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In this paper, we consider a quantum scalar field propagating on the Reissner-Nordström black hole
spacetime. We compute the renormalized stress-energy tensor for the field in the Hartle-Hawking,
Boulware and Unruh states. When the field is in the Hartle-Hawking state, we renormalize using the
recently developed “extended coordinate” prescription. This method, which relies on Euclidean techniques,
is very fast and accurate. Once, we have renormalized in the Hartle-Hawking state, we compute the stress-
energy tensor in the Boulware and Unruh states by leveraging the fact that the difference between stress-
energy tensors in different quantum states is already finite. We consider a range of coupling constants and
masses for the field and a range of electric charge values for the black hole, including near-extreme values.
Lastly, we compare these results with the analytic approximations available in the literature.
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I. INTRODUCTION

The renormalized expectation value of the quantum
stress-energy tensor plays a crucial role in the semiclassical
theory of gravity. It governs the quantum backreaction on
the classical spacetime geometry via the semiclassical field
equations

Gab − Λgab þ αHð1Þ
ab þ βHð2Þ

ab ¼ 8πhT̂abiR; ð1Þ

where gab is the metric of spacetime, Gab is the Einstein
tensor and hT̂abiR is the renormalized expectation value of
the stress-energy tensor of a quantum field in some

quantum state. The tensors Hð1Þ
ab , Hð2Þ

ab are geometrical
terms that are quadratic in the curvature and arise through
the point-splitting regularization process that yields hT̂abiR.

This regularization process corresponds to an infinite
renormalization of the constants Λ, α and β.
The calculation of renormalized expectation values of the

stress-energy tensor (RSET) for a particular quantum state
is a technically challenging endeavor. For black hole
spacetimes, there are three main approaches to this calcu-
lation, the most established being the Candelas-Howard
approach [1] and its extensions (see for example [2–4]).
Recently two new, more efficient methods for the calcu-
lation of the RSET have been developed, the first being the
“pragmatic mode-sum prescription” [5,6]. The method has
proven indeed to be pragmatic, both in its efficiency and its
broader applicability. The second recent development in
methods to compute the RSET in black hole spacetimes is
known as the “extended coordinate method” [7–9], which
is extremely efficient and applicable to arbitrary field
parameters and arbitrary spacetime dimensions.
In black hole spacetimes, there are three important

quantum states that have been proposed in the literature,
the Boulware state [10], the Unruh state [11] and the
Hartle-Hawking state [12]. A discussion of the physical
properties of these states can be found in Ref. [13]. Of these
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three standard quantum states, the Hartle-Hawking state
has received the most attention from an explicit computa-
tional perspective (see for example [1–4,14–17]). This is
mainly due to the fact that this state can be defined on the
Euclidean metric [18,19] and there are some convenient
simplifications that occur in this Euclidean setting, for
example, the frequency spectrum is discrete. When it
comes to the other two quantum states of interest, the
Boulware and Unruh states, the literature is more sparse.
Anderson, Hiscock and Samuel developed a method for
the calculation of the RSET of a scalar field with arbitrary
mass and coupling in the Boulware state in a general
spherically symmetric (Euclidean) metric [2]. Jensen, Mc
Laughlin and Ottewill calculated the RSET for a massless,
conformally coupled field in the Unruh and Boulware states
in the Schwarzschild spacetime [20,21]. More recently,
the pragmatic mode-sum prescription has been applied
to the calculation of the RSET for the Boulware and
Unruh states for a massless minimally coupled field in
the Schwarzschild, Reissner-Nordström and Kerr space-
times [5,6,22]. Anderson, Siahmazgi, Clark and Fabbri also
applied the pragmatic mode-sum prescription to the cal-
culation of the RSET for a massless minimally coupled
field in a spacetime where a black hole forms from the
collapse of a null shell [23]. The relative lack of RSET
results for the Unruh state and the fact that there does not
appear to be any results whatsoever in the literature for a
massive field in this state is surprising, given that the Unruh
state is considered to be the one of most physical interest,
that is, the state that models the late-time evolution of the
collapse of a spherical body to a black hole [11].
The extended coordinate renormalization method [7–9]

mentioned abovewas developed using Euclidean techniques
and is applicable only to a quantum field in the Hartle-
Hawking state. While it is possible, by considering a field at
zero temperature in the Euclidean metric, to extend the
method to the Boulware vacuum, it is more efficient to adopt
a state subtraction approach using theHartle-Hawking as our
reference state. In the state subtraction approach one lever-
ages the fact that the difference between stress tensors in
different quantum states does not require renormalization,
therefore by calculating the RSET in the Hartle-Hawking
state we may then obtain the RSET in the Unruh and
Boulware states without recourse to renormalization. We
note that for the case of a spacetimewherewe cannot define a
Hartle-Hawkingvacuum to use as our reference state (such as
in Kerr black holes [24]), we must then consider the direct
calculation for the Boulware state through the zero temper-
ature extended coordinate method mentioned above. We
hope to present results on this in the near future.
In this paper we employ the extended coordinate method

to compute the RSET for a scalar field in the Hartle
Hawking state propagating in a general spherically sym-
metric black hole spacetime. We assume the field has
arbitrary mass and coupling to the background curvature.
We then show how to compute the RSET in the Boulware

and Unruh states by a state subtraction scheme, using the
RSET in the Hartle-Hawking state as a reference state. We
then apply these results to the particular case of the
Reissner-Nordström spacetime and calculate the RSET in
all three quantum states for a range of quantum field masses
and coupling constants. We also consider a range of electric
charge values for the black hole and probe the near extreme
case. Finally we compare the exact RSET results with
various analytic approximations and judge their reliability.

II. RENORMALIZATION PRESCRIPTION
IN THE HARTLE-HAWKING STATE

In this section, we will briefly outline the exten-
ded coordinate approach to calculating the RSET for a
quantum scalar field in the Hartle-Hawking quantum state,
propagating on a static, spherically symmetric black hole
spacetime. It is convenient to construct the Hartle-Hawking
state on the Euclideanized line element

ds2 ¼ fðrÞdτ2 þ dr2=fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ
where in order to avoid a conical singularity on the event
horizon r ¼ rþ, it is necessary to impose the periodicity
τ ¼ τ þ 2π=κþ on the Euclidean time, where

κþ ¼ 1

2
f0ðrÞjr¼rþ ; ð3Þ

is the horizon surface gravity. Imposing this periodicity
discretizes the frequency spectrum of the field modes
which now satisfy an elliptic equation

ð□E − μ2 − ξRÞϕ ¼ 0; ð4Þ
where □E is the d’Alembertian operator with respect to the
Euclidean metric, μ is the field mass, R is the Ricci
curvature scalar of the background spacetime and ξ is
the coupling strength between the field and the background
geometry. The corresponding Euclidean Green function has
the following mode-sum representation (with r ¼ r0 for
simplicity) on this black hole spacetime,

Gðx;x0Þ¼ 1

8π2
X∞
l¼0

ð2lþ1ÞPlðcosγÞ
X∞
n¼−∞

einκþΔτgnlðrÞ; ð5Þ

where Δx≡ x0 − x ∼OðϵÞ is the coordinate separation, γ is
the geodesic distance on the 2-sphere and PlðzÞ is the
Legendre polynomial of the first kind. We have denoted by
gnlðrÞ ≔ κþpnlðrÞqnlðrÞ=Nnl the one-dimensional radial
Green function evaluated at the same spacetime point r.
The radial modes pnlðrÞ, qnlðrÞ are solutions of the
homogeneous radial equation:�

d
dr

�
r2fðrÞ d

dr

�
− r2

�
n2κ2þ
fðrÞ þ ðμ2 þ ξRÞ

�

− lðlþ 1Þ
�
ΦnlðrÞ ¼ 0; ð6Þ
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where pnlðrÞ and qnlðrÞ are regular on the horizon and the
outer boundary (usually spatial infinity), respectively. The
normalization constant is given by

Nnl ¼ −r2fðrÞWfpnlðrÞ; qnlðrÞg; ð7Þ
where Wfp; qg denotes the Wronskian of the two
solutions.
In the coincidence limit Δx → 0 (i.e. γ → 0 and

Δτ → 0), the mode sum (5) diverges. To renormalize this
mode sum, we must find a way to express the locally-
constructed Hadamard parametrix Kðx; x0Þ as a mode sum
and subtract mode-by-mode. In [7,8] a mode sum expres-
sion for the Hadamard parametrix was derived by first
introducing the so-called extended coordinates:

ϖ2 ¼ 2

κ2þ
ð1 − cos κþΔτÞ;

s2 ¼ fðrÞϖ2 þ 2r2ð1 − cos γÞ: ð8Þ

For simplicity, the separation in the radial direction, Δr, is
set to zero but it is important to the development that
the separation in the other directions is maintained.
Expressing the Hadamard parametrix in terms of these
extended coordinates permits its decomposition in terms of
Fourier frequency modes and multipole moments where,
remarkably, the coefficients in this decomposition are
expressible in closed form for any static spherically sym-
metric spacetime in arbitrary dimensions. In four dimen-
sions, the result is

