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Hawking radiation can be regarded as a spontaneous and continuous creation of virtual particle-
antiparticle pairs outside the event horizon of a black hole where strong tidal forces prevent the
annihilation; the particle escapes to infinity contributing to the Hawking flux, while its corresponding
antiparticle partner enters the event horizon and ultimately reaches the singularity. The aim of this paper
is to investigate the energy density correlations between the Hawking particles and their partners across
the event horizon of two models of nonsingular black holes by calculating the two-point correlation
function of the density operator of a massless scalar field. This analysis is motivated by the fact that in
acoustic black holes particle-partner correlations are signaled by the presence of a peak in the equal-time
density-density correlator. Performing the calculation in a Schwarzschild black hole it was shown in
Balbinot and Fabbri, [Quantum correlations across the horizon in acoustic and gravitational black holes,
Phys. Rev. D 105, 045010 (2022).] that the peak does not appear, mainly because of the singularity. It is
then interesting to consider what happens when the singularity is not present. In the Hayward and
Simpson-Visser nonsingular black holes we show that the density-density correlator remains finite when
the partner particle approaches the hypersurface that replaces the singularity, opening the possibility that
partner-particle correlations can propagate towards other regions of spacetime instead of being lost in a
singularity.

DOI: 10.1103/PhysRevD.108.125003

I. INTRODUCTION

One of the most important results of modern theoretical
physics is the fact that black holes are not completely black,
as predicted by general relativity, but they emit thermal
radiation. This process was demonstrated by Hawking [1]
in the context of quantum field theory in curved spacetime
and it is caused by the dynamical gravitational field that
acts during the collapse of a massive astrophysical body
leading to the formation of a black hole. Even though the
region inside the event horizon is causally disconnected
from the rest of the spacetime, analog models of gravity
have shown that the equal-time density-density correlator
can be used to study the Hawking process when one point is
taken outside the event horizon and the other inside. These
models are based on the pioneering work of Unruh [2], who
established that there exists an analogous phenomenon to
Hawking radiation in condensed matter systems, where
sound waves play the role of light and sound horizons the

role of event horizons. This opened the possibility to study
the Hawking radiation process in completely different
physical systems. As an example, the behavior of a
massless scalar field on a curved background is explained
by the same equation that characterizes the propagation of
sound waves in Eulerian fluids, which are described in
terms of an acoustic metric that is a function of the
background flow. In particular, the curvature of the
acoustic geometry is induced by the inhomogeneities in
the fluid flow, while flat Minkowski spacetime is recov-
ered in the case of a homogeneous system. It is also
possible to simulate a black hole using what is called an
acoustic black hole, which is obtained whenever a
subsonic flow is turned supersonic; sound waves in the
supersonic region are dragged away by the flow and
cannot propagate back toward the acoustic horizon sepa-
rating the supersonic and subsonic regions [3]. However,
differently from the case of astrophysical black holes, both
the external and internal regions are accessible to experi-
ments. In the case of acoustic black holes constructed
from Bose-Einstein condensates, it has been predicted that
the correlations between the Hawking particles and their
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partners will form a stationary peak in the equal-time
density-density correlator, which appears at late times
after the formation of the sonic horizon, with one point
taken inside it and the other outside [3,4]. This striking
feature has indeed been experimentally observed [5,6] and
it is the most stringent evidence of Hawking-like (phonons
in this case) radiation in an analog black hole. Inspired by
these results, R. Balbinot and A. Fabbri [7] calculated the
equal-time density-density correlator of a massless scalar
field on a Schwarzschild black hole background, finding a
result which is in disagreement with the acoustic black
hole case; the expected peak signaling the particle-partner
correlations does not appear. As we will review in detail
below, the reason lies in the fact that when a Hawking
particle emerges out of vacuum fluctuations in a region
outside the event horizon, called quantum atmosphere, the
corresponding partner has already entered the singularity.
Hence the peak does not have sufficient time to form. On
the opposite, in the acoustic case, the singularity does not
exist and one can tune the experiment setup in such a way
that the peak can always form.
The aim of this paper is to study the correlations in

regular spacetimes by calculating the density-density cor-
relator in the Hayward [8] and Simpson-Visser [9] non-
singular black holes. This choice is motivated by the fact
that the latter represents a minimal modification to the
Schwarzschild black hole that makes it regular, while the
former possesses two horizons, of which the inner one is a
Cauchy horizon, and therefore it has a causal structure that is
similar to the usual charged and rotating solutions of general
relativity. The result is that unlike in the Schwarzschild case,
where the equal-time density-density correlator vanishes
when the partner particle enters the singularity, in the regular
black holes analyzed here the correlator remains finite when
the partner particle approaches the hypersurfaces that replace
the singularity.
The paper is organized as follows. In Sec. II we briefly

recall the fundamental concepts of Hawking radiation. In
Sec. III we review the results concerning a Schwarzschild
black hole. In Sec. IV we generalize the procedure to
discuss possible correlations in the Hayward and Simpson-
Visser nonsingular black holes. Section V is devoted to the
conclusions. All the mathematical details can be found in
Appendixes A–E.

II. HAWKING RADIATION

We now briefly recall some fundamental aspects of
Hawking radiation that will be useful in the rest of the
paper. Let us consider a massless scalar field propagating in
a black hole spacetime, which possesses asymptotically
stationary regions in the past (“in”), corresponding to past
null infinity, and in the future (“out”), given by future null
infinity. Stationarity implies the existence of a timelike
Killing vector field with respect to which one can uniquely
specify positive frequency mode solutions to the field

equation and the corresponding vacuum states, defined as
the absence of particles according to all inertial observers in
the asymptotic region of interest.1 Let jini be the vacuum
state in the “in” region and jouti the one in the “out” region.
One usually works in the Heisenberg picture, so that by
assuming that the quantum state of the field in the “in” region
is jini, it will remain in that state during its subsequent
evolution. However, as it was first shown by Hawking [1],
inertial observers in the “out” region will detect a thermal
distribution of particles at the temperature TH ¼ k

2π, where k
is the surface gravity of the event horizon. One then
concludes that particles have been created by the external
time-dependent gravitational field acting between the two
asymptotic stationary regions. In fact, by considering the
field propagation in a Schwarzschild background, it is
possible to write the jini vacuum state in the “out” region
formally as [10]

jini ∝ e−
P

ω
πω
k a

bh†
ω aout†ω jouti; ð2:1Þ

where aout†ω and abh†ω are the creation operators for respec-
tively the outgoing modes reaching future null infinity and
the trapped modes entering the horizon. The mathematical
expressions of the states onwhich these operators act depend
on the choice of the orthonormal set of modes that are exact
solutions of the Klein-Gordon equation governing the
excitation (usually a massless scalar field) [10,11]. In this
formalism, the jini vacuum state represents a flux of
entangled particles, one escaping to infinity and the other
crossing the black hole horizon. This allows an intuitive
picture of the Hawking process; the presence of a trapped
region acts as an energy reservoir for the continuous and
spontaneous creation of particle-antiparticle pairs outside of
the event horizon, where strong tidal forces prevent their
mutual annihilation. The particle, having positive Killing
energy, escapes to infinity contributing to the Hawking flux,
while its corresponding antiparticle partner enters the event
horizon and ultimately reaches the singularity, depleting the
trapped region due to its negative Killing energy.

III. QUANTUM CORRELATIONS IN THE
SCHWARZSCHILD BLACK HOLE

In this section we review the calculation of the energy
density correlations between Hawking quanta across the
event horizon of a Schwarzschild black hole [7].

1Note that, in principle, it is not possible to define a complete
set of positive frequency mode solutions at future null infinity
(Iþ) since the latter is not a proper Cauchy surface. To form a
complete Cauchy surface it is necessary to consider the union of
Iþ with the event horizon so that among the outgoing modes we
must distinguish between the ones that are able to reach Iþ and
the ones that are trapped inside the horizon. However, an explicit
expression of the latter, which would be difficult to obtain
because there is no natural choice of time at the horizon, is
not needed to evaluate the particle production at Iþ [10].
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A. Modeling gravitational collapse

Hawking radiation is produced by the time-dependent
gravitational field during the collapse that leads to the
formation of a black hole. In the spirit of the “no hair”
theorem [12], the final result should be insensitive to
the details of the collapse and thus one can work with
the simplest solution to Einstein’s equation describing the
formation of a black hole through gravitational collapse,
namely the Vaidya metric. This is obtained by expanding
the mass parameter in the Schwarzschild metric from a
constant to a function of the ingoing Eddington-Finkelstein
coordinate v:

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dvdrþ r2dΩ2: ð3:1Þ

Since the Ricci tensor has only one nonvanishing compo-
nent given by

Rvv ¼
2

r2
dMðvÞ
dv

: ð3:2Þ

and the Ricci scalar is zero, the only nonvanishing
component of the stress-energy tensor is

Tvv ¼
LðvÞ
4πr2

; ð3:3Þ

where LðvÞ ¼ dMðvÞ
dv . The physical interpretation is that the

Vaidya solution describes a purely ingoing flux of massless
radiation characterized by the function LðvÞ. If such influx
is turned on at some advanced time vi and turned off at vf,
then the spacetime geometry can be divided into three
regions:

(i) A Minkowski vacuum region v < vi;
(ii) An intermediate collapse region vi < v < vf;
(iii) The final Schwarzschild configuration v > vf.

