially gapped phase
(i.e., there is a fiber functor).34 Following the discussion in
Sec. III, this further implies that a strongly symmetric
boundary condition B is kinematically allowed for RepðS3Þ.
If this boundary were to exist, it would necessarily be acted
on by the topological lines as

1̂jBi ¼ jBi; η̂jBi ¼ jBi; M̂jBi ¼ 2jBi: ð5:2Þ
But is such a strongly symmetric boundary condition
dynamically realized in the tetracritical Ising CFT?
As reviewed in Sec. IV B 1, all conformal boundary

conditions in the diagonal minimal models are explicitly
classified by Cardy [52]. The action of the topological lines
on these Cardy states is given by (4.14), with the coef-
ficients Nk

ij equal to the fusion coefficients of the corre-
sponding minimal model. Since each Nk

ij is either 0 or 1 in
the minimal models, we see that they do not realize any
simple, strongly symmetric boundary condition for their
noninvertible fusion category symmetries.
In particular, even though a strongly symmetric boun-

dary condition is kinematically possible for the RepðS3Þ
symmetry, it is not dynamically realized in the tetracritical
Ising CFT. On the other hand, in the tetracritical Ising CFT,
there is a boundary condition that is weakly symmetric
under RepðS3Þ, as shown in (4.20).

2. RG boundary conditions

Next, we discuss the relation between symmetric boun-
dary conditions and symmetric relevant deformations that
trivially gap a CFT. See [1,2,9,11] for discussions in the
case of invertible symmetries.
Consider a local relevant scalar operator ϕ in a 1þ 1D

CFT. We assume that the CFT flows to a trivially gapped
phase with a nondegenerate vacuum when we activate
this relevant deformation everywhere in spacetime,
expðλ RR2 d2xϕðxÞÞ with λ > 0. Alternatively, we can
activate ϕ just in half of spacetime,

exp

�
λ

Z
x>0

d2xϕðxÞ
�
: ð5:3Þ

At low energies, the system is then described by the
original gapless CFT in the region x < 0, and is in a
trivially gapped phase with a nondegenerate vacuum in the
region x > 0. At x ¼ 0, this construction yields a boundary
condition for the CFT, known as an RG boundary. We
denote the corresponding boundary state as jϕiRG. Suppose
the CFT has a nonanomalous global symmetry and the
relevant operator ϕ is symmetric under this symmetry.
Then, the resulting RG boundary condition jϕiRG is also
symmetric. See [46,105–108] for discussions of RG boun-
daries in 1þ 1D.
The converse is more subtle. The existence of a sym-

metric boundary condition does not guarantee a sym-
metric relevant deformation that trivially gaps the CFT.
For instance, consider the tensor product of the chiral and
antichiral Monster CFT (so that the gravitational anomaly
vanishes). It was shown in [109] that there are boundary
conditions invariant under various centralizers of the
diagonal Monster group, and yet there is simply no relevant
deformation at all in this CFT. However, it should be
stressed that there are other mechanisms to gap a system
than merely turning on relevant deformations. For example,
one can also add additional massive degrees of freedom,
and attempt to gap the combined system in a symmetry-
preserving manner. See [110] for more discussions.
Let us discuss the RG boundaries in the Ising CFT.

Turning on the Z2-odd σ deformation in the Ising CFT in
half of spacetime leads to the two fixed boundary con-
ditions j↑i; j↓i, depending on the sign of the relevant
coupling λ. The two fixed boundaries are exchanged by
the Z2 symmetry. For one sign of the Z2-even thermal
deformation ε, the corresponding RG boundary is the
Z2-symmetric free boundary jfi. (For the other sign, the
low energy phase is not trivially gapped, and the half
spacetime RG does not lead to a boundary state. We refer
readers to [25] for more discussions.)
How do we extend this discussion to a CFT with a

noninvertible global symmetry described by a fusion
category C? A local operator ϕ is said to be symmetric
under C if every line of C commutes with ϕ [25,40]. Let ϕ
be a C-symmetric relevant deformation such that
expðλ RR2 d2xϕðxÞÞ drives the CFT to a trivially gapped
phase, which in particular implies that C is anomaly-free
(i.e., it admits a fiber functor). Then we claim that the
corresponding RG boundary condition jϕiRG is not only
weakly symmetric under C, but also strongly symmetric.35

This can be most easily seen from Fig. 17.

34There are two other anomalous fusion categories obeying the
same fusion rule as in (5.1), but with different F-symbols.

35In all examples we know of, the RG boundary condition
from such a relevant deformation is always a simple boundary,
meaning that it cannot be written as the superposition of other
boundary conditions. It is conceivable that with more than one
relevant coupling constant, one can fine-tune the couplings such
that the resulting RG boundary is not simple. We will focus on
relevant deformation triggered by a single relevant deformation
here and assume that the RG boundary is simple.
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Turning the argument around, we reach the following
statement: Given an anomaly-free fusion category sym-
metry C, if there does not exist a simple, strongly symmetric
boundary, then there cannot be a symmetric deformation
that trivially gaps the bulk CFT triggered by a relevant
operator. In the next subsection, we will use this to
constrain bulk RG flows in CFT.

3. Nontrivial RG flows without anomalies

Following the discussion in Sec. V B 2, the absence of a
strongly symmetric boundary in the tetracritical Ising
CFT leads to the conclusion that this CFT cannot be trivially
gapped by a relevant deformation preserving the noninver-
tible symmetry RepðS3Þ. This is somewhat surprising given
that thenoninvertible symmetryRepðS3Þ is anomaly-free and
is kinematically compatible with a trivially gapped phase.
Let us verify this claim. The tetracritical Ising CFT has

a unique RepðS3Þ-symmetric relevant local operator ϕ2;1

of dimension ðh; h̄Þ ¼ ð2=5; 2=5Þ [25]. Furthermore, ϕ2;1

breaks all the other internal symmetries (including a
Fibonacci category) and only preserves the nonanomalous
RepðS3Þ. The flow triggered by ϕ2;1 is integrable and
has been studied in [111].36 Indeed, it was found that the

low energy phase is gapped, and has two states for one sign
and three states for the other sign of the relevant coupling
constant. The gapped phase with three states is a 1þ 1D
TQFTwith a RepðS3Þ fusion category symmetry, which can
be viewed as a spontaneously broken phase of RepðS3Þ.
(See [25,33] for general discussions on TQFTs with fusion
category symmetries). This massive vacuum structure can
also be easily verified using the variational calculation
in [107].
To conclude, we find that the tetracritical Ising CFT

cannot be trivially gapped by any relevant deformation
while preserving its nonanomalous RepðS3Þ fusion cat-
egory symmetry.37 This conclusion is confirmed from the
analysis of symmetric boundary conditions and from
integrability. While this is not a contradiction in any
way, it is curious that the nontrivial low energy phases
do not seem to admit an explanation just in terms of
symmetry. (See Sec. V B 2 for related discussions in the
case of invertible symmetries.)
One might wonder if there are mixed anomalies involv-

ing the fusion category symmetry and spacetime sym-
metries, such as time-reversal symmetry.38 For instance,