Kðx; x0Þ ¼ 1

8π2
X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
X∞
n¼−∞

einκþΔτknlðrÞ

þ 1

8π2
fDð−Þ

11 ðrÞ þ ðT ðpÞ
10 þDð−Þ

22 ðrÞÞs2

þ ðT ðpÞ
11 þDð−Þ

21 ðrÞÞϖ2g þOðϵ2m log ϵÞ; ð9Þ

where

knlðrÞ¼
Xm
i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨðþÞ

nl ði;jjrÞþ
Xm−1

i¼0

Xi

j¼0

T ðlÞ
ij χnlði;jjrÞ

þ
Xm−1

i¼1

Xi−1
j¼0

T ðrÞ
ij Ψ

ðþÞ
nl ðiþ1;jjrÞ: ð10Þ

Here m denotes the order of the expansion, the coefficients

Dð�Þ
ij ðrÞ, T ðlÞ

ij ðrÞ, T ðpÞ
ij ðrÞ and T ðrÞ

ij ðrÞ arise in the expansion
of the Hadamard parametrix Kðx; x0Þ in the extended

coordinates s and ϖ while the terms ΨðþÞ
nl ði; jjrÞ and

χnlði; jjrÞ are the so-called regularization parameters that
arise in expressing Kðx; x0Þ as a mode sum. The well-
known renormalization ambiguity is expressed as an
arbitrary lengthscale in the regularization parameters

χnlði; jjrÞ. We find that all the regularization parameters
are obtainable in closed form in terms of complicated
combinations of special functions. Explicit expressions for
each of these are given in [9].
To apply the extended coordinate method to the calcu-

lation of the RSET, we first introduce some notation:

Wðx; x0Þ≡Gðx; x0Þ − Kðx; x0Þ
hϕ̂2iR ≡ ½Wðx; x0Þ�≡ wðrÞ

wabðxÞ≡ ½Wðx; x0Þ;a0b0 � ¼ ½Wðx; x0Þ;ab�; ð11Þ
were we have adopted square brackets ½·� to denote the
coincidence limit x0 → x. Then the RSET may be written in
the form [9]:

hT̂a
ξ biR ¼ −wa

b −
�
ξ −

1

2

�
hϕ̂2iR;a;b þ

�
ξ −

1

4

�
□hϕ̂2iRδab

þ ξRa
bhϕ̂2iR −

1

8π2
v1δab; ð12Þ

where:

v1 ¼
1

720
RpqrsRpqrs −

1

720
RpqRpq −

1

24

�
ξ −

1

5

�
□R

þ 1

8

�
ξ −

1

6

�
2

R2 þ 1

4
μ2
�
ξ −

1

6

�
Rþ 1

8
μ4: ð13Þ

We note that since hϕ̂2iR is a function of r only, once it
has been calculated numerically to high accuracy on a
suitably dense grid, derivatives of hϕ̂2iR are easily and
accurately obtained by differentiating an interpolation
function for hϕ̂2iR. Considering next the components of
wa

b, we have, by virtue of the wave equation satisfied by
Wðx; x0Þ, that [25]:

wr
r ¼ −wτ

τ − wθ
θ − wϕ

ϕ − ξRw − μ2w −
3

4π2
v1: ð14Þ

For the remaining nonzero components,wτ
τ andwθ

θ ¼ wϕ
ϕ,

it is advantageous to express these in terms of mixed
derivatives at x and x0 of Wðx; x0Þ and derivatives of
wðrÞ ¼ hϕ̂2iR, using Synge’s rule [9]:

½Wðx; x0Þ;a0b� ¼
1

2
w;abðxÞ − wabðxÞ: ð15Þ

The required mixed time derivatives and mixed angular
derivatives may then in turn be expressed as mode sums,
given by [9]:

½gττ0W;ττ0 � ¼ −
1

4π2
X∞
l¼0

ð2lþ 1Þ
X∞
n¼1

n2κ2þ
fðrÞ gnlðrÞ

−
1

4π2

�
T ðpÞ

10 þDð−Þ
22 þ 1

fðrÞ ðT
ðpÞ
11 þDð−Þ

21 Þ
�
;

ð16Þ
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½gϕϕ0
W;ϕϕ0 � ¼ 1

16π2r2
X∞
l¼0

ð2lþ 1Þlðlþ 1Þ
X∞
n¼0

ð2− δn0ÞgnlðrÞ

þ 1

4π2
fT ðpÞ

10 þDð−Þ
22 g; ð17Þ

wheregnlðrÞ≡ gnlðrÞ − knlðrÞ. Therefore, the application of
the extended coordinates method reduces the calculation of
the RSET to that of three mode sums, those just presented
along with

hϕ̂2iR ¼ 1

8π2
X∞
l¼0

ð2lþ 1Þ
X∞
n¼0

ð2 − δn0Þgnl −
Dð−Þ

11 ðrÞ
8π2

: ð18Þ

ThemodesgnlðrÞ converge likeOðl−2m−3Þ for large l, fixedn
and Oðn−2m−3Þ for large n, fixed l, where we remind the
reader that m is the order of the expansion of the singular
field.We therefore have precise control over the convergence
of themode sums by choosing the order of the expansion. By
choosing a sufficiently high order Hadamard parametrix,
very high accuracy in the RSET calculation can be achieved
by truncating the sums at a modest number of l and nmodes.

III. RSET IN THE BOULWARE
AND UNRUH STATES

In this section, wewill outline our strategy for computing
the RSET in the Boulware and the Unruh states. There are
two approaches one might consider. The first is to adapt the
extended coordinate approach to decompose the Hadamard
parametrix for the Lorentzian spacetime and then apply the
Lorentzian equivalent of the mode sum renormalization
prescription described in the previous section. While taking
this direct approach has some advantages, there are subtle
difficulties in dealing with the Hadamard distribution on the
Lorentzian sector. The other approach, which is the one we
adopt here, is to use the fact that the differences between
states does not require renormalization. This is because the
Hadamard singularity structure is agnostic to the quantum
state. So even though the Euclideanization trick employed
herein is relevant only to the Hartle-Hawking state, we can
still use this state as a reference to compute the RSET in
other quantum states of interest.
To be more explicit, let us start by writing out the

Wightman Green function in the Boulware, Hartle-
Hawking and Unruh states in terms of their Lorentzian
modes. Mode solutions to the Klein-Gordon equation for a
massive scalar field have the form

uωlm ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtYlmðθ;ϕÞΦωlðrÞ; ð19Þ

where Ylmðθ;ϕÞ are the spherical harmonics andΦωlðrÞ is a
solution of the radial equation

�
d
dr

�
r2fðrÞ d

dr

�
þ ω2r2

fðrÞ − lðlþ 1Þ − μ2r2
�
ΦωlðrÞ ¼ 0:

ð20Þ

It is helpful to recast this equation in Schrodinger form by
writing ΦωlðrÞ ¼ ψωlðrÞ=r, where ψωlðrÞ satisfies�

d2

dr2�
þ VlðrÞ

�
ψωlðrÞ ¼ 0; ð21Þ

where dr�=dr ¼ 1=f is the radial tortoise coordinate and
the potential is

VlðrÞ ¼ ω2 − fðrÞ
�
μ2 þ lðlþ 1Þ

r2
þ f0ðrÞ

r

�
: ð22Þ

From here on, we will work in asymptotically flat space-
times, so spacetimes with a nonzero cosmological constant
are excluded from the analysis. Importantly, this potential
asymptotes to different values at the horizon and infinity for
nonzero field mass. We have Vl → ω2 as r → rþ while
VlðrÞ → ω̃2 ≡ ω2 − μ2 as r → ∞. Hence the solutions to
Eq. (21) have the asymptotic forms ψωl ∼ e�iωr� as r → rþ
and ψωl ∼ e�iω̃r� as r → ∞. On the exterior, we take as a
linearly independent basis the solutions with the following
boundary conditions. We label the solution ψ in

ωlðrÞ as the
one with boundary condition e−iω̃r� on past null-infinity
and which vanishes on the past event horizon. Note that for
jωj < μ, this would be an exponentially growing mode and
the solutions would not be square integrable. Hence for the
“in”-mode, we must have the restriction ω > μ. This wave
which originates at past null infinity partly reflects back to
future null infinity and partly transmits to the future event
horizon. In terms of the boundary conditions only on the
radial function, this amounts to

ψ in
ωlðrÞ ¼

8<
:

Bin
ωle

−iωr� ; r → rþ;

e−iω̃r� þ Ain
ωle

iω̃r� ; r → ∞;

ð23Þ

where Bin
ωl and Ain

ωl are respectively the dimensionless
transmission and reflection coefficients for the in mode.
For the other independent solution, we label ψup

ωlðrÞ as the
one with asymptotic form eiωr� on the past event horizon
and which vanishes on past null infinity. This solution
represents a wave propagating out of the event horizon and
being partly scattered back to the future event horizon and
partly transmitted to future null infinity. Then we have the
asymptotic forms

ψup
ωlðrÞ ¼

8<
:

eiωr� þ Aup
ωle

−iωr� ; r → rþ

Bup
ωle

iω̃r� ; r → ∞;

