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As basic quantum mechanical models, anharmonic oscillators are recently revisited by bootstrap
methods. An effective approach is to make use of the positivity constraints in Hermitian theories. There
exists an alternative avenue based on the null state condition, which applies to both Hermitian and non-
Hermitian theories. In this work, we carry out an analytic bootstrap study of the quartic oscillator based on
the weak coupling expansion. In the Hamiltonian formalism, we obtain the anharmonic generalization of
Dirac’s ladder operators. Furthermore, the Schrödinger equation can be interpreted as a null state condition
generated by an anharmonic ladder operator. This provides an explicit example in which dynamics is
incorporated into the principle of nullness. In the Lagrangian formalism, we show that the existence of null
states can effectively eliminate the indeterminacy of the Dyson-Schwinger equations and systematically
determine n-point Green’s functions.
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I. INTRODUCTION

Two main goals of the bootstrap methods are to achieve a
deeper understanding of the strong coupling physics and to
provide concrete computational schemes for extracting
precise predictions of strongly coupled theories. Before
delving into the intricate quantum field theories in physical
dimensions, a useful strategy is to first study their low-
dimensional counterparts, such as zero-dimensional and
one-dimensional models, hoping that certain insights may
be independent of the spacetime dimension. Analogously,
the perturbative expansion in a small coupling constant
may also elucidate some strong coupling physics if certain
general structure is independent of the coupling constant.
With these motivations in mind, we study the quantum
mechanical bootstrap of the quartic oscillator analytically
based on the weak coupling expansion in this work.1

Recently,matrix theories andquantummechanicalmodels
have been investigated by bootstrap methods [1–26].
They are usually implemented with positivity constraints

associated with the physical assumption of unitarity.2

However, the violation of reflection positivity frequently
occurs in statistical physics models. The relevant theory can
be related to nonunitary quantum systems, where the
positivity principle does not apply. The bootstrap study of
such models necessitates alternative principles. One of the
potential candidates is the principle of nullness, i.e. the
existence of many null states [27].3 In the context of 2D
conformal field theory [29,30], the existence of null states is
closely related to the quantization conditions on the scaling
dimensions and the central charges of the minimal models,
which imply that these physical parameters can only take
certain discrete values. Only a small subset of the minimal
models further obey the unitarity assumption. A prominent
example of the nonunitary case is the Mð5; 2Þ minimal
model [31,32], which describes the critical behavior of the
Yang-Lee edge singularity [33–36].4
The principle of nullness postulates that many states are

orthogonal to all states. From the algebraic perspective, the
null states are related to the left ideals in the operator
algebra, since the action of any operator on a null state also
gives a null state. For the standard quantum mechanics with*liwliang3@mail.sysu.edu.cn
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1The meaning of the quantum mechanical bootstrap is that the
observables, such as energy spectra and matrix elements, are
studied using consistency relations, without referring to explicit
wave functions. This approach can be traced back to Heisenberg’s
original perspective that led to the establishment of quantum
mechanics.

2See however [17] for the use of positivity constraints in non-
Hermitian models.

3Here we considered the Hermitian quartic oscillator. How-
ever, the null bootstrap can also be applied to non-Hermitian
theories [27]. The perturbative null bootstrap method presented in
the present work had been applied to the study of PT symmetric
non-Hermitian theories in [28].

4The general d conformal bootstrap program [37,38] was
revived by the seminal work [39]. We refer to [40] for a
comprehensive review.
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a single position operator, the operator algebra is generated
by the position operator x and the momentum operator p.
They satisfy the canonical commutation relation

½x; p�≡ xp − px ¼ iℏ: ð1Þ

Below, we will set ℏ to 1. A representation of the abstract
operator algebra can be induced by a state

ρ∶ A → C; ð2Þ

which is a linear functional mapping the elements of the
operator algebra to complex numbers. Then one may
construct the space of states as a representation of A on H

π∶ A → EndðHÞ; ð3Þ

and show the existence of a vector ψρ ∈H with

ρðAÞ ¼ hψρjAjψρi ≔ hψρ; πðAÞψρi; ð4Þ

for all A∈A. Typically, H is a quotient vector space

H ≔ A=N; ð5Þ

whereN is a left ideal inA, corresponding to the subspace of
null states. The null subspace plays a crucial role in the null
bootstrap program, which aims to classify physical solutions
and extract concrete predictions from the null state condition
[27]. From the algebraic viewpoint, this can be viewed as a
classification program based on the ideals in operator
algebra. Under some conditions, the rigorous construction
of a Hilbert spaceHwith a cyclic vector ψρ is known as the
Gelfand-Naimark-Segal construction [41,42].
For physicists, the dynamics of a concrete quantum

mechanical model is specified by a Hamiltonian, whose
eigenstates are labeled by the energy E.5 The measurable
information includes the energy spectrum and the matrix
elements. The choice of a Hamiltonian6 and then an energy
eigenstate leads to a concrete representation of the operator
algebra. The mapping (2) is realized by the expectation
values of different operators in the chosen state. One can also
reconstruct the space of states. Matrix elements can be
obtained from ladder operators that connect different eigen-
states. For example, the off-diagonal matrix elements in the
energy representation are given by hEjAjE0i ¼ hEjALE0EjEi.
For concrete applications of the null bootstrap, let us

consider some basic quantum mechanical models. In the
textbook example of the harmonic oscillator

H ¼ 1

2
p2 þ 1

2
x2; ð6Þ

the eigenstates satisfying Hjni ¼ Enjni are connected by
Dirac’s ladder operators

jnþ k1 − k2i ∝ ðaÞk2ða†Þk1 jni; ð7Þ

where the lowering and raising operators are

a ¼ 1ffiffiffi
2

p ðxþ ipÞ; a† ¼ 1ffiffiffi
2

p ðx − ipÞ: ð8Þ

The energy levels are labeled by n. It is well known that the
Hamiltonian H ¼ a†aþ 1

2
is linear in the number operator

N ¼ a†a: ð9Þ

Together with Dirac’s ladder operators, they form a closed
algebra

½a; a†� ¼ 1; ½N ; a� ¼ −a; ½N ; a†� ¼ a†: ð10Þ

A direct consequence of the commutators is that the energy
spectrum has a constant spacing, i.e., Enþ1 − En ¼ 1.
Therefore, Dirac’s ladder operators furnish a natural set
of building blocks for the operator algebra of the harmonic
oscillator. For a spectrum that is bounded from below, the
ground state with the lowest energy should be annihilated
by the lowering operator

aj0i ¼ 0: ð11Þ

This annihilation equation provides an example of the null
state condition generated by the lowering operator. We can
also construct the null states from excited states, such as
akjni ¼ 0 with k ¼ nþ 1. The stationary Schrödinger
equation also gives rise to null states

ðH − EnÞjni ¼ 0; ð12Þ

which is called trivial in [27] because it is satisfied by
definition and does not lead to any constraint on E.
As the harmonic oscillator is well understood, it is more

interesting to study the anharmonic oscillators, which are
usually not exactly solvable at finite coupling.7 Since
quantum mechanics can be viewed as a (0þ 1)-dimen-
sional quantum field theory, the anharmonic oscillators
provide a testing ground for novel field theory methods. For

5We will restrict to the bound states in a discrete and
nondegenerate spectrum.

6A Hermitian theory implies hEjOðH − EÞjEi ¼
hEjðH − EÞOjEi ¼ 0, corresponding to a family of operator-
algebra representations parametrized by the energy E.

7Some special potentials can also lead to exact solutions, such
as the Morse potential and the Pöschl-Teller potential. We refer to
[43] for a review of the factorization method and the ladder
operators associated with the underlying Lie algebra. We would
like to emphasize that the existence of ladder operators does not
rely on dynamical symmetries.
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example, a potential with a quartic term x4 can be viewed as
a ϕ4 theory in (0þ 1) dimension [44]. A curious question is
whether there exists a natural set of building blocks for the
anharmonic operator algebra. In this work, we will focus on
the quartic case:

HAH ¼ 1

2
p2 þ 1

2
x2 þ gx4; ð13Þ

which is related to the Ising universality class in higher
dimensions. It is known that the corresponding energy
spectrum does not have a constant spacing, which in fact
depends on the occupation number nonlinearly. Energy
eigenstates are still expected to be connected by certain
ladder operators. We would like to know if these ladder
operators have a simple algebraic structure. If not, we may
need completely different operators to connect different
pairs of eigenstates.
Recently, the nonperturbative null bootstrap results of

the quartic and cubic anharmonic oscillators suggest the
existence of some underlying algebraic structure in the
anharmonic ladder operators [27]. However, these proper-
ties are only studied numerically and approximately due to
the nonperturbative truncation scheme. In order to obtain
analytical and exact results, we assume g is small and make
use of perturbation theory in this work. The null state in the
anharmonic oscillators receives perturbative corrections

ðaþOðgÞÞj0iAH ¼ 0; ð14Þ

The trivial null state again takes the form
ðHAH − E0;AHÞj0iAH ¼ 0. We will use the null state con-
dition to formulate the bootstrap constraints for the observ-
ables, to determine the energy spectrum and to derive the
analytic expressions of the ladder operators.
More ambitiously, the bootstrap program aims to classify

and solve the dynamical information by basic principles
and consistency constraints. We have a curious question:

(i) How is the dynamics encoded in the null bootstrap?
To address this question to some extent, we will show that
dynamical constraints from the Schrödinger equation are
related to certain null states generated by ladder operators.
After investigating the quantum mechanical bootstrap in

the Hamiltonian formalism, it is natural to consider the
Lagrangian formalism. Therefore, we also apply the null
state condition to solving Dyson-Schwinger (DS) equations
[45–47], the self-consistency equations for the n-point8

Green’s functions. Since the DS equations can serve as
an alternative to operator theory, we expect to obtain the
same results as those in the Hamiltonian formalism. When
solving the DS equations, one obstacle is that they form an

underdetermined system,9 as higher DS equations involve
higher-point Green’s functions.
In a simple scheme, one can close the system by setting

high-point connected Green’s functions to zero, but this
produces results that do not converge to the exact values, as
emphasized recently in [49,50]. A more sophisticated
approach is to replace high-point connected Green’s
functions by their large-n asymptotic behaviors [49,50],
which gives numerically accurate results. This approach
has been carried out at d ¼ 0 and seems more challenging
at higher dimensions. A different avenue proposed recently
in [51] is to resolve the DS indeterminacy by the null state
condition.10 It was shown that the approximate, numerical
results converge rapidly to the exact values for both d ¼ 0
and d ¼ 1.
To obtain analytic and exact results, we will investigate

the null state approach in perturbation theory. To be more
explicit, we want to solve the following set of DS equations
in the weak-coupling expansion:

ð∂2t þ 1ÞGnðt; t1; t2;…Þ þ 4gGnþ2ðt; t; t; t1; t2;…Þ

¼ −i
Xn
j¼1

δðt − tjÞGn−2ðt1; t2;…; tj−1; tjþ1;…Þ; ð15Þ

where the coupling constant g is small. The Green’s
functions are the correlation functions of the Heisenberg
picture operators xðtkÞ

Gnðt1; t2;…Þ ¼ h0jTfxðt1Þxðt2Þ…gj0i; ð16Þ

where T is the time-ordering operator and j0i denotes the
ground state.
Assuming the existence of the weak-coupling expansion,

the DS equations can reproduce the standard perturbation
theory results. The solutions for the Green’s functions will
generally have many free parameters. To obtain the
physical solutions, one can fix the free parameters by
imposing certain boundary conditions on two-point
Green’s function G2ðt1; t2Þ at large jt1 − t2j.11 For
higher-point Green’s functions, the free parameters can
be fixed by the cluster decomposition principle.12 In the
null state approach, the derivation of the physical solutions
does not rely on the boundary conditions at infinity.
Instead, it is crucial that the action of certain linear

8Here the n should not be confused with the label for energy
levels.

9An early reference on the DS equations in ϕ4 theory is [48]. It
was shown that the existence of a weak-coupling expansion can
uniquely determine the Green’s functions, while additional
conditions are needed for the strong-coupling expansion.

10The two approaches can be unified by the principle of
minimal singularity [52].

11This is similar to the Feynman’s iϵ prescription in quantum
field theory.

12The implications of the cluster decomposition are more clear
after Wick rotation t → −iτ.
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combinations of xðtÞ and d
dt xðtÞ on the ground state

amounts to higher-order terms in the perturbative expan-
sion. In the harmonic limit g ¼ 0, we have

�
xðtÞ þ i

d
dt
xðtÞ

�
j0i ¼ 0; ð17Þ

which is precisely the annihilation equation (11).
According to the Heisenberg equation of motion, we have
d
dt xðtÞ ¼ −i½xðtÞ; H� ¼ pðtÞ and this relation remains exact
after turning on the quartic perturbation in xðtÞ. Since the
DS equations are formulated in the Lagrangian formalism,
we will use the time derivative d

dt xðtÞ instead of the
momentum pðtÞ. As in (14), the annihilation equation
receives perturbative corrections in g

�
xðtÞ þ i

d
dt
xðtÞ þOðgÞ

�
j0iAH ¼ 0: ð18Þ

An important consequence is that its inner products with
certain states give rise to a set of relations for the Green’s
functions. We can solve for the Green’s functions order by
order using the perturbed ladder operators.
In Table I, we summarize the main results in the

Hamiltonian and Lagrangian formalisms. Motivated by
the nonperturbative approach in [27], we also obtain higher
order results for the perturbative low energy levels in (99),
(101), (103), and (105)–(121).
The rest of the paper is organized as follows. In Sec. II,

we use the null bootstrap to investigate the quartic
anharmonic oscillator in perturbation theory. We present
two different procedures in Secs. II A and II D, and discuss
the algebraic properties of the anharmonic operator algebra
in Sec. II E. We then consider the DS equations in Sec. III,
where we make use of the null state condition and solve for
the n-point Green’s functions. In Sec. IV, we summarize the
results and discuss future directions. For comparison, the
results from the traditional perturbation method are sum-
marized in the Appendix.

II. THE NULL BOOTSTRAP

In the null bootstrap, physical solutions are derived from
the null state condition. By definition, an exact null state

ψnull is orthogonal to arbitrary test states, so we have

hψ testjψnulli ¼ 0; ð19Þ

where ψ test can be any state. By considering more general
types of test states, one can deduce stronger constraints,
then the properties of the physical states annihilated by the
ladder operators are determined more precisely. At finite
coupling, this can be performed numerically, then approxi-
mate results of high precision are obtained by truncating the
search spaces of the null and test states [27]. In perturbation
theory, we can carry out the null bootstrap analytically and
derive the exact perturbative series using truncated search
spaces of finite dimensions.
We will focus on the quartic anharmonic oscillator with

H ¼ 1
2
p2 þ 1

2
x2 þ gx4. To simplify the notation, we will

not write “AH” explicitly. In the small g expansion, the null
state condition ðak þOðgÞÞjψi ¼ 0 determines the k low-
lying states, where a is Dirac’s lowering operator. We will
focus on the expectation values associated with an energy
eigenstate labeled by E

hEjOjEi ¼ hOiE: ð20Þ

We carry out the analysis of the quartic anharmonic
oscillator based on three assumptions:
(1) The Hamiltonian is Hermitian and the eigenvalue E

is real.13 We have the Schrödinger-like equations

hHOiE ¼ EhOiE ¼ hOHiE; ð21Þ

which can be derived from the stationary Schrö-
dinger equation HjEi ¼ EjEi and the Hermitian
inner product h·j·i. It turns out that the expectation
value hxm1pm2iE can be expressed in terms of the
coupling constant g, the energy E, the expectation
values hx2iE and h1iE. We choose the normalization
convention h1iE ¼ 1.

(2) The independent parameters E and hx2iE have the
perturbative expansions

E ¼
X

i¼0;1;2;…

giEðiÞ; hx2iE ¼
X

i¼0;1;2;…

gihx2iðiÞE ;

ð22Þ

which are formal power series in the coupling
constant g.

(3) The expectation value hxm1pm2iE is regular in the
g → 0 limit, wherem1,m2 are non-negative integers.