FIG. 17. We turn on a relevant operator ϕ which commutes with a line L and trivially gaps the theory, inside a disk region (light
orange) in the bulk. The resulting interface between the trivially gapped theory and the bulk CFT is a strongly symmetric conformal
boundary jϕiRG under L. On the top left, we first flow to the IR and create a conformal boundary jϕiRG. We then shrink L onto jϕiRG to
obtainLjϕiRG on the top right. Alternatively, starting from the top left, we can shrink the loop ofL inside the deformed region to get hLi.
We then flow to the IR and obtain hLijϕiRG. This commutative diagram shows that such a relevant deformation creates a strongly
symmetric boundary, i.e., LjϕiRG ¼ hLijϕiRG.

36We thank A. Zamolodchikov for pointing out this reference
to us.

37It is still possible that this minimal model can be trivially
gapped while respecting the RepðS3Þ symmetry by introducing
additional degrees of freedom and turning on interactions.

38We thank Z. Komargodski for discussions on this point.
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mixed anomalies between time-reversal symmetry and
fusion category symmetries in 1þ 1D have been previ-
ously studied in [112]. We leave this interesting possibility
for future investigations.

VI. BOUNDARIES AND SYMMETRIES
IN HIGHER DIMENSIONS

In this section, we make some preliminary comments on
boundary conditions and symmetries in higher spacetime
dimensions. We leave a complete analysis for the future.

A. Higher simplicity

Consider a QFT in d spacetime dimensions with a set
of d − 1-dimensional boundary conditions. Given any
such boundary condition B, we can stack a decoupled
d − 1-dimensional QFT Q on top of B to obtain another
boundary, denoted as Q ⊗ B or QjBi for the correspon-
ding boundary state. More generally, we can consider a
direct sum of boundaries with “coefficients” being any
d − 1-dimensional QFTs Qi,

⨁
i
QijBii: ð6:1Þ

In the special case that we restrict ourselves to
d-dimensional CFTs and their conformal boundary con-
ditions, the “coefficients” Qi are restricted to be d − 1-
dimensional CFTs. In the previous sections, where we
considered 1þ 1D bulk CFTs, the corresponding Qi are
then 0þ 1-dimensional CFTs, i.e., topological quantum
mechanics theories. Such theories can be thought of as free
ni-dimensional qunits, and each is completely specified by
a non-negative integer ni ∈Z≥0. Thus, for d ¼ 2, (6.1) is a
general non-negative integer linear combinations of 0þ 1D
boundary conditions. In higher spacetime dimensions, the
non-negative integers are replaced by d − 1-dimensional

field theories. Similarly, if we restrict ourselves to
d-dimensional TQFTs with topological boundaries, then
the Qi are restricted to be d − 1-dimensional TQFTs.
In general spacetime dimensions, we further define a

notion of higher simplicity. A d − 1-dimensional boundary
B (or a topological defect) of a d-dimensional QFT is called
q-simple if there is no topological defect on B whose
dimension is less than or equal to q. A 0-simple boundary is
simple (or elementary) in the usual sense since there are no
topological local operators on it, which implies that it
cannot be written as a direct sum of other boundaries.

B. TQFT matrix representation

As discussed previously, the conformal boundary con-
ditions of a 1þ 1D CFT transform as NIM-reps of a
generalized global symmetry. We now extend this to QFTs
in d spacetime dimensions.
For simplicity, we focus on a 0-form global symmetry,

the coarse features of which we distill into a fusion algebra
C generated by codimension-1 topological operators Li.
The 0-form symmetry C can be a group algebra cor-
responding to an invertible finite symmetry, or some
more general algebra corresponding to a noninvertible
symmetry. We start by considering the parallel fusion of
codimension-1 topological defects Li with a set of boun-
dary conditions Ba as shown in Fig. 18.
Such an action takes the following form

LijBai ¼ ⨁
b
Qb

iajBbi ð6:2Þ

where the “coefficients” Qb
ia are now d − 1-dimensional

TQFTs, rather than just non-negative integers for d ¼ 2.
These Qb

ias furnish as a matrix representation of the global
symmetry C valued in TQFT coefficients. (6.2) states that
boundary conditions are in TQFT matrix representations of

FIG. 18. Parallel fusion of a codimension-1 topological defect Li with a boundary Ba gives a linear combination of boundaries with
TQFT coefficients Qb

ia.
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a generalized global symmetry C, generalizing the NIM-
reps for d ¼ 2. See Fig. 18. Similar observations related to
“TQFT-valued coefficients” arising in the fusion of topo-
logical defects have been made previously in [59,63].

C. 2 + 1D Uð1Þ Maxwell theory

Let us illustrate the general discussion above in the
context of 2þ 1D free Uð1Þ Maxwell gauge theory. In
Euclidean signature, the Lagrangian is

L ¼ 1

2g2
F ∧ ⋆F; ð6:3Þ

where F ¼ dA is the gauge-invariant field strength.
The free Maxwell theory is exactly dual to a free com-
pact scalar ϕ ∼ ϕþ 2π, which is related to the gauge field
as i

2π dϕ ¼ 1
g2 ⋆F.

The global symmetry of the free Maxwell theory
includes ðŨð1Þð0Þ × Uð1Þð1ÞÞ⋊Zð0Þ

2 . It has a Uð1Þð1Þ 1-form
symmetry that shifts the gauge field by a flat connection.
The 1-form symmetry charge is the electric flux integrated
against a curve γ, or in terms of the dual scalar field, it is the
winding number 1

2π

H
γ dϕ. The topological symmetry line is

exp ðiα
2π

H
γ dϕÞ. There is also a Ũð1Þð0Þ 0-form magnetic

global symmetry whose conserved charge is the magnetic
flux 1

2π

H
Σ F through a 2-surface Σ. The topological sym-

metry surface is expðiα
2π

H
Σ dAÞ. The Ũð1Þð0Þ symmetry acts

on the scalar field by a shift, i.e., ϕ → ϕþ α. Finally, the

charge conjugation symmetryZð0Þ
2 flips the sign of ϕ and A.