ð24Þ
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where Bup
ωl and Aup

ωl are again transmission and reflection
coefficients, respectively. Note that for the “up”modes with
jωj < μ, the solution is oscillatory near the horizon but
exponentially damped at infinity. Hence these modes are
square integrable and must be included in the two-point
function. The up modes with jωj < μ are the bound-state
modes [10].
Taking as the basis modes to the wave operator

uinωlmðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω̃

p e−iωtYlmðθ;ϕÞΦin
ωlðrÞ

uupωlmðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωtYlmðθ;ϕÞΦup
ωlðrÞ; ð25Þ

then the normalization conditions

huinJ ; uinJ0 i ¼ huupJ ; uupJ0 i ¼ δJJ0 ð26Þ

imply

jAin
ωlj2 þ jBin

ωlj2 ¼ 1; jAup
ωlj2 þ jBup

ωlj2 ¼ 1; ð27Þ

where the inner product is defined by the following integral
on an arbitrary Cauchy surface Σ with unit future-directed
normal na,

huJ; uJ0 i ¼ −i
Z
Σ
ðuJ∇au�J0 − u�J0∇auJÞnadΣ: ð28Þ

In deriving the normalization conditions, we move the
integral over Σ to an integral over the past event horizon
H− plus an integral over past null infinity I−, making use of
the asymptotic forms (23) and (24). We note the different
normalizations for the in modes and up modes in (25).
Moreover, the constancy of the Wronskian of linearly
independent solutions of the radial equation implies

ωBin
ωl ¼ ω̃Bup

ωl: ð29Þ
The details of how to numerically compute the normalized
modes fΦin

ωlðrÞ;Φup
ωlðrÞg are briefly discussed in the next

section.
Putting these details together, and performing the trivial

m-sum in the spherical harmonics, we get the following
representation of the two-point function in terms of the
normalized modes for the field in the Boulware state [10],

GBðx; x0Þ ¼
1

8π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
�Z

∞

μ
dω

1

2πω̃
e−iωΔtΦin

ωlðrÞΦin
ωl

†ðr0Þ þ
Z

∞

0

dω
1

2πω
e−iωΔtΦup

ωlðrÞΦup
ωl

†ðr0Þ
�
: ð30Þ

For the field in the Hartle-Hawking state [12] there is a thermal factor cothðωπ=κþÞ in each of the in modes and up modes.
We obtain,

GHHðx; x0Þ ¼
1

8π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
�Z

∞

μ
dω

1

2πω̃
e−iωΔt cothðωπ=κþÞΦin

ωlðrÞΦin
ωl

†ðr0Þ

þ
Z

∞

0

dω
1

2πω
e−iωΔt cothðωπ=κþÞΦup

ωlðrÞΦup
ωl

†ðr0Þ
�
: ð31Þ

Finally, for the field in the Unruh state [11], we pick up a thermal factor on the up modes but not the in modes:

GUðx; x0Þ ¼
1

8π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
�Z

∞

μ
dω

1

2πω̃
e−iωΔtΦin

ωlðrÞΦin
ωl

†ðr0Þ

þ
Z

∞

0

dω
1

2πω
e−iωΔt cothðωπ=κþÞΦup

ωlðrÞΦup
ωl

†ðr0Þ
�
: ð32Þ

Now if we consider a quantum scalar field in any
reference Hadamard state jRi, then the RSET in any other
Hadamard state jQi is related to the RSET in our reference
state by

hT̂a
biQ ¼ hT̂a

biR − ½δGQ
;a
b� −

�
ξ −

1

2

�
½δGQ�;ab

þ
�
ξ −

1

4

�
δab□½δGQ� þ ξRa

b½δGQ�; ð33Þ

where

δGQ ¼ GQðx; x0Þ −GRðx; x0Þ ð34Þ
is the difference between our two-point function in our state
jQi and our reference state. The explicit dependence on the
field mass, i.e., the μ2 term appearing in the expression for
the stress-energy tensor (12), canceled on application of
the wave equation to δGQ; though obviously the above
expression depends on μ implicitly through hT̂a

biR and
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through δGQ itself. The salient point is that δGQ is a smooth
homogeneous solution of the wave equation, at least on any
region of the spacetime where both states satisfy the
Hadamard condition.

In the current context, the reference state is the Hartle-
Hawking state for which we can leverage Euclidean
techniques to compute hT̂a

biHH, then in the Boulware
and Unruh states, we have

δGB ¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
�Z

∞

μ

dω
2πω̃

e−iωΔt

ð1 − e2πω=κþÞΦ
in
ωlðrÞΦin

ωl
†ðr0Þ þ

Z
∞

0

dω
2πω

e−iωΔt

ð1 − e2πω=κþÞΦ
up
ωlðrÞΦup

ωl
†ðr0Þ

�
; ð35Þ

δGU ¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos γÞ
�Z

∞

μ

dω
2πω̃

e−iωΔt

ð1 − e2πω=κþÞΦ
in
ωlðrÞΦin

ωl
†ðr0Þ

�
: ð36Þ

As we can see from the exponential thermal factor in each of these expressions, they are exponentially convergent in ω
and reasonably straightforward to compute.
For convenience, we give the explicit mode-sum expressions for the RSET in the Boulware and Unruh states in terms of

the RSET in the Hartle-Hawking state. For the field in the Boulware state, we have

hT̂t
tiB ¼ hT̂t

tiHH þ J̃ fVt½Φin
ωlðrÞ�g þ J fVt½Φup

ωlðrÞ�g;
hT̂ϕ

ϕiB ¼ hT̂ϕ
ϕiHH þ J̃ fVϕ½Φin

ωlðrÞ�g þ J fVϕ½Φup
ωlðrÞ�g;

hT̂r
riB ¼ hT̂r

riHH þ J̃ fVr½Φin
ωlðrÞ�g þ J fVr½Φup

ωlðrÞ�g ð37Þ
with

J̃ fV½Φ�g ¼ 1

4π

X∞
l¼0

ð2lþ 1Þ
Z

∞

μ

dω

2πω̃ð1 − e2πω=κþÞV½Φ�;

J fV½Φ�g ¼ 1

4π

X∞
l¼0

ð2lþ 1Þ
Z

∞

0

dω

2πωð1 − e2πω=κþÞV½Φ�; ð38Þ

and

Vt½ΦðrÞ� ¼
�
2ξ −

1

2

�
fjΦ0ðrÞj2 − ξf0Φ0ðrÞΦ�ðrÞ þ

�ð2ξ − 1
2
Þlðlþ 1Þ
r2

−
ð2ξþ 1

2
Þω2

f
þ ξRt

t þ
�
2ξ −

1

2

�
μ2
�
jΦðrÞj2;

Vϕ½ΦðrÞ� ¼
�
2ξ −

1

2

�
fjΦ0ðrÞj2 − 2ξf

r
Φ0ðrÞΦ�ðrÞ þ

�
2ξlðlþ 1Þ

r2
−
ð2ξ − 1

2
Þω2

f
þ ξRϕ

ϕ þ
�
2ξ −

1

2

�
μ2
�
jΦðrÞj2;

Vr½ΦðrÞ� ¼ 1

2
fjΦ0ðrÞj2 þ 2ξ

�
2f
r
þ f0

2

�
Φ0ðrÞΦ�ðrÞ þ

�
−
lðlþ 1Þ
2r2

þ ω2

2f
þ ξRr

r −
1

2
μ2
�
jΦðrÞj2; ð39Þ

where, in order to arrive at these expressions, we have made
use of Synge’s rule and the radial wave equation to avoid
computing second derivatives of our radial modes at the
same spacetime point.
To obtain the analogous expressions for the quantum

field in the Unruh state, we simply omit the contributions
from the up modes in each component in (37). The RSET in
the Unruh state also has an off-diagonal component

hT̂t
riU ¼ 1

4πr2

Z
∞

μ

dω
2πω̃

ω2

ð1 − e2πω=κþÞ
X∞
l¼0

ð2lþ 1ÞjBin
ωlj2;

ð40Þ
which gives the outgoing flux of Hawking radiation.

It is straightforward to verify that in each state jQi, one
obtains for the trace of the conformally-coupled stress-
energy tensor

hT̂a
aiQjξ¼1=6 ¼

1

4π2
v1 − μ2hϕ̂2iQ; ð41Þ

which yields the well-known trace anomaly for massless
fields.

IV. NUMERICAL IMPLEMENTATION

The main numerical task in the implementation of the
prescriptions outlined in Secs. II and III is to obtain the
radial modes by numerically integrating the radial equation
for the quantum state under consideration. The methods for
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treating the radial differential equation are quite different
for the Euclidean modes and the Lorentzian modes, so we
discuss each case separately.