TABLE I. Perturbative results for the quartic anharmonic
oscillator (13), where the coupling constant g is small. We derive
the eigenenergies En, anharmonic ladder operators L�1 and some
n-point Green’s functions Gn from the null state condition.

En L�1 G2 G4 G6

g0 (43) (44) (180) (184) (185)
g1 (51) (52) (192) (194)
g2 (58) (59) (201)
g3 (60) (61)

13In general, the eigenvalues of a bounded self-adjoint operator
are known to be real.
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This implies that hx2iE can be expressed in terms of
g and E

hx2iE ¼E−
9

8
gð1þ4E2Þþ3

2
g2ð19Eþ26E3Þ

−
9

256
g3ð1825þ17048E2þ11792E4Þþ…;

ð23Þ

so hxm1pm2iE is a function of the coupling constant g
and the energy E.

The third assumption is particularly interesting. It is not
immediately clear why we have (23). Some numerical
signatures about the subtlety of the g → 0 limit were
noticed in [8]. In fact, this is similar to the additional
constraints from the existence of the weak-coupling expan-
sion when solving the DS equations. The crucial point is
that the consistency relations, whether they are the
Schrödinger-like equations (21) or the DS equations (15),
allow singular behavior of the expectation values or the
Green’s functions in the limit g → 0. The assumption that
the g → 0 limit is regular or the weak-coupling expansion
exists implies the absence of singularities and leads to
additional constraints on the free parameters.14 The basic
idea behind this type of constraints is that the physical data
of a weakly interacting theory should allow continuous
deformation into the free theory limit.
To be more explicit, let us examine some concrete

expectation values. Under the first assumption, hxm1pm2iE
is expressed as

hxm1pm2iE ¼ 1

gj
P1ðE; hx2iEÞ þ

1

gj−1
P2ðE; hx2iEÞ þ…;

ð24Þ

where PiðE; hx2iEÞ are polynomials in E and hx2iE. The
number j is the highest order of 1=g, which depends on
m1, m2:

q¼
�
maxðm1þm2

2
−1;0Þ if m1;m2 are both even

maxðm1þm2

2
−2;0Þ if m1;m2 are both odd

: ð25Þ

We assume that the parity symmetry is unbroken, so the
expectation value vanishes if m1 þm2 is odd.
The important point is that the expression (24) contains

terms with negative powers of g, which are singular in the
g → 0 limit. To eliminate these singularities, we impose
additional constraints on the small g expansion of E and

hx2iE. This will lead to a set of relations among hx2iðjÞE and
EðjÞ. For example, the case of m1 ¼ m2 ¼ 2 reads

hx2p2iE ¼ 1

15g
ðhx2iE − EÞ þ 1

10
ð−3þ 8Ehx2iEÞ; ð26Þ

whose g → 0 limit is singular if E and hx2iE are completely
independent. To avoid the singular behavior, the perturba-
tive series of E and hx2iE should satisfy the constraint

hx2ið0ÞE ¼ Eð0Þ. At higher powers, the expectation value
hx4p2iE reads

hx4p2iE ¼ 2

105g2
ðE − hx2iEÞ þ

1

420g

× ð−9þ 80E2 − 116Ehx2iEÞ þ regular: ð27Þ

Note that this is consistent with (26) because the 1=g2

singularity is removed by hx2ið0ÞE ¼ Eð0Þ. In addition, the
1=g singularity is eliminated by

hx2ið1ÞE ¼ 1

8
ð−9 − 36ðEð0ÞÞ2 þ 8Eð1ÞÞ: ð28Þ

By considering higher powers in x and p, we obtain
stronger constraints and determine higher-order terms in
the perturbative series, such as

hx2ið2ÞE ¼ 1

2
ð57Eð0Þ þ 78ðEð0ÞÞ3 − 18Eð0ÞEð1Þ þ 2Eð2ÞÞ;

ð29Þ

hx2ið3ÞE ¼ 1

256
ð−16425 − 153432ðEð0ÞÞ2 − 106128ðEð0ÞÞ4

þ 7296Eð1Þ þ 29952ðEð0ÞÞ2Eð1Þ − 1152ðEð1ÞÞ2
− 2304Eð0ÞEð2Þ þ 256Eð3ÞÞ: ð30Þ

The regularity of hx6p2iE determines hx2ið2ÞE , while that of

hx8p2iE fixes both hx2ið2ÞE and hx2ið3ÞE . If a high power
expectation value has a regular limit, then the expectation
values with low powers are automatically regular. The
regularity constraints of different expectation values are
consistent with each other. In fact, it suffices to impose that
hxmi is regular in the g → 0 limit. Furthermore, we can
repackage these relations by expressing hx2iE in terms of E,
which is shown in (23).
In principle, the variable hx2iE is completely determined

by E to all orders in perturbation theory. In practice, we
only need to know hx2iE in terms of E to a certain order in
g. This is because we will deal with a finite set of
expectation values. Suppose that the strongest singularity
among them is 1=gj0 and we are interested in perturbative
corrections up to order gi. We should examine an expectation

14This is also similar to the multiplet recombination approach
to the d ¼ 4 − ϵ Wilson-Fisher conformal field theory, where
one assumes that the ϵ → 0 limit is smooth; see [53] for more
details.
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value with a singularity 1=gj0þiþ1, which is not in this set of
expectation values. The regularity assumption then deter-
mines hx2iE in terms of E to order gj0þi. As a result, all the
expectation values under consideration are regular and
expressed only in terms of E to order gi.
We are now in the position to carry out the complete

procedure of the null bootstrap, which consists of two steps:
(1) Determine the full spectrum and exact ladder oper-

ators by Schrödinger-like equations (31).
(2) Impose the null state condition (38) on the un-

boundedly low energy states and solve the remaining
parameters.

In general, it is challenging to derive the complete, non-
perturbative spectrum in the first step.15 In Sec. II D, this
obstacle is circumvented by the reduced procedure, in which
we directly solve for the low-lying data using the null state
condition. In perturbation theory, we can show that the low-
lying energy spectrum and matrix elements obtained in the
reduced procedure match with those from the complete
procedure. Therefore, the reduced procedure is at least as
strong as the complete procedure concerning the low-lying
information. In fact, we can derive higher order results more
easily, which will be explained in Sec. II D. These perturba-
tive results help us to better understand the convergence
pattern of the nonperturbative results in [27].

A. Complete procedure

In the complete procedure, we first determine the energy
spectrum by the Schrödinger-like null state condition

hOtestðH − E0ÞLE0EiE ¼ 0; ð31Þ

which corresponds to the stationary Schrödinger equation
ðH − E0ÞjE0i ¼ 0. The two eigenstates jψEi and jψE0 i is
connected by the ladder operator LE0E. We require that (31)
is valid for arbitrary Otest in the form of polynomials in x
and ip. We first focus on the level-1 ladder operators and
solve the null state condition to order g3. Then we derive the
level-k ladder operators using the level-1 ladder operators.
In the end, we use these ladder operators to compute matrix
elements.
Before presenting the details, it is useful to note some

general features of the solutions to (31). In the g → 0 limit,
the reference energy E is labeled by an integer n. The
solutions to the Schrödinger-like equation with energy E0

are labeled by k, which denotes the number of energy levels
shifted by the ladder operator LE0E. We adopt the following
notations for convenience:

E → En; E0 → En�k; LE0E → L�k; ð32Þ

where L�k are the level-k ladder operators. The discrete
energy spectrum and ladder operators can be continuously
deformed to the anharmonic case and we assume the
existence of the following perturbative series

En ¼ Eð0Þ
n þ gEð1Þ

n þ g2Eð2Þ
n þ g3Eð3Þ

n þ…; ð33Þ

En�k ¼ Eð0Þ
n�k þ gEð1Þ

n�k þ g2Eð2Þ
n�k þ g3Eð3Þ

n�k þ…; ð34Þ

L�k ¼ Lð0Þ
�k þ gLð1Þ

�k þ g2Lð2Þ
�k þ g3Lð3Þ

�k þ…: ð35Þ

In general, there exists a family of trivial solutions for L�k
due to the Schrödinger equation

L�kjtrivial ¼ ðarbitrary operatorÞ × ðH − EnÞ; ð36Þ

where L�kjtrivialjEni ¼ 0 automatically. A nontrivial sol-
ution for L�k should connect two energy eigenstates

L�kjn:t:jEni ∝ jEn�ki; ð37Þ

where we have used “n.t.” to indicate the nontrivial part.
From explicit calculations, we find that the Schrödinger-
like equation (31) leads to recursion relations for En, so one
can deduce the complete energy spectrum from one energy
level. For a stable system, the energy spectrum should be
bounded from below. The states lower than the ground state
should satisfy the null state condition, such as

hOtestL−1iE0
¼ 0: ð38Þ

In this way, the ground-state energy E0 is determined order
by order in g. Using this boundary condition, we can further
deduce the energy spectrum from the energy recursion
relations. The null state condition (38) can be generalized to
the expectation values of the excited states, which reads
hOtestL−kiEn

¼ 0 with n ¼ k − 1.

1. The order g0

First, we consider (31) at order g0. The explicit expres-
sions of L�k are formulated in terms of polynomials in x
and ip. We truncate the search space of null states by using
the ansatz

Lð0Þ
�k ¼

XK−m1

m2¼0

XK
m1¼0

Að0Þ
�k;m1;m2

xm1ðipÞm2 ; ð39Þ

15We notice that the solutions for the full energy spectrum and
exact (level-1) ladder operators are always derived at the same
time. We are led to the question whether they contain equivalent
information. It is clear that we can deduce the full spectrum from
the exact (level-1) ladder operators. On the other hand, the
equation ½H;O� ¼ Oð…Þ is sufficient for deducing an exact
ladder operatorO if the full energy spectrum is known, where the
ellipsis becomes the energy spacing. Therefore, the full energy
spectrum and exact (level-1) ladder operators do contain equiv-
alent information.
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where K denotes the degree of the polynomial and the

coefficients Að0Þ
�k;m1;m2

are assumed to be real. To remind the
reader, the integer k is the number of energy levels shifted
by the ladder operator. For notational simplicity, we

suppress the K index in Að0Þ
�k;m1;m2

.
At the lowest truncation order K ¼ 1, we find two sets of

solutions labeled by�1. They correspond to the raising and
lowering operators

Lð0Þ
�1 ¼ Að0Þ

�1;1;0ðx ∓ ipÞ; ð40Þ

where Að0Þ
�1;1;0 are free real parameters related to the

normalization. The trivial terms are absent because they
are at least quadratic in x and ip. For higher K,16 the

Schrödinger-like equation (31) determines Að0Þ
�1;m1;m2

up to

some free real parameters, which will be Eð0Þ
n dependent

and denoted as Bð0Þ
�1, Cð0Þ

�1;j1;j2
. Again the K index is

suppressed for simplicity. The general solutions17 for the
level-1 ladder operators take the form

Lð0Þ
�1 ¼ Bð0Þ

�1ðx ∓ ipÞ þ
� X∞

j1;j2¼0

Cð0Þ
�1;j1;j2

xj1ðipÞj2
�

×

�
1

2
x2 þ 1

2
p2 − Eð0Þ

n

�
; ð41Þ

where Bð0Þ
�1 are related to the normalization and Cð0Þ

�1;j1;j2
are

related to the trivial terms. Since the sum of a nontrivial
solution and a trivial solution is also nontrivial, there are
some ambiguities in the explicit expressions of the non-
trivial part. Below, we will remove these ambiguities by
fixing the normalization and requiring the nontrivial part is
En independent.18

Since the expectation values are expressed as functions of
En, it is useful to find the explicit expression of En first. At
order g0, the Schrödinger-like equation (31) gives the energy
recursion relation19

Eð0Þ
n−1 ¼ Eð0Þ

n − 1: ð42Þ

The null state condition (38) yields Eð0Þ
0 ¼ 1

2
, so we have

Eð0Þ
n ¼ nþ 1

2
: ð43Þ

Wewill choose a specific normalization for L�1jni based on
this result.
To determine the free parameters,we impose the following

conditions:
(i) Normalization condition: jLþ1jnij2 ¼ nþ 1 and

jL−1jnij2 ¼ n.20

(ii) Gauge-fixing condition: the nontrivial part is inde-
pendent of En.

The trivial terms are not constrained by the first condition
since they do not contribute to the norm. To completely fix
the expressions of the ladder operators,we impose the second
condition to quotient out the trivial part. From the operator
algebra perspective, it is natural that the expressions of
the ladder operators do not depend on the choice of the
eigenstates, i.e., En.
Since the parameters are assumed to be real, there is an

ambiguity in the sign of the ladder operators. Our choice is
that the zeroth-order nontrivial parts are the same as Dirac’s
ladder operators

Lð0Þ
�1jn:t: ¼

1ffiffiffi
2

p ðx ∓ ipÞ; ð44Þ

where “n.t.” means the nontrivial part. The general solution
(41) can be recovered by adding trivial solutions and
overall normalization factors. Furthermore, we fix the
relative phases of the energy eigenstates by

Lþ1jn:t:jni ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i; L−1jn:t:jni ¼
ffiffiffi
n

p jn − 1i:
ð45Þ

We will also use the same normalization and gauge-fixing
conditions to determine the explicit expressions of the
ladder operators at higher orders.

2. The order g1

We extend the analysis to order g1. Since the zeroth-order
ladder operators have been solved, we set the zeroth-order
part to (44)

L�k ¼ Lð0Þ
�kjn:t: þ gLð1Þ

�k þ… ð46Þ

and use K to denote the truncation order of the g1 ansatz

Lð1Þ
�k ¼

XK−m1

m2¼0

XK
m1¼0

Að1Þ
�1;m1;m2

xm1ðipÞm2 : ð47Þ

As the free parameters start at first order, the trivial part at
order g1 takes a simple form

ðarbitrary operatorÞ × ðHharmonic − Eð0Þ
n Þ; ð48Þ

16The k > 1 solutions appear when K > 1, but we focus on the
k ¼ 1 solutions at the moment.

17We assume that n is sufficiently large such that jni cannot be
annihilated by ladder operators in any truncation K.

18The Eð0Þ
n dependence of Bð0Þ

�1 is completely fixed by the
normalization condition. To completely fix the Eð0Þ

n dependence
of Cð0Þ

�1;j1;j2
, we further impose the gauge-fixing condition.

19There is also an equivalent relation Eð0Þ
nþ1 ¼ Eð0Þ

n þ 1.

20The difference in the norms is consistent with the commu-
tation relation of Lþ1 and L−1.
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and the anharmonic corrections to H and En are of
higher order.
To solve the Schrödinger-like equation (31) for arbitrary

test operators, the truncation order in (47) should satisfy
K ≥ 3, which corresponds to the minimal shift in the
energy level, i.e., k ¼ 1. We gradually increase the value
of K and extract the general solution

Lð1Þ
�1 ¼ Bð1Þ

�1ðx ∓ ipÞ þ 1ffiffiffi
2

p x3 � 3

2
ffiffiffi
2

p x2ðipÞ − 3

2
ffiffiffi
2

p xðipÞ2

þ
� X∞

j1;j2¼0

Cð1Þ
�1;j1;j2

xj1ðipÞj2
��

1

2
x2 þ 1

2
p2 − Eð0Þ

n

�
:

ð49Þ

The remaining freedom resides in the choice of the

normalization and the trivial terms. Here the sign of Lð1Þ
�1

is determined because we require that the parameters are
real and the normalization does not depend on g.
As above, we first solve for En before choosing a

normalization. At order g1, the energy recursion relation
reads

Eð1Þ
n−1 ¼

1

2
ð3 − 6Eð0Þ

n þ 2Eð1Þ
n Þ: ð50Þ

The null state condition (38) leads to the boundary

condition Eð1Þ
0 ¼ 3

4
, so the first-order energy corrections

are given by

Eð1Þ
n ¼ 3

4
ð1þ 2nþ 2n2Þ: ð51Þ

Then we impose the normalization and gauge-fixing
conditions to fix the expression of the first-order nontrivial
part

Lð1Þ
�1jn:t: ¼

1

8
ffiffiffi
2

p ð�15x − 9ipþ 5x3 � 15x2ðipÞ − 9xðipÞ2

∓ 3ðipÞ3Þ; ð52Þ

which is different from simply setting Cð1Þ
�1;j1;j2

to zero due
to our choice of the normalization condition. One can check
that the lowering and raising operators are Hermitian
conjugate to each other

Lð1Þ
−1 jn:t: ¼ ðLð1Þ

þ1jn:t:Þ†: ð53Þ

In the Appendix, we summarize the results from the
traditional perturbation method and they agree exactly
with the above results.