We now discuss some (0-)simple boundary conditions.
For simplicity, we place the boundary at x ¼ 0. We start
with a Neumann boundary condition for the gauge field,
which obeys

Fxμjx¼0 ¼ 0: ð6:4Þ
Since A is unconstrained on the boundary, we can add a
boundary theta angle term

iθ
2π

I
dAjx¼0: ð6:5Þ

We denote this S1 family of Neumann boundaries as B̃ðθÞ
with θ∈ ½0; 2πÞ. It is equivalent to the Dirichlet boundary
conditions for the dual compact scalar field ϕ ∼ ϕþ 2π:

B̃ðθÞ∶ ϕjx¼0 ¼ θ: ð6:6Þ

The Ũð1Þð0Þ and Zð0Þ
2 symmetries act on the Neumann

boundary as

e
iα
2π

H
dAjB̃ðθÞi ¼ jB̃ðθ þ αÞi;
ηjB̃ðθÞi ¼ jB̃ð−θÞi; ð6:7Þ

where η is a surface operator that generates the Zð0Þ
2

symmetry. Finally, as we bring the bulk topological line
expðiα

2π

H
dϕÞ for the Uð1Þð1Þ symmetry to the boundary, it

becomes trivial on B̃ðθÞ because ϕ is taken to be a fixed
value and there is no winding on this boundary. Hence B̃ðθÞ
is 1-simple, but not 2-simple because of the 2D topological
operator, i.e., the boundary theta term (6.5).
There is also a Dirichlet boundary condition for the

gauge field

B∶ Ajx¼0 ¼ 0; ð6:8Þ

where jx¼0 stands for the restriction of the differential form
to the boundary. The Dirichlet boundary condition has the
distinguished feature that a minimally charged Wilson line
expði R AÞ can terminate on it. This is a Neumann boundary
condition for the dual field ϕ. The boundary condition B
is invariant under the Ũð1Þð0Þ symmetry and the charge

conjugation Zð0Þ
2 symmetry:

e
iα
2π

H
dAjBi ¼ jBi;
ηjBi ¼ jBi: ð6:9Þ

As we bring theUð1Þð1Þ topological line expðiα
2π

H
γ dϕÞ to B,

it becomes a nontrivial line on B. Hence the bulk Uð1Þð1Þ
1-form symmetry becomes a boundary Uð1Þð0Þ 0-form
symmetry. There are two ways to understand this. From the
gauge field point of view, since the Wilson line expði R AÞ
can terminate on B, we can link a Uð1Þð1Þ line with a
Wilson line in the bulk, and push the former to the
boundary. Since the linking phase is nontrivial, this process
has to give a nontrivial boundary line. Alternatively, from
the scalar field point of view, ϕ is unconstrained on B,
and therefore there is a Uð1Þð0Þ winding symmetry on the
boundary that measures its winding number.39 We hence
learn that B is not 1-simple, but only 0-simple.
The explicit action for B is

B∶
i
2π

Z
x¼0

φdA; ð6:10Þ

where φ is a compact scalar field that lives on the boundary
x ¼ 0 and A is the restriction of the bulk 1-form gauge field
to the boundary.40 The variation of A gives the boundary
equation of motion:

39In contrast, B̃ðθÞ has a boundary theta angle (6.5), which can
be viewed as a boundary Uð1Þ (−1)-form global symmetry.

40For the Dirichlet boundary condition B, the boundary scalar
φ is the restriction of the bulk ϕ to B. Nonetheless we introduce a
new symbol φ because later when we discuss the partially
Dirichlet boundary BN, the bulk and boundary compact scalar
fields differ by a factor of N (6.23), i.e., ϕ ¼ Nφ.
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B∶
i
2π

dϕjx¼0 ¼
1

g2
⋆Fjx¼0 ¼

i
2π

dφ ð6:11Þ

in addition to the bulk equation of motion. This means
that the bulk Uð1Þð1Þ symmetry line expð αg2

R
⋆FÞ ¼

expðiα
2π

R
dϕÞ can be connected to a boundary topological

line exp ðiα
2π

R
dφÞ at a topological junction on the boundary

as shown in Fig. 19.

1. Partially Dirichlet boundaries

We move on to discuss the noninvertible symmetries of
the 2þ 1D Maxwell theory and their action on the above
boundaries. The noninvertible condensation surface defects
SNðΣÞ were constructed in [59]

SNðΣÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijH1ðΣ;ZNÞj

p X
γ∈H1ðΣ;ZNÞ

exp

�
i
N

I
γ
dϕ

�
ð6:12Þ

where N is any positive integer and Σ is a closed 2-surface.

They arise from higher gauging the discrete Zð1Þ
N subgroup

of Uð1Þð1Þ on a surface. The explicit action for this defect
inserted along x ¼ 0 is41

1

2g2

Z
x<0

FL ∧ ⋆FL þ 1

2g2

Z
x>0

FR ∧ ⋆FR

þ iN
2π

Z
x¼0

ΦðdAL − dARÞ; ð6:13Þ

where AL, AR are respcetively the gauge fields on the
two sides of the defect. Here Φ ∼Φþ 2π is an auxiliary
compact scalar field living only on the defect x ¼ 0.

The condensation defect SN obeys the noninvertible
fusion rule

SN ⊗ SN0 ¼ ðZgcdðN;N0ÞÞSlcmðN;N0Þ; ð6:14Þ
where the fusion “coefficient” ZgcdðN;N0Þ is a 1þ 1D
ZgcdðN;N0Þ gauge theory.
Let us discuss the action of the noninvertible symmetry

on the two kinds of boundaries B and B̃ðθÞ above. Since
the topological lines exp ð iN

H
dϕÞ become 1 on B̃ðθÞ, the

condensation defect SNðΣÞ reduces to the partition func-
tion of a decoupled 1þ 1D ZN gauge theory using the
expression (6.12), i.e.,

SN jB̃ðθÞi ¼ ZN jB̃ðθÞi: ð6:15Þ
This gives a realization of the general formula (6.2) where
the “coefficients” are TQFTs.
Acting with SN on the other boundary B gives another

simple boundary, which we denote by

jBNi≡ SN jBi ð6:16Þ
with jB1i ¼ jBi as S1 is a trivial surface. This is equivalent
to gauging the Zð0Þ