A. Euclidean modes

The two-point function on the Euclidean slice is obtained
by the usual separation of variables procedure, the problem
essentially reducing to a one-dimensional radial Green
function gnlðr; r0Þ, where the mode numbers n and l are
discrete. Solving this radial Green function amounts
to computing a normalized product of solutions to the
homogeneous equation (6). The Hartle-Hawking state can
be uniquely defined on this Euclidean slice by the condition
of regularity on the event horizon. We denote the radial
solution regular on the event horizon to be pnlðrÞ while the
solution qnlðrÞ is the solution regular at infinity but
divergent at the event horizon. To impose regularity of
the Green function at the horizon, we must ensure that
pnlðrÞ is evaluated at the smaller of the two radial points,
i.e., we take gnlðr; r0Þ ¼ κþpnlðr<Þqnlðr>Þ=Nnl, where
r< ≡minfr; r0g, r> ¼ maxfr; r0g, and the factor of κþ
is incorporated for convenience into our definition of
gnlðr;r0Þ so that it satisfies an equation with a κþδðr−r0Þ
source term. The normalization constant comes from the
Wronskian Nnl ¼ −r2fðrÞWfpnl; qnlg.
All that remains is to compute the solutions pnlðrÞ and

qnlðrÞ. The computation of the former is simplified by
recasting the radial equation into a confluent Heun form
[9]. Since the confluent Heun functions that are regular at a
regular singular point are built into many software suites
such asMathematica or Maple, computing these presents no
difficulty. In particular, if we let Hðq; α; γ; δ; ϵ; zÞ be the
confluent Heun function that solves

zðz − 1ÞH00ðzÞ þ ðγðz − 1Þ þ δzþ zðz − 1ÞϵÞH0ðzÞ
þ ðαz − qÞHðzÞ ¼ 0 ð42Þ

that is analytic in the vicinity of z ¼ 0 and normalized to
unity at z ¼ 0, then it is straightforward to show that:

pnlðrÞ ¼ e−ðω−ω̃Þreωr�Hðq; α; γ; δ; ϵ; zÞ; ð43Þ
where

q ¼ lðlþ 1Þ þ r2þðω − ω̃Þ2 − ðrþ þ r−Þðω − ω̃Þ − 2rþω̃

α ¼ ðr2þ − r2−Þðω − ω̃Þ2 − 2ðrþ − r−Þω̃

γ ¼ 1þ 2ωr2þ
rþ − r−

δ ¼ 1 −
2ωr2−
rþ − r−

ϵ ¼ −2ω̃ðrþ − r−Þ
z ¼ rþ − r

rþ − r−
; ð44Þ

and where in the expressions above we have used the
notation

ω ¼ nκþ; ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2κ2þ þ μ2

q
: ð45Þ

Computing the qnlðrÞ modes is computationally harder.
While these modes can still be written in confluent Heun
form, the Heun functions with the appropriate boundary
conditions for qnlðrÞ are not built into Mathematica or
Maple. There are several options one can consider for
computing qnlðrÞ but we found it most efficient to simply
numerically integrate the radial equation inward from a
large r value using an asymptotic expansion for the initial
conditions. The initial conditions were optimized so that
the asymptotic expansion solved the wave equation to our
working precision with the least number of terms in the
asymptotic expansion and for the smallest reasonable r
value at which this precision could be achieved. Using this
approach, the mode solutions and their derivatives that
were generated were accurate to at least 30 significant
digits. We tested this accuracy by checking the constancy
of the Wronskian over the radial grid for the solution
pairs fpnlðrÞ; qnlðrÞg.
We wanted to compute the RSET to a high degree of

accuracy which ostensibly requires a large set of fn; lg
modes. However, when employing the extended coordi-
nates prescription as outlined in Sec. II, the number of
modes required can be significantly reduced by taking a
suitably high order expansion of the singular field. Here we
choose to take a 6th order expansion (setting m ¼ 6) in
Eq. (10) and generate 40 l-modes and 15 n-modes, which
yields the RSET accurate to approximately 10-15 decimal
places for the parameter sets considered in this paper.

B. Lorentzian modes

In this section, we briefly describe the computation of the
normalized Lorentzian modes fΦin

ωlðrÞ;Φup
ωlðrÞg. The boun-

dary conditions on these modes are expressed in terms of
transmission and reflection coefficients via (23) and (24)
with (27)–(29). All that remains to compute is the relation-
ship between the reflection/transmission coefficients and
a pair of convenient numerically computed radial modes
fΦ̃in

ωlðrÞ; Φ̃up
ωlðrÞg.

Starting first with the in modes. As in the Euclidean
discussion above, the homogeneous solutions of the radial
equation can be expressed in terms of confluent Heun
functions, we take as Φ̃in

ωlðrÞ the solution

Φ̃in
ωlðrÞ ¼

1

rþ
e−iωr�eiðω−ω̃ÞrHðq; α; γ; δ; ϵ; zÞ; ð46Þ

where here

ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

q
ð47Þ
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and the parameters in the confluent Heun function are
obtained from (44) by applying the transformations
ω → −iω, ω̃ → −iω̃. Comparing with the asymptotic
forms, we see that

Φ̃in
ωlðrÞ ¼

eiðω−ω̃Þrþ

Bin
ωl

Φin
ωlðrÞ: ð48Þ

As in the Euclidean case, we solve for Φ̃up
ωlðrÞ numeri-

cally by integrating the radial equation inward from a
suitably large radius with our initial conditions determined
by an asymptotic series. The leading order term in this
asymptotic series is

Φ̃up
ωlðrÞ ∼

eiω̃r�

r
; r → ∞; ð49Þ

and the numerical solutions are related to the normalized
modes by

Φ̃up
ωlðrÞ ¼

Φup
ωlðrÞ
Bup
ωl

: ð50Þ

With these definitions, the Wronskian condition implies

Bin
ωl ¼ −

2iω̃eiðω−ω̃Þrþ

Wωl
; ð51Þ

where Wωl is the constant associated with the Wronskian
of the numerical radial modes:

Wωl ¼ r2f

�
Φ̃upðrÞ d

dr
Φ̃inðrÞ − Φ̃inðrÞ d

dr
Φ̃upðrÞ

�
: ð52Þ

The frequency integrals in the RSET components have a
rapid convergence so we compute modes on a frequency
grid out to ω ¼ 10. The error induced by truncating at this
upper bound is very small. We choose a grid that is finely
meshed near the lower limit of integration. For the l sums
appearing in (37), the convergence with l is very rapid also,
except for sums over the up modes very close to the
horizon. Again because we desired to have very accurate
results, we computed 150 l-modes for each frequency. The
error induced by truncating the sums at l ¼ 150 is tiny for
all but the points closest to the horizon. For example, for a
massive field in the Reissner Nordström spacetime with
Q=M ¼ 0.2 and μM ¼ 0.1 (with Q and M denoting the
electromagnetic charge and the ADM mass, respectively),
for a fixed frequency, the error induced by truncating the l
sums at l ¼ 150 is less than 38 significant figures for
points ðr − rþÞ=M ⪆ 0.05.
The last numerical issue we wish to briefly mention is

that it is necessary to compute Lorentzian bound state
modes with ω < μ. These are more difficult to compute
than the modes with ω > μ. The main problem is that the

asymptotic expansion does not converge to a sufficiently
accurate value unless r is chosen to be quite large whence
the value of the initial conditions is usually very small.
This forces one to increase the working precision of the
numerical integrator and hence slows down the computa-
tion. The problem is accentuated for larger field masses.
Fortunately, large field masses are not the physically
relevant cases.

V. RESULTS

We have used the method previously outlined to obtain
the RSET of massless and massive scalar fields in the
Reissner-Nordström spacetime

ds2 ¼ −
ðr − rþÞðr − r−Þ

r2
dt2 þ r2

ðr − rþÞðr − r−Þ
dr2

þ r2ðdθ2 þ sin θ2dϕ2Þ; ð53Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, in the Hartle-Hawking,

Boulware and Unruh vacuum states for different couplings
and charge values.
The RSET is an ambiguous quantity due to its dependence

on the arbitrary lengthscale l present in the 4-dimensional
Hadamard parametrix. Similar to the Hadamard parametrix,
such renormalization ambiguities are local and independent
of the vacuum state under consideration. Consequently,
all dependence on l is already contained in hT̂a

biHH. In
spherical symmetry, Anderson, Hiscock and Samuel [2]
(AHS) showed that l-dependent terms amount to a cova-
riantly conserved analytic stress-tensor. Particularizing for
the Reissner-Nordström spacetime (53), this contribution
takes the form

hT̂a
bil ¼ ðHa

b þMa
bÞ
log ðM=lÞ
160π2r8

; ð54Þ

with

Ht
t ¼ 3Hr

r ¼ −
3

2
Hθ

θ ¼ 4ðr − rþÞðr − r−Þrþr−;

Mr
r ¼ Mt

t ¼ 5μ4r8 þ 20μ2
�
ξ −

1

6

�
r4rþr−;

Mθ
θ ¼ 5μ4r8 − 20μ2

�
ξ −

1

6

�
r4rþr−; ð55Þ

where clearly, for μ ¼ 0, the terms (55) vanish at the event
horizons for Q ≠ 0 and everywhere for Q ¼ 0.
The inherent ambiguities in the definition of the RSET

can make comparisons between the results of different
approaches to its calculation difficult. However, we are
able to write down a relationship between results obtained
via the AHS approach, which is based on Christensen’s
DeWitt-Schwinger expansion [26], and the extended
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coordinate method, which is based on the Hadarmard
parametrix. To do this we note that in addition to the
ambiguity in the choice of lengthscale mentioned above,
Mc Laughlin proved that, for a scalar field, an RSET
obtained via Christensen’s or by the Hadamard approach
will differ by a geometric term, given by [27]:

hT̂abiMcL ¼ μ2

16π2

��
ξ −

1

6

��
Rab −

1

2
Rgab

�
−
3

8
μ2gab

�
:

ð56Þ

This is clearly a conserved quantity that can be absorbed
into the semiclassical field equations via a renormalization
of the constants G and Λ. Therefore we have that the
RSETs obtained via the two approaches are related by

hT̂a
biAHS ¼ hT̂a

biEC þ hT̂a
biMcL

þ ðHa
b þMa

bÞ
logðeγE l̂

2
Þ

160π2r8
; ð57Þ

where γE is Euler’s constant and bl ¼ lEC=lAHS is the ratio
of the choice of lengthscale made in both approaches.
As the AHS approach is based on the DeWitt-Schwinger
expansion, lAHS is conventionally taken to be equal to 1=μ
for a massive field and is arbitrary otherwise.
Equation (57) then enables meaningful comparisons

between the two approaches, in particular in Sec. VI, it
will allow us to compare our exact results with the AHS and
De-Witt Schwinger approximations to the RSET.
As the space of parameters to explore is large, in the next

subsections we consider first how the different vacuum
states affect the RSET in the massless and massive cases,
to later analyze the impact of varying the coupling ξ and
the charge Q. We will compare these exact results with
the values predicted by analytic RSET approximations
in Sec. VI.