To discuss the Hawking radiation one cares about the “in”
and “out” stationary regions, so we can ideally narrow the
collapse region down to a single null surface. Therefore, we
consider an ingoing shock wave located at some v ¼ v0 of
the form LðvÞ ¼ Mδðv − v0Þ, that is MðvÞ ¼ Mθðv − v0Þ.
The resulting spacetime is then obtained by patching
portions of Minkowski and Schwarzschild spacetimes
along v ¼ v0. For v < v0 the metric is Minkowskian
and can be written in double null form:

ds2 ¼ −duindvþ r2ðuin; vÞdΩ2; ð3:4Þ

where uin ¼ t − r ¼ v − 2r. For v > v0 the metric is the
Schwarzschild one describing a black hole of mass M and
horizon located at r ¼ 2M. In double null form it reads

ds2 ¼ −
�
1 −

2M
r

�
dudvþ r2ðu; vÞdΩ2; ð3:5Þ

where

u ¼ t − r� ¼ v − 2r�; ð3:6Þ

and r� ¼ R ð1 − 2M
r Þ−1dr is the tortoise coordinate.

To guarantee continuity of the global metric at v ¼ v0,
one needs to impose the condition

rðuin; v0Þ ¼ rðu; v0Þ; ð3:7Þ

which leads to the following relation between the retarded
null coordinates inside and outside v0:

u ¼ uin − 4M ln

���� uin4M

����: ð3:8Þ

Exploiting the arbitrariness of v0, we have set v0 ¼ 4M to
simplify calculations. Inverting (3.8) one can formally
extend the coordinate uin in the exterior region in terms
of the Lambert function [13]

uin ¼ −4MWð�e−
u
4MÞ: ð3:9Þ

The positive sign holds in the exterior region and the minus
sign in the interior one.

B. Density-density correlator

Let us now consider a massless scalar field propagating in
the Vaidya spacetime. We assume the quantum state of the
field to be the Minkowski vacuum jini at past null infinity.
Then, we neglect the backscattering of themodes induced by
the curvature of spacetime, impose reflecting boundary
conditions at the origin r ¼ 0 in the Minkowski region,
and require regularity of themodes there. This corresponds to
work on the effective (1þ 1) metric [10,14,15]

ds2ð2Þ ¼ −
�
1 −

2MðvÞ
r

�
dv2 þ 2dvdr: ð3:10Þ

As shown in Appendix B, the density-density correlator of
the scalar field is given by the action of a differential operator
on the Wightman function, which is defined as

Gþðx; x0Þ ¼ hinjϕðxÞϕðx0Þjini: ð3:11Þ

Gþðx; x0Þ can be easily computed by expanding the field on
the complete set of positive frequency mode solutions to the
field equation at past null infinity [14], namely

Gþðx; x0Þ ¼ −
1

4π
ln
ðuin − u0inÞðv − v0Þ
ðuin − v0Þðv − u0inÞ

: ð3:12Þ

As stressed in [7], to fully characterize the correlation
functions, one needs to specify the observer’s state and we
choose the free-falling one on a radial path with velocity
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vector uα. Due to the conformal flatness of the metric (3.10),
the energy density of the field ϕ is equivalent to its pressure
density measured by this class of observers. Thus (for more
details see Appendix A)

ρ ¼ Tαβuαuβ; ð3:13Þ

where Tαβ is the stress-energy tensor of a massless scalar
field,

Tαβ ¼ ∂αϕ∂βϕ −
gαβ
2

gμν∂μϕ∂νϕ: ð3:14Þ

To obtain a simple expression for the energy density it is
convenient to map the metric (3.10) into the “out” region of
the Painlevé-Gullstrand coordinates [16]

ds2ð2Þ ¼ −fdT2 − 2VdTdrþ dr2; ð3:15Þ

where f ¼ 1 − 2M
r , V ¼ −

ffiffiffiffiffi
2M
r

q
and T is the Painlevé time

given by

T ¼ vþ
Z � ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

− 1

f

�
dr: ð3:16Þ

As also shown in Appendix A, the energy density measured
by radial free-falling observers in Painlevé-Gullstrand coor-
dinates is

ρ ¼ Trr: ð3:17Þ

Writing this expression in double null coordinates allows us
to obtain the following result for the density-density corre-
lator (see Appendix B for details):

Gðx; x0Þ ¼ hinjρðxÞρðx0Þjini

¼ hinj TuuðxÞTu0u0 ðx0Þ
ð1þ VðxÞÞ2ð1þ Vðx0ÞÞ2 þ

TuuðxÞTv0v0 ðx0Þ
ð1þ VðxÞÞ2ð1 − Vðx0ÞÞ2

þ TvvðxÞTu0u0 ðx0Þ
ð1 − VðxÞÞ2ð1þ Vðx0ÞÞ2 þ

TvvðxÞTv0v0 ðx0Þ
ð1 − VðxÞÞ2ð1 − Vðx0ÞÞ2 jini: ð3:18Þ

As pointed out in [10], (see also [17–19]), the expect-
ation value of a physical observable in the jini vacuum state
which describes gravitational collapse (and which is
reproduced at late time by the Unruh state in an eternal
Schwarzschild black hole) can be written as the sum of two
contributions, one describing the particle creation induced
by the formation of a black hole and the other being the
vacuum polarization that is constant in time and does not
contribute to the Hawking radiation. The vacuum polari-
zation terms come in fact from the expectation value of the
stress-energy tensor computed in the Boulware state, which
is chosen to correspond to the usual Minkowski vacuum at
future null infinity. However, this vacuum state is patho-
logical at the horizon, in the sense that the expectation
values of physically relevant quantities diverge as the
horizon is approached. Being empty at infinity, the

Boulware state corresponds to the absence from the
vacuum of blackbody radiation at the black hole temper-
ature and so its physical realization would be the state
describing vacuum polarization outside a massive spherical
body of radius slightly larger than its Schwarzschild radius.
Since we are interested in studying energy-density corre-
lations between Hawking quanta we therefore have to
neglect vacuum polarization effects that do not describe
black holes evaporation. As shown in [7,20], this accounts
for retaining only the term coming from the u sector of the
correlator, since in a two-dimensional spacetime all the
other terms receive contributions only from the vacuum
polarization. Therefore, the key ingredient for the descrip-
tion of density correlations is the Tuu part, which, as
reported in Appendix B, is obtained from

1

ð1þ VðrÞÞ
1

ð1þ Vðr0ÞÞ ∂u∂u0 hinjϕðxÞϕðx
0ÞjinijT¼T 0

¼ 1

16π

1

1 −
ffiffiffiffiffi
2M
r

q 1

1 −
ffiffiffiffiffi
2M
r0

q 1

ðuin − 4MÞðu0in − 4MÞ
1

cosh2 ln
ffiffiffiffiffiffiffiffi
− uin

u0in

q
������
T¼T 0

: ð3:19Þ
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At late retarded time (u → þ∞, uin → 0) the relation
between the retarded null coordinates inside and outside
the horizon reported in Eq. (3.9) can be approximated as

uin ≃�4Me−
u
4M; ð3:20Þ

where uin < 0 for r > 2M and uin > 0 for r < 2M. In this
limit one obtains

1

ð1þVðrÞÞ
1

ð1þVðr0ÞÞ∂u∂u0 hinjϕðxÞϕðx
0ÞjinijT¼T 0

≃
1

16π

1

1−
ffiffiffiffiffi
2M
r

q 1

1−
ffiffiffiffiffi
2M
r0

q 1

16M2

1

cosh2ðu−u0
8M Þ

�����
T¼T 0

: ð3:21Þ

This function has a maximum for u ¼ u0, i.e. along the
trajectory of the Hawking particle and its partner, as in the
case of analog black holes. However, one has still to verify
whether this maximum condition is fulfilled or not. Con-
sidering the relation between Eddington-Finkelstein coor-
dinates and Painlevé time (3.16), the condition u ¼ u0 at
equal times can be written as

rþ 2
ffiffiffiffiffiffiffiffiffi
2Mr

p
þ 4M ln

� ffiffiffiffiffiffiffi
r
2M

r
− 1

�

¼ r0 þ 2
ffiffiffiffiffiffiffiffiffiffi
2Mr0

p
þ 4M ln

�
1 −

ffiffiffiffiffiffiffi
r0

2M

r �
: ð3:22Þ

In analogy to what happens for acoustic black holes, one
would expect that at late times and for r sufficiently far away
from the horizon, the equal-time density-density correlator
should show a peak along (3.22), see Refs. [3,4,7].
The key ingredient to investigate this possibility is the

location of the region of spacetime where Hawking quanta
emerge out of vacuum fluctuations.
Calculating the radius of a radiating body using the