N subgroup of the Uð1Þð0Þ symmetry
(which arises from the restriction of the bulk Uð1Þð1Þ
1-form symmetry) only on the boundary. Since SN ⊗
expð2πiN

H
dϕÞ ¼ SN [59], this new boundary condition

jBNi can freely absorb the Zð1Þ
N topological lines (but

not other lines):

exp

�
i
N

I
γ
dϕ

�
jBNi ¼ jBNi; ð6:17Þ

where the curve γ is parallel to the boundary. This shows
that the boundary jBNi is neither a Dirichlet nor a Neumann

boundary condition. Since the Zð1Þ
N topological lines

become trivial on BN , it follows that only Wilson lines
expðiQ R

AÞ with
Q∈NZ ð6:18Þ

can terminate on BN . In this sense the boundary BN is a
partially Dirichlet boundary condition. Indeed, SN anni-
hilates a charge Q Wilson line by encircling it unless
Q∈NZ [59], implying that theWilson line can only end on
SN if this condition is satisfied.
Let us describe the partially Dirichlet boundary con-

dition jBNi for the Maxwell theory in detail. The fusion
between SN and the Dirichlet boundary jBi is represented
by the following action

i
2π

Z
x¼0

φLdAL þ iN
2π

Z
x¼ϵ

ΦðdAL − dARÞ

þ 1

2g2

Z
0<x<ϵ

FL ∧ ⋆FL þ
Z
x>ϵ

FR ∧ ⋆FR ð6:19Þ

FIG. 19. The bulkUð1Þð1Þ global symmetry line expð αg2
R
⋆FÞ is

connected to a boundary Uð1Þð0Þ symmetry line expðiα
2π

R
dφÞ at a

topological junction on the Dirichlet boundary B for the gauge
field A. Here φ is a compact scalar field living on the boundary.

41See also [113] for the action of related condensation surface
defects in Chern-Simons theory.
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where we place the boundary B at x ¼ 0 and the con-
densation defect SN at x ¼ ϵ. Next, we take ϵ → 0, and AL
becomes a field living only on the boundary. Defining
φ0 ¼ φL þ NΦ, φ ¼ −Φ and renaming AR as just A, the
boundary action for SN jBi becomes

i
2π

Z
x¼0

φ0dAL þ
iN
2π

Z
x¼0

φdAþ 1

2g2

Z
x>0

F ∧ ⋆F: ð6:20Þ

Now, AL is a gauge field that only lives on the boundary.
The first term is a trivial 1þ 1D Z1 TQFT and can be
discarded.
We therefore conclude that the boundary BN ¼ SN ⊗ B

is described by the following boundary action:

BN∶
iN
2π

Z
x¼0

φdA; ð6:21Þ

where φ ∼ φþ 2π is a compact scalar field that only lives
on the boundary x ¼ 0. The BN can be viewed as a discrete
family of generalizations of the Dirchlet boundary con-
dition (6.10). The equation of motion for A gives

BN∶
i
2π

dϕjx¼0 ¼
1

g2
⋆Fjx¼0 ¼

iN
2π

dφ: ð6:22Þ

Written in terms of the dual scalar field ϕ, we find the
restriction of the bulk Uð1Þð1Þ topological lines to the
boundary BN :

exp

�
iα
2π

I
γ
dϕ

�
jx¼0 ¼ exp

�
iNα

2π

I
γ0
dφ

�
: ð6:23Þ

where γ0 is a curve on BN that is homologous to γ. In

particular, it means that the lines of the Zð1Þ
N subgroup are

trivial on the boundary (i.e., those with α∈ 2πZ=N), which
is consistent with (6.17). See Fig. 20.

To conclude, BN ¼ SN ⊗ B is a discrete generalization
of the Dirichlet boundary condition B∶Aj ¼ 0 obtained
from the noninvertible symmetry action on the ordinary
Dirichlet boundary. Unlike the ordinary Dirichlet boundary,
only the charge N Wilson line can terminate on BN .
It would be interesting to generalize this discussion to

obtain the action of the noninvertible symmetries found in
[60,63,114–120] on the boundaries of 3þ 1D Uð1Þ gauge
theories. See [121] for discussions of noninvertible 1-form
symmetries in 4þ 1D gauge theory with boundaries.

D. TQFT examples

We further discuss several examples of boundary con-
ditions for 2þ 1D TQFTs.

1. 2 + 1D Z2 Gauge Theory

Consider the 2þ 1D Z2 gauge theory whose Lagrangian
is [122–124]

L ¼ 2i
2π

AdÃ: ð6:24Þ

This is the low energy limit of the toric code. There are
three nontrivial topological lines

e ¼ ei
H

A; m ¼ ei
H

Ã; ψ ¼ ei
H
ðAþÃÞ; ð6:25Þ

where e, m have spin 0 and ψ is a fermion of spin 1=2.
Our discussion of the topological boundaries and sur-

faces follows [59] closely. There are two topological
boundary conditions [125] (see also [126–129]), given
by the Dirichlet boundary conditions of A and Ã:

Be∶ Aj ¼ 0;

Bm∶ Ãj ¼ 0: ð6:26Þ

FIG. 20. In free Maxwell theory, a Wilson line expðiQ R
AÞ of charge Q can end on the partially Dirichlet boundary BN only if

Q∈NZ. The bulk Uð1Þð1Þ global symmetry line expðiα
2π

H
γ dϕÞ becomes a boundary line expðiNα

2π

H
γ0 dφÞ when pushed to BN . Here ϕ is

the bulk compact scalar field dual to the gauge field, and φ is a compact scalar field on the boundary.
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Be is known as the e-condensing boundary condition in the
sense that the e line becomes trivial when pushed to this
boundary, and vice versa for the m-condensing boundary

Bm. Both Be and Bm can be realized by gauging the Zð1Þ
2

1-form symmetry generated by e and m in half of the
spacetime, respectively [130]. Both of these topological
boundary conditions are not 1-simple.
The boundary states obey the following inner products:

hBejBei ¼ hBmjBmi ¼ Z2; hBmjBei ¼ hBejBmi ¼ 1

ð6:27Þ
where Z2 stands for a 1þ 1D Z2 gauge theory.
There are 6 topological surfaces in total, denoted by

f1; Sψ ; Se; Sm; Sem; Smeg [59] (see also [131]). Here, 1 is
the trivial surface, and Sψ generates a nonanomalous Z2

symmetry that exchanges the e and m. We have S2ψ ¼ 1.
The other four surfaces Se; Sm; Sem; Sme are noninvertible.
They can be factorized in terms of the topological boun-
daries,