3. Higher orders

At order g2, we use the known expressions of the
nontrivial parts at order g0 and g1

L�k ¼ Lð0Þ
�kjn:t: þ gLð1Þ

�kjn:t: þ g2Lð2Þ
�k þ…; ð54Þ

and the g2 order terms are

Lð2Þ
�k ¼

XK−m1

m2¼0

XK
m1¼0

Að2Þ
�1;m1;m2

xm1ðipÞm2 : ð55Þ

When solving the null state condition (31), the lowest

truncation order for Lð2Þ
�k is Kmin ¼ 5, corresponding to the

k ¼ 1 case. By increasing K, we obtain the general solution

Lð2Þ
�1¼Bð2Þ

�1ðx∓ ipÞþ 27

8
ffiffiffi
2

p x∓ 5

4
ffiffiffi
2

p x3þ9
ffiffiffi
2

p
x2ðipÞ

� 3

2
ffiffiffi
2

p xðipÞ2− 13

8
ffiffiffi
2

p x5þ 11

2
ffiffiffi
2

p x4ðipÞ

þ 37

4
ffiffiffi
2

p x3ðipÞ2� 15

4
ffiffiffi
2

p x2ðipÞ3− 39

8
ffiffiffi
2

p xðipÞ4

þ
� X∞

j1;j2¼0

Cð2Þ
�1;j1;j2

xj1ðipÞj2
��

1

2
x2þ1

2
p2−Eð0Þ

n

�
:

ð56Þ
The recursion relation from the null state condition (31) is

Eð2Þ
n−1¼

1

16
ð153−204Eð0Þ

n þ276ðEð0Þ
n Þ2−48Eð1Þ

n þ16Eð2Þ
n Þ:
ð57Þ

Together with the boundary condition Eð2Þ
0 ¼ − 21

8
from

(38), we obtain

Eð2Þ
n ¼ −

1

8
ð21þ 59nþ 51n2 þ 34n3Þ: ð58Þ

Imposing the normalization and the gauge-fixing condi-
tions, we have a unique expression for the nontrivial part

Lð2Þ
�1jn:t: ¼

1

128
ffiffiffi
2

p ð1509x�1419ip∓ 1670x3þ2766x2ðipÞ

�2226xðipÞ2−986ðipÞ3−77x5∓ 835x4ðipÞ
þ922x3ðipÞ2�742x2ðipÞ3−493xðipÞ4
∓ 131ðipÞ5Þ: ð59Þ

It is straightforward to repeat the procedure at order g3 and
the results are

Eð3Þ
n ¼ 3

16
ð111þ 347nþ 472n2 þ 250n3 þ 125n4Þ; ð60Þ
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and

Lð3Þ
�1jn:t: ¼

1

1024
ffiffiffi
2

p ð∓ 223275xþ 234621ip − 190455x3 ∓ 541425x2ðipÞ þ 573159xðipÞ2

� 184017ðipÞ3 � 74829x5 − 188655x4ðipÞ ∓ 318150x3ðipÞ2
þ 338538x2ðipÞ3 � 145545xðipÞ4 − 57771ðipÞ5 þ 949x7 � 24943x6ðipÞ
− 37731x5ðipÞ2 ∓ 53025x4ðipÞ3 þ 56423x3ðipÞ4 � 29109x2ðipÞ5
− 19257xðipÞ6 ∓ 4227ðipÞ7Þ: ð61Þ

The lowering and raising operators at higher orders are also
related by Hermitian conjugation

Lð2Þ
−1 jn:t: ¼ ðLð2Þ

þ1jn:t:Þ†; Lð3Þ
−1 jn:t: ¼ ðLð3Þ

þ1jn:t:Þ†: ð62Þ

All these results agree with those from the traditional
method in the Appendix. In principle, one can perform the
complete procedure of the null bootstrap and determine the
ladder operators and the energy spectrum to arbitrarily high
order in g.

B. Ladder operators with higher level k > 1

So far we have not considered the k > 1 solutions. In
fact, we can construct the nontrivial part of the level k > 1
ladder operators from multiple level-1 ladder operators

L�kjn:t: ¼ ðL�1jn:t:Þk: ð63Þ

They can be obtained from the normalization and gauge-
fixing conditions:

(i) The norms are set by jLþkjnij2 ¼ ðnþ 1Þk and
jL−kjnij2 ¼ ðnþ 1 − kÞk, where ðxÞy ¼ Γðxþ yÞ=
ΓðxÞ is the Pochhammer symbol.

(ii) The nontrivial part is independent of En.
The second condition is the same as that for the level-1
ladder operators, while the first one can be understood as
the consequences of the repeated action of L�1.
Although the general solutions are much more involved,

we verify that they can be written in terms of L�1jn:t:
L�k ¼ ðnormalizationÞððL�1jn:t:Þk þ ðarbitrary operatorÞ

× ðH − EÞÞ: ð64Þ

Therefore, there is no new independent solution at k > 1.
All the nontrivial algebraic information is encoded in the
level-1 ladder operators L�1jn:t.
Below are some general comments from the algebraic

perspective. In contrast to the ideals in commutative
algebra, the noncommutative nature of operator algebra
leads to nontrivial constraints on the eigenenergies Ek and
the fundamental ladder operators L�1 that are compatible
with the Hamiltonian H. The null bootstrap is a program
about the systematic classification of the set of consistent

data ffHðiÞ; EðiÞg; fLðjÞgg.21 We can generalize the
Hamiltonian and energy eigenvalues to a set of mutually
commuting operators fHðiÞg, i.e., conserved quantities, and
the corresponding “good” quantum numbers fEðiÞg. For
example, we could include the Z2 parity operator that
commutes with the Hamiltonian of the quartic anharmonic
oscillator. The meaning of “consistent data” is that the
dynamical constraints associated with the Hamiltonian are
encoded in the null state conditions associated with the
ladder operators. This will be discussed in more detail in
the Sec. II E.

C. Matrix elements

Besides the energy spectrum, there are other physical
observables, such as the matrix elements of an operator O.
The diagonal elements are the expectation values discussed
above, which can be expressed in terms of the energy En
and the coupling constant g. The off-diagonal elements can
be computed using the ladder operators

hnjOjn0i ¼
8<
:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þn0−n

p hOLn0−nin if n0 > n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0þ1Þn−n0

p hOLn0−nin if n0 < n
; ð65Þ

where we have written h…in ≡ h…iEn
. Let us consider

O ¼ x as a simple example. To order g1, we use the
expressions of the nontrivial parts of Lþ1 in (44) and (52).
We obtain

hnjxjnþ 1i ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p hxLþ1in

¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

2

r �
1 −

3

2
ðnþ 1ÞgþOðg2Þ

�
; ð66Þ

hnjxjnþ3i¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ1Þ3
p hxðLþ1Þ3in

¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þðnþ2Þðnþ3Þ

2

r
gþOðg2Þ: ð67Þ

21Note that the explicit form of the Hamiltonian is not
necessarily known in a general investigation.
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The nonvanishing matrix elements, to order g1, are
hnjxjn� 1i and hnjxjn� 3i because the position operator
x can be written as

x ¼ 1ffiffiffi
2

p ðLþ1 þ L−1Þ þ
g

4
ffiffiffi
2

p ðL−3 − 6Lþ1L−2 − 6Lþ2L−1

þ Lþ3 − 6L−1 − 6Lþ1Þ þOðg2Þ; ð68Þ

and the eigenstates with different energies are orthogonal22

hmjni ¼ 0; ðm ≠ nÞ: ð69Þ

The other two cases can be obtained by a change of
variable and taking the complex conjugate hnjxjn − ji ¼
ðhnjxjnþ jijn→n−jÞ� with j ¼ 1, 3.

D. Reduced procedure

The reduced procedure is motivated by the difficulties in
obtaining the complete energy spectrum and the exact
ladder operators in a nonperturbative scheme. Alternatively,
we can study the low-lying states directly and obtain their
energies and matrix elements, which is the main idea of the
reduced procedure. It requires fewer steps to carry out the
null bootstrap in this reduced approach. We can also obtain
the higher order perturbative series of energies using the
same spaces of test states. Although we only obtain the
low-lying data in the reduced procedure, it is well known
that the weak-coupling-expansion results cease to be good
approximations at high energies.23

We have three versions of the reduced procedure. In the
first version, the null state condition holds for arbitrary test
states. However, as mentioned above, the discussion here is
motivated by the nonperturbative applications, where the
test operators are not arbitrary. We will modify the first
version in accordance with the nonperturbative method,
which leads to the second version of the reduced procedure.
In the third version, we further reduce the number of null
state constraints and obtain higher order results in g. Below,
we will study the low energy levels in all the three versions,
but we will only examine the matrix elements in the first
version of the perturbative null bootstrap.
Let us begin with the first version of the perturbative null

bootstrap, where the test operators are arbitrary. The null
state condition for a low-lying state reads

hOtestL̃iE ¼ 0: ð70Þ
We have put a tilde on the null operator to emphasize that L̃
is not exactly a ladder operator, which will be explained

later. In this naive version, the test operators Otest are
arbitrary polynomials in x and ip. There will be two
types of nontrivial perturbative solutions, corresponding
to two types of quantization conditions. In the first case,
the low energy state is annihilated by the variation of a
lowering operator and the energy spectrum is bounded
from below. In the second case, the situation is opposite
and the energy spectrum is bounded from above.24

Usually, a physical solution should have a bounded-
from-below energy spectrum, so we will focus on the first
case. We assume that L̃ is of the form

L̃ ¼
XK−m1

m2¼0

XK
m1¼0

am1;m2
xm1ðipÞm2 : ð71Þ

The truncation order is denoted by K, i.e., the null
operators L̃ are degree-K polynomials in x and ip. The
coefficients have the small g expansion

am1;m2
¼

X
i¼0;1;2;…

giaðiÞm1;m2
: ð72Þ

where aðiÞm1;m2
are real numbers.

For finite K, the null state condition can hold to a certain
order in g. Wewill consider the null state condition order by
order in g, and search for the correct values of the energies.
They are extracted based on the following phenomenon:
when the variable E takes certain correct values, the
expectation value hOtestL̃iE can be exactly zero to higher
orders in g than when E is arbitrary. Suppose that the
expectation value hOtestL̃iE is exactly zero to order gj. As
we consider higher energy levels, j becomes smaller, and
eventually we cannot distinguish the correct values of the
energies from the arbitrary ones. In this way, we obtain a
finite number of low energy levels for a fixedK. The results
for K ¼ 1, 2, 3, 4 are25

K ¼ 1∶ hOtestL̃−1iE0
¼ OðgÞ ⇒ E0 ¼

1

2
þOðgÞ; ð73Þ

K ¼ 2∶ hOtestL̃−2iE0
¼ Oðg2Þ ⇒ E0 ¼

1

2
þ 3

4
gþOðg2Þ;

ð74Þ

hOtestL̃−2iE1
¼ Oðg2Þ ⇒ E1 ¼

3

2
þ 15

4
gþOðg2Þ; ð75Þ

22This follows from the assumption that the Hamiltonian is
Hermitian.

23At high energies, it is more reasonable to use the Wentzel–
Kramers–Brillouin (WKB) method. It would be interesting to
figure out the algebraic counterpart of the WKB method from the
null bootstrap perspective.

24There may be other issues in this perturbative solution, as
one finds a complex conjugate pair of solutions at finite coupling.

25To avoid the solutions where L̃ vanish at order g0, we set
að0Þ1;0 ¼ 1 when K is odd, and we set að0Þ1;1 ¼ 1 when K is even. At
K ¼ 4, this also avoids the trivial solution L̃ ¼ H − E. We do not
consider the case of K > 4.
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K ¼ 3∶ hOtestL̃−1iE0
¼ Oðg5Þ ⇒ E0 ¼

1

2
þ 3

4
g −

21

8
g2

þ 333

16
g3 −

30885

128
g4 þOðg5Þ; ð76Þ

hOtestL̃−3iE1
¼ Oðg3Þ ⇒ E1 ¼

3

2
þ 15

4
g −

165

8
g2 þOðg3Þ;

ð77Þ

hOtestL̃−3iE2
¼ Oðg3Þ ⇒ E2 ¼

5

2
þ 39

4
g −

615

8
g2 þOðg3Þ;

ð78Þ

hOtestL̃−5iE3
¼ Oðg2Þ ⇒ E3 ¼

7

2
þOðgÞ; ð79Þ

hOtestL̃−5iE4
¼ Oðg2Þ ⇒ E4 ¼

9

2
þOðgÞ; ð80Þ

K ¼ 4∶ hOtestL̃−2iE0
¼ Oðg6Þ ⇒ E0 ¼

1

2
þ 3

4
g −

21

8
g2

þ 333

16
g3 −

30885

128
g4 þ 916731

256
g5

þOðg6Þ; ð81Þ

hOtestL̃−2iE1
¼Oðg6Þ⇒E1 ¼

3

2
þ15

4
g−

165

8
g2þ3915

16
g3

−
520485

128
g4þ21304485

256
g5þOðg6Þ; ð82Þ

hOtestL̃−4iE2
¼Oðg4Þ⇒E2 ¼

5

2
þ39

4
g−

615

8
g2þ20079

16
g3

þOðg4Þ; ð83Þ

hOtestL̃−4iE3
¼Oðg4Þ⇒E3 ¼

7

2
þ75

4
g−

1575

8
g2þ66825

16
g3

þOðg4Þ; ð84Þ

hOtestL̃−6iE4
¼ Oðg3Þ ⇒ E4 ¼

9

2
þ 123

4
gþOðg2Þ; ð85Þ

hOtestL̃−6iE5
¼ Oðg3Þ ⇒ E5 ¼

11

2
þ 183

4
gþOðg2Þ: ð86Þ

The solutions for the energies are labeled by the
n ¼ 0; 1; 2;…, where a larger n corresponds to a higher
level and the zeroth order terms of En are the same as the
harmonic cases. The solutions for L̃ are labeled by −k,
indicating the relation with the level-k lowering operators.
The value of k is fixed by the explicit expression of the
solution [see the discussion below (89)]. In most cases with
n < K, we can solve the null state conditions and obtain En
to the same orders in g. The special cases are (79), (80),
(85), and (86), where we need to solve the null state

conditions to one order higher in g. All results to order g3

agree with those from the complete procedure. Here and
below, we verify the higher-order coefficients by comparing
them to the results from the Bender-Wu method [54,55].
It is surprising that the null state condition holds to

higher orders in g, and the low energy levels can be
determined to high orders in g. If the state jni is annihilated
by a lowering operator L−k, the null state L−kjni ¼
Oðgjþ1Þ is constructed using L−k to order gj. The lowering
operator L−k to order gj has a minimal degree in x and ip.
Naively, the truncation order K should be higher than or
equal to the minimal degree, but this is not true. For
example, to order g1, the minimal degree of L−2 in x and
ip is 4,26 but the null state condition with K ¼ 2 holds to
order g1 in (75). Therefore, L̃−2 cannot be the same as L−2.
For instance, the solution for L̃−2 at K ¼ 2 and n ¼ 1 is

L̃−2 ¼
1

2
ðxþ ipÞ2 þ

�
25

4
x2 þ 15

4
xðipÞ

þ ðað1Þ0;2 − að1Þ0;0Þðxþ ipÞ2 − ð3að1Þ0;2 − að1Þ0;0Þ

×

�
x2

2
þ p2

2
−
3

2

��
gþOðg2Þ; ð87Þ

where the first order terms are different from those of L−2.
Why does the degree-two polynomial in L̃−2 annihilate j1i?
We find that L̃−2 can be written as