Stephan-Boltzmann law, Giddings [21] was able to show
that the Hawking particles originate from a region outside
the event horizon of the black hole, called “quantum
atmosphere”, located at a distance oð1=kÞ, k being the
horizon surface gravity. This result was later corroborated
by the work of other authors [22,23], using a detailed
analysis of the renormalized vacuum expectation value of
the stress-energy tensor of a massless scalar field in the
Schwarzschild spacetime. The same conclusion was
obtained also for acoustic black holes [4,7].
If we now plot the two functions entering the left- and

right-hand sides of Eq. (3.22) (Fig. 1) we see that the right-
hand side is always smaller or equal than zero since
0 < r0 < 2M. As a consequence, to find a solution, also
the left-hand side has to be smaller or equal than zero and
this happens for r≲ 2.6M. Therefore, Eq. (3.22) has real
solutions only if r≲ 2.6M, for which the corresponding r0
is located between zero and 2M. We then conclude that

when the Hawking particle emerges from the quantum
atmosphere out of vacuum fluctuations at a distance of the
order of 4M from the horizon, the corresponding partner
has already been swallowed by the singularity and the
correlations are lost. On the other hand, for solutions with a
nonvanishing r0 < 2M, the correlator Gðx; x0Þ is dominated
by the coincidence limit and the peak, signaling the
particle-partner correlations, does not appear.
This result is in striking disagreement with what happens

in acoustic black holes and it is due to the presence of the
quantum atmosphere and of the central singularity.
For later comparison with other black hole type curved

spacetime backgrounds, as well as to better understand the
behavior of the correlator in regions of physical interest, it
is useful to study the correlator in the limits r0 → 0, r →
2M and r → ∞. Using the results of Appendix B, the Tuu
correlator can be written as

Gðx; x0Þ ¼ 1

16π2
1

ð1þ VðxÞÞ2ð1þ Vðx0ÞÞ2

×

�
duin
du

�
2
�
du0in
du0

�
2 1

ðuin − u0inÞ4
: ð3:23Þ

We note that fixing the time variables, (3.23) takes the form
of the product of a function of r, a function of r0 and
another of both r and r0. However, the latter affects the form
of the correlator only in the coincidence limit or when the
denominator diverges, which occurs when one of the two
particles is at infinity. All the mathematical details regard-
ing the calculation of the limits of the correlator are
described in Appendix C. When r0 → 0 we can focus on
the parts that depend only on r0,

lim
r0→0

1

ð1� Vðr0ÞÞ2 ¼ 0; ð3:24Þ

and

FIG. 1. Plot of the left-hand side of Eq. (3.22) (u0) as a function
of r0 < 2M in red and of the right-hand side (u) for r > 2M
in blue.
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lim
r0→0

du0in
du0

¼ ∞: ð3:25Þ

Thus, one needs to consider

lim
r0→0

1

ð1þ Vðr0ÞÞ2
�
du0in
du0

�
2

¼ 0: ð3:26Þ

Therefore, when the partner particle approaches the singu-
larity, the density-density correlator vanishes.
When r → 2M one has

lim
r→2M

1

ð1þ VðrÞÞ2 ¼ ∞; ð3:27Þ

lim
r→2M

duin
du

¼ 0: ð3:28Þ

In this case we have to study the following limit:

lim
r→2M

1

ð1þ VðrÞÞ2
�
duin
du

�
2

¼ 4e−
T
2M: ð3:29Þ

In Eq. (3.29), T is the Painlevé time it takes to go from the
quantum atmosphere ðrqa ∼ 1

k ¼ 4MÞ to the horizon
ðr ¼ 2MÞ:

T ¼
Z

2M

4M

1

V
dr ¼ 4

3
ð2

ffiffiffi
2

p
− 1ÞM: ð3:30Þ

The same result is obtained for r0 → 2M. Therefore, the
correlator remains finite when one of the Hawking quanta
approaches the horizon.
When r → ∞, the part of the correlator that depends on

both r and r0 dominates because uin → u → ∞. This implies
that the correlator goes to zero when the Hawking particle
reaches spatial infinity.

IV. QUANTUM CORRELATIONS IN
NONSINGULAR BLACK HOLES

As discussed in the previous section, energy density
correlations between Hawking particles and their partners
across the event horizon of a Schwarzschild black hole are
lost because of the presence of the quantum atmosphere and
of the singularity. It would then be interesting to study what
happens if the singularity is not present.

A. Nonsingular black holes

One of the fundamental results of classical general
relativity is the Penrose singularity theorem [24], which
proves that, under general assumptions, the gravitational
collapse of a sufficiently massive astrophysical body will
lead to the formation of trapped surfaces and thus of a
singularity. However, the appearance of singularities is
usually accompanied by an unlimited increase of spacetime

curvature, and in these conditions, Einstein’s equation is
not expected to work anymore because the quantum
corrections become of the same order of the main classical
terms. Therefore, singularities in general relativity are
usually regarded as a problem of this classical theory,
which may be solved by its quantization. In the absence of a
completely satisfactory theory of quantum gravity, one can
still provide qualitative arguments for the existence of
nonsingular black holes, violating at least one of the
assumptions of the Penrose theorem, typically the strong
energy condition [25,26]. One possibility is to study
quantum effects of gravitation with the semiclassical
approach in which matter fields are quantized in the usual
way, while the spacetime geometry is treated classically.
However, in the case of black hole spacetimes, close to the
singularity the curvature reaches order unity in Planck units
and so quantum fields begin to dominate on the geometry.
Whether gravitation can still be treated classically at this
level is far from being certain, but one can wonder if
quantum polarization effects can provide a mechanism to
slow down the infinite rise of curvature and to maintain it
bounded to Planckian magnitude [27]. It is possible to
outline in a qualitative way the behavior of the corrected
curvature when quantum effects are taken into account
assuming that the h−Tt

ti component of the stress-energy
tensor is proportional to the curvature squared2 with a
coefficient ða2Þ, that depends on the number and on the
nature of the quantum fields [28]. One then arrives at the
following expression:

MðrÞ
r3

¼ 1

a2 þ
�

r
rQ

� ; ð4:1Þ

where MðrÞ is the mass function and rQ ¼ M1=3 is the
radius at which quantum effects become important. For
r ≫ rQ one recovers the curvature of the Schwarzschild
black hole, while for smaller radii it depends on the sign of
a2. If a2 < 0 the curvature diverges at r ¼ ja2=3jrQ, while if
a2 > 0 the curvature remains bounded and constant.
Therefore, a spherically symmetric, uncharged black hole
should be described by the Schwarzschild solution down to
a critical radius rQ where quantum effects produce a
smooth transition towards a constant curvature, de Sitter
core [29]. In this region, the strong energy condition does
not hold and thus the singularity can be avoided.
It is interesting to notice that the same conclusion was

obtained also in [30], where it was supposed that, because
of quantum effects, the spacetime curvature should always
be subject to an upper bound of Planckian magnitude. At
the limiting curvature, the density is so high that all the
particles lose their identity and matter undergoes a

2Here by curvature squared we intend the Kretschmann scalar,
which for the Schwarzschild black hole is K ∼ M2

r6
.
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transition into a vacuumlike state described by the stress-
energy tensor Tμν ¼ −ρgμν, where ρ is a positive, constant
energy density. In this way, the strong energy condition is
violated and gravity acts in such a way that the trajectories
of freely falling test particles moving along causal geo-
desics behave as if they were repulsed from the center. In
the following, we consider a quantized scalar field that
propagates on the nonsingular geometries of the Simpson-
Visser and Hayward black holes. As a first approximation,
we neglect the backreaction of the field on the background
geometry. As a consequence, the stress-energy tensor
associated to the scalar field cannot contribute to energy
condition violations.