Se ¼ jBeihBej; Sm ¼ jBmihBmj;
Sem ¼ jBeihBmj; Sme ¼ jBmihBej: ð6:28Þ

The fusion rules between these six surfaces can be found
in [59]. In particular, Se satisfies the noninvertible fusion
rule Se ⊗ Se ¼ ðZ2ÞSe. These surfaces act on the two
topological boundaries as

Sψ jBei ¼ jBmi; Sψ jBmi ¼ jBei;
SejBei ¼ ðZ2ÞjBei; SejBmi ¼ jBei;
SmjBei ¼ jBmi; SmjBmi ¼ ðZ2ÞjBmi;
SemjBei ¼ jBei; SemjBmi ¼ ðZ2ÞjBei;
SmejBei ¼ ðZ2ÞjBmi; SmejBmi ¼ jBmi: ð6:29Þ
Generally, given a set of topological surfaces, one asks if

there is a boundary condition that is an eigenstate under
each of the surfaces, with eigenvalue being the partition
function of a decoupled 1þ 1D TQFT. By specializing to a
spatial torus T2, one finds that a necessary condition for
such a boundary condition is the existence of a set of non-
negative integers which solves the fusion algebra of the
surfaces. In the Z2 gauge theory example, there is no
topological boundary condition that is an eigenstate under
all 6 surfaces due to this.42

Note that there is no simple topological boundary that is
invariant under the Z2 symmetry Sψ, which is free of ’t
Hooft anomalies because H4ðZ2; Uð1ÞÞ ¼ 0. On the other
hand, there is a simple, Z2-symmetric conformal boundary
condition, as we discuss below. It can be obtained by
gauging the Z2 symmetry of the 1þ 1D critical Ising CFT

by the 2þ 1DZ2 gauge theory.
43 We denote this conformal

boundary state on a spatial slice Σ as jIsingi, which takes
the form [34,133]

jIsingi ¼
X

a∈H1ðΣ;Z2Þ
ZIsing½a�jai; ð6:30Þ

whereZIsing½A� denotes the partition function of the 1þ 1D
critical Ising CFT on Σ coupled to the Z2 gauge field A,
and jai is the state of the Z2 gauge theory in the
Hilbert space on Σ corresponding to the flat Z2 connection
a∈H1ðΣ;Z2Þ. This gapless boundary of the 2þ 1D Z2

gauge theory was also discussed in [134,135].
To see that jIsingi is invariant under the Z2 symmetry,

we note that the surface defect Sψ , when acting on the
Hilbert space corresponding to a spatial slice Σ, can be
represented as follows [34,133]:

SψðΣÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jH1ðΣ;Z2Þj
p X

a;a0 ∈H1ðΣ;Z2Þ
ð−1Þ

H
Σ
a∪a0 ja0ihaj;

ð6:31Þ
Using the fact that the Ising CFT is invariant under gauging
the Z2 symmetry, we find

Sψ jIsingi ¼
X

a0 ∈H1ðΣ;Z2Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jH1ðΣ;Z2Þj
p

×
X

a∈H1ðΣ;Z2Þ
ZIsing½a�ð−1Þ

H
Σ
a∪a0

�
ja0i

¼
X

a0 ∈H1ðΣ;Z2Þ
ZIsing½a0�ja0i

¼ jIsingi:
Indeed, when coupled to the 2þ 1D Z2 gauge theory, the
noninvertible Kramers-Wannier duality defect of the Ising
CFT becomes the end locus of the Z2 surface on the
boundary jIsingi [136,137].

2. SUð2Þ16 × SUð2Þ− 16 Chern-Simons theory

We give an example of (6.2) where there is more than
one term on the right-hand side. Consider first the SUð2Þ16
Chern-Simons theory. There are two nontrivial surfaces SE
and S2 (corresponding to the E and D modular invariants,
respectively), with fusion rule on T2 given by [17,59]

SE ⊗ SE ¼ SE ⊕ S2: ð6:32Þ

On a more general manifold, there can be a relative Euler
counterterm for the two terms on the right-hand side.

42We thank S. Seifnashri for discussions on this point.

43See [132] for a related discussion of boundary conditions for
4þ 1D discrete 2-form gauge theory.
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Now, we consider folding the SUð2Þ16 Chern-Simons
theory in the presence of the SE surface defect inserted
at the crease. This becomes a topological boundary of the
doubled SUð2Þ16 × SUð2Þ−16 Chern-Simons theory which
we denote as jSEi. The fusion rule (6.32) implies

SEjSEi ¼ jSEi ⊕ jS2i; ð6:33Þ

where jS2i is the topological boundary coming from the
folding along the S2 surface in SUð2Þ16. This gives an
example of a noninvertible symmetry action that produces
more than one simple boundary in the outcome.

3. Boundary eigenstate of an anomalous symmetry

Finally, we briefly comment on an example of a
boundary condition that is an eigenstate under an anoma-
lous, ordinary global symmetry. It was found in [138,139]
that the Uð1Þ2 Chern-Simons theory, also known as the
semion model, has a Z2 × Z2 0-form symmetry with an
anomaly valued in H4ðZ2 × Z2; Uð1ÞÞ ¼ Z2 × Z2. While
this symmetry acts trivially on the unique local operator,
i.e., the identity, it acts projectively on the Wilson lines due
to symmetry fractionalization.
Next, consider Uð1Þ2 × Uð1Þ−2, which is the low energy

limit of the double semion model. Denote the topological
lines as f1; s; s̄; ss̄g, with spins f0; 1=4;−1=4; 0g. The
doubled theory Uð1Þ2 ×Uð1Þ−2 has a unique topological
boundary condition B, corresponding to gauging (condens-
ing) the Z2 1-form global symmetry generated by ss̄. The
associated Lagrangian algebra is 1 ⊕ ss̄. This boundary is
simple, but not 1-simple, since there is a nontrivial Z2 line
on it. The anomalous Z2 × Z2 global symmetry extends to
a symmetry in Uð1Þ2 ×Uð1Þ−2.
Since B is the unique, simple, topological boundary

condition in this theory, the Z2 × Z2 0-form global sym-
metry has to act on jBi as an eigenstate (whose eigenvalue
is generally a 1þ 1D SPT), even though this symmetry has
an ordinary ’t Hooft anomaly valued inH4ðZ2 ×Z2;Uð1ÞÞ.
This suggests that in general spacetime dimensions, even
for invertible symmetries, being a boundary eigenstate is
only a necessary, but not sufficient, condition for a
symmetry-preserving boundary. We leave a complete treat-
ment of symmetry-preserving boundary conditions in
general spacetime dimensions for future investigations.
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APPENDIX A: CATEGORY THEORY
BACKGROUND

As was discussed in the main text, the set of conformal
boundary conditions in a 1þ 1D CFT arrange themselves
into non-negative integer-valued matrix representations
(NIM-reps) of the fusion algebra of topological lines in
the bulk. Here, we review how the boundary conditions are
subject to additional consistency conditions which come
from the requirement that they form a module category over
the fusion category of bulk topological lines. This is well
understood for the case of rational CFTs and conformal
boundary conditions which preserve (half of) the chiral
algebra [17,41], and is expected to be true for general
boundary conditions in general 1þ 1D QFTs. For a math-
ematically rigorous treatment of the subject, we refer readers
to [75].