A. Vacuum states

Figure 1 contains plots of the RSET componentsmultiplied
by f2 for fξ¼0;Q=M¼0.2g and fξ¼1=6;Q=M¼0.2g,
both with μM ¼ 0 (continuous lines) and μM ¼ 0.1 (dashed

FIG. 1. RSET components for various states, charge values and couplings. Continuous lines represent massless fields, while dashed
lines denote fields with μM ¼ 0.1. Blue, green and yellow curves denote RSET components in the Hartle-Hawking, Unruh and
Boulware states, respectively. Left, middle and right columns each represent f2hT̂t

ti, f2hT̂r
ri and f2hT̂ϕ

ϕi. Top, middle and bottom
rows each correspond to fξ ¼ 0; Q=M ¼ 0.2g, fξ ¼ 1=6; Q=M ¼ 0.2g and fξ ¼ 1=6; Q=M ¼ 0.99g.
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lines), in the first and second rows, respectively. The third row
depicts the near-extremal case fξ ¼ 1=6; Q=M ¼ 0.99gwith
μM ¼ 0. For every coupling, charge, and mass, all RSET
components in theHartle-Hawking states are finite at the event
horizon (strictly, they are finite at the lowest point in our radial
grid, which can be taken as close to r ¼ rþ as desired,
however the regularity of all components on the horizon was
proven in [28]). As expected, every RSET component in the
Boulware state diverges at the horizon in a way ∝ f−2 for all
the couplings considered (this divergence appears for any state
whose temperature is other than the Hawking temperature
[29]), while for the Unruh state hT̂r

ri and hT̂t
ti diverge like

∝ f−1. For large r, the diagonal RSET components in the
Unruh and Boulware states approach the same value, in
accordance with the asymptotic behaviors found in [30,31].
We also find that in a freely falling frame, as expected, hT̂a

bi is
regular on the future event horizon for the Unruh state, regular
on the future and past event horizons for the Hartle-Hawking
state, and diverges on both the past and future horizons in the
Boulware state.
Increasing the mass of the field affects the value and sign

of the RSET at large r. In the Boulware and Unruh states,

these do not decay to zero asymptotically, as with μM ¼ 0,
but approach a constant value instead. These asymptotic
values can be identified with the choice of arbitrary length
scale. In fact, from the numerical results we find that the
RSET for the Boulware and Unruh states approach the
following value

hT̂a
bi∞ ¼ δabμ

4

128π2

�
3þ 4 log

�
2e−γE

μlEC

��
: ð58Þ

From inspection of Eq. (57), we see that this corresponds to
the large r expansion of the difference between the extended
coordinates and AHS RSETs (with lAHS ¼ 1=μ). For
massive fields, we therefore have a natural choice for the
lengthscale lEC, for which the Boulware and Unruh RSET
decays to 0 as r → ∞, given by

lEC ¼ 2

μ
expf3=4 − γEg: ð59Þ

Wemake this choice for themassive field results presented in
this section. For the massless field, the large r asymptotic
behavior is independent of the choice of lengthscale, so for

FIG. 2. RSET in terms of r=M for various couplings and vacuum states for the Reissner-Nordström black hole with Q=M ¼ 0.6. The
blue, green, yellow and orange curves correspond to the couplings ξ ¼ f0; 1=8; 1=6; 1=2g, respectively. Left, middle and right columns
each represent hT̂t

ti, hT̂r
ri and hT̂ϕ

ϕi. Top, middle and bottom rows correspond to the Hartle-Hawking, Boulware and Unruh states.
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simplicity, in this casewe set lEC ¼ M, whereM is the black
hole mass.
The aforementioned properties hold for allQ < M. AsQ

increases, the finite terms relating the various states in
Eq. (37) decrease in magnitude due to their dependence
on the black hole temperature, and the Boulware, Unruh and
Hartle-Hawking states converge. The Unruh and Hartle-
Hawking states converge faster than theBoulware state, since
contributions from the up modes to Eq. (37) decrease slower
in the Q → M limit than contributions from the in modes.
Results for the extremal caseQ ¼ M will appear elsewhere.

B. Varying the coupling

Next we consider the effect of varying the field coupling
ξ. Figure 2 shows the diagonal RSET components in the
Hartle-Hawking, Boulware and Unruh states (first, second
and third row, respectively) forQ=M ¼ 0.6. Components in
the Boulware and Unruh states have been multiplied by
powers of f for visualization purposes.
Increasing the value of the coupling does not affect

notably the magnitude of the RSET, but it does produce a

change in the sign of every RSET component with the
exception of hT̂t

tiU and hT̂r
riU. As was shown in [9] for the

Hartle-Hawking state, RSET values for any coupling can
be generated from results in minimal coupling [this follows
from definition (12) in spacetimes with vanishing Ricci
scalar]. With this we find that, for Q=M ¼ 0.6, the hT̂t

tiHH
and hT̂r

riHH components change sign at the lowest grid
point at ξ ≈ 0.24 and the hT̂θ

θiHH component component
does at ξ ≈ 0.19. For the first two components, said sign
changes occurs at smaller ξ as Q increases, whereas the
converse happens to the latter component. For the
Boulware state, the analytic RSET approximation from
[2] suggests that the sign of the RSET at the horizon is
independent from Q (see Sec. VI below).
For diagonal RSETs, the point-wise null energy con-

dition is satisfied as long as the inequalities

−hT̂t
ti þ hT̂r

ri ≥ 0; − hT̂t
ti þ hT̂ϕ

ϕi ≥ 0; ð60Þ

hold everywhere outside the event horizon [32,33]. The
Hartle-Hawking state satisfies the null energy condition

FIG. 3. RSET components in the Hartle-Hawking, Boulware, and Unruh states (first, second, and third rows, respectively) with ξ ¼ 0.
The blue, green, yellow, red and purple curves correspond toQ=M ¼ f0.4; 0.8; 0.9; 0.95; 0.99g, respectively. Left panel is hT̂t

ti, middle
panel is hT̂r

ri and right panel is hT̂ϕ
ϕi.
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everywhere outside the event horizon for ξ ¼ f0; 1=8; 1=6g,
while for ξ ¼ 1=2 it is violated from r ≈ 2.8rþ to r ¼ rþ.
The Boulware state violates the null energy condition
everywhere outside and at the event horizon for ξ ¼
f0; 1=8; 1=6g and satisfies it everywhere for ξ ¼ 1=2.
Note that these behaviors depend on the particular choice
of renormalization lengthscale (54) and hence should not be
considered to be physically meaningful statements.

C. Varying the charge

Varying the black hole charge Q affects both the sign
and the magnitude of the RSET components, which
become more sensitive to slight variations of Q as the
extremal limit Q ¼ M is approached. Figure 3 shows the
RSET components for ξ ¼ 0 and the charge values
Q=M ¼ f0.4; 0.8; 0.9; 0.95; 0.99g. We study the minimally
coupled case in detail to allow for a faithful comparison
with the analytic approximations presented in Sec. VI.
For the RSET in the Hartle-Hawking state, increasing Q

decreases the asymptotic values in every RSET component
at large r. Asymptotically, this state reproduces a thermal
bath at equilibrium with the horizon temperature, which
decreases with increasing Q. At the horizon r ¼ rþ, the
components hT̂t

tiHH and hT̂r
riHH increase with Q except

for Q=M ¼ 0.99, for which these components are smaller
than in the Q=M ¼ 0.95 case. For hT̂ϕ

ϕiHH, this inversion
happens at lower Q and is already noticed in the Q=M ¼
0.95 case, even becoming negative at the event horizon
for Q=M ¼ 0.99.
In the Boulware state, the sign of the RSET components

does not change at both extremes of our radial grid or
anywhere in between, except for a narrow region in the
Q=M ¼ 0.99 case. As the charge is increased, the positive
coefficient that controls the divergence of the RSET at
r ¼ rþ decreases, but this does not change the fact that
every component diverges ∝ f−2, which only become finite
at the horizon in the extremal case.
For the Unruh state, again the sign of the RSET

components is independent of Q, but their overall magni-
tude diminishes with the charge, in consistency with this
state describing a flux of black-body radiation for large r.
At the event horizon, the hT̂t

tiU and hT̂r
riU components

decrease and increase with Q, respectively, whereas the
hT̂ϕ

ϕiU component increases for Q=M ¼ f0.4; 0.8; 0.9g,
decreases with Q=M ¼ 0.95, and becomes negative for
Q=M ¼ 0.99, as in the Hartle-Hawking state.
In the extremal case Q ¼ M, it was shown in [34] that

the RSET of massless fields at the event horizon takes the
same value as the RSET of a conformally invariant field
in the Bertotti-Robinson spacetime [35]. The magnitude of
the RSET at r ¼ rþ varies more abruptly for Q=M > 0.9,
hence we do not observe they approach the values obtained
in the Bertotti-Robinson spacetime for Q=M ¼ 0.99. To
observe this tendency, Q values even closer to M would
need to be explored.