1. Hayward nonsingular black hole

We now present an explicit example of a nonsingular
black hole obtained by applying the argument presented
above. As previously discussed, assuming that the h−Tt

ti
component of the stress-energy tensor is proportional to the
curvature squared because of quantum polarization effects,
the mass function can be written as [see Eq. (4.1)]

MðrÞ ¼ Mr3

r3 þ 2ML2
; ð4:2Þ

where 2L2 ¼ a2 > 0. It is then possible to consider the
following spherically symmetric metric:

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð4:3Þ

where

fðrÞ ¼ 1 −
2MðrÞ

r
¼ 1 −

2Mr2

r3 þ 2L2M
: ð4:4Þ

This is called the Hayward metric [8].
Asymptotically, for r ≫ M, fðrÞ behaves as

fðrÞ ∼ 1 −
2M
r

; ð4:5Þ

reproducing a Schwarzschild spacetime with mass M.
For r → 0, we have

fðrÞ ∼ 1 −
r2

L2
; ð4:6Þ

which gives a de Sitter spacetime with cosmological
constant Λ ¼ 3

L2. Hayward’s model is the most popular
of a class of black holes that have a de Sitter structure near
the central singularity. In the literature, these are often
called nonsingular black holes with a de Sitter core (for a
recent review see Ref. [31]).
It is possible to check that the Hayward metric is not

singular by computing the curvature invariants, which are

regular everywhere, and also that the stress-energy tensor
that generates such a spacetime violates the strong energy
condition.
The Hayward spacetime contains a trapped region, the

boundary of which is given by the solutions of the equation
fðrÞ ¼ 0. In particular, it is possible to define a critical

mass M� ¼ 3
ffiffi
3

p
L

4
such that, if M > M�, fðrÞ has three real

roots, if M ¼ M�, fðrÞ has one multiple root, if M < M�,
fðrÞ has one real root and a complex pair. However, in the
M > M� case one of the three roots is negative and thus it
cannot be accepted because r should be greater or equal
then zero (and real). The same happens for the real root in
the M < M� case. Since L gives the approximate length
scale below which quantum effects of gravity become
dominant, one might expect L to be of the order of the
Planck length. Therefore, for black holes formed by
gravitational collapse, M is much greater than the critical
massM�,3 and the roots of fðrÞ can be approximated as [8]

r1 ≃ 2M −
L2

2M
; ð4:7Þ

r2 ≃ Lþ L2

4M
: ð4:8Þ

It is important to note that the Hayward spacetime is not
globally hyperbolic because the inner horizon at r ¼ r2 is a
Cauchy horizon. This is a common characteristic of black
holes with a de Sitter core.
The Hayward nonsingular black hole can be obtained

from gravitational collapse generalizing the Vaidya metric
used in the previous section to model the formation of a
Schwarzschild black hole. Also in this case, it is enough to
promote the mass parameter M in the metric (4.3) from a
constant to a function of the ingoing null coordinate v [8].

2. Simpson-Visser nonsingular black hole

Another popular model of regular spacetime is the one
proposed by Simpson and Visser [9]. In contrast with the
case studied above, this model does not have a de Sitter
core [31]. This is an example of “black bounce” spacetime
[32], which is a regular spacetime, where the area radius
always remains nonzero, thereby leading to a “throat”. In
the case that we are going to analyze, the idea is to
introduce a minimal modification to the Schwarzschild
metric in order to make it regular. The line element can be
written as

3This is the case for the calculation of the density-density
correlator, that is when the geometry has already settled down
after the collapse and the backreaction of Hawking evaporation
on the metric can still be neglected.

STRESS-ENERGY TENSOR CORRELATIONS ACROSS REGULAR … PHYS. REV. D 108, 125003 (2023)

125003-7



ds2 ¼ −
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�
dt2 þ dr2�

1 − 2Mffiffiffiffiffiffiffiffiffi
r2þa2

p
�

þ ðr2 þ a2Þðdθ2 þ sin2θdφ2Þ: ð4:9Þ

Depending on the value of the parameter a, this metric
represents either:

(i) The ordinary Schwarzschild spacetime (a ¼ 0);
(ii) A traversable wormhole geometry (in the Morris-

Thorne sense [33]) with a two-way timelike throat
ða > 2MÞ;

(iii) A one-way wormhole geometry with an extremal
null throat ða ¼ 2MÞ;

(iv) A nonsingular black hole ða < 2MÞ.
In particular, we will be interested in the latter case.
The horizons locations are obtained by solving the

equation fðrÞ ¼ 0, with fðrÞ ¼ 1 − 2Mffiffiffiffiffiffiffiffiffi
r2þa2

p . One has

r� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
, which are real, nondegenerate, solu-

tions if and only if a < 2M, corresponding to the case
under study. Therefore, when a < 2M there will be
symmetrically placed r coordinate values, rþ > 0 and
r− < 0, which correspond to a pair of horizons.
The hypersurface r ¼ 0 is a spacelike, spherical hyper-

surface which marks the boundary between our Universe
and a bounce into a separate copy of it. This implies that for
negative values of the r coordinate we have “bounced” into
another universe. It is possible to compute the curvature
invariants to directly check the regularity of the spacetime.
Then, studying the stress-energy tensor that gives rise to
such a spacetime, one can show that the null energy
condition is violated, and so are all the energy conditions.
A peculiar feature of the Simpson-Visser nonsingular

black hole is the fact that it is not possible to describe its
formation from gravitational collapse generalizing the
Vaidya metric if one keeps the parameter a constant and
nonvanishing because it implies the existence of a throat. In
fact, it can be easily seen from the metric (4.9) that when
M ¼ 0 one has a wormhole instead of flat space. Therefore,
starting with zero mass and then considering an increasing
mass function one has a transition from a wormhole to a
nonsingular black hole [34]. This implies that a more
complete model of gravitational collapse is needed to
describe the onset of a black bounce. However, this is
not a problem for the calculation of the density-density
correlator, which is the focus of this work.

B. Density-density correlator

To study the density-density correlator in nonsingular
black hole spacetimes we follow the procedure adopted in
Sec. III, where we performed the same calculation on a
Schwarzschild background spacetime. In particular, we
neglect backscattering of the modes induced by the
curvature of spacetime and consider a (1þ 1)-dimensional

theory describing the propagation of a massless scalar field
in the (1þ 1)-dimensional section of the Vaidya-like
spacetime described by the line element

ds2ð2Þ ¼ −fðr; vÞdv2 þ 2dvdr: ð4:10Þ

In this way, the Wightman function is the same as (3.12)
because any two-dimensional metric describing the “in”
region is conformal to the Minkowski one, and therefore
the field equation has the same mode solutions at past null
infinity. Then, we consider the quantum state of the system
to be the jini vacuum of the “in” region. Therefore, the
correlator that we want to study is

Gðx; x0Þ ¼ hinjρðxÞρðx0Þjini; ð4:11Þ

evaluated in the black hole region, where one point (x) is
taken outside the (outer) horizon and the other ðx0Þ inside. It
is also assumed that the spacetime has already settled down
after the collapse (or the wormhole to black hole transition
in the Simpson-Visser case) and that the backreaction of
Hawking evaporation on the metric can be neglected. In
this way, one has to deal with static, spherically symmetric
metrics for which it is possible to introduce Painlevé
coordinates, describing free-falling observers, in the same
way as in Schwarzschild, and write the metric in the form
(3.15). Therefore, the calculation of the correlator proceeds
exactly as in the Schwarzschild case and the fundamental
element to study the presence of correlations between the
Hawking quanta and their corresponding partners across
the horizon, namely the Tuu correlator, can be written in the
form (3.23). The differences with the Schwarzschild
spacetime are in the expressions of the null coordinates
in the “in” and “out” regions (uin and u, respectively) and
the relations between them. Therefore, the explicit expres-
sion of the correlator will be different for the Hayward,
Simpson-Visser and Schwarzschild black holes.
Nevertheless, it is possible to generalize the procedure
that was used for the Schwarzschild black hole in the
following way:

(i) Compute the tortoise coordinate;
(ii) Impose the continuity of the metric (4.10) describing

the transition from the “in” region to the “out” one
on the transition null shell at v ¼ v0;

(iii) Obtain the relation between the retarded null
coordinates outside and inside v0, check that the
function uðuinÞ is invertible and compute du

duin
. Then,

duin
du ¼ ð du

duin
Þ−1;

(iv) Invert the function uðuinÞ; Unfortunately, for the
Hayward and Simpson-Visser black holes this can
be done only in particular cases, when the relation
between u and uin can be approximated with a
simpler expression. In particular, for the Hayward
black hole we will consider three limits: r0 → r2,
r → r1 and r → ∞. For the Simpson-Visser black
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hole the interesting regions are r0 → 0, r → rþ
and r → ∞.