L̃−2 ¼ ð1þ gð6þ 3að1Þ0;2 − að1Þ0;0 þ 2x2ÞÞL−2jn:t:
þ g

�
3

2
þ að1Þ0;2 − að1Þ0;0 −

13

4
x2 −

3

2
xðipÞ − 3

4
ðipÞ2

�

× ðH − E1Þ þOðg2Þ; ð88Þ

where we have used (63) and the nontrivial part of the
lowering operator (44) and (52). The operator L̃−2 anni-
hilates j1i because the level-2 lowering operator annihilates
the first excited state L−2jn:t:j1i ¼ 0 and ðH − E1Þj1i is a
trivial null state. The factor in front of L−2jn:t: in (88) is not
a normalization factor, as opposed to the case of L−2 (see
footnote 26). Although the two parts in (88) contain terms
of degree higher than 2 in x and ip, the higher-degree terms
cancel out, so the final expression of L̃−2 is given by a
degree-2 polynomial.
More generally, we only impose that L̃−k annihilates a

specific state, which is weaker than the requirement that
L−k is a ladder operator for all energy eigenstates. So the
solution space of L̃−k is larger than that of L−k. Suppose

26The level-k lowering operator with minimal degree in x and
ip is constructed using L−k ¼ ðnormalizationÞL−kjn:t:þ
ð…ÞðH − EnÞ þOðgjþ1Þ, which is the minus case of (64) to
order gj. The trivial terms can cancel out the higher-degree terms
in x and ip from ðnormalizationÞL−kjn:t.
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that the null state condition holds to order gj, i.e.,
hOtestL̃−kiEn

¼ Oðgjþ1Þ. The generalization of (88) reads27

L̃−k ∝ ð…ÞL−kjn:t: þ ð…ÞðH − EnÞ þOðgjþ1Þ; ð89Þ

where the proportionality factor is a g-independent constant
and the right-hand side annihilates jni to order gj. The
ellipses represent certain power series in g. In (89), there are
terms of degree higher than K in x and ip in the two parts,
but they cancel out to order gj. Then (89) becomes a
polynomial of degree K, which is lower than the minimal
degree of L−k. So we can construct the null state
L̃−kjni ¼ OðgjÞ, despite that K does not reach the minimal
degree. In most cases with n < K, the first ð…Þ in (89) is
given by 1þOðgÞ, which indicates that the solutions for
the null operators are level-k lowering operators at order g0.
In the special cases (79), (80), (85), and (86), the first ð…Þ
in (89) starts at order g1.28

As K increases, we obtain the energies to higher orders
in g, and the orders increase sometimes rapidly and
sometimes slowly. In other words, there are pairs of results
with similar orders in g as K increases. This pattern is due
to the parity constraints. For example, the ground-state
energy is calculated to order g0, g1, g4, and g5 at K ¼ 1, 2,
3, and 4. The results show greater improvement from K ¼
2 to K ¼ 3. At K ¼ 1, the ground state is annihilated by
L̃−1 ¼ xþ ipþOðgÞ. At K ¼ 2, if we still use L̃−1 to
annihilate the ground state, the null state condition will hold
to the same order as that in the case of K ¼ 1, and the result
for E0 will not improve. This is due to the fact that L−1jn:t: is
parity odd. More specifically, L−1jn:t: has degree 1 and 3
terms in x, p at order g0 and g1. If the degree-3 terms in L̃−1
cancel out to order g1, we should have

ð1þgðconstantþðdegree-2 terms inx and ipÞÞÞL−1jn:t:
þgðdegree-1 terms inx and ipÞðH−E1ÞþOðg2Þ:

ð90Þ

We do not consider degree-1 terms in front of L−1jn:t:
because they will not help to cancel the third-degree terms
from L−1jn:t: at order g1. Since the parity is odd, the result of
(90) can only be a degree-1 polynomial in x and ip, then it
should have been found already at K ¼ 1 if this solution
does exist. Therefore, the ground-state results cannot
improve at K ¼ 2 if we stick to L−1. It turns out that
the null state condition can hold to order g1 if we use L̃−2 to
annihilate the ground state, and the result for E0 can be

slightly improved. At K ¼ 3, the cancellation mechanism
for L̃−1 is not restricted by parity, so the result from the L̃−1
annihilation improves more rapidly. At K ¼ 4, we again
need to use L̃−2 to improve the result, which is less
significant. There are similar patterns for other low energy
levels. In the optimal solutions, the state jni is annihilated
by L̃−ðnþ1Þ when K þ n is odd, but by L̃−ðnþ2Þ when K þ n
is even. As K increases, the results for the energies show
greater improvements when K þ n is odd.
For a fixedK, there are pairs of results with the same order

in g. For example, bothE0 and E1 are determined to order g1

at K ¼ 2. This is because they are associated with the null
operator L̃−2. In general, ðE2m; E2mþ1Þ are calculated to the
same order in g when K is even, and ðE2mþ1; E2mþ2Þ are
solved to the same order in gwhenK is odd. Herem is a non-
negative integer. The results in the same pair are given by the
null operators with the same level k, which is also due to the
parity constraints discussed above.
We have described a naive way to carry out the reduced

procedure perturbatively. If we compare the perturbative
results with those from the nonperturbative approach in
[27], we find that the nonperturbative results are more
precise and do not match those from the above naive
procedure. Below we will summarize the nonperturbative
approach and the corresponding results at small g.
Let us give a brief review of the nonperturbative null

bootstrap proposed in [27]. The idea is the same as that of
(19), but it is usually difficult to obtain the exact nontrivial
null states nonperturbatively. In practice, we consider
approximate null states L̂jni, where L̂ are finite-degree
polynomials in x and ip. The hat indicates that L̂ is different
from L̃ in the naive approach. The null state condition here is
an approximate equation and does not need to hold for
arbitrary test operators.As shown in [27], accurate results can
be obtained from low-degree test operators in x and ip. We
should modify the naive perturbative approach accordingly.
The approximate null state condition is

hOtestL̂iE ≈ 0: ð91Þ

The operator L̂ and test operators Otest are degree-K and
degree-M polynomials

L̂ ¼
XK−m1

m2¼0

XK
m1¼0

am1;m2
xm1ðipÞm2 ; ð92Þ

Otest ¼
XM−m3

m4¼0

XM
m3¼0

bm3;m4
xm3ðipÞm4 ; ð93Þ

where am1;m2
and bm3;m4

are real numbers. Following [27],
we consider the test operators with M ¼ K þ 2.29 Let us

27There are different ways to write a solution for the null
operator as the right-hand side of (89). We consider the case
where k is the highest possible.

28The null state L̃−kjni is then a trivial null state at order g0, but
it is nontrivial at higher orders in g, so it constrains the value of E
as well. 29The system is underconstrained if M ≤ K þ 1.
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explain the meaning of “≈” in (91). The left-hand side
hOtestL̂iE cannot be exactly zero for a finite K unless L̂ is a
trivial solution.30 The meaning of “trivial solution” is the
same as that in (36); i.e., the trivial solution satisfies the null
state condition automatically and does not yield any
constraint on E. For a nontrivial solution L̂ with a finite
K, the null state is approximated by L̂jEi. The approximate
null state condition (91) means that hOtestL̂iE almost
vanishes in the following sense. Each summand in (93)
is associated with an expectation value hxm3ðipÞm4L̂iE, and
all of them should be close to zero. Therefore, we use the η
function to measure the violation of the exact null state
condition

η ¼
XM−m3

m4¼0

XM
m3¼0

���� 1

m3!m4!

∂hOtestL̂iE
∂bm3;m4

����
2

; ð94Þ

which is a weighted sum of the squared expectation values.
The higher-degree terms in Otest lead to larger errors, so
they are suppressed by ðm3!m4!Þ−2. We will obtain the low
energy levels En and expectation values hx2iEn

by finding
the local minima of η at K ¼ 1, 2. For small coupling
constant g ≤ 10−2, we should be more careful as K
increases. Although there is no obstruction in principle,
we do not present the results with K ≥ 3 for practical
reasons, as it takes more effort to deal with high-precision
numerical computations.
To minimize the η function, we need to know the explicit

expressions of the expectation values in (94). Since the
consistency relation (21) holds nonperturbatively, we can
express the expectation values hxm1pm2iE in terms of the
coupling constant g, the energy E and the expectation value
hx2iE.31 As opposed to (23), E and hx2iE are independent
variables in the nonperturbative approach. Therefore, η is a
function of E, hx2iE, and am1;m2

. The solutions for En,
hx2iEn

, and am1;m2
are determined by minimizing the η

function locally. We will discuss the asymptotic behaviors
of the errors as the coupling constant approaches zero,
i.e., g → 0.
As K increases, we obtain more precise results and more

energy levelsEn, togetherwith the expectationvalues hx2iEn
.

We will focus on En.
32 We denote the null bootstrap results

for the energies by En;K, where K indicates the truncation
degree of L̂ in (92). The errors in the null bootstrap results are
En;K − E⋆

n , where the reference energies E⋆
n are computed

from diagonalizing the Hamiltonian of size 30 × 30 in the
basis of harmonic oscillator eigenfunctions. We evaluate the

errors at g¼10−2;10−3;…;10−7. As g → 0, theK ¼ 1 results
exhibit the following asymptotic behavior

E0;K¼1 − E⋆
0 ≈ −0.94 × 10−2g; ð95Þ

and the K ¼ 2 results give

E0;K¼2 − E⋆
0 ≈ −2.5 × 10−1g3; ð96Þ

E1;K¼2 − E⋆
0 ≈ 0.70g3: ð97Þ

These results are more precise than those in the naive
reduced procedure with the same K. At K ¼ 1, the error in
(73) from the naive approach is − 3

4
g, where the absolute

value of the coefficient 3
4
is much larger than 0.94 × 10−2. At

K ¼ 2, the errors in (74) and (75) from the naive approach
are 21

8
g2 and 165

8
g2, but the errors in the nonperturbative

K ¼ 2 results are of order g3.
To be consistent with the nonperturbative method, we

introduce the second version of the perturbative reduced
procedure. As explained above, the null state condition
does not have to hold for arbitrary test operators. We can
restrict the test operators to polynomials of low degree in x
and ip. In accordance with the nonperturbative approach,
we consider the test operators that are degree-(K þ 2)
polynomials in x and ip. The results then match those
from the nonperturbative method. Below we will derive the
asymptotic behaviors (95)–(97) analytically.33
We need to make sense of (91) in perturbation theory.

What is hOtestL̂iE on the left-hand side of (91)? As in (24),
the expectation values hxm1pm2iE are expressed in terms of
the coupling constant g, the energy E and the expectation
value hx2iE. Besides (22), we also have the small g
expansion of the coefficients in L̂

am1;m2
¼

X
i¼0;1;2;…

giaðiÞm1;m2
: ð98Þ

As opposed to the third assumption at the beginning of
Sec. II [see the discussion near (23)], we do not assume the
regularity of all expectation values in the limit g → 0. So
hOtestL̂iE is a Laurent series in g, which has terms
proportional to negative powers of g. We require that
hOtestL̂iE is exactly zero for any fbm3;m4

g to the highest
order possible in g. We extract the energies according to a
phenomenon similar to that in the first version. The
expectation value hOtestL̂iE can be exactly zero to higher
order in g for certain correct values of energies than for30We impose

PK−m1

m2¼0

P
K
m1¼0 am1;m2

¼ 1 to avoid the solution
am1;m2

¼ 0.
31The normalization is given by h1iE ¼ 1.
32The errors in En and hx2iEn

have similar orders of magni-
tudes.

33This approach seems more efficient than the traditional
perturbation method. It is easier to compute the perturbative
low energies to high order in g.

SOLVING ANHARMONIC OSCILLATOR WITH NULL STATES: … PHYS. REV. D 108, 125002 (2023)

125002-13



arbitrary E.34 As before, the solutions for the null operators
are labeled by k, and the solutions for the energies are labeled
by n. We write hOtestL̂−kiEn

¼ Oðgjþ1Þ and emphasize that
Otest is a degree-(K þ 2) polynomial in x and ip. In general,
the terms proportional to negative powers of g are exactly
zero, implying the regularity of hOtestL̂−kiEn

in the g → 0

limit. However, since other expectation values are still
allowed to be singular in the g → 0 limit, hx2iE is not
completely determined by E, and we do not have the full
relation (23). Suppose thatwe have found a correct energyEn

to a certain order, and hOtestL̂−kiEn
vanishes to order gj. Then

the η function (94) vanishes to order g2jþ1. In the perturbative
procedure, we require that the η function is minimized at
order g2jþ2 and discard the higher order terms.35

Let us consider K ¼ 1 for example. The test operators
are of the form (93) with M ¼ 3. For n ¼ 0, the left-hand
side of (91) starts at order g−1. The null state condition is
exact at this order, i.e., hOtestL̂−1iE0

¼ Oð1Þ. We obtain the

relation hx2ið0ÞE0
¼ Eð0Þ

0 , which agrees with the result from
the regularity assumption. At order g0, the null state

condition can be solved exactly, and we find Eð0Þ
0 ¼ 1

2
.36

At order g1, the null state condition cannot be exact. We

minimize the η function (94), and obtain Eð1Þ
0 ≈ 165805

223884
.

We use the subscript K to indicate the degree of L̂−k in the
approximate null state condition (91). We have

E0;K¼1 ≈
1

2
þ 165805

223884
gþOðg2Þ; ð99Þ

where the zeroth-order coefficient is exact and the first-
order coefficient is approximate. For the coefficients, by
“exact” we mean that they are the same as those from the
Bender-Wu method [54,55]. In the g → 0 limit, the error is

165805

223884
g −

3

4
g ≈ −0.94 × 10−2g; ð100Þ

which agrees with the nonperturbative result (95). For other
values of E, the null state condition can be exact to order
g−1, but not to order g0. Therefore, we do not find other
energy levels.

At K ¼ 2, we consider hOtestL̂−2iE0
¼ Oðg3Þ as well as

the η minimization and obtain

E0;K¼2 ≈
1

2
þ 3

4
g −

21

8
g2 þ 24044253411

1169246192
g3 þOðg4Þ;

ð101Þ
where the coefficients are exact at order g0, g1, and g2, but
the third-order coefficient is an approximate result from the
η minimization. The leading error is

24044253411

1169246192
g3 −

333

16
g3 ≈ −2.5 × 10−1g3; ð102Þ

which corresponds to (96) in the nonperturbative approach.
We also obtain the first-excited-state energy from
hOtestL̂−kiE1

¼ Oðg3Þ and the η minimization

E1;K¼2≈
3

2
þ15

4
g−

165

8
g2þ16650808149015

67854323024
g3þOðg4Þ;

ð103Þ
where we have the approximate result for the third-order
coefficient and the rest of the coefficients are exact. As
g → 0, the error is

16650808149015

67854323024
g3 −

3915

16
g3 ≈ 0.70g3; ð104Þ

which agrees with the asymptotic behavior of the non-
perturbative results (97). At K ¼ 2, we have obtained two
energy levels. For other values of E, the null state condition
can hold to order g−1, but not to order g0, so no more energy
level can be detected.
At K ¼ 3, we find five energy levels. Considering

hOtestL̂−1iE0
¼ Oðg8Þ and the η minimization, we have

the ground-state energy

E0;K¼3 ≈
1

2
þ 3

4
g−

21

8
g2 þ 333

16
g3 −

30885

128
g4 þ 916731

256
g5

−
65518401

1024
g6 þ 2723294673

2048
g7

−
6648684051586933741623

211416904204288
g8 þOðg9Þ;

ð105Þ
where the eighth-order coefficient is the approximate result
from the η minimization and the rest are exact. We do not
have the nonperturbative null bootstrap results at K ¼ 3 for
sufficiently small g, so we do not compare the asymptotic
behaviors here. Using the exact coefficients in the small g
expansion, we estimate that the error of (105) at order g8 is
about 10−1g8, and the order g9 correction is about 108g9.37

The coupling constant should be smaller than 10−9 in order
for the error at order g8 to be dominant. We examine the
cases of g ¼ 10−2; 10−3;…; 10−7, and verify that the error

34As in the first version, not all the correct values of the
energies satisfy this condition.