VI. COMPARISON WITH APPROXIMATIONS

Obtaining accurate results for the RSET, even in scenar-
ios of high symmetry like the Reissner-Nordström black
hole, proves to be a computationally expensive task: a large
amount of highly precise Euclidean and Lorentzian field
modes need to be calculated for each collection of
parameters fM;Q; ξ; μg. Once results are available for
the RSET, we can find its backreaction on the background
metric atOðℏÞ through Eq. (1). If one insists in progressing
along this line to find the backreacted metric at higher-
orders in ℏ, it is necessary to compute, every time, new sets
of modes propagating over the backreacted metric. Such a
scheme proves to be unreasonably time consuming.
Analytic RSET approximations alleviate the difficulties

behind computing the RSETand its backreaction since they
bypass numerical mode calculations, expressing the RSET
(almost) exclusively in terms of the metric components
and their derivatives. This simplifies dramatically the
complexity of semiclassical analyses at the cost of reducing
the physical content encoded within the RSET itself.
Furthermore, there is no unique or preferred approximate
scheme available in the literature. Instead, we have multiple
RSET approximations based on different physical princi-
ples. Despite this nonuniqueness, analytic RSETs should
nonetheless reproduce the physics of their exact counter-
parts at least qualitatively, replicating the defining proper-
ties of the different vacuum states and yielding correct
results at the asymptotic regions of the spacetime. In this
section, we will review the various RSET approximations
available in spherical symmetry and compare them with the
exact results presented in Sec. V.

A. Analytic RSETs in spherical symmetry

1. The Polyakov RSET

In spherical symmetry, we can obtain various analytic
RSETs by fixing the field parameters of the theory, namely,
the field mass and the coupling. Perhaps the most well-
known example is that of conformally invariant fields
fμ ¼ 0; ξ ¼ 1=6g in conformally flat backgrounds, where
the RSET is fully determined by the local trace anomaly
[36]. In more generic spherically symmetric spacetimes, the
essential features of the propagation of a massless mini-
mally coupled scalar fm ¼ 0; ξ ¼ 0g in four spacetime
dimensions can be captured by two-dimensional models,
described by the line element

ds2ð2DÞ ¼ −fðrÞdt2 þ dr2=fðrÞ: ð61Þ

This connection between 4D and 2D physics manifests
upon taking the near-horizon limit r → rþ in Eq. (21) for
the s-wave (l ¼ 0) component of the field. The gravita-
tional potential vanishes in this limit, and the ðt; rÞ sector
reduces to the two-dimensional free wave equation, which
is conformally invariant [to see this explicitly, we avoid
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expanding in t in (19), see [37] for details]. The emergence
of this symmetry allows to express the 2D RSET in closed
analytic form [38]. These 2D expressions are then identi-
fied with a 4D RSET through

hT̂a
biP ¼ 1

4πr2
δaAδ

B
bhT̂A

Bið2DÞ; ð62Þ

where fa; bg run over the 4D spacetime indices while
fA; Bg run over the 2D spacetime indices, and P stands for
the Polyakov RSET. The multiplicative factor 1=4πr2 has
been introduced to ensure covariant conservation in 4D and
so that this approximation reproduces the adequate Unruh
fluxes at infinity [see Eq. (66) below]. In black hole
spacetimes, the components are

hT̂t
tiP ¼ 1

384π2r2f
½ðf0Þ2 − 4ff00� þ hT̂t

tiPκþ ;

hT̂r
riP ¼ −

1

384π2r2f
ðf0Þ2 þ hT̂r

riPκþ ; ð63Þ

where f ¼ ðr − rþÞðr − r−Þ=r2 in the Reissner-Nordström
spacetime and angular pressures vanish. The terms hT̂a

biPκþ
are temperature-dependent and relate RSETs in different
vacuum states in a manner analogous to the integrals in
Eq. (37). Here, they amount to the Schwarzian derivative
between null coordinates in two different conformal coor-
dinate systems [37,39]. The Boulware state is defined as the
state for which such temperature-dependent terms vanish.
For the Hartle-Hawking state they equal

hT̂t
tiPκþ;HH ¼ −hT̂r

riPκþ;HH ¼ −
κ2þ

96π2r2f
; ð64Þ

where κþ ¼ ðrþ − r−Þ=2r2þ. For the Unruh state we find

hT̂a
biPκþ;U ¼ 1

2
hT̂a

biPκþ;HH ð65Þ

and

hT̂t
riPκþ;U ¼ −

κ2þ
192π2r2

: ð66Þ

At spatial infinity, this component describes the usual
Hawking flux emitted by an evaporating black hole. It
can be easily checked that (40) reduces to the above
expression in the massless case by ignoring backscattering
(jBin

ωlj ¼ 1) and neglecting l > 0 multipoles.
As it properly describes black hole evaporation, the

Polyakov approximation has been extensively used in the
literature [40–43]. Note that the Polyakov RSET is ill
defined at r ¼ 0. This pathology motivates the search for
regularized Polyakov RSETs that display a regular behav-
ior at r ¼ 0 [43] while reproducing (66) at large distances.

2. The s-wave RSET

It is possible to incorporate into the Polyakov RSET the
backscattering effects of the gravitational potential (which
we had neglected via the near-horizon approximation) by
considering a two-dimensional scalar coupled to a dilaton
field (we refer the reader to [37] for details on this approach).
This method is hybrid, in the sense that the resulting 2D
RSET is nonconserved, such nonconservation being identi-
fied as the angular components of the following 4D RSET,

hT̂t
tis ¼ hT̂t

tiP þ hT̂t
tisκþ

−
ðr − rþÞðr − r−Þ

32π2r6
log

ðr − rþÞðr − r−Þ
r2

;

hT̂r
ris ¼ hT̂r

riP þ hT̂r
risκþ

þ ðr − rþÞðr − r−Þ
32π2r6

log
ðr − rþÞðr − r−Þ

r2
;

þ 2rþr− − rðrþ þ r−Þ
16π2r6

;

hT̂ϕ
ϕis ¼ hT̂ϕ

ϕisκþ − ½22r2þr2− − 29rrþr−ðrþ þ r−Þ
þ 2r2ðrþ þ 4r−Þð4rþ þ 4−Þ − 7r3ðrþ þ r−Þ�
× ½64π2r6ðr − rþÞðr − r−Þ�−1

þ ½r2 − 2rðrþ þ r−Þ þ 3rþr−�
32π2r6

× log
ðr − rþÞðr − r−Þ

r2
; ð67Þ

where 4D time and radial components have been obtained
through relation (62). The temperature-dependent terms now
acquire the more involved form

hT̂t
tisκþ;HH ¼ −hT̂r

risκþ;HH ¼ hT̂t
tiPκþ;HH

þ κþ
16π2r6

�
r2ðrþ þ r−Þ − rrþr−

−
ðr − rþÞðr − r−Þ

rþ − r−

×

�
r2þ log

�
r − rþ
rþ

�
− r2− log

�
r − r−
r−

���
;

hT̂ϕ
ϕisκþ;HH ¼ κþ

32π2r6
×

�
r

ðr − rþÞðr − r−Þ
× ½3r3ðrþ þ r−Þ − 4r2ðr2þ þ 3rþr− þ r2−Þ
þ 10rþr−rðrþ þ r−Þ − 6r2þr2−�

þ
�
4r −

2r2 þ 6rþr−
rþ − r−

�

×

�
r2þ log

�
r − rþ
rþ

�
− r2− log

�
r − r−
r−

���
ð68Þ
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for theHartle-Hawking state. For theUnruh state, these terms
acquire a dependence on the time coordinate t and the
resulting RSET is not covariantly conserved.