(v) Write u in Painlevé coordinates;
(vi) Study the behavior of the density correlator in the

limits mentioned above.

1. Density correlations in the Hayward spacetime

In the Hayward case, the calculation exploits the fact that
the metric reduces to the Schwarzschild one asymptotically,
while it reproduces the de Sitter metric close to the origin
and to the Cauchy horizon in the M ≫ L limit that is
considered. When the inner point approaches the Cauchy
horizon we have (see Appendix D for details)

lim
r0→r2

1

ð1þ Vðr0ÞÞ2 ¼ ∞: ð4:12Þ

lim
r0→r2

du0in
du0

¼ 0: ð4:13Þ

Therefore, one has to consider

lim
r0→r2

1

ð1þ Vðr0ÞÞ2
�
du0in
du0

�
2

¼ 4r22e
−4r1

r2
þ2T0

r2 : ð4:14Þ

The fact that this expression is not vanishing on the inner
horizon implies that the density correlator remains finite
when one of the two points approaches this hypersurface.
It is then important to verify that when L → 0, which

implies r2 → 0, so that there is no Cauchy horizon but a
singularity at r ¼ 0, the density correlator vanishes accord-
ing to (3.26).
Looking at Eq. (4.14) there are two possibilities:
(i) If −4r1 þ 2T 0 > 0, the correlator diverges when

L → 0;
(ii) If −4r1 þ 2T 0 < 0, the correlator goes to zero when

L → 0.
T 0 is the Painlevé time it takes for the partner particle to
travel the distance between the quantum atmosphere and
the Cauchy horizon:

T 0 ¼
Z

r2

rQA

1

V
dr ¼ −

Z
r2

rQA

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr2

r3 þ 2L2M

s !−1

dr; ð4:15Þ

where rQA is the radius of the quantum atmosphere,
rQA ∼ 1

k, with k ¼ 3
4M − 1

r1
being the surface gravity of the

outer horizon of the Hayward black hole. For example,
taking M ¼ 1 and L ¼ 0.001, the integral can be solved
numerically, giving T 0 ≃ −4.23 < 0. However, as L
decreases, T 0 increases because r2 becomes smaller and
thus it could be that −4r1 þ 2T 0 becomes positive when
L → 0. Nevertheless, this does not happen because when
L → 0, T 0 becomes the Painlevé time that it takes for the

partner particle to go from the quantum atmosphere to
r ¼ 0 in a Schwarzschild black hole, which is

lim
L→0

T 0 ¼ 8

3

ffiffiffi
2

p
M: ð4:16Þ

Therefore,

lim
L→0

ð−4r1þ2T 0Þ¼−24þ16
ffiffiffi
2

p

3
M≃−1.37M<0: ð4:17Þ

This implies that, in the L → 0 limit one gets back the
Schwarzschild result, as expected.
In the M ≫ L case, the Hayward black hole differs from

the Schwarzschild one only close to r ¼ 0. Outside the
Cauchy horizon the effect of the L parameter is just an
infinitesimal shift of the outer horizon, which does not have
any appreciable consequence. Therefore, when r → r1 and
r → ∞ every element of the density-density correlator
reduces to its Schwarzschild counterpart. We can then
conclude that the correlator remains finite when one of
the two points hits the outer horizon and it vanishes
asymptotically.

2. Density correlations in the Simpson-Visser spacetime

We finally discuss what happens in a Simpson-Visser
nonsingular black hole. In this case, the idea is to perform a
Taylor expansion of the relevant quantities in the limits of
interest (see Appendix E for details).
The term of the density correlator that depends only on r0

remains finite when r0 → 0. In fact one has

lim
r0→0

1

ð1�Vðr0ÞÞ2
�
du0in
du0

�
2

¼ 1�
1�

ffiffiffiffiffi
2M
a

q �
2

2
664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m−aÞ2

a2 T 02 þ 4a2
q

− 4Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m−aÞ2

a2 T 02 þ 4a2
q

3
775
2

; ð4:18Þ

Therefore, the density correlator remains finite and non-
vanishing when the inner point approaches r ¼ 0 (unless
the outer point reaches infinity, as it will be discussed
below). In particular, T 0 is the Painlevé time it takes for the
partner particle to go from the quantum atmosphere to
r ¼ 0, which is given by

T 0 ¼
Z

0

rQA

1

V
dr ¼ −

Z
0

rQA

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
s !−1

dr: ð4:19Þ

rQA ∼ 1
k is the radius of the quantum atmosphere, with k ¼

1
4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

4M2

q
being the surface gravity of the horizon of the
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Simpson-Visser black hole located at rþ. The result of the
integral (4.19) can be expanded for M ≫ a,4

T 0 ≃
8

3

ffiffiffi
2

p
M þ

ffiffi
π
2

p
Γ
�
1
4

�
6
ffiffiffiffiffi
M

p
Γ
�
3
4

� a3=2 þ 3

4
ffiffiffi
2

p
M

a2: ð4:20Þ

Note that, when a ¼ 0 one gets back the corresponding
Painlevé time in the Schwarzschild black hole (4.16). Then,
one should verify that the result (4.18), with the “þ ” sign
in the first factor, reduces to the Schwarzschild one when
a → 0. Performing an expansion for M ≫ a one obtains

lim
r0→0

1

ð1þ Vðr0ÞÞ2
�
du0in
du0

�
2

¼ a
2M

þ oða3=2Þ⟶
a→0

0: ð4:21Þ

Therefore, when a → 0 the density correlator vanishes and
we get back the corresponding Schwarzschild result (3.26).
When one of the two points approaches the event horizon

at r ¼ rþ one has, for M ≫ a,

lim
r→rþ

1

ð1þ VðrÞÞ2
�
duin
du

�
2

≃ 4e−
T
2M þ e−

3T
4M

8M3
ð−12M þ 9Me

T
4M þ 2Te

T
4MÞa2 þ oða3Þ:

ð4:22Þ

It can be noted that the zeroth-order term coincides with the
Schwarzschild result (3.29), as expected. In fact, far from
r ¼ 0, the Simpson-Visser “regularization” has only the
effect of shifting the horizon by an infinitesimal amount in
theM ≫ a limit. In this spirit, when the outer point reaches
infinity, the density correlator goes to zero. This can be
easily checked because, in this limit, uin → u → ∞ and
therefore (3.23) vanishes.

V. CONCLUSIONS

We have studied the two-point correlation function of the
density operator of a massless scalar field propagating in
two nonsingular black hole spacetimes to investigate the
energy density correlations between the Hawking quanta
escaping to infinity and their partners that enter the event
horizon. The analysis focused, in particular, on the
Hayward and the Simpson-Visser black holes and it was
inspired by the work done for an analog black hole
generated using a Bose-Einstein condensate. Here, a peak
in the density-density correlator, which has also been
measured experimentally, signals the presence of par-
ticle-partner correlations. In the Schwarzschild case this
peak does not show as when a Hawking particle emerges

out of the quantum atmosphere the corresponding partner
has already been swallowed by the singularity and their
mutual correlations are lost. We have therefore investigated
the behavior of the density-density correlator when the
singularity is not present considering the Hayward and
Simpson-Visser nonsingular black holes. This has been
done generalizing the procedure already used in the
Schwarzschild case. However, for these regular spacetimes
it is not possible to compute analytically (mainly because
the functions involved are not invertible) the correlator for
any couple of points outside and inside the event horizon
and so we have not been able to show the presence of a peak
directly. Nevertheless, we have demonstrated that the
correlator remains finite on the hypersurface that replaces
the singularity, in opposition to what happens with the
Schwarzschild black hole. In addition, when the black hole
mass is much larger than the Planck length, the spacetime
structure of the Hayward and Simpson-Visser nonsingular
black holes is similar to that of the Schwarzschild one apart
from the region close to r ¼ 0 and thus one can suppose
that also the form of the correlator will be qualitatively
similar. However, in this case the characteristic peak will
appear due to the fact that the partner particle does not enter
a singularity but it continues to travel in other regions of
spacetime where the correlator is finite. Therefore, energy
density correlations can propagate in other copies of our
universe towards the hypersurfaces that replace the singu-
larity in regular black hole spacetimes. To confirm these
conclusions a numerical calculation of the correlator should
be performed, which could be done by generalizing the
methods used in [35,36]. We hope to report soon on this
possibility.