35At K ¼ 1, 2, 3, we also consider the η minimization when E
is not determined. In that case, we assume hOtestL̂iE vanishes to
order gj

0
for arbitrary E, i.e., hOtestL̂iE ¼ Oðgj0 Þ. So the η

function is zero to order g2j
0þ1. We search for the local minima

of the η function at order g2j
0þ2. They correspond to the correct

values of the energies that are extracted above, and no other local
minimum is found. In fact, these local minima are the zeros of the
η function, since hOtestL̂iE can be exactly zero at order gj

0þ1, if E
takes the correct values from the analysis above.

36We restrict to the solution where the energy spectrum is
bounded from below. 37The exact coefficient at order g9 is obtained in (113).
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of (105) is indeed about 108g9 using the same reference
values E⋆

n as those in the paragraph containing (95). We
also obtain the first- and second-excited-state energies
from hOtestL̂−3iEn¼1;2

¼ Oðg5Þ and the η minimization.
The results are

E1;K¼3 ≈
3

2
þ 15

4
g −

165

8
g2 þ 3915

16
g3 −

520485

128
g4

þ 1548031419879073965

18608822642944
g5 þOðg6Þ; ð106Þ

E2;K¼3≈
5

2
þ39

4
g−

615

8
g2þ20079

16
g3−

3576255

128
g4

þ690676244524833539787

920874095938304
g5þOðg6Þ; ð107Þ

where the η minimization gives approximate coefficients
at order g5, and the other coefficients are exact. The third-
and fourth-excited-state energies are obtained from
hOtestL̂−5iEn¼3;4

¼ Oðg3Þ and the η minimization. Their
results are

E3;K¼3 ≈
7

2
þ 75

4
g −

22212548478304275

25061340698792
g2 þOðg3Þ;

ð108Þ

E4;K¼3 ≈
9

2
þ 123

4
gþ 579546280175463

8798256371704
g2 þOðg3Þ;

ð109Þ

where the coefficients at order g2 are approximate results
from the η minimization and the rest are exact. However,
the η minimization does not give reasonable approxima-
tions for the order g2 coefficients of E3;K¼3 and E4;K¼3.
The errors are larger if we consider the second-order
corrections in (108) and (109). For other values of E, the
null state condition can be solved exactly to order g0, but
not to order g1. So we have not detected other energy
levels.
At K ¼ 4, we obtain six energy levels from

hOtestL̂−2iEn¼0;1
¼ Oðg10Þ; ð110Þ

hOtestL̂−4iEn¼2;3
¼ Oðg7Þ; ð111Þ

hOtestL̂−6iEn¼4;5
¼ Oðg5Þ; ð112Þ

and the η minimization. The explicit results are

E0;K¼4 ≈
1

2
þ 3

4
g −

21

8
g2 þ 333

16
g3 −

30885

128
g4 þ 916731

256
g5 −

65518401

1024
g6 þ 2723294673

2048
g7

−
1030495099053

32768
g8 þ 54626982511455

65536
g9 −

2311268895269303699774094514905

94418664607097552896
g10 þOðg11Þ; ð113Þ

E1;K¼4 ≈
3

2
þ 15

4
g −

165

8
g2 þ 3915

16
g3 −

520485

128
g4 þ 21304485

256
g5 −

2026946145

1024
g6 þ 108603230895

2048
g7

−
51448922163885

32768
g8 þ 3325989183831585

65536
g9 −

175501317536123439084638122629745305

98834461924794527645696
g10 þOðg11Þ;

ð114Þ

E2;K¼4 ≈
5

2
þ 39

4
g −

615

8
g2 þ 20079

16
g3 −

3576255

128
g4 þ 191998593

256
g5 −

23513776995

1024
g6

þ 35135739024227564792793164073

45159147304513673216
g7 þOðg8Þ; ð115Þ

E3;K¼4 ≈
7

2
þ 75

4
g −

1575

8
g2 þ 66825

16
g3 −

15184575

128
g4 þ 1024977375

256
g5 −

155898295875

1024
g6

þ 36203582427161186496240292235625

5713467480989300844544
g7 þOðg8Þ; ð116Þ
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E4;K¼4 ≈
9

2
þ 123

4
g −

3249

8
g2 þ 171153

16
g3

−
3637623070300184675417824875

9790734694343084724608
g4

þOðg5Þ; ð117Þ

E5;K¼4 ≈
11

2
þ 183

4
g −

5841

8
g2 þ 369063

16
g3

−
124940937770350373790920800845

130510054543768316521088
g4

þOðg5Þ; ð118Þ

where the highest-order coefficients are approximate results
from the η minimization, and all other coefficients are
exact. For other values of E, the null state condition can be
satisfied exactly to order g2, but not to order g3. So no other
energy levels are found.
Why are the results of the second version better than

those from the first perturbative procedure? As we restrict
the test operators to be of low degree in x and ip, there are
fewer constraints on L̂−k than those on L̃−k. The space of
solutions becomes larger. Suppose that the null state
condition holds to order gj in the naive approach. We
can add to the solution L̃−k a term hðx; ipÞ

L̂−k ¼ L̃−k þ hðx; ipÞ; ð119Þ

where hðx; ipÞ is a polynomial in x and ip, satisfying

hOtesthðx; ipÞiEn
¼ Oðgjþ1Þ: ð120Þ

The test operatorOtest takes the form (93) withM ¼ K þ 2.
Then, the null state condition still holds to order gj for test
operators with M ¼ K þ 2. For certain hðx; ipÞ, the high
degree terms on the right-hand side of (119) cancel out and
we obtain a polynomial of considerably lower degree in x
and ip than L̃−k. In this way, a low degree L̂−k is equivalent
to a high degree L̃−k in the null state condition with
M ¼ K þ 2. As a result, we can obtain significantly higher-
order results for the energy levels in the second version of
the perturbative null bootstrap.
The pair patterns in the first version also exist in the

second version. As K increases, the results show greater
improvements when K þ n is odd than when K þ n is
even, so we obtain pairs of results with similar orders in g.
We also have the following pairs of results determined to
the same order in g: ðE2m;K; E2mþ1;KÞ when K is even, and
ðE2mþ1;K; E2mþ2;KÞ when K is odd. Here m denotes a non-
negative integer. These patterns can also be traced back to
the parity constraints.
In [27], the results are obtained at finite coupling. We

find that the convergence of the nonperturbative approach
at finite coupling is similar to that at small g. The latter has

been studied analytically using the above small g expan-
sion. In the finite coupling case, the precision increases
significantly from K ¼ 2 to K ¼ 3 for the ground-state
energy, but more slowly from K ¼ 1 to K ¼ 2 and from
K ¼ 3 to K ¼ 4 (see Table I in [27]). This pattern is
consistent with that of the perturbative results, where the
ground-state energy is calculated to order g1, g3, g8, and g10

at K ¼ 1, 2, 3, and 4. Moreover, the finite coupling results
for the first-excited-state energy improve slowly from
K ¼ 2 to K ¼ 3, but rapidly from K ¼ 3 to K ¼ 4. In
the small g expansion, the first-excited-state energy is
calculated to order g3, g5, and g10 at K ¼ 2, 3, and 4
[see (103), (106), and (114)], showing a similar pattern to
the finite coupling results. For a fixed K, the finite coupling
results behave similarly to those in the g expansion. There
are pairs of finite coupling results with similar precision
(see Table I in [27]). The pattern is the same as that
discussed above in the g expansion. In addition, we can
compare the results for different energy levels and at
different K. The finite coupling and small g expansion
results match qualitatively. The higher-precision results in
the finite coupling case correspond to higher-order results
in the small g expansion. For example, the K ¼ 3 result for
E2 is more precise than the K ¼ 2 result for E1 in the finite
coupling case (see Table I in [27]), and in the small g
expansion we obtain E2;K¼3 to order g5, while we determine
E1;K¼2 to order g3. In conclusion, for the low energy levels,
the convergence of the finite coupling results roughly
resembles the behavior at small g, which can be explained
by the small g expansion results discussed above.
A difference is that we obtain more energy levels in the

small g expansion at K ¼ 3. We find five energy levels E0,
E1, E2, E3, and E4 in the small g expansion, while the finite
coupling results only have three energy levelsE0,E1, andE2.
As mentioned above, the η minimization results of the
additional solutions do not give good approximations for
the highest order coefficients. Thismaybe the reason for their
absence in the minimization results at finite coupling.38

We have introduced the second version of reduced
procedure in perturbation theory, which is consistent with
the nonperturbative method when the coupling constant g is
small. Interestingly, we can further improve the perturba-
tive results by reducing the number of null state constraints.
For test operators withM ¼ K þ 2, the null state condition
cannot hold to arbitrarily high order in g and the system is
overdetermined at higher orders in g. If we remove some of
these constraints, then more exact coefficients in the
perturbative energies can be determined by the null state

38At K ¼ 4, we obtain six energy levels in the small g
expansion. In the finite coupling case, one can also find six
local minima of the η function, in accordance with the perturba-
tive results. In [27], the n ¼ 4, 5 results at K ¼ 4 were not
presented for the single well potential. However, the six local
minima in the double well potential case were discussed in the
footnote 19 of [27].
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condition. Consider the expectation value hOtestL̂−kiEn
. The

test operators are still the lower-degree polynomials in x and
ip, i.e., M ¼ K þ 2, and we require that hOtestL̂−kiEn

is
exactly zero to the highest order possible in g. We write
hOtestL̂−kiEn

¼ Oðgjþ1Þ. However, we do notminimize the η
function in the third version. Instead, we setM ¼ K þ 1 and
require that hOtestL̂−kiEn

is exactly zero at order gjþ1 again.39

When n < K, this gives the exact coefficients, instead of the
approximated ones from the η minimization. Moreover, we
can impose that hOtestL̂−kiEn

is exactly zero forM ¼ K þ 1

at even one order higher in g, i.e., at order gjþ2. Curiously, we
obtain the exact coefficients at order gjþ2 in the ground-state
energy at K ¼ 3, 4 and in the first-excited-state energies at
K ¼ 4.40 In other cases, the energies at order gjþ2 are not
fixed by the null state condition.41 Inmore detail, atK ¼ 1, 2,

3weobtain the exact coefficients ðEð1Þ
0;K¼1Þ, ðEð3Þ

0;K¼2; E
ð3Þ
1;K¼2Þ,

and ðEð8Þ
0;K¼3; E

ð9Þ
0;K¼3; E

ð5Þ
1;K¼3Þ, whose explicit values are

contained in (113)–(116). Let us present the additional
results at K ¼ 4

Eð10Þ
0;K¼4 ¼ −

6417007431590595

262144
;

Eð11Þ
0;K¼4 ¼

413837985580636167

524288
;

Eð10Þ
1;K¼4 ¼ −

465491656557283395

262144
;

Eð11Þ
1;K¼4 ¼

35043703273186461945

524288
;

Eð7Þ
2;K¼4 ¼

1593440096499

2048
;

Eð7Þ
3;K¼4 ¼

12977225578125

2048
: ð121Þ

At order gjþ3, we do not obtain more exact coefficients by

setting M ¼ K þ 1 and requiring that hOtestL̂−kiEn

vanishes.42 This concludes our discussion of the low energy
levels.
Now we discuss the matrix elements. We will only

consider arbitrary test operators here. Suppose that we have
obtained the eigenenergies of two states jni and jn0i. We
can also compute the matrix element using a slightly
modified version of (65)

hnjOjn0i ¼

8><
>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þn0−n

p hOLn0;nin if n0 > n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0þ1Þn−n0

p hOLn0;nin if n0 < n
; ð122Þ

where Ln0;n is the operator that connects the two states jni
and jn0i and h…in ≡ h…iEn

. Note that we have specified
the two energy eigenstates connected by the ladder oper-
ator. The reason will be explained shortly. The ladder
operator in (122) is obtained by considering

hOtestðH − En0 ÞLn0;nin ¼ 0; ð123Þ

which holds for arbitrary test operators. We use the ansatz

Ln0;n ¼ degree-jn0−njpolynomial

þgðdegree-ðjn0−njþ2ÞpolynomialÞ
þg2ðdegree-ðjn0−njþ4ÞpolynomialÞ
þg3ðdegree-ðjn0−njþ6ÞpolynomialÞþOðg4Þ:

ð124Þ

These degrees are the minimal degrees for constructing the
nontrivial part of the level-jn0 − nj ladder operator. For
some low-lying states, there are differences between ladder
operators obtained in this way and those from the complete
procedure. For example, the zeroth-order ladder operator

Lð0Þ
1;0 is

Lð0Þ
1;0 ¼ ðnormalizationÞ × Lð0Þ

þ1 þ ðg-independent operatorÞ
× Lð0Þ

−1 ; ð125Þ

where the last term is associated with a null state at zeroth
order when acting on j0i at order g0. Despite the differences
in the ladder operators, we obtain the same results for the
matrix elements, since the null states are orthogonal to all
states and do not contribute to the matrix elements.

39At order gjþ1, we also consider M ¼ K and obtain the exact
coefficients. In most cases, the coefficients cannot be determined
if M < K. The ground-state energy at K ¼ 3, 4 and the first-
excited-state energy at K ¼ 4 are special. To obtain the exact
energies at order gjþ1, the minimal value of M is K − 2 in the
special cases. Furthermore, we obtain two exact coefficients in
these special cases below.

40In these cases, we can obtain the exact coefficients at order
gjþ2 as long as M satisfies K − 2 ≤ M ≤ K þ 3 at this order.
There is no solution for higher M and the energies at order gjþ2

are not fixed for lower M.
41Since the energies at order gjþ2 are not fixed, we increase the

number of constraints by setting M ¼ K þ 2 at order gjþ2. Then,
there will be no solution if we impose that hOtestL̂−kiEn

vanishes
at this order, but we can use the η minimization to obtain good
approximations of the energies at order gjþ2. For simplicity, the η
minimization here is carried out under the constraint that
hOtestL̂−kiEn

is zero for M ¼ K þ 1 at order gjþ2.

42In the special cases where two exact coefficients are
obtained, one can consider M ¼ K þ 2 or M ¼ K þ 3 at order
gjþ2 and M ¼ K − 2 or M ¼ K − 1 at gjþ3. The coefficients at
order gjþ2 and gjþ3 can be fixed by imposing that hOtestL̂−kiEn

vanishes at these orders. The exact coefficients at order gjþ2 are
obtained, but the solutions at order gjþ3 are different from those
in the Bender-Wu method. Nonetheless, they are good approx-
imations of the exact values.
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For example, after choosing the normalization and fixing
the sign of Ln0;n, although L1;0 is not exactly Lþ1, the results
for the matrix elements are identical

h0jOj1i ¼ h0jOL1;0j0i ¼ h0jOLþ1j0i: ð126Þ

To be consistent with (122), we impose the normalization
condition:

(i) For n0≠n, we have jLn0;njnij2¼ðminðn0;nÞþ1Þjn0−nj.
As in (44), the sign of Ln0;n is fixed using Dirac’s ladder
operators. As the explicit expression of Ln0;n is compli-
cated, we will consider the expectation value to simplify the

discussion. As in (63), Lð0Þ
n0;n should be equivalent to the

jn0 − nj-th power of Dirac’s ladder operators when they act
on jni

Ln0;njni ¼
�

1ffiffiffi
2

p ðx − sgnðn0 − nÞipÞ
�jn0−nj

jni þOðgÞ:

ð127Þ

The main point is that the relative phase factor between the
left- and right-hand sides should be þ1. Since the relative
phase factor is encoded in their inner product, the condition
(127) implies the constraint

hðxþ sgnðn0 − nÞipÞjn0−njLn0;nið0Þn > 0: ð128Þ

In this way, the sign of Ln0;n is consistent with that in the
complete procedure.
In general, the matrix elements obtained in the reduced

procedure are the same as those in the complete procedure.
Therefore, the reduced-procedure results for the low-lying
matrix elements are at least as complete as those from the
complete procedure.