1. Fusion category

We first briefly review the defining data of the fusion
category C formed by the topological line defects of a theory
in 1þ 1D. The (finite) set of labels for the simple objects
(i.e., topological lines) is denoted as I ¼ fi; j; k; � � �g.
Recall, from Sec. II C, that the fusion coefficient Nk

ij in
the fusion of simple lines,

Li ⊗ Lj ¼ ⨁
k∈ I

Nk
ijLk; ðA1Þ

is the dimension of the topological trivalent junction vector
space,

Nk
ij ¼ dimC HomCðLi ⊗ Lj;LkÞ: ðA2Þ

We use δ ¼ 1;…; Nk
ij to label fixed (but arbitrary) basis

vectors vk;δij ∈HomCðLi ⊗ Lj;LkÞ for the trivalent junction
vector space, as shown in Fig. 21.

FIG. 21. Topological junction operators vk;δij with δ ¼ 1;…; Nk
ij

form a basis for the junction vector space HomCðLi ⊗ Lj;LkÞ.
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The tensor product ⊗ is associative up to an isomor-
phism called the associator. For arbitrary (not necessarily
simple) objects X, Y, and Z in C, the associator αXYZ is an
isomorphism

αXYZ ∈HomCððX ⊗ YÞ ⊗ Z; X ⊗ ðY ⊗ ZÞÞ: ðA3Þ

We denote αLiLjLk
≡ αijk for the simple objects Li, Lj, and

Lk. The matrix elements of the associator αijk in a fixed
basis (as in Fig. 21) are called the F-symbols. To be more
precise, they are defined by the equation

vl;δip ○ ðidi ⊗ vp;λjk Þ ○ αijk

¼
X
q∈I

XNq
ij

ρ¼1

XNl
qk

σ¼1

½Fl
ijk�ðp;δ;λÞðq;ρ;σÞ · vl;σqk ○ ðvq;ρij ⊗ idkÞ: ðA4Þ

Here, idi ≡ idLi
∈HomCðLi;LiÞ is the identity mor-

phism, and similarly for idk. Note that the two sides
of (A4) are both vectors in the four-point junc-
tion vector space HomCððLi ⊗ LjÞ ⊗ Lk;LlÞ, and the
F-symbols, ½Fl

ijk�ðp;δ;λÞðq;ρ;σÞ, are the basis transformation

matrix elements for that vector space, relating two
inequivalent ways to decompose the four-point junc-
tion into two trivalent junctions. Such a basis trans-
formation is often referred to as an F-move or as a
crossing relation. Diagrammatically, (A4) is represented
as in Fig. 22.
The associator αXYZ is subject to a consistency condition

known as the pentagon identity, shown schematically in
Fig. 23. In terms of the F-symbols, the pentagon identity
can be written as

XNp
qm

ρ¼1

½Fp
ijm�ðn;δ;λÞðq;η;ρÞ½F

p
qkl�ðm;ρ;σÞðr;π;ξÞ

¼
X
s∈ I

XNs
jk

ν¼1

XNn
sl

τ¼1

XNr
is

ω¼1

½Fn
jkl�ðm;λ;σÞðs;ν;τÞ½F

p
isl�ðn;δ;τÞðr;ω;ξÞ

× ½Fr
ijk�ðs;ω;νÞðq;η;πÞ: ðA5Þ

The data ðfLigi∈ I ; N
k
ij; ½Fl

ijk�ðp;δ;λÞðq;ρ;σÞÞ, consisting of

the set of (isomorphism classes of) simple objects, the
fusion coefficients, and the F-symbols, determine the
fusion category C.

2. Module category

We now discuss the definition of a module category M,
which is the structure formed by a finite set of boundary
conditions which transform into one another under a NIM-
rep of the fusion algebra of C. The set of labels for the
simple objects in M (i.e., boundary conditions) is denoted
as J ¼ fa; b; c;…g. In Sec. II C, we explained that the
NIM-rep coefficient Ñb

ia in

Li ⊗ Ba ¼ ⨁
b∈J

Ñb
iaBb; ðA6Þ

is the dimension of the topological trivalent junction
vector space where a bulk topological line meets with
two boundaries,

Ñb
ia ¼ dimC HomMðLi ⊗ Ba;BbÞ: ðA7Þ

We use η ¼ 1;…; Ñb
ia to label fixed (but arbitrary) basis

vectors ṽb;ηia ∈HomMðLi ⊗ Ba;BbÞ for these trivalent
junction vector spaces, as shown in Fig. 24. The action
⊗ of C on the module categoryM is again associative up to
an isomorphism. Given two arbitrary objects X, Y in C and
an arbitrary object M in M (all of them not necessarily
simple), we have the module associator

FIG. 22. The F-symbols correspond to the matrix elements of the crossing relation involving four external topological line defects.
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α̃XYM ∈HomMððX ⊗ YÞ ⊗ M;X ⊗ ðY ⊗ MÞÞ; ðA8Þ

which is an isomorphism. For simple objects Li, Lj ∈ C,
and Ba ∈M, we denote α̃LiLjBa

≡ α̃ija. We call the matrix
elements of α̃ija in a fixed basis (as in Fig. 24) the
F̃-symbols. To be more precise, we have

ṽc;ηib ○ ðidi ⊗ ṽb;θja Þ ○ α̃ija

¼
X
k∈ I

XNk
ij

δ¼1

XÑc
ka

τ¼1

½F̃c
ija�ðb;η;θÞðk;δ;τÞ · ṽc;τka ○ ðvk;δij ⊗ idaÞ: ðA9Þ

Here, ida ≡ idBa
∈HomMðBa;BaÞ is the identitymorphism.