APPENDIX A

In Sec. III we have considered the energy density
operator of a massless scalar field measured by free-falling
observers in Painlevé-Gullstrand coordinates, which are
obtained introducing a new time coordinate, called the
Painlevé time, defined as

T ¼ tþ
Z ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

f
dr; ðA1Þ

where f ¼ 1 − 2M
r for a Schwarzschild black hole. Note that

the Painlevé time coincides with the proper time of the
inertial observers free-falling radially from initial zero
velocity.
The two-dimensional Schwarzschild line element in

these ðT; rÞ coordinates is

ds2 ¼ −fdT2 − 2VdTdr; ðA2Þ

where V ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
. The four-velocity of the observers

that are considered is

4As usual we work on a stationary geometry. Since a should be
a Planckian cutoff at which quantum effects of gravity become
dominant, it is reasonable to assume M ≫ a.
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uα ¼ ð1; VÞ: ðA3Þ

(uαuα ¼ −1, as can be easily verified). Recalling
Eq. (3.13), the energy density is given by

ρ ¼ Tαβuαuβ ¼ TTT þ 2VTTr þ V2Trr: ðA4Þ

Due to conformal invariance the trace of the stress-energy
tensor is zero, Tαβ ¼ 0. Therefore, we have

Tαβgαβ ¼ −TTT − 2VTTr þ fTrr ¼ 0: ðA5Þ

where gαβ is the inverse of the two-dimensional
Schwarzschild metric in Painlevé-Gullstrand coordinates,

gαβ ¼
� −1 −V
−V f

�
: ðA6Þ

Substituting this result in Eq. (A4) we obtain the following
simple expression for the density operator,

ρ ¼ ðf þ V2ÞTrr ¼ Trr: ðA7Þ

As discussed in Appendix B, to calculate the two-point
correlation function one has to derive twice the Wightman
function (3.12). Since the latter is written in null coor-
dinates, it is better to express also the density operator in the
same coordinate system. Recalling the expression of the
energy-momentum tensor of a massless scalar field (3.14),
the components in null coordinates are

Tuu ¼ ∂uϕ∂uϕ; ðA8Þ

Tvv ¼ ∂vϕ∂vϕ; ðA9Þ

Tuv ¼ Tvu ¼ 0: ðA10Þ

Applying the usual tensor transformation rules to Trr
we get

Trr ¼
∂xα

∂r
∂xβ

∂r
Tαβ

¼
�
∂u
∂r

�
2

Tuu þ
�
∂v
∂r

�
2

Tvv þ 2
∂u
∂r

∂v
∂r

Tuv: ðA11Þ

The relation between the Eddington-Finkelstein coordi-
nates and the Painlevé-Gullstrand ones is

u ¼ t − r� ¼ T −
Z ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p þ 1

f
dr; ðA12Þ

v ¼ tþ r� ¼ T −
Z ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

− 1

f
dr: ðA13Þ

Deriving and substituting into Eq. (A11) one obtains the
following expression for the density operator written in
ðu; vÞ coordinates:

ρ ¼ Trr ¼
� ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p þ 1

f

�
2

Tuu þ
� ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p

− 1

f

�
2

Tvv

¼ Tuu

ð1þ VÞ2 þ
Tvv

ð1 − VÞ2 : ðA14Þ

APPENDIX B

Given the expression (3.18) of the density-density
correlator, we want to write it in null coordinates, which
in turn can be expressed in Painlevé-Gullstrand coordi-
nates, in order to study how it behaves as a function of the
position of the two points outside and inside the event
horizon.
As remarked in Sec. III B, the fundamental object to

study possible energy-density correlations between a
Hawking particle and its partner across the event horizon
of a black hole in a two-dimensional spacetime is the Tuu
correlator. Applying the Wick’s theorem, it can be written
as a differential operator applied to the Wightman function:

hinjTuuðxÞTu0u0 ðx0Þjini ¼ ð∂u∂u0 hinjϕðxÞϕðx0ÞjiniÞ2: ðB1Þ

Then, we have to calculate

∂u∂u0 hinjϕðxÞϕðx0Þjini¼−
1

4π
∂u∂u0 ln

ðuin−u0inÞðv−v0Þ
ðuin−v0Þðv−u0inÞ

¼−
1

4π

duin
du

du0in
du0

1

ðuin−u0inÞ2
; ðB2Þ

where we have used the expression (3.12) for theWightman
function. Let us now recall Eq. (3.8), which gives u as a
function of uin. Since x is taken outside the horizon, uin < 0
and we have

u ¼ uin − 4M ln

�
−
uin
4M

�
: ðB3Þ

Since this function is invertible when uin < 0 one has
duin
du ¼ ð du

duin
Þ−1. Taking the derivative of (B3) with respect to

uin we get

du
duin

¼ uin − 4M
uin

; ðB4Þ

from which

duin
du

¼ uin
uin − 4M

: ðB5Þ
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Repeating the same calculation for the “primed” sector
(remember that x0 is inside the horizon and thus u0in > 0)
one obtains

du0in
du0

¼ u0in
u0in − 4M

: ðB6Þ

Now we can insert the results (B5) and (B6) into Eq. (B2):

∂u∂u0 hinjϕðxÞϕðx0Þjini

¼ −
1

4π

uinu0in
ðuin − u0inÞ2

1

ðuin − 4MÞðu0in − 4MÞ : ðB7Þ

It is convenient to use the following identity

−
uinu0in

ðuin − u0inÞ2
¼ 1

4cosh2 ln
ffiffiffiffiffiffiffiffi
− uin

u0in

q : ðB8Þ

Therefore, the Tuu correlator (B1) finally reads

hinjTuuðxÞTu0u0 ðx0Þjini

¼ 1

256π2
1

cosh4 ln
ffiffiffiffiffiffiffiffi
− uin

u0in

q 1

ðuin − 4MÞ2ðu0in − 4MÞ2 : ðB9Þ

For completeness, we also report the calculation of the
other three terms in the correlator (3.18). In particular,
repeating the same procedure for the v-sector we obtain

hinjTvvðxÞTv0v0 ðx0Þjini¼ð∂v∂v0 hinjϕðxÞϕðx0ÞjiniÞ2: ðB10Þ

Using again the Wightman function (3.12) we have

∂v∂v0 hinjϕðxÞϕðx0Þjini ¼ −
1

4π
∂u∂u0 ln

ðuin − u0inÞðv − v0Þ
ðuin − v0Þðv − u0inÞ

¼ −
1

4π

1

ðv − v0Þ2 : ðB11Þ

Thus, the Tvv correlator reads

hinjTvvðxÞTv0v0 ðx0Þjini ¼
1

16π2
1

ðv − v0Þ4 : ðB12Þ

The “mixed” correlators can be computed in a similar way,

hinjTuuðxÞTv0v0 ðx0Þjini ¼ 2ð∂u∂v0 hinjϕðxÞϕðx0ÞjiniÞ2;
ðB13Þ

hinjTvvðxÞTu0u0 ðx0Þjini ¼ 2ð∂v∂u0 hinjϕðxÞϕðx0ÞjiniÞ2;
ðB14Þ

with

∂u∂v0 hinjϕðxÞϕðx0Þjini ¼
1

4π

duin
du

1

ðuin − v0Þ2

¼ 1

4π

uin
uin − 4M

1

ðuin − v0Þ2 ðB15Þ

and

∂v∂u0 hinjϕðxÞϕðx0Þjini ¼
1

4π

du0in
du0

1

ðv − u0inÞ2

¼ 1

4π

u0in
u0in − 4M

1

ðu0in − vÞ2 : ðB16Þ

APPENDIX C

In this appendix, we report the calculation of the limits of
the correlator in a Schwarzschild black hole.
Let’s start considering the limit r0 → 0. We have

lim
r0→0

Vðr0Þ ¼ lim
r0→0

−
ffiffiffiffiffiffiffi
2M
r0

r
¼ ∞; ðC1Þ

and so

lim
r0→0

1

ð1� Vðr0ÞÞ2 ¼ 0: ðC2Þ

On the other hand, at v ¼ v0 ¼ 4M,

u ¼ 4M − 2r�: ðC3Þ

Thus, using the expression (3.9) for uin,

lim
r0→0

u0in ¼ −4MWð−e−1−jr�j
2MÞ ¼ 4M; ðC4Þ

where we have used limr0→0 r� ¼ 0 and Wð−e−1Þ ¼ −1,
considering the principal branch of the Lambert function
[13]. This implies that

lim
r0→0

du0in
du0

¼ lim
r0→0

u0in
u0in − 4M

¼ ∞: ðC5Þ

Then, as discussed in Sec. III, the object that determines the
behavior of the correlator in this limit is

lim
r0→0

1

ð1þ Vðr0ÞÞ2
�
du0in
du0

�
2

: ðC6Þ

This can be recast in the following way:

lim
r0→0

N
D

¼ 0

0
; ðC7Þ

where
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N ¼ r0ðu0inÞ2; ðC8Þ

D ¼ ðð
ffiffiffiffi
r0

p
−

ffiffiffiffiffiffiffi
2M

p
Þ2Þðu0in − 4MÞ2: ðC9Þ

The idea is then to apply l’Hopital’s theorem,

lim
r0→0

N
D

¼ lim
r0→0

dN=dr0

dD=dr0
: ðC10Þ

Writing u0in as a function of u0 and then u0 in Painlevé
coordinates it is possible to compute the derivatives and
then take the limit. The result is

lim
r0→0

1

ð1þ Vðr0ÞÞ2
�
du0in
du0

�
2

¼ 0: ðC11Þ

In the r → 2M limit one has

lim
r→2M

VðrÞ ¼ lim
r→2M

−
ffiffiffiffiffiffiffi
2M
r

r
¼ −1: ðC12Þ

Thus,

lim
r→2M

1

ð1þ VðrÞÞ2 ¼ ∞: ðC13Þ

On the other hand,

lim
r→2M

uin ¼ 0; ðC14Þ

since limr→2Mu ¼ ∞. So,

lim
r→2M

duin
du

¼ lim
r→2M

uin
uin − 4M

¼ 0: ðC15Þ

In this case one has to consider

lim
r→2M

1

ð1þ VðrÞÞ2
�
duin
du

�
2

: ðC16Þ

Looking at the expression (3.20) for uin at late times, the
derivative term can be written as

duin
du

¼ e−
u
4M

e−
u
4M þ 1

: ðC17Þ

From Eq. (3.16) one obtains

u ¼ T −
Z ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p þ 1

f
dr

¼ T − r − 2
ffiffiffiffiffiffiffiffiffi
2Mr

p
− 4M ln

����
ffiffiffiffiffiffiffi
r
2M

r
− 1

����; ðC18Þ

which can be expanded for r → 2M,

u ≃ T − 4M ln

�
r
2M

− 1

�
: ðC19Þ

Therefore, in this limit, one has

e−
u
4M ≃ e−

T
4M

�
r
2M

− 1

�
: ðC20Þ

The limit (C16) can then be written as

lim
r→2M

N
D

¼ 0

0
; ðC21Þ

where in this case

N ¼ r

�
e−

T
4M

�
r
2M

− 1

�	
2

; ðC22Þ

D ¼ ð ffiffiffi
r

p
−

ffiffiffiffiffiffiffi
2M

p
Þ2
�
e−

T
4M

�
r
2M

− 1

�
þ 1

	
2

: ðC23Þ

Making use again of l’Hopital’s theorem, the final result is

lim
r→2M

1

ð1þ VðrÞÞ2
�
duin
du

�
2

¼ 4e−
T
2M: ðC24Þ

APPENDIX D

We apply the procedure discussed in Sec. IV to study the
two-point correlation function of the density operator of a
massless scalar field on a Hayward nonsingular black hole
background. In particular, we consider one point x outside
the outer horizon and the other x0 between the two horizons.
Let’s start by giving the explicit expression of the tortoise

coordinate,

r� ¼
Z

1

fðrÞ dr; ðD1Þ

where fðrÞ is that of Eq. (4.4). Performing the integral, one
obtains

r� ¼ 2M
X

i∶fðriÞ¼0

ri ln jr− rij
3ri − 4M

þ rþC

≃ 2M

�
r1

3r1 − 4M
ln

���� rr1 − 1

����þ r2
3r2 − 4M

ln

���� rr2 − 1

����
	
þ r:

ðD2Þ

In the last step, we have assumed M ≫ L in order to
approximate the roots of fðrÞ as in Eqs. (4.7) and (4.8). We
consider r0 > r2 (which means that the inner point is taken
outside of the Cauchy horizon) and so the argument of the
second logarithm is always positive.
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It is easy to verify that for L → 0, r1 → 2M and r2 → 0.
So, r� → 2M ln j r

2M − 1j, which is the tortoise coordinate of
a Schwarzschild black hole.
Next, we have to impose the continuity of the metric

(4.10) describing the collapse on the null shell at v ¼ v0,
which results in the condition rðuin; v0Þ ¼ rðu; v0Þ. We
choose v0 ¼ 2r1 so that the Schwarzschild results are
obtained in the limit L → 0. The relation between u and
uin is

u ¼ uin − 4M

�
r1

3r1 − 4M
ln

���� − uin
2r1

����
þ r2
3r2 − 4M

ln
�
2ðr1 − r2Þ − uin

2r2

		
: ðD3Þ

To compute the density correlator (3.23) one needs an
expression for duin

du . This is easily obtained because the
function uðuinÞ is invertible in the subdomains uin < 0 and
uin > 0 and thus duin

du ¼ ð du
duin

Þ−1. Then, one needs only to
differentiate (D3) in the regions inside and outside the outer
horizon, which is the surface at which uin changes sign.
For the point outside the horizon ðr > r1Þ, uin < 0.

Performing the derivative of (D3) and inverting the result,
one obtains

duin
du

¼
�
1−

4Mr1
3r1 − 4M

1

uin
þ 4Mr2
3r2 − 4M

1

2ðr1 − r2Þ− uin

	
−1
:

ðD4Þ

For the point inside the outer horizon ðr2 < r0 < r1Þ,
u0in > 0, but the derivative is the same of the point outside.
Note that when L → 0, duindu → uin

uin−4M
which, once again,

is the Schwarzschild result. To study the dependence of the
density correlator on the position of the two points one
needs, first of all, to write uin as a function of u by inverting
(D3). Unfortunately, this function cannot be inverted
analytically and thus we consider only the limits discussed
in Sec. IV.
Taking into account the fact that the Hayward metric

describes a particular case of a nonsingular black hole with
a de Sitter core, one can approximate fðrÞ as

fðrÞ ∼
8<
: 1 −

�
r
r2

�
2

if r < rQ

1 − r
r1

if r > rQ;
ðD5Þ

where we are still assuming M ≫ L, so that r1 ≃ 2M and
r2 ≃ L. Therefore, when r → r2, the Hayward metric can
be approximated by the de Sitter one, with

fðrÞ ∼ 1 −
�
r
r2

�
2

: ðD6Þ

Then, in this limit the tortoise coordinate can be approxi-
mated as

r� ≃
Z

1

1 − ð rr2Þ2
dr ¼ −

r2
2
ln jr2 − rj þ C: ðD7Þ

Since r > r2 this can be written as

r� ≃ −
r2
2
ln

�
r
r2

− 1

�
: ðD8Þ

To make more evident the fact that this approximation is
reasonable one can plot the integrand (1=f) for Hayward,
together with the same function for de Sitter and
Schwarzschild (Fig. 2). It is evident that the de Sitter
function well reproduces the Hayward one in the r → r2
limit. One then has

u ¼ 2r1 þ r2 ln

�
2ðr1 − r2Þ − uin

2r2

	
: ðD9Þ

Inverting this function one obtains

uin ¼ 2ðr1 − r2Þ − 2r2e
−2r1

r2
þ u

r2 : ðD10Þ

It is also convenient to consider duin
du in this limit,

duin
du

¼ −
2ðr1 − r2Þ − uin

r2
: ðD11Þ

When the outer point approaches the outer horizon r → r1,
fðrÞ can be approximated as

fðrÞ ∼ 1 −
r1
r
; ðD12Þ

which is the same of the Schwarzschild black hole, simply
with the horizon location slightly shifted from 2M to r1.
Therefore, in this limit, one has

FIG. 2. Plot of 1=f for the Hayward (blue), de Sitter (orange),
and Schwarzschild (green) spacetimes. In this plot M ¼ 1,
L ¼ 0.1, r2 ¼ 0.1025.
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uin ¼ −2r1Wðe− u
2r1Þ: ðD13Þ