E. Anharmonic operator algebra

In the complete procedure, we have derived the explicit
expressions of the anharmonic ladder operators. We can
further study their algebraic properties. It is natural to
construct the anharmonic number operator from the ladder
operators, which form a closed algebra as that in the
harmonic case. However, the Hamiltonian H is a nonlinear
function of the number operator and the commutators
involving H are more complicated.
As shown in (53) and (62), the level-1 raising operator

Lþ1 is precisely the Hermitian conjugate of the level-1
lowering operator L−1

Lþ1 ¼ ðL−1Þ†: ð129Þ

Here and below, we drop “n.t.” for simplicity. The ladder
operators in this subsection are always the nontrivial part.
Using the explicit expression of L�1 in (44), (52), (59), and
(61), we verify that their commutator takes a simple form as

in the harmonic case

½L−1; Lþ1� ¼ 1þOðg4Þ; ð130Þ

so they provide a natural set of building blocks of the
anharmonic operator algebra. We can further introduce the
anharmonic number operator

N ¼ Lþ1L−1; ð131Þ

whose commutators with the level-1 ladder operators are

½N ; L−1� ¼ −L−1; ½N ; Lþ1� ¼ Lþ1: ð132Þ

The anharmonic number operator can be viewed as a
conserved quantity, as the action of a raising and then a
lowering operator should leave a nondegenerate eigenstate
invariant up to some factor. In fact, the eigenvalue of N is
precisely n in our convention

N jni ¼ njni þOðg4Þ: ð133Þ

We verify that the number operator commutes with the
Hamiltonian as expected

½H;N � ¼ Oðg4Þ: ð134Þ

However, the commutators of the Hamiltonian and the
anharmonic ladder operators cannot be linear in the ladder
operators L�1, since the energy levels have nonconstant
spacing. In the small g expansion, they are given by

½H;L−1� ¼ L−1G−ðHÞ þOðg4Þ;
½H;Lþ1� ¼ Lþ1GþðHÞ þOðg4Þ; ð135Þ

where G− and Gþ are functions of H. As a result, the
commutators of G� and H vanish and the higher-order
commutators are associated with higher powers of G�.
For example, the second order case is ½H;½H;L�1��¼
½H;L�1G��¼½H;L�1�G�¼L�1ðG�Þ2. The explicit expres-
sions of Gþ and G− are43

GþðHÞ ¼ 1þ g

�
3

2
þ 3H

�
þ g2

�
−
153

16
−
51

4
H −

69

4
H2

�

þ g3
�
1305

16
þ 3615

16
H þ 639

4
H2 þ 633

4
H3

�

þOðg4Þ; ð136Þ

43Notice that Gþ ¼ −G−jH→−H;g→−g þOðg4Þ. For the har-
monic oscillator, the transformations x → ix; p → ip, i.e.,
H → −H, lead to a different quantization condition, where the
wave function vanishes at infinity on the imaginary axis, instead
of the usual real infinity. In the anharmonic case, we pick up an
additional transformation g → −g in the perturbative treatment.
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G−ðHÞ ¼ −1þ g

�
3

2
− 3H

�
þ g2

�
153

16
−
51

4
H þ 69

4
H2

�

þ g3
�
1305

16
−
3615

16
H þ 639

4
H2 −

633

4
H3

�

þOðg4Þ; ð137Þ

It is precisely the nontrivial dependence on H that leads to
the nonlinear energy spacing in the occupation number n.
Furthermore, Gþ and G− are not independent as they are
closely related to the energy differences. If the operator H
in G� is replaced by a number E, we have

GþðEÞ þG−ðEþ GþðEÞÞ ¼ Oðg4Þ;
G−ðEÞ þGþðEþ GþðEÞÞ ¼ Oðg4Þ; ð138Þ

as the action of a ladder operator and then the opposite one
should leave the energy invariant. In terms of commutation
relations, i.e., ½H;L−1Lþ1� ¼ Oðg4Þ and ½H;Lþ1L−1� ¼
Oðg4Þ, we have

G−Lþ1þLþ1Gþ ¼Oðg4Þ; GþL−1þL−1G− ¼Oðg4Þ;
ð139Þ

which can be equivalently written as

½Gþ; L−1� ¼ −L−1ðGþ þG−Þ þOðg4Þ;
½G−; Lþ1� ¼ −Lþ1ðGþ þG−Þ þOðg4Þ: ð140Þ

However, the diagonal commutators are given by

½G−;L−1� ¼L−1

�
3gþ51

2
ð1−HÞg2þ9

8
ð395−500H

þ284H2Þg3þOðg4Þ
�
; ð141Þ

½Gþ; Lþ1� ¼ Lþ1

�
3g −

51

2
ð1þHÞg2 þ 9

8
ð395þ 500H

þ 284H2Þg3 þOðg4Þ
�
; ð142Þ

so it seems that the Hamiltonian and the ladder operators do
not form a simple algebraic structure. Note that the leading
orders of the diagonal commutators ½G−; L−1� and
½Gþ; Lþ1� are both g1, so we have ½G−; ½G−; L−1�� ∼ g2

and ½Gþ; ½Gþ; Lþ1�� ∼ g2. By considering higher nested
commutators, we can see that the algebra is perturbatively
closed to some order in g.
Nevertheless,we can express the anharmonicHamiltonian

in terms of the anharmonic number operatorN . Let us recall
that the perturbative series for En reads

En ¼
1

2
þ nþ 3

4
ð1þ 2nþ 2n2Þg − 1

8
ð21þ 59nþ 51n2

þ 34n3Þg2 þ 3

16
ð111þ 347nþ 472n2 þ 250n3

þ 125n4Þg3 þOðg4Þ; ð143Þ

where n ¼ 0; 1; 2;… labels the energy levels. This pertur-
bative series gives a precise approximation of the energy
levels for sufficiently small g at low n. Accordingly, the
Hamiltonian can be expressed in terms of the anharmonic
number operator

H ¼ E0 þN þ 3

4
ð2N þ 2N 2Þg

−
1

8
ð59N þ 51N 2 þ 34N 3Þg2

þ 3

16
ð347N þ 472N 2 þ 250N 3

þ 125N 4Þg3 þOðg4Þ; ð144Þ

which is consistent with replacing the occupation number n
in (143) with N ¼ Lþ1L−1. From the operator algebraic
perspective, the left ideal generated by ðH − E0Þ is a subset
of that generated by L−1. Here fH;E0; L−1g provides a
concrete example of a set of consistent data. For higher states,
we can use the generalization of (144):

ðL−1ÞmðH − EmÞ ¼ SLþ1ðL−1Þmþ1 þOðg4Þ; ð145Þ

wherem denotes the number of lowering operators and S is
given by

S¼1þ
�
3

2
ð1þ2mÞþ3

2
N
�
gþ

�
−
1

8
ð59þ102mþ102m2Þ−51

8
ð1þ2mÞN −

17

4
N 2

�
g2

þ
�
3

16
ð347þ944mþ750m2þ500m3Þþ3

8
ð236þ375mþ375m2ÞNþ375

8
ð1þ2mÞN 2þ375

16
N 3

�
g3þOðg4Þ: ð146Þ

For m ¼ n, the stationary Schrödinger equation
ðH − EnÞjni ¼ 0 is encoded in the level-n null state
condition ðL−1Þnþ1jni ¼ 0, together with the assumption

ðL−1Þnjni ≠ 0. Although the statements in this subsection
are examined to order g3, we believe that some are valid to
arbitrarily high orders and even nonperturbatively.
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III. DYSON-SCHWINGER EQUATIONS

In Sec. II, we have solved the anharmonic oscillator in
the Hamiltonian formalism. Before presenting a parallel
discussion in the Lagrangian formalism, let us first give a
brief overview of the DS equations.
In the discussion of the DS equations, we consider the

Heisenberg picture. To be consistent with the results in the
Hamiltonian approach, the Lagrangian in the generating
functional Z½J� ¼ R

Dx exp ½i R∞
−∞ dtðLþ JðtÞxðtÞÞ� is

given by

L ¼ 1

2

�
d
dt
xðtÞ

�
2

−
1

2
xðtÞ2 − gxðtÞ4; ð147Þ

where J is the classical source. An infinitesimal change of
the integration variable xðtÞ gives44

ð∂2t þ 1Þ δ

iδJðtÞZ½J� þ 4g
δ3

i3δ3JðtÞZ½J� ¼ JðtÞZ½J�: ð149Þ

We can derive the DS equations by taking its functional
derivatives with respect to J and then setting J ¼ 0

ð∂2t þ1ÞGnðt; t1; t2;…; tn−1Þþ4gGnþ2ðt; t; t; t1; t2;…; tn−1Þ

¼−i
Xn
j¼1

δðt− tjÞGn−2ðt1; t2;…; tj−1; tjþ1;…; tn−1Þ;

ð150Þ

where we have introduced the full Green’s function

Gnðt1; t2;…; tnÞ ¼
1

Z½0�
δnZ½J�

inδJðt1ÞδJðt2Þ…δJðtnÞ
jJ¼0:

ð151Þ

To show the equivalence of the Lagrangian and
Hamiltonian approaches, let us derive the DS equations
in the Hamiltonian formalism. To remind the reader, the
explicit definition of the anharmonic oscillator Hamiltonian
is H ¼ 1

2
p2 þ 1

2
x2 þ gx4. At any time, the definition of H

and the canonical commutation relation ½x; p� ¼ i imply an
operator identity

2HxH − xH2 −H2xþ xþ 4gx3 ¼ 0: ð152Þ

In the Heisenberg picture, we should write the t dependence
of the operators explicitly. Then the matrix element

associated with two energy eigenstates jm1i and jm2i reads

ð−ðEm1
−Em2

Þ2þ1Þhm1jxðtÞjm2iþ4ghm1jx3ðtÞjm2i¼ 0;

ð153Þ

which can be written in a differential form45

ð∂2t þ 1Þhm1jxðtÞjm2i þ 4ghm1jx3ðtÞjm2i ¼ 0: ð154Þ
To derive the DS equations, we first assume the time order
t1 > t2 > … > tj−2 > tj−1 > t > tj > tjþ1 > … > tn−2 >
tn−1. Then we multiply (154) by the matrix elements
h0jxðt1Þ…xðtj−1Þjm1i and hm2jxðtjÞ…xðtn−1Þj0i and sum
over m1, m2

ð∂2t þ1Þ
X
m1;m2

h0jxðt1Þ…xðtj−1Þjm1ihm1jxðtÞjm2i

× hm2jxðtjÞ…xðtn−1Þj0iþ4g
X
m1;m2

h0jxðt1Þ…xðtj−1Þjm1i

× hm1jx3ðtÞjm2ihm2jxðtjÞ…xðtn−1Þj0i¼ 0: ð155Þ

Then the completeness relation
P

m jmihmj ¼ 1 implies

ð∂2t þ 1Þh0jxðt1Þ…xðtj−1ÞxðtÞxðtjÞ…xðtn−1Þj0i
þ 4gh0jxðt1Þ…xðtj−1Þx3ðtÞxðtjÞ…xðtn−1Þj0i ¼ 0:

ð156Þ
Similarly, for the slightly different time order t1 > … >
tj > t > tjþ1… > tn−1, we have

ð∂2t þ 1Þh0jxðt1Þ…xðtjÞxðtÞxðtjþ1Þ…xðtn−1Þj0i
þ 4gh0jxðt1Þ…xðtjÞx3ðtÞxðtjþ1Þ…xðtn−1Þj0i ¼ 0:

ð157Þ

Note that

∂th0jxðt1Þ…xðtÞxðtjÞ…xðtn−1Þj0ijtj→t − ∂th0jxðt1Þ…xðtjÞ
× xðtÞ…xðtn−1Þj0ijtj→t

¼ h0jxðt1Þ…pðtÞxðtÞ…xðtn−1Þj0i − h0jxðt1Þ…xðtÞ
× pðtÞ…xðtn−1Þj0i;

¼ −ih0jxðt1Þ…xðtj−1Þxðtjþ1Þ…xðtn−1Þj0i; ð158Þ

where the dependence on t is removed by the canonical
commutation relation ½xðtÞ; pðtÞ� ¼ i. In terms of the
Green’s function

hxðt1Þxðt2Þ…i0¼h0jTfxðt1Þxðt2Þ…gj0i; ð159Þ44This corresponds to the classical equation of motion

d2

dt2
xðtÞ þ xðtÞ þ 4gxðtÞ3 ¼ JðtÞ: ð148Þ 45This can be derived from xðtÞ¼eiHtx0e−iHt with x0¼

xðt¼0Þ.
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Equation (158) implies that the first-order t-derivative of
hxðtÞxðt1Þxðt2Þ…i0 is discontinuous at the coincident limit
tj → t. This is realized by introducing the contact term with
δðt − tjÞ to the second-order differential equation. The
complete differential equation reads

ð∂2t þ 1ÞhxðtÞxðt1Þxðt2Þ…xðtn−1Þi0 þ 4ghx3ðtÞxðt1Þ
× xðt2Þ…xðtn−1Þi0

¼ −i
X
j

δðt − tjÞhxðt1Þxðt2Þ…xðtj−1Þxðtjþ1Þ…xðtn−1Þi0;

ð160Þ

which is precisely the DS equation (150).
One can also verify explicitly that the DS equations are

satisfied by the energy spectrum and the matrix elements in
Sec. II. As an example, we consider

hxðt1Þxðt2Þi0
¼ Θðt1 − t2Þ

X
n1

h0jeiHt1xe−iHt1 jn1i

× hn1jeiHt2xe−iHt2 j0i þ ðt1 ↔ t2Þ;

¼ Θðt1 − t2Þ
��

1

2
−
3g
2
þ 207g2

16

�
e−ið1þ3g−18g2Þðt1−t2Þ

þ 3g2

16
e−3iðt1−t2Þ

�
þ ðt1 ↔ t2Þ þOðg3Þ; ð161Þ

where ΘðxÞ is the Heaviside step function

ΘðxÞ ¼
8<
:

1 if x > 0

1
2

if x ¼ 0

0 if x < 0

: ð162Þ

We have used the half-maximum convention Θð0Þ ¼ 1
2
so

that the formula produces the correct result when t1 ¼ t2.
46

Furthermore, the function hx3ðt1Þxðt2Þi0 is

hx3ðt1Þxðt2Þi0 ¼ Θðt1 − t2Þ
X
n1

h0jeiHt1x3e−iHt1 jn1i

× hn1jeiHt2xe−iHt2 j0i þ ðt1 ↔ t2Þ;

¼ Θðt1 − t2Þ
��

3

4
−
45g
8

�
e−ið1þ3gÞðt1−t2Þ

þ 3g
8
e−3iðt1−t2Þ

�
þ ðt1 ↔ t2Þ þOðg2Þ:

ð163Þ

As expected, they satisfy the DS equation (150) with n ¼ 2

ð∂2t1 þ 1Þhxðt1Þxðt2Þi0 þ 4ghx3ðt1Þxðt2Þi0 þOðg3Þ
¼ −iδðt1 − t2Þ: ð164Þ

Below, we will investigate the anharmonic oscillator in
the DS approach, without reference to the Hamiltonian. We
make a comparison to the Hamiltonian approach by
considering one-point functions of composite operators.
The Dyson-Schwinger equations in the one-point limit give
the constraint

	
…

�
d2

dt2
xðtÞ þ xðtÞ þ 4gx3ðtÞ

�
…



0

¼ 0; ð165Þ

where the ellipses represent arbitrary operators at time t.
The time-translation invariance implies

∂t

	
xðtÞm1

�
d
dt
xðtÞ

�
m2



0

¼ 0; ð166Þ

which is similar to the equation h½H;O�i0 ¼ 0 in the
Hamiltonian approach [3]. For example, the constraint
from hxðtÞ d

dt xðtÞi0 reads

0 ¼ ∂t

	
xðtÞ d

dt
xðtÞ



0

¼
	�

d
dt xðtÞ

�
2

þ xðtÞ d2

dt2 xðtÞ



0

;

¼
	�

d
dt
xðtÞ

�
2

− x2ðtÞ − 4gx4ðtÞ



0

; ð167Þ

which is equivalent to the one from h½H; xp�i0 ¼ 0.
However, the constraint (166) is less stringent than (21).
To extract more information, we consider higher-point
functions Gnðt1; t2;…Þ. To solve the DS equations for
these functions, we will impose the null state condition.
The solutions for the Green’s functions are consistent with
the results in Sec. II. In parallel to Sec. II, we can use the
exact expressions of the ladder operators to construct the
null state condition, which corresponds to the complete
procedure in the Lagrangian formalism. Alternatively, we
can also solve the DS equations by only assuming the
existence of some null states, without knowing the exact
expressions of the ladder operators. This can be seen as the
reduced procedure for solving the DS equations.