3. The Anderson-Hiscock-Samuel RSET

Dimensional reduction is not the only procedure to
derive analytic RSET approximations. In 4D, there is the
analytic RSET approximation derived by Anderson et al.
[2] that incorporates the effects of field mass and
curvature coupling. This approximation naturally arises
from point-splitting regularization, which results in a
separation of the exact RSET into two independently
conserved analytic and numeric parts. The analytic
portion—or AHS-RSET hereafter—gives the correct
trace anomaly in the fm ¼ 0; ξ ¼ 1=6g case. This
approximation yields a well-behaved RSET at r ¼ 0,
but in exchange it exhibits third and fourth order deri-
vatives of the metric functions and depends on the
arbitrary lengthscale l. Expressions for this RSET,
which we avoid showing here since they are lengthy
and opaque, can be found in [2]. The AHS-RSET can
describe the Boulware and Hartle-Hawking states, but it
cannot describe the Unruh state.
As was hinted in [2], the AHS-RSET is not an

appropriate approximation for massive fields: it does
not reproduce standard results in flat spacetime. Upon
evaluating the AHS-RSET in Minkowski spacetime we
obtain

hT̂r
riAHSHH ¼ κ4þ

1440π2
−
κ2þμ2

96π2
−

μ4

128π2
½4 logðλlÞþ3�;

hT̂t
tiAHSHH ¼−

κ4þ
480π2

þ κ2þμ2

96π2
−

μ4

128π2
½4 logðλlÞ−1�; ð69Þ

with hT̂θ
θiAHS ¼ hT̂ϕ

ϕiAHS ¼ hT̂r
riAHS, and λ is a pos-

itive parameter related to an infrared cutoff in some
integrals from [2]. In the Boulware state, λ can be
absorbed in l if the field is massless (being an arbitrary
parameter otherwise), whereas in the Hartle-Hawking
state, λ ¼ κþ exp ð−γEÞ. In view of (69), we cannot
make the AHS-RSET amount to a 4D thermal bath
with temperature κþ=2π in flat spacetime by an appro-
priate choice of l. Neither can we identify these
components with a renormalization of the cosmological
constant, as we did in Sec. V for the exact RSET in
the Boulware state. Therefore, we regard the AHS-
RSET as an inadequate approximation for massive
fields, and consider μ ¼ 0 hereafter when referring to
this approximation.
As the reader may have noticed from (69), the

AHS-RSET contains an explicit dependence on the temper-
ature. In the Reissner-Nordström spacetime, these terms
take the form

hT̂t
tiAHSκþ ¼ −

κ4þ
480π2f2

þ κ2þðξ − 1
6
Þ

32π2r4f2

× ½2r2þr2− − 2rrþr−ðrþ þ r−Þ þ r2ðr2þ þ r2−Þ�;

hT̂r
riAHSκþ ¼ κ4þ

1440π2f2
þ κ2þðξ − 1

6
Þ

96π2r4f2

× ½2r2þr2− − 6rrþr−ðrþ þ r−Þ
þ 3r2ðr2þ þ 4rþr− þ r2−Þ − 4r3ðrþ þ r−Þ�;

hT̂ϕ
ϕiAHSκþ ¼ κ4þ

1440π2f2
þ κ2þðξ − 1

6
Þ

48π2r4f2

× ½r2þr2− − 3r2rþr− þ r3ðrþ þ r−Þ�: ð70Þ

Notice how these terms differ from those given by the
Polyakov (64) and s-wave approximations (68). These
differences will have a major impact on the behavior of
approximate RSETs at the event horizon on the different
vacuum states.

4. The DeWitt-Schwinger RSET

The work [2] also derived expressions for the RSET in
the DeWitt-Schwinger approximation for fields of large
mass. The corresponding expressions [obtained toOðm−2Þ]
are local, have no information about the state of the
vacuum, and can be used as an approximation to the
complete RSET in situations where the field mass is
comparable to the ADM mass M.
The components of the DS-RSET are

40320π2μ2r12hT̂t
tiDS ¼

X4
i¼0

Airi þ ξ
X4
i¼0

Biri;

40320π2μ2r12hT̂r
riDS ¼

X4
i¼0

Ciri þ ξ
X4
i¼0

Diri;

40320π2μ2r12hT̂ϕ
ϕiDS ¼

X4
i¼0

Eiri þ ξ
X4
i¼0

Firi; ð71Þ

where the coefficients in the sums are given in Eq. (A1) in
the Appendix.
In the next subsection we explore the accuracy of the

aforementioned RSET approximations in the Reissner-
Nordström black hole spacetime.

B. Comparing exact and approximate RSETs

Establishing comparisons between RSET approxima-
tions is complicated by the presence of renormalization
ambiguities. For the sake of brevity, we will focus on
the features of the RSET that are independent of these
ambiguities. These are: the behavior at the event horizon in
the different states where, for massless fields, the RSET is
independent of l [see Eq. (54)]; the form of temperature-
dependent terms, and the trace anomaly.
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1. The Hartle-Hawking state and Unruh states

In the Hartle-Hawking state we find the following
leading-order contributions for the Polyakov RSET at the
event horizon,

hT̂t
tiPHH ¼ hT̂r

riPHH ¼ rþ − 2r−
96π2r5þ

þOðr − rþÞ; ð72Þ

with vanishing angular pressures, whereas for the s-wave
RSET

hT̂t
tisHH ¼ hT̂r

risHH ¼ −
2rþ − r−
96π2r5þ

þOðr − rþÞ;

hT̂ϕ
ϕisHH ¼ 1

64π2r7þ

�
rþðrþ − 2r−Þð5rþ þ r−Þ

þ2ðrþ − r−Þ
�
r2þ log

�
rþ − r−

rþ

�

þ2r2− log

�
rþ − r−

r−

���
þOðr − rþÞ: ð73Þ

The components of the Polyakov RSET are of the same
order of magnitude as the exact RSET and have positive
sign at r ¼ rþ until Q=M ≈ 0.94. Despite both approx-
imations being regular in the Hartle-Hawking state, the
temporal and radial components of the s-wave RSET have
opposite sign. This discrepancy is alarming, especially
considering that the s-wave RSET only incorporates back-
scattering effects to the Polyakov RSET, and that both
approximations should agree at the event horizon, where
the gravitational potential vanishes. It has been argued that
such a discrepancy is due to the dimensional reduction
anomaly [44–46] that accounts for the noncommutativity of
quantization and dimensional reduction.
Among the various analytic approximations presented,

only the Polyakov RSET can describe the Unruh state,
for which diagonal RSET components are simply given
by (65). Hence, its components are finite at the horizon,
contrary to the divergences appearing in the exact RSET.
Turning now to the AHS-RSET, we have

hT̂t
tiAHSHH ¼ hT̂r

riAHSHH ¼ 12r2þ − 20rþr− þ 9r2−
2880π2r6þ

−
r2þ − r2−
64π2r6þ

ξþOðr − rþÞ;

hT̂ϕ
ϕiAHSHH ¼ 33r2þ − 44rþr− þ 13r2−

5760π2r6þ

−
ðrþ − r−Þ2
32π2r6þ

ξþOðr − rþÞ: ð74Þ

The magnitude of the AHS-RSET components shows
excellent agreement with the exact results. Similarly, we
observe a sign inversion for certain coupling values. In
the extremal limit Q → M, the AHS-RSET becomes

independent from ξ, in agreement with the exact results
obtained in [34]. Clearly, the AHS-RSET is perfectly
regular at r ¼ rþ when the field is massless. For massive
fields, it has an unphysical divergence at the horizon [2]
caused by the failure of the WKB approximation there [47].
In fact, for a minimally coupled massless field, the

expression above for hT̂t
tiAHSHH ¼ hT̂r

riAHSHH at r ¼ rþ is
exact. To see this we first note that, using the results in [28]
and Eq. (12), we have:

hT̂t
tiHHjr¼rþ ¼ hT̂r

riHHjr¼rþ

¼ −½gϕϕ0
W;ϕϕ0 �r¼rþ þ v1ðrþÞ

4π2
: ð75Þ

Moreover only the n ¼ 0 modes contribute to
½gϕϕ0

W;ϕϕ0 �r¼rþ and for a massless field the radial mode
functions p0l; q0l are given by Legendre polynomials.
Hence it is straightforward to show using standard iden-
tities involving Legendre functions (see for example [2])
that the n ¼ 0 mode sum contribution to ½gϕϕ0

W;ϕϕ0 �r¼rþ
vanishes, yielding:

hT̂r
riHHjr¼rþ ¼ 1

4π2
½v1ðrþÞ − T ðpÞ

10 ðrþÞ −Dð−Þ
22 ðrþÞ� ð76Þ

which for the Reissner-Nordström spacetime, evaluates to
hT̂t

tiAHSHH ¼ hT̂r
riAHSHH with ξ ¼ 0. The hT̂ϕ

ϕiHH component
on the event horizon contains a contribution from the n ¼ 1
radial modes and is therefore not amenable to a similar
calculation, however we note in passing that a quasiclosed
form event horizon expressions for all RSET components
for a scalar field in the Hartle-Hawking state with arbitrary
mass and coupling, are presented in [28].
In summary, the Polyakov and AHS approximations

are in good qualitative and quantitative agreement with
exact results for massless fields in the Hartle-Hawking
state. The s-wave approximation, on the contrary, predicts
wrong signs for the energy density and radial pressure.