Note that the two sides of (A9) are both vectors in the
four-point junction vector space HomMððLi ⊗ LjÞ ⊗
Ba;BcÞ. The F̃-symbols, ½F̃c

ija�ðb;η;θÞðk;δ;τÞ, are again basis

transformation matrix elements relating different ways to
decompose the four-point junction into two trivalent
junctions. We call such a basis transformation an F̃-move,
or a boundary crossing relation. Diagrammatically, (A9) is
represented as in Fig. 25. Similar to the fusion category
case, the module associator α̃XYM is subject to a consistency
condition which we call the module pentagon identity,
shown in Fig. 26. In terms of the F̃-symbols, the module
pentagon identity becomes

XÑd
nb

π¼1

½F̃d
ijb�ðc;η;θÞðn;σ;πÞ½F̃d

nka�ðb;π;τÞðm;λ;ξÞ

¼
X
l∈ I

XNl
jk

ν¼1

XNm
il

ρ¼1

XÑc
la

κ¼1

½F̃c
jka�ðb;θ;τÞðl;ν;κÞ½F̃d

ila�ðc;η;κÞðm;ρ;ξÞ

× ½Fm
ijk�ðl;ρ;νÞðn;σ;λÞ: ðA10Þ

The data ðfBaga∈J ; Ñ
b
ia; ½F̃c

ija�ðb;η;θÞðk;δ;τÞÞ, consisting of

the set of (isomorphism classes of) simple objects, the

FIG. 23. The F-symbols satisfy the pentagon identity, which guarantees that different ways to perform a sequence of F-moves
involving topological defect lines and junction operators give rise to the same value of the correlation functions.

FIG. 24. Topological junction operators ṽb;ηia with η¼ 1;…; Ñb
ia

form a basis for the junction vector space HomMðLi ⊗ Ba;BbÞ.
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NIM-rep coefficients, and the F̃-symbols, determine a (left)
module category M over the fusion category C.
A simple example of a module category over an arbitrary

fusion category C which always exists is C itself viewed as a
module category over C. This corresponds to simply setting
Ñ ¼ N and F̃ ¼ F. This module category is often called
the regular module category. For instance, the Cardy
boundary conditions in the A-series minimal models (or
more generally in diagonal RCFTs with extended chiral
algebras) form the regular module category over the fusion
category of Verlinde lines. As a check, recall that both
the Cardy boundary conditions as well as the Verlinde

lines are labeled by the bulk primary operators in these
RCFTs [52,90].

3. Algebra object and internal Hom

There is a close relation between the module categories
over a fusion category C and the algebra objects in C.
Namely, given a semisimple, indecomposable (left) module
category M over C, one can find an algebra object A in C
such that M is equivalent to the category of (right)
A-modules in C, denoted as CA, and vice versa [[79]
Theorem 1]. Physically, this corresponds to a relation
between symmetric boundary conditions and gauging, as

FIG. 25. The F̃-symbols are the matrix elements for the boundary crossing relation.

FIG. 26. The F̃-symbols satisfy the module pentagon identity, which guarantees that different ways to perform a sequence of boundary
crossing moves involving bulk topological defect lines, boundary conditions, and topological junction operators give rise to the same
value of the correlation functions.
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discussed in Sec. III. Here we review the definition of an
algebra object in more detail.
As was briefly introduced in Sec. III, an algebra object in

a fusion category C is a triple ðA; μ; uÞ. Here A is an object
in C which we write as

A ¼ ⨁
i∈ I

hLi;AiLi: ðA11Þ

Moreover, μ∈HomCðA ⊗ A;AÞ is the multiplication
morphism, and u∈HomCð1;AÞ is the unit morphism.
To be explicit, it is convenient to pick a basis for the
algebra object A, following [17][Sec. 3]. We fix the
basis vectors xAiα ∈HomCðLi;AÞ and the dual basis vectors
yiαA ∈HomCðA;LiÞ with α ¼ 1;…; hLi;Ai for each i∈ I .
We choose them to be orthonormal, that is,

yjβA ○ xAiα ¼ δjiδ
β
α · idi: ðA12Þ

Completeness of the basis implies

X
i∈ I

XhLi;Ai

α¼1

xAiα ○ yiαA ¼ idA: ðA13Þ

See Fig. 27. In other words, the xAiα∶ Li → A morphisms
are inclusion maps, and the yiαA∶ A → Li morphisms are
projection maps.

We focus on the case of a haploid (or connected)
algebra object, that is, h1;Ai ¼ 1. In such a case, the
choice of the unit morphism u∈HomCð1;AÞ is unique
up to an overall scale which is not physical, and we
set xA1 ¼ u.
Given a fixedbasis,we canwrite down thematrix elements

of the multiplication morphism μ∈HomCðA⊗A;AÞ. To be
more precise, the multiplication morphism is characterized
by a set of (basis-dependent) complex numbers fmkγ;δ

iα;jβg
where

(a) Choosing a basis (left) and a dual basis (right) for the algebra object.

(b) Orthogonality of the basis. (c) Completeness of the basis.

FIG. 27. Choosing a basis of the algebra object (a) which is orthogonal (b), and complete (c).

FIG. 28. Matrix elements mkγ;δ
iα;jβ of the multiplication morphism

μ, written in the basis xAiα and y
iα
A for the algebra object and vk;δij for

the trivalent junction of topological lines.
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ykγA ○ μ ○ ðxAiα ⊗ xAjβÞ ¼
XNk

ij

δ¼1

mkγ;δ
iα;jβ · v

k;δ
ij : ðA14Þ

Note that the two sides of (A14) are both valued in
HomCðLi ⊗ Lj;LkÞ, and recall that fvk;δij gδ¼1;…;Nk

ij
is the

set of fixed basis vectors for the junction vector space
HomCðLi ⊗ Lj;LkÞ. This is shown diagrammatically
in Fig. 28.
The multiplication morphism μ is subject to the asso-

ciativity constraint, which reads

μ ○ ðμ ⊗ idAÞ ¼ μ ○ ðidA ⊗ μÞ ○ αAAA: ðA15Þ
Here αAAA ∈HomCððA ⊗ AÞ ⊗ A;A ⊗ ðA ⊗ AÞÞ is the
associator. Diagrammatically, (A15) is represented as in

Fig. 29. Note that both sides of (A15) are vectors in
HomCððA ⊗ AÞ ⊗ A;AÞ. In a fixed basis, the associativ-
ity constraint (A15) is explicitly given in terms of the
matrix elements mkγ;δ

iα;jβ as [17]