Asymptotically, when r → ∞, fðrÞ → 1 and thus there is
no distinction between r� and r. Consequently, uin ¼ u.
Finally, in order to analyze the behavior of the density-

density correlator as a function of the positions of the two
points we need to write u in Painlevé coordinates. This is
done by approximating fðrÞ as before in the interesting
limits.
In particular, when r → r2, one can use the de Sitter core

approximation. Thus, in this limit

Z ffiffiffiffiffiffiffiffiffiffiffi
1− f

p þ 1

f
dr≃

Z r
r2
þ 1

1−
�

r
r2

�
2
¼ −r2 ln ðr− r2Þ: ðD14Þ

Therefore, when r → r2 one has

u ¼ T þ r2 ln ðr − r2Þ: ðD15Þ

Instead, when r → r1 it is possible to use the Schwarzschild
approximation for fðrÞ and so u is written exactly as in the
Schwarzschild case, simply with 2M replaced by r1.
Finally, when r → ∞, fðrÞ → 1 and thus the Painlevé

time and the ordinary Schwarzschild time coincide, as well
as the tortoise coordinate and the usual radial coordinate.
So, in this limit,

u ¼ T − r: ðD16Þ

We now have all the elements to discuss the behavior of the
density correlator (3.23) in the r0 → r2 limit for the
Hayward black hole,

lim
r0→r2

Vðr0Þ ¼ lim
r0→r2

�
−
r0

r2

�
¼ −1; ðD17Þ

and thus

lim
r0→r2

1

ð1þ Vðr0ÞÞ2 ¼ ∞: ðD18Þ

du0in
du0 can be approximated as in Eq. (D11), with uin given by
(D10) and u by (D15). So,

lim
r0→r2

u0 ¼ −∞; ðD19Þ

which implies

lim
r0→r2

u0in ¼ 2ðr1 − r2Þ; ðD20Þ

and

lim
r0→r2

du0in
du0

¼ 0: ðD21Þ

Then,

lim
r0→r2

1

ð1þ Vðr0ÞÞ2
�
du0in
du0

�
2

¼ lim
r0→r2

1

ð1 − r0
r2
Þ2
"
−
2ðr1 − r2Þ − 2ðr1 − r2Þ − 2r2e

−2r1
r2 e

T0
r2
þln ðr0−r2Þ

r2

#2

¼ r22
ðr0 − r2Þ2

�
2r2e

−2r1
r2 e

T0
r2ðr0 − r2Þ
r2

	2

¼ 4r22e
−4r1

r2
þ2T0

r2 : ðD22Þ

APPENDIX E

According to the general procedure discussed in Sec. IV, we start giving an explicit expression for the tortoise coordinate

r� ¼
Z

1

fðrÞ dr ¼
Z �

1 −
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
�

−1
dr

¼ r −
8M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − a2
p artanh

�
2M þ r −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
	
þ 2Martanh

�
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p

	
þ C; ðE1Þ

where C is an integration constant.
Imposing the continuity of the metric (4.10) one obtains again the condition rðuin; v0Þ ¼ rðu; v0Þ, which, written

explicitly, gives

STRESS-ENERGY TENSOR CORRELATIONS ACROSS REGULAR … PHYS. REV. D 108, 125003 (2023)

125003-15



v0 − uin
2

−
8M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − a2
p artanh

2
642M þ v0−uin

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
v0−uin

2

�
2 þ a2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p

3
75

þ2Martanh

2
64 v0−uin

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
v0−uin

2

�
2 þ a2

r
3
75þ C ¼ v0 − u

2
: ðE2Þ

Since v0 is arbitrary, in this case it is convenient to choose
v0 ¼ 0 to simplify the calculation. However, this is differ-
ent from what we have done for the Schwarzschild and the
Hayward black holes, where we have chosen v0 to be twice
the radius of the outer horizon. This affects the relation
between the inner and outer retarded null coordinates, and
therefore it will not be enough to take the a → 0 limit to
check the consistency with the Schwarzschild case in all the
expressions that involve uin and u. In order to do that, we
will have to write everything in Painlevé coordinates and
only at that stage verify the agreement with the
Schwarzschild results for a → 0.
We continue by writing u as a function of uin as

u ¼ uin þ
16M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p artanh

"
2M − uin

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2in
4
þ a2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
#

− 4Martanh

2
64 − uin

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2in
4
þ a2

q
3
75þ C: ðE3Þ

The next step to study the density correlator (3.23) is to
compute duin

du . This can be easily done since the function

uðuinÞ is invertible and therefore duin
du ¼ ð du

duin
Þ−1. Then, one

only needs to differentiate (E3),

duin
du

¼
�

du
duin

�
−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2in þ 4a2

p
− 4Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2in þ 4a2
p : ðE4Þ

Remember that the aim is to discuss how the density
correlator changes as we move the two points inside and
outside the horizon. Therefore, we need to write uin as a
function of the radial coordinate. The strategy is always the
same; first invert (E3) and then write u in Painlevé
coordinates. Unfortunately, this can be done only in the
limits discussed in Sec. IV, where the relation between u
and uin can be properly approximated.
Let us start by considering r0 → 0.

In this limit, the tortoise coordinate can be expanded as

r�¼C−
8M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2−a2

p artanh

�
2M−affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2−a2

p
	
−

a
2M−a

rþoðr3Þ:

ðE5Þ

When a → 0, this should give back the Schwarzschild
result, for which

lim
r→0

r� ¼ 0: ðE6Þ

However,

lim
a→0

�
−

8M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p artanh

�
2M − affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
		

¼ ∞: ðE7Þ

So, the idea is to choose the integration constantC to cancel
the zeroth-order term. In this way,

r� ¼ −
a

2M − a
rþ oðr3Þ: ðE8Þ

Then, in this limit, the relation between u and uin becomes

u ¼ −
a

2M − a
uin; ðE9Þ

which gives

uin ¼ −
2M − a

a
u: ðE10Þ

When r → rþ one can expand 1=fðrÞ as

1

fðrÞ ≃
4M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − a2
p 1

r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p : ðE11Þ

Integrating the leading order one obtains

r� ≃
4M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − a2
p ln

���� rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p − 1

����: ðE12Þ

In this limit, the relation between u and uin becomes
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4M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p ln

�
−

uin
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p − 1

�
¼ −

u
2
; ðE13Þ

from which

u ¼ −
8M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − a2
p ln

�
−

uin
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p − 1

�
: ðE14Þ

Inverting this expression one obtains

uin ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
e−

4M2−a2

8M2 u: ðE15Þ
Finally, when r → ∞, fðrÞ → 1 and thus r� ¼ r, which
implies uin ¼ u.
One has then to write u in Painlevé coordinates, which

can be done in the limits mentioned above.
When r → 0 one has

u ¼ T −
Z ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p þ 1

f
dr ≃ T þ

ffiffiffi
a

p ð ffiffiffi
a

p þ ffiffiffiffiffiffiffi
2M

p Þ
2M − a

r:

ðE16Þ

Expanding for r → rþ one obtains

u ¼ T −
Z ffiffiffiffiffiffiffiffiffiffiffi

1 − f
p þ 1

f
dr

≃ T −
8M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 − a2
p ln

���� rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p − 1

����: ðE17Þ

When r → ∞ the Painlevé time and the Schwarzschild time
coincide, as well as the tortoise coordinate and the radial
coordinate, and so

u ¼ T − r: ðE18Þ

We now have all the elements to study the density correlator
in the relevant limits for the Simpson-Visser nonsingular
black hole.
Let us start considering the limit for r0 → 0. Since

lim
r0→0

Vðr0Þ ¼ −
ffiffiffiffiffiffiffi
2M
a

r
; ðE19Þ

the factors 1
ð1þVðr0ÞÞ2 and

1
ð1−Vðr0ÞÞ2 remain finite in this limit.

Then, when r0 is close to zero, u0 can be approximated as
in Eq. (E16), and using the result (E10) one obtains

u0in ≃ −
2M − a

a
T 0 −

ffiffiffi
a

p þ ffiffiffiffiffiffiffi
2M

pffiffiffi
a

p r0: ðE20Þ

This implies that the term of the density correlator that
depends only on r0 remains finite when r0 → 0. Using the
Eqs. (E19) and (E20), together with (E4), one arrives at the
result (4.18).
One can then study the limit for r → rþ of the density

correlator,

lim
r→rþ

VðrÞ ¼ −1; ðE21Þ

and thus

lim
r→rþ

1

ð1þ VðrÞÞ2 ¼ ∞: ðE22Þ

Then, from Eq. (E17),

lim
r→rþ

u ¼ ∞: ðE23Þ

Using Eq. (E15), one has

lim
r→rþ

uin ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
ðE24Þ

and applying (E4),

lim
r→rþ

�
duin
du

�
¼ 0: ðE25Þ

Therefore, one has to compute the following limit:

lim
r→rþ

1

ð1þ VðrÞÞ2
�
duin
du

�
2

: ðE26Þ

This can be written as

lim
r→rþ

N
D

¼ 0

0
; ðE27Þ

where

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
−2rþ − 2rþe

− rþ
8M2T
�

r
rþ

− 1

�	
2

þ 4a2

s
− 4M

)2

; ðE28Þ

D ¼ ½ðr2 þ a2Þ1=4 −
ffiffiffiffiffiffiffi
2M

p
�2
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

−2rþ − 2rþe
− rþ
8M2T
�

r
rþ

− 1

�	
2

þ 4a2

s )2

: ðE29Þ

Applying l’Hopital’s theorem and expanding for M ≫ a one obtains the result (4.22).
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