2. The Boulware state

To obtain the Polyakov, s-wave and AHS approxima-
tions in the Boulware vacuum, we need to subtract the
corresponding temperature-dependent terms in each case,
resulting in an RSET that is singular at the event horizon.
For example, the s-wave RSET returns the following
divergent contributions at r ¼ rþ,

hT̂t
tisB ¼ −hT̂r

risB ¼ rþ − r−
384π2ðr − rþÞr4þ

þOðr − rþÞ0;

hT̂ϕ
ϕisB ¼ −

rþ − r−
64π2ðr − rþÞr4þ

×

�
1þ 2

rþ
log

�ðr − rþÞðrþ − r−Þ
r2þ

��
þOðr − rþÞ0: ð77Þ
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For the analytic AHS-RSET we find

hT̂t
tiAHSB ¼ −3hT̂r

riAHSB ¼ −
ðrþ − r−Þ2

128π2ðr − rþÞ2r4þ

�
ξ −

1

6

�
þOðr − rþÞ−1

hT̂ϕ
ϕiAHSB ¼ −

ðrþ − r−Þ2
192π2ðr − rþÞ2r4þ

�
ξ −

19

120

�
þOðr − rþÞ−1: ð78Þ

In the ξ ¼ 0 case, all RSET components in every analytic
approximation diverge with the same signs at the event
horizon, coinciding with the sign of the exact RSET for all
Q values. For all the coupling values analyzed, the sign of
the AHS-RSET also agrees with that of the exact RSET.
The leading-order divergence in the hT̂t

tisB and hT̂r
risB

components (77) comes from the Polyakov portion of the
s-wave RSET. Corrections due to the gravitational potential
are subleading in this state. However, these components
diverge ∝ ðr − rþÞ−1, contrary to the AHS-RSET and the
exact RSET that diverge ∝ ðr − rþÞ−2. Here, we observe a
major discrepancy between approximations, in the sense that
temperature-dependent terms obtained from calculations in
2D [see Eqs. (64) and (68)] scale differently from those
obtained in 4D (70). In the extremal limit, all three approx-
imations are singular at the extremal horizon [34,48].

3. Anomalous trace and massive fields

Another quantity that is worth comparing is the trace of
the RSET. The Polyakov RSET predicts the correct trace
anomaly in 2D. Due to the conformal symmetry of the
dimensionally-reduced theory, the trace of the Polyakov
RSET,

hT̂iP ¼ rðrþ þ r−Þ − 3rþr−
48π2r6

; ð79Þ

is state-independent in4D, thus finite andpositive everywhere
except when Q is in the range M ≥ jQj > ffiffiffiffiffiffiffiffi

8=9
p

M. The
s-wave RSET has a temperature-dependent trace instead
obtained from the components (67). In the Boulware state,
this trace is negatively divergent at r ¼ rþ for anyQ, in stark
contradiction with the trace of the exact RSET and the AHS
approximation [see Eq. (81) below]. This divergence in the
trace is caused by the angular pressures (77).
For the AHS-RSET the trace in the Hartle-Hawking

state is

hT̂iAHSHH ¼ hT̂iAHSB þ κ2þðξ − 1
6
Þ

16π2r6f2
½2r2þr2− − 2rrþr−ðrþ þ r−Þ

þ r2ðrþ þ r−Þ2�; ð80Þ

where hT̂iAHSB is the zero-temperature part of the trace

hT̂iAHSB ¼ 13r2þr2− − 12rrþr−ðrþ þ r−Þ þ 3r2ðr2þ þ r2−Þ
720π2r8

−
ðrþ − r−Þ2ðξ − 1

6
Þ

64π2r6f2
½6r2þr2− − 14rrþr−ðrþ þ r−Þ

þ r2ð9r2þ þ 32rþr− þ 9r−Þ
− 20r3ðrþ þ r−Þ þ 12r4�: ð81Þ

In the conformally coupled case, Eq. (80) yields the correct
trace anomaly. At the event horizon, (81) is positively
divergent for ξ ≤ 1=6 and any charge, whereas it is
negatively divergent for ξ > 1=6.
Finally, Fig. 4 shows the trace of the exact RSET in the

Hartle-Hawking state for fields of various masses, together
with the trace of the DS-RSET. Clearly, the large-mass
approximation becomes better as the field mass increases.
However, this approximation does not include temperature-
dependent terms and, as such, will not approximate the
exact RSET evaluated in the Boulware and Unruh states
near the event horizon.

VII. DISCUSSION AND CONCLUSIONS

In spherically symmetric black hole spacetimes, we can
employ Euclidean methods to compute the RSET in the
Hartle-Hawking state. The extended coordinate method
outlined in this article provides an accurate and efficient
way of calculating the RSET in such situations. On the other
hand, the RSET for the Boulware and Unruh states cannot be
defined on the Euclideanized metric. While progress is
underway in applying the extended coordinate method to
metrics with Lorentzian signature, we adopt an alternative
approach toward obtaining the RSET in the Boulware and
Unruh states by taking advantage of the fact that the

FIG. 4. Trace of the RSET in the Hartle-Hawking state
(continous lines) compared to the trace of the DS-RSET (dashed
lines) for the cases μM ¼ f1=2; 1; 2g and ξ ¼ 0 from top to
bottom, respectively. We have subtracted the Mc Laughlin tensor
(56) from the exact RSET to compare both results.
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difference between RSETs in two different Hadamard states
is finite. Hence we need only ever renormalize in one
reference state. In this paper, we used the Hartle-Hawking
state as the reference statewhere renormalization is performed
using the extended coordinate method on the Euclidean slice;
the RSET in other states involves the components in the
reference state plus finite, rapidly converging integrals over
products of Lorentzian modes. This way, we were able to
generate results for the RSET in the three states, for various
couplings and field masses in the Reissner-Nordström space-
time. To the best of our knowledge, our results for massive
fields in the Unruh state are the first in the literature.
The scope of this method extends to spacetimes in

which there is no preferred thermal state, i.e., situations
where the Euclideanized line element (2) has no conical
singularities. These encompass stellar spacetimes, where
an auxiliary finite temperature state could be used as a
conduit toward obtaining the RSET in the Boulware state.
In stationary spacetimes that admit no Euclidean line
element, as long as the RSET for a single state is known,
it would still be possible to generate results for other
states in those regions where both states are Hadamard.
Regarding analytic RSET approximations, we have seen

that the Polyakov approximation [40] reproduces reasonably
well the Hartle-Hawking and Unruh states, whereas it
predicts a milder Boulware divegence at the horizon. The
s-wave approximation [37] is clearly off in the Hartle-
Hawking state and is unable to yield a covariantly conserved
RSET in the Unruh state. Note that both approximations only
describemassless,minimally coupled fields. TheAHS-RSET
[2] admits any coupling but does not give standard results in
Minkowski spacetimewhen the field ismassive. Formassless
fields, it is qualitatively correct in the Hartle-Hawking and
Boulwarevacuums. Finally,massive fields in a state regular at
the event horizon are well approximated by the DS-RSET.
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APPENDIX: DEWITT-SCHWINGER RSET

Below you can find the coefficients in the components of
the DS-RSET (71),

A0 ¼ −9308r3þr3−; A1 ¼ 14712ðrþ þ r−Þrþr−;
A2 ¼ −½6845ðrþ þ r−Þ2 þ 7064rþr−�rþr−;
A3 ¼ ½1237ðrþ þ r−Þ2 þ 5137rþr−�ðrþ þ r−Þ;
A4 ¼ −1125ðrþ þ r−Þ2 − 45rþr−;

B0 ¼ 45864r3þr3−; B1 ¼ −75936ðrþ þ r−Þrþr−;
B2 ¼ ½36456ðrþ þ r−Þ2 þ 77224rþr−�rþr−;
B3 ¼ −504½11ðrþ þ r−Þ2 þ 67rþr−�ðrþ þ r−Þ;
B4 ¼ 5040ðrþ þ r−Þ2;
C0 ¼ 1684r3þr3−; C1 ¼ −3640ðrþ þ r−Þrþr−;
C2 ¼ ½2081ðrþ þ r−Þ2 þ 5145rþr−�rþr−;
C3 ¼ −½329ðrþ þ r−Þ2 þ 2889rþr−�ðrþ þ r−Þ;
C4 ¼ 441ðrþ þ r−Þ2 þ 657rþr−;

D0 ¼ −6552r3þr3−; D1 ¼ −14112ðrþ þ r−Þrþr−;
D2 ¼ −½8232ðrþ þ r−Þ2 þ 19880rþr−�rþr−;
D3 ¼ 168½9ðrþ þ r−Þ2 þ 65rþr−�ðrþ þ r−Þ;
D4 ¼ −2016ðrþ þ r−Þ2;
E0 ¼ −13916r3þr3−; E1 ¼ 22808ðrþ þ r−Þrþr−;
E2 ¼ −½10947ðrþ þ r−Þ2 þ 22771rþr−�rþr−;
E3 ¼ ½1543ðrþ þ r−Þ2 þ 10287rþr−�ðrþ þ r−Þ;
E4 ¼ −1323ðrþ þ r−Þ2 − 1971rþr−;

F0 ¼ 58968r3þr3−; F1 ¼ −95424ðrþ þ r−Þrþr−;
F2 ¼ ½45864ðrþ þ r−Þ2 þ 92456rþr−�rþr−;
F3 ¼ −2352½3ðrþ þ r−Þ2 þ 17rþr−�ðrþ þ r−Þ;
F4 ¼ 6048ðrþ þ r−Þ2: ðA1Þ
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