XhLq;Ai

ω¼1

mqω;ρ
iα;jβm

lϵ;σ
qω;kγ

¼
X
p∈ I

XhLp;Ai

ξ¼1

XNl
ip

δ¼1

XNp
jk

λ¼1

mlϵ;δ
iα;pξm

pξ;λ
jβ;kγ½Fl

ijk�ðp;δ;λÞðq;ρ;σÞ: ðA16Þ

See Figs. 30 and 31 for the derivation of (A16). In
addition, the u and μ morphisms must satisfy the unit
constraint [see Fig. 8(b)] which reads

μ ○ ðu ⊗ idAÞ ¼ idA ¼ μ ○ ðidA ⊗ uÞ: ðA17Þ

In terms of the matrix elements mkγ;δ
iα;jβ, and with the choice

xA1 ¼ u, the unit constraint (A17) becomes

mjβ
1;iα ¼ mjβ

iα;1 ¼ δjiδ
β
α: ðA18Þ

The data ðfhLi;Aigi∈ I ; m
kγ;δ
iα;jβÞ satisfying above consis-

tency conditions determine the haploid algebra object A
in C. When C is the category of vector spaces, the definition

FIG. 29. Associativity condition for an algebra object.

FIG. 30. The left-hand side (lhs) of Fig. 29 evaluated in a fixed basis. In the first equality, we insert a complete set of the basis vectors
for A. Then we use (A14) (see Fig. 28) to write the multiplication morphism μ in terms of its matrix elements.
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of an algebra object in C reduces to the usual definition of
an algebra.
In establishing the relation between algebra objects

and module categories, an essential role is played by
the concept of an internal Hom [79]. To be more precise,
given a simple object Ba in a semisimple, indecomposable
(left) module category M over the fusion category C,
we can construct a haploid, semisimple, indecomposable
algebra object A ¼ HomðBa;BaÞ. Explicitly, this is done
by setting

hLi;Ai ¼ Ña
ia;

mkγ;δ
iα;jβ ¼ ½F̃a

ija�ða;α;βÞðk;δ;γÞ: ðA19Þ

One can verify that the module pentagon identity (A10)
for the F̃-symbols guarantees that the associativity con-
straint (A16) for the multiplication morphism is satisfied.
The unit constraint (A17) is satisfied due to the fact that the
F̃-symbol ½F̃a

ija�ða;α;βÞðk;δ;γÞ is trivial if Li ¼ 1 or Lj ¼ 1.

The algebra object A ¼ HomðBa;BaÞ arising from the
internal Hom construction has the property that the category
of (right) A-modules in C becomes CA ≅ M as a (left)
module category over C. This implies that, by definition,
different algebra objects obtained from the internal Hom of
different simple objects in a givenmodule categoryM are all
Morita equivalent. In particular, if M is the regular module
category, then all the algebra objects that are produced from
the internalHomof a simple object inM areMorita trivial, as

FIG. 31. The right-hand side (rhs) of Fig. 29 evaluated in a fixed basis. In the first equality, we insert a complete set of the basis vectors
for A. Then we use (A14) (see Fig. 28) to write the multiplication morphism μ in terms of its matrix elements. Finally, we perform an
F-move to convert it into the same form as that in Fig. 30. Comparing the two, we arrive at (A16).
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1∈M and Homð1; 1Þ ¼ 1 is the trivial algebra object. For
more details on the relation between algebra objects and
module categories, including a mathematically rigorous
definition of the internal Hom, see [75,79].
Every haploid, semisimple, indecomposable algebra

object A in C can be obtained from the internal Hom
construction. This is due to the fact that such A defines a
simple object in CA, which is equippedwith the structure of a
(left) module category over C, andA ¼ HomðA;AÞ [75,79].
In particular, this tells us that hLi;Ai ¼ ÑA

iA, which cannot
be greater than the quantum dimension hLii [140]. This
proves the inequality [80]

hLi;Ai ≤ hLii ðA20Þ
for all i∈ I .

APPENDIX B: NIM REPRESENTATIONS
OF GROUPS

In this section,we review an elementary fact that the finite-
dimensional non-negative integer matrix (NIM) representa-
tions of a group are always permutation matrices. More
precisely, let G be the group of n × n invertible matrices over
the non-negative integers, which is sometimes denoted as
GLðn;Z≥0Þ. We will show that G is the symmetric group Sn
of n × n permutation matrices.44 See [141] for instance.
The proof proceeds as follows. Let P be a non-negative

integer matrix in G. Define the function F∶G → Z≥0 as

F ðPÞ≡X
i;j

Pij: ðB1Þ

We first show that F obeys

F ðPQÞ ≥ F ðPÞ; ∀P; Q∈G: ðB2Þ
This can be seen from the following:

F ðPQÞ ¼
X
i;j;k

PijQjk ¼
X
i;j

�
Pij

X
k

Qjk

�
: ðB3Þ

Since Q∈G, it is an invertible matrix and has a nonzero
determinant. This implies every row and column is non-
zero, i.e., each contains at least one positive integer. Hence,
for every Q∈G, we have

P
k Qjk ≥ 1 for all j. Using this

in (B3), we get

F ðPQÞ ≥
X
i;j

Pij ¼ F ðPÞ: ðB4Þ

This proves (B2).
Now we plug Q ¼ P−1 into (B2) to obtain

n ≥ F ðPÞ; ∀P∈G: ðB5Þ
This says that the sum of all the matrix elements of P is
always less than or equal to n. On the other hand, since each
row (and each column) of P contains at least one positive
integer, the sum over all matrix elements of P must be
greater than or equal to n, i.e.,

n ≤ F ðPÞ; ∀P∈G: ðB6Þ

Comparing (B5) and (B6), we find

F ðPÞ ¼ n; ∀P∈G: ðB7Þ
That is, the sum over all the matrix elements of any P∈G
must be exactly equal to n. Since every row and every
column of P has to contain at least one positive integer in
order for P to have a nonzero determinant, every row and
every columnmust contain exactly a single entry equal to 1;
All other elements should vanish in order for the sum of all
entries to be equal n. In other words, every matrix P∈G is a
permutation matrix. This shows the elementary fact that

G ≅ Sn: ðB8Þ
Hence, given a group H, its finite-dimensional NIM
representation, which is a homomorphism ρ∶H → G, con-
sists only of permutation matrices.
In the context of 1þ 1D CFTs, this implies that finite

invertible symmetries act on simple conformal boundaries
by permutations. For noninvertible symmetries, NIM-reps
are not necessarily permutation matrices.
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