A. Complete procedure

In the complete procedure of Sec. II A, we obtain the
exact expressions of the ladder operators. We now use the
corresponding null state condition to solve the DS equa-
tions. As discussed in Sec. I, we will derive the constraints
for Gn by considering the null state condition and its inner
product with some test states. We will show that Gn can be
determined order by order in g.46The value at x ¼ 0 is fixed by time reversal symmetry.
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The null state condition in the Heisenberg picture reads

L−1ðtÞj0i ¼ 0; ð168Þ

where L−1ðtÞ ¼ eiHtL−1e−iHt is the lowering operator in
the Heisenberg picture. According to pðtÞ ¼ d

dt xðtÞ and the
small g expansion (34), the null state condition (168) can be
rearranged into the form

�
xðtÞ þ i

d
dt
xðtÞ

�
j0i ¼ −

ffiffiffi
2

p
ðgLð1Þ

−1ðtÞ þ g2Lð2Þ
−1ðtÞ

þOðg3ÞÞj0i; ð169Þ

where the right-hand side corresponds to the perturbative
corrections to the lowering operator. Below, we will always
assume t1 > t2 > … > tn and sometimes write simply Gn
for Gnðt1; t2;…; tnÞ. Note that Gn is symmetric in its
arguments, so it suffices to solve for Gn in this specific
time order. To relate the states in (169) to Gn, we consider
the inner product with the test state h0jxðt1Þxðt2Þ…xðtn−1Þ.
The null state condition (169) implies the null differential
equation

Gn þ i∂tnGn ¼ gUð1Þ
n þ g2Uð2Þ

n þOðg3Þ; ð170Þ

where the terms on the right-hand side are associated with
the perturbative corrections to the lowering operator47

UðjÞ
n ≡ −

ffiffiffi
2

p
h0jxðt1Þxðt2Þ…xðtn−1ÞLðjÞ

−1ðtnÞj0i: ð171Þ

The explicit expressions of UðjÞ
n are composed of Green’s

functions and their derivatives.
For the Green’s function Gn, the functional form in tn is

determined by the null differential equation (170). But what
about other time variables? It seems that (170) is not useful
as it only involves the tn derivative. However, we notice
that in certain limits, the tn derivative is related to the tk
derivatives with k < n. This will lead to constraints on the
tk dependence of Gn.
To see the constraints more explicitly, we consider

the coincident limit of several time variables, i.e.,
ðGn þ i∂tkGnÞtkþ1;tkþ2;…;tn→tk . Then the derivative with
respect to tk can be associated with ∂tn and we can use
(170) to constrain the tk dependence as well. For example,
the coincident limit of two time variables is

ðGn þ i∂tn−1GnÞtn→tn−1

¼ Gn−2 þ ðGn þ i∂tnGnÞtn→tn−1

¼ Gn−2 þ ðgUð1Þ
n þ g2Uð2Þ

n þOðg3ÞÞtn→tn−1 ; ð172Þ

where we have used (170) and the DS equation in the
tn → tn−1 limit

ð∂tn−1Gn − ∂tnGnÞtn→tn−1
¼ −iGn−2: ð173Þ

In the coincident time limit tn → tn−1, the term i∂tn−1Gn in
(172) is expressed in terms of i∂tnGn and Gn−2, so we can
use (170) to constrain the tn−1 dependence of Gn. From the
perspective of operator theory, we move the momentum
operator pðtn−1Þ to the right using the commutation
relation, so we can take advantage of the null state
condition. More generally, we obtain a set of null differ-
ential equations

ðGn þ i∂tkGnÞtkþ1;tkþ2;…;tn→tk

¼ ½ðn − kÞGn−2 þ gUð1Þ
n þ g2Uð2Þ

n �tkþ1;tkþ2;…;tn→tk

þOðg3Þ; ð174Þ

where k ¼ 1; 2;…; n. Note that there is a term proportional
to Gn−2 on the right-hand side. The factor (n − k) is related
to the use of (n − k) different DS equations at coincident
times, which is equivalent to the number of commutation
relations in the operator theory perspective.
The null differential equations (174) are the main

ingredients to obtain the Green’s functions in the complete
procedure. Now, the question is whether we can determine
Gn completely using these constraints, since the null
differential equations (174) only constrain Gn in certain
limits. But the short answer is yes. Below, we address this
question in more detail.
Let us assume that Gn admits a small g expansion

Gn ¼
X

i¼0;1;2;…

giGðiÞ
n : ð175Þ

It is simpler to consider the zeroth order. We will show by

induction that we can in principle determine all Gð0Þ
n using

(174). Suppose that Gð0Þ
n−2 is known. For Gð0Þ

n , the null
differential equation (174) with k ¼ n at zeroth order
determines its functional form in tn. Next, we consider
the null differential equation (174) with k ¼ n − 1 at zeroth
order, where the limit tn → tn−1 is taken. However, the
crucial point is that the limit tn → tn−1 does not lose any
information about the functional form in tn−1, since the
functional dependence on tn is known. We proceed
similarly for k ¼ n − 2; n − 1;…; 1, and the functional
dependence on each time variable can be determined. In

the end, Gð0Þ
n is determined up to a free parameter, which

can be fixed by time-translation invariance.48 Therefore,

if Gð0Þ
n−2 is known, we can determine Gð0Þ

n completely.

47Note that UðjÞ
n admits a small g expansion.

48This is because the general solutions to (174) violate time-
translation invariance.
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Since we have Gð0Þ
0 ¼ 1 by definition, we can determine

Gð0Þ
n one by one.49 For the perturbative corrections in g, we

need to take into account the contribution of Un, but they
can be computed using lower order results for Gn. So the
argument extends to the perturbative corrections as well. In
conclusion, we can in principle determine all Gn com-
pletely order by order using the null differential equa-
tion (174) and time-translation invariance.

1. Examples: G2, G4, and G6

We consider some low-point Green’s functions G2, G4,
and G6 as explicit examples. At zeroth order, the ðn; kÞ ¼
ð2; 2Þ null differential equation (174) reads

Gð0Þ
2 ðt1; t2Þ þ i∂t2G

ð0Þ
2 ðt1; t2Þ ¼ 0; ð176Þ

and the solution is

Gð0Þ
2 ðt1; t2Þ ¼ Q0ðt1Þeit2 : ð177Þ

Here and below, we use Qi to represent the functional
dependence that remains to be determined. They will be
obtained by considering more null differential equations.
Using (177), we see that the ðn; kÞ ¼ ð2; 1Þ null differential
equation (174) becomes

eit1Q0ðt1Þ þ ieit1∂t1Q0ðt1Þ ¼ Gð0Þ
0 ; ð178Þ

where by definition Gð0Þ
0 ¼ 1. The solution to this differ-

ential equation is

Q0ðt1Þ ¼
1

2
e−it1 þ c0eit1 ; ð179Þ

where ci denotes the free parameter. On the right-hand
side, the second term violates time-translation invariance.

Therefore, the time-translation invariant solution for Gð0Þ
2

reads

Gð0Þ
2 ðt1; t2Þ ¼

1

2
e−it1þit2 : ð180Þ

This is precisely (161) at zeroth order with t1 > t2. In the

calculation of Gð0Þ
4 , there are more intermediate functions

Qi, and the null differential equations involve the previous

result for Gð0Þ
2 . First we have the ðn; kÞ ¼ ð4; 4Þ null

differential equation

Gð0Þ
4 ðt1; t2; t3; t4Þ þ i∂t4G

ð0Þ
4 ðt1; t2; t3; t4Þ ¼ 0; ð181Þ

and the solution is Gð0Þ
4 ðt1; t2; t3; t4Þ ¼ eit4Q1ðt1; t2; t3Þ.

Next, the ðn; kÞ ¼ ð4; 3Þ null differential equation
reads

eit3Q1ðt1; t2; t3Þ þ ieit3∂t3Q1ðt1; t2; t3Þ ¼ Gð0Þ
2 ðt1; t2Þ;

ð182Þ

and the solution is

Q1ðt1; t2; t3Þ ¼
1

4
e−it1þit2−it3 þ eit3Q2ðt1; t2Þ: ð183Þ

Then we solve the ðn; kÞ ¼ ð4; 2Þ and ðn; kÞ ¼ ð4; 1Þ null
differential equations and obtain

Gð0Þ
4 ðt1; t2; t3; t4Þ ¼

1

4
e−it1þit2−it3þit4 þ 1

2
e−it1−it2þit3þit4 ;

ð184Þ

where again we have used time-translation invariance to
fix the free parameter. Repeating the procedure above for

Gð0Þ
6 , we have the time-translation invariant result

Gð0Þ
6 ðt1; t2; t3; t4; t5; t6Þ

¼ 1

8
e−it1þit2−it3þit4−it5þit6 þ 1

4
e−it1−it2þit3þit4−it5þit6

þ 1

4
e−it1þit2−it3−it4þit5þit6 þ 1

2
e−it1−it2þit3−it4þit5þit6

þ 3

4
e−it1−it2−it3þit4þit5þit6 : ð185Þ

At first order in g, we need to take into account the

contribution of Uð1Þ
n . According to the definition (171), it is

related to Gn, Gnþ2 and their derivatives in a certain limit.
For example, the contribution of the term xp2ðtnÞ in

Lð1Þ
−1ðtnÞ can be computed by

h0jxðt1Þxðt2Þ…xðtn−1Þxp2ðtnÞj0i
¼ ð∂tnþ1

∂tnþ2
Gnþ2Þtnþ1;tnþ2→tn

: ð186Þ

Using the zeroth-order solutions (180) and (184) and the
exact expression of the nontrivial lowering operator (52),
we find

Uð1Þ
2 jg0 ¼ −

3

2
e−it1þit2 ; ð187Þ

where UðjÞ
n jgi represents UðjÞ

n at order gi. At first order, the
ðn; kÞ ¼ ð2; 2Þ null differential equation reads

Gð1Þ
2 ðt1; t2Þ þ i∂t2G

ð1Þ
2 ðt1; t2Þ ¼ Uð1Þ

2 jg0 ; ð188Þ
49We assume that the parity symmetry is unbroken, so the n-

point Green’s function Gn vanishes if n is odd.
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which leads to the solution

Gð1Þ
2 ðt1; t2Þ ¼

3

2
ieit2−it1t2 þ eit2Q3ðt1Þ: ð189Þ

Then the ðn; kÞ ¼ ð2; 1Þ null differential equation reads

3it1 þ eit1Q3ðt1Þ þ ieit1∂t1Q3ðt1Þ ¼ ðGð1Þ
0 þUð1Þ

2 jg0Þt2→t1
;

ð190Þ

where by definition Gð1Þ
0 ¼ 0. The solution is

Q3ðt1Þ ¼ −
3

2
e−it1 −

3

2
ie−it1t1 þ c1eit1 : ð191Þ

Together with time-translation invariance, we find that

Gð1Þ
2 ðt1; t2Þ ¼

3

2
e−it1þit2ð−1 − it1 þ it2Þ; ð192Þ

which is the first-order term in (161) with t1 > t2. For the

calculation of Gð1Þ
4 , we need to first compute the zeroth-

order expression of Uð1Þ
4

Uð1Þ
4 jg0 ¼ −

3

4
e−it1þit2−it3þit4 −

3

2
e−it1−it2þit3þit4

−
3

4
e−it1−it2−it3þ3it4 : ð193Þ

The above procedure then gives the time-translation invari-
ant result

Gð1Þ
4 ðt1; t2; t3; t4Þ

¼ 3

8
e−3it1þit2þit3þit4 þ3

8
e−it1−it2−it3þ3it4

þ3

4
e−it1þit2−it3þit4ð−2− it1þ it2− it3þ it4Þ

þ3

2
e−it1−it2þit3þit4ð−3− it1−2it2þ2it3þ it4Þ: ð194Þ

We will not consider Gð1Þ
6 because that requires the knowl-

edge of Gð0Þ
8 .

At second order, the contributions from the corrections to
the lowering operator are Uð2Þ

n jg0 and Uð1Þ
n jg1 . Using the

first-order solutions (192) and (194), we obtain

Uð1Þ
2 jg1 ¼ −

3

8
e−3it1þ3it2 þ 9

8
e−it1þit2ð3þ 4it1 − 4it2Þ:

ð195Þ

The zeroth-order solutions (180), (184), and (185) give

Uð2Þ
2 jg0 ¼

81

8
e−it1þit2 : ð196Þ

At order g2, the ðn; kÞ ¼ ð2; 2Þ null differential equation is

Gð2Þ
2 ðt1; t2Þ þ i∂t2G

ð2Þ
2 ðt1; t2Þ ¼ Uð1Þ

2 jg1 þ Uð2Þ
2 jg0 ; ð197Þ

which has the solution

Gð2Þ
2 ðt1; t2Þ¼−

9

4
e−it1þit2t22−

27

2
ie−it1þit2t2þ

9

2
e−it1þit2t1t2

þ 3

16
e−3it1þ3it2 þeit2Q4ðt1Þ: ð198Þ

In the end, the ðn; kÞ ¼ ð2; 1Þ null differential equation
reads

9t21
2

−
45it1
2

þ 3

4
þ eit1Q4ðt1Þ þ ieit1∂t1Q4ðt1Þ

¼ ðUð1Þ
2 jg1 þUð2Þ

2 jg0Þt2→t1
; ð199Þ

and the solution is

Q4ðt1Þ ¼ −
9

4
e−it1t21 þ

27

2
ie−it1t1 þ

207

16
e−it1 þ c2eit1 :

ð200Þ

As before, the free parameter is fixed by time-translation
invariance, and we find

Gð2Þ
2 ðt1; t2Þ ¼

3

16
e−3it1þ3it2 −

9

16
e−it1þit2ð4ðt1 − t2Þ2

− 24iðt1 − t2Þ − 23Þ: ð201Þ

The result agrees with (161) at second order. We will not

consider Gð2Þ
4 because that requires the knowledge of

Uð1Þ
4 jg1 and Uð2Þ

4 jg0 , which means that the calculation

involves Gð1Þ
6 and Gð0Þ

8 .

2. A simplified approach

In the discussion above, we wrote UðjÞ
n in terms of

higher-point functions and their derivatives, involving
more time variables and thus more complicated func-
tions that seem irrelevant. In a nonperturbative setting,
the complexity of the Green’s functions can grow much
faster with the number of time variables than the
perturbative case. To avoid introducing additional time
variables in the intermediate steps, we would like to

express UðjÞ
n directly in terms of Green’s functions with

n time variables and their derivatives. In this approach,
we can obtain Gn without considering additional time
variables.
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To illustrate this approach, let us recall the example
(186). In fact, it can also be computed from

h0jxðt1Þxðt2Þ…xðtn−1Þxp2ðtnÞj0i

¼ 1

6
ð∂2tn þ 3ÞGnþ2;tnþ2;tnþ1→tn

þ 2gGnþ4;tnþ4;tnþ3;tnþ2;tnþ1→tn þ i∂tnGn; ð202Þ

where we have used the DS equations at coincident times
(or equivalently the canonical commutation relation). The
main difference is that we exchange the order of coinci-
dent time limits and time derivatives in the computation of

UðjÞ
n . As we can see in (202), we need to consider the

Green’s functions at coincident times. They can be
obtained by

Gn;tkþ1;tkþ2;…;tn→tk þ
i

n − kþ 1
∂tkGn;tkþ1;tkþ2;…;tn→tk

¼
�
n − k
2

Gn−2 þ gUð1Þ
n þ g2Uð2Þ

n

�
tkþ1;tkþ2;…;tn→tk

þOðg3Þ; ð203Þ

which is similar to (174), but we take the coincident time
limit first and then take the time derivative.
As an example, let us solve for G2 to order g2 using only

two time variables. At zeroth order, the calculation of Gð0Þ
2

is the same as that in the example above. Let us consider the

perturbative corrections. To obtain Gð1Þ
2 , we need to

compute Uð1Þ
2 jg0 , which is related to Gð0Þ

2 ðt1; t2Þ and

Gð0Þ
4 ðt1; t2; t2; t2Þ. The null differential equation (203) with

ðn; kÞ ¼ ð4; 2Þ reads

Gð0Þ
4 ðt1; t2; t2; t2Þ þ

i
3
∂t2G

ð0Þ
4 ðt1; t2; t2; t2Þ ¼ Gð0Þ

2 ðt1; t2Þ;
ð204Þ

and the solution is

Gð0Þ
4 ðt1; t2; t2; t2Þ ¼

3

4
e−it1þit2 þ e3it2Q5ðt1Þ: ð205Þ

Then we consider the ðn; kÞ ¼ ð4; 1Þ null differential
equation (203)

3

4
þ1

4
e3it1Q5ðt1Þþ

1

4
ie3it1∂t1Q5ðt1Þ¼

3

2
Gð0Þ

2 ðt1; t1Þ: ð206Þ

The solution is Q5ðt1Þ ¼ c4eit1 , and we obtain the time-
translation invariant solution

Gð0Þ
4 ðt1; t2; t2; t2Þ ¼

3

4
e−it1þit2 ; ð207Þ

which is (184) in the limit t3; t4 → t2. Using the zeroth-
order solutions (180) and (184), we have

Uð1Þ
2 jg0 ¼ −

3

2
e−it1þit2 ; ð208Þ

which is precisely (187). Then time-translation invariance

and (208) allow us to determine Gð1Þ
2

Gð1Þ
2 ðt1; t2Þ ¼

3

2
e−it1þit2ð−1 − it1 þ it2Þ; ð209Þ

which is exactly (192).
To obtain Gð2Þ

2 , we need to consider Uð2Þ
2 jg0 and

Uð1Þ
2 jg1 , which are related to the following Green’s

functions:

Gð0Þ
2 ðt1; t2Þ; Gð0Þ

4 ðt1; t2; t2; t2Þ;
Gð0Þ

6 ðt1; t2; t2; t2; t2; t2Þ;
Gð1Þ

2 ðt1; t2Þ; Gð1Þ
4 ðt1; t2; t2; t2Þ; ð210Þ

where Gð0Þ
6 ðt1; t2; t2; t2; t2; t2Þ and Gð1Þ

4 ðt1; t2; t2; t2Þ are
unknown. At zeroth order, the null differential equa-
tion (203) with ðn; kÞ ¼ ð6; 2Þ yields

Gð0Þ
6 ðt1; t2; t2; t2; t2; t2Þ ¼

15

8
e−it1þit2 þ e5it2Q6ðt1Þ: ð211Þ

Then the ðn; kÞ ¼ ð6; 1Þ null differential equation gives

Q6ðt1Þ ¼ c5eit1 : ð212Þ

So we obtain the time-translation invariant solution

Gð0Þ
6 ðt1; t2; t2; t2; t2; t2Þ ¼

15

8
e−it1þit2 ; ð213Þ

which is (185) in the limit t3; t4; t5; t6 → t2. Using (180),
(207), and (213), we obtain

Uð2Þ
2 jg0 ¼

81

8
e−it1þit2 ; ð214Þ

which is precisely (196).Nextwe computeGð1Þ
4 ðt1; t2; t2; t2Þ.

The ðn; kÞ ¼ ð4; 2Þ null differential equation (203) reads

Gð1Þ
4 ðt1; t2; t2; t2Þ þ

i
3
∂t2G

ð1Þ
4 ðt1; t2; t2; t2Þ

¼ Gð1Þ
2 ðt1; t2Þ þ ðUð1Þ

4 jg0Þt3;t4→t2
: ð215Þ

The second term on the right-hand side can be computed
using the zeroth-order solutions (180), (184), and (185)

ðUð1Þ
4 jg0Þt3;t4→t2

¼ −3e−it1þit2 : ð216Þ
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In the end, using the ðn; kÞ ¼ ð4; 1Þ null differential equa-
tion (203), we obtain

Gð1Þ
4 ðt1; t2; t2; t2Þ ¼

3

8
e−3it1þ3it2 þ 9

8
e−it1þit2

× ð−5 − 2it1 þ 2it2Þ; ð217Þ

and this is (194) in the limit t3; t4 → t2. Together with (192),
we obtain

Uð1Þ
2 jg1 ¼ −

3

8
e−3it1þ3it2 þ 9

8
e−it1þit2ð3þ 4it1 − 4it2Þ:

ð218Þ

which is the same as (195). Assuming time-translation
invariance, we can determine G2 to order g2 usingonly two

time variables. We have also verified that Gð1Þ
4 ðt1; t2; t3; t4Þ

can be determined using only four time variables.

B. Reduced procedure

We have shown that the DS equations can be solved in the
complete procedure, i.e., by using the null state condition
from the exact ladder operators. In the reduced procedure, the
exact expressions of the ladder operators L�k are unknown,
so the explicit form of the null state condition seems unclear.
However, we want to emphasize that the null state condition
should be consistent with the DS equations (150), which
leads to strong constraints on the possible form of the null
differential equations. This is parallel to the consistency of
the Hamiltonian H and the ladder operator L−1 discussed in
Sec. II E.50 In fact, the perturbative DS equations allow only
two types of null state conditions, both of which can
determine Gn completely order by order in g.
Although we do not know the exact expressions of the

ladder operators, we have some general idea about the form
of the null state condition. We assume that

L�1ðtÞj0i ¼ 0; ð219Þ

where L�1ðtÞ has the small g expansion

L�1ðtÞ ¼ Lð0Þ
�1ðtÞ þ gLð1Þ

�1ðtÞ þ g2Lð2Þ
�1ðtÞ þOðg3Þ: ð220Þ

The LðjÞ
�1ðtÞ are degree-(2jþ 1) polynomials in xðtÞ and

ẋðtÞ ¼ pðtÞ.51 These are the minimal degrees for

constructing the nontrivial part of the level-1 ladder
operators.52 We will see later that there are two choices
�1 corresponding to the two types of null state conditions
that the DS equations allow.
As indicated in (169), the null state condition can be

rearranged into a more convenient form

�
xðtÞ þ c�i

d
dt
xðtÞ

�
j0i ¼ −ðgLð1Þ

�1ðtÞ þ g2Lð2Þ
�1ðtÞ

þOðg3ÞÞj0i; ð222Þ

where c� is the relative coefficient in the degree-1 poly-
nomial. Equation (222) leads to the null differential
equation for Gn

Gn þ ic�∂tnGn ¼ gUð1Þ
n;� þ g2Uð2Þ

n;� þOðg3Þ; ð223Þ

where we have defined

UðjÞ
n;� ≡ −h0jxðt1Þxðt2Þ…LðjÞ

∓1ðtnÞj0i: ð224Þ

Here c� and UðjÞ
� are unknown, so the null differential

equation (223) seems unclear, as opposed to (170) in the
complete procedure. Nevertheless, let us write down the
null differential equations with tk derivatives

ðGn þ ic�∂tkGnÞtkþ1;tkþ2;…;tn→tk

¼ ½c�ðn − kÞGn−2 þ gUð1Þ
n;� þ g2Uð2Þ

n;��tkþ1;tkþ2;…;tn→tk

þOðg3Þ: ð225Þ

Below, we will explain how to determine c� andUðjÞ
� . Then

we can solve for Gn using the null differential equa-
tions (225) as in the complete procedure.
For consistency, the solutions to the DS equations should

also satisfy the null differential equations. We will sub-
stitute the DS solutions into the null differential equa-
tion (223), which yields strong constraints on c� and UðjÞ

� .

50The stationary Schrödinger equation cannot be encoded in an
inconsistent null state condition as in (145).

51In [51], the null operator is built from higher derivatives of xðtÞ:

Onull ¼
X
m

am
dmxðtÞ
dtm

; ð221Þ

which should be equivalent to the ansatz here using both xðtÞ
and ẋðtÞ.

52In Sec. II D, the null operators are associated with lower-
degree polynomials in x and ip, which helps to deduce consid-
erably higher order results. However, this is not be very useful for
the reduced procedure here. We can assume that L�1ðtÞ is of
degree-ð1; 3; 3;…Þ in xðtÞ and ẋðtÞ at order g0; g1; g2;… based on
the K ¼ 3 results in (76). Then in the examples below, we do not
directly need Gð0Þ

6 to deduce (245), which is the main ingredient
in the derivation of Gð2Þ

2 . However, this simplification is insig-
nificant, since (245) requires the knowledge of Gð1Þ

4 , and the
derivation of Gð1Þ

4 is based on the solution of Gð0Þ
6 . Nonetheless,

the approach would be more useful if Gð1Þ
4 is already known and

we do not need to consider the more complicated six-point
function.
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There are two types of choices satisfying these constraints,
corresponding to the null state condition for the raising and
lowering operators. More explicitly, at zeroth order, we
consider the DS equation

ð∂t2n þ 1ÞGð0Þ
n ðt1; t2;…; tnÞ ¼ 0; ð226Þ

which has the solution

Gð0Þ
n ðt1; t2;…; tnÞ ¼ eitnQ7ðt1; t2;…; tn−1Þ

þ e−itnQ8ðt1; t2;…; tn−1Þ: ð227Þ

We remind the reader that Qi represents the functional
dependence that remains to be determined. The k ¼ n null
differential equation (223) implies

ð1 − c�ÞeitnQ7ðt1; t2;…; tn−1Þ þ ð1þ c�Þ
× e−itnQ8ðt1; t2;…; tn−1Þ ¼ 0: ð228Þ

The nontrivial solutions are

cþ ¼ þ1; Q8 ¼ 0; or c− ¼ −1; Q7 ¼ 0:

ð229Þ

The cþ case corresponds to the null state condition with the
lowering operator L−1, while the c− case is associated with
the raising operator Lþ1. In this way, we determine the

zeroth-order null state condition. We can solve for Gð0Þ
n

using time-translation invariance.
We repeat the procedure at first order in g, and Uð1Þ

n;� is
completely fixed by the consistency with the DS equa-
tions (150), which will be explained more explicitly below.
Therefore, the null differential equations are determined to
first order. As in the complete procedure, together with
time-translation invariance, we can solve the null differ-

ential equations to obtain Gð1Þ
n . The procedure extends to

higher orders, so we can solve for Gn order by order in g in
the reduced procedure as well.53

1. Examples: G2, G4, and G6

As concrete examples, we consider G2, G4, and G6. Let
us consider the more physical case cþ ¼ þ1.54 Below, we

use the consistency with (150) to determine UðjÞ
n;� order by

order, and we obtain G2 to second order in g.
At first order, the ðn; kÞ ¼ ð2; 2Þ null differential equa-

tion (225) reads

Gð1Þ
2 þ i∂t2G

ð1Þ
2 ¼ Uð1Þ

2;þjg0 : ð230Þ

On the other hand, we have the DS equation

ð∂2t2 þ 1ÞGð1Þ
2 ðt1; t2Þ þ 4Gð0Þ

4 ðt1; t2; t2; t2Þ ¼ 0; ð231Þ

and the solution is

Gð1Þ
2 ðt1; t2Þ ¼

3

4
e−it1þit2 þ 3i

2
e−it1þit2t2 þ eit2Q9ðt1Þ

þ e−it2Q10ðt1Þ; ð232Þ

where the terms with unknown functions Q9ðt1Þ and
Q10ðt1Þ correspond to the general solution of the associated
homogeneous equation. The solution (232) gives

Gð1Þ
2 þ i∂t2G

ð1Þ
2 ¼ −

3

2
e−it1þit2 þ 2e−it2Q10ðt1Þ: ð233Þ

Let us show that the consistency with (230) implies

Q10ðt1Þ ¼ 0. The right-hand side Uð1Þ
2;þjg0 in (230) is a

linear combination of Gð0Þ
2 , Gð0Þ

4 and their derivatives in the
limit t3; t4 → t2. Using the zeroth-order solutions (180) and

(184), we deduce thatUð1Þ
2;þjg0 cannot have the term with the

factor e−it2. We have

Uð1Þ
2;þjg0 ¼ −

3

2
e−it1þit2 ; ð234Þ

which is the same as (187). Since the ðn; kÞ ¼ ð2; 1Þ null
differential equation (225) has the same Uð1Þ

2;þjg0 , it is also
fixed at first order. We can determine Gð1Þ

2 using time-

translation invariance. To calculate Gð1Þ
4 , we consider the

ðn; kÞ ¼ ð4; 4Þ null differential equation (225)

Gð1Þ
4 þ i∂t4G

ð1Þ
4 ¼ Uð1Þ

4;þjg0 : ð235Þ

The corresponding DS equation is

ð∂2t4 þ 1ÞGð1Þ
4 ðt1; t2; t3; t4Þ þ 4Gð0Þ

6 ðt1; t2; t3; t4; t4; t4Þ ¼ 0;

ð236Þ

which has the solution

Gð1Þ
4 ðt1; t2; t3; t4Þ ¼−

3

8
e−it1þit2−it3þit4 −

3

4
e−it1−it2þit3þit4

þ 3

8
e−it1−it2−it3þ3it4 þ 3i

4
e−it1þit2−it3þit4t4

þ 3i
2
e−it1−it2þit3þit4t4þ eit4Q11ðt1; t2; t3Þ

þ e−it4Q12ðt1; t2; t3Þ: ð237Þ

53Again we assume that the parity symmetry is unbroken, so
Gn vanishes for odd n.

54Perturbatively, we can consider the case c− ¼ −1 in a similar
fashion.
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Using (237), we find

Gð1Þ
4 þ i∂t4G

ð1Þ
4 ¼ −

3

4
e−it1þit2−it3þit4 −

3

2

× e−it1−it2þit3þit4 −
3

4
e−it1−it2−it3þ3it4

þ 2e−it4Q12ðt1; t2; t3Þ: ð238Þ

Note that Uð1Þ
4;þjg0 is a linear combination of Gð0Þ

4 , Gð0Þ
6 and

their derivatives in the limit t5; t6 → t4. One can check that

Uð1Þ
4;þjg0 cannot contain the term with the factor e−it4 using

the zeroth-order solutions (184) and (185). Therefore, we
have

Uð1Þ
4;þjg0 ¼ −

3

4
e−it1þit2−it3þit4 −

3

2
e−it1−it2þit3þit4

−
3

4
e−it1−it2−it3þ3it4 ; ð239Þ

which agrees with (193). So the n ¼ 4 null differential
equations for all k are determined, and the time-translation

invariant Gð1Þ
4 can be derived.

At second order, the ðn; kÞ ¼ ð2; 2Þ null differential
equation (225) reads

Gð2Þ
2 þ i∂t2G

ð2Þ
2 ¼ Uð1Þ

2;þjg1 þ Uð2Þ
2;þjg0 ; ð240Þ

and we consider the DS equation

ð∂2t2 þ 1ÞGð2Þ
2 ðt1; t2Þ þ 4Gð1Þ

4 ðt1; t2; t2; t2Þ ¼ 0: ð241Þ

The solution to (241) is

Gð2Þ
2 ðt1; t2Þ¼

27

4
e−it1þit2 þ 3

16
e−3it1þ3it2 þ9i

4
e−it1þit2t1

−
27i
2

e−it1þit2t2þ
9

2
e−it1þit2t1t2−

9

4
e−it1þit2t22

þeit2Q13ðt1Þþe−it2Q14ðt1Þ; ð242Þ

which satisfies

Gð2Þ
2 þ i∂t2G

ð2Þ
2 ¼ −

3

8
e−3it1þ3it2 þ 9

2
e−it1þit2ð3þ it1 − it2Þ

þ 2e−it2Q14ðt1Þ: ð243Þ

Note that Uð1Þ
2;þjg1 þUð2Þ

2;þjg0 is a linear combination of the
following Green’s functions and their derivatives in the
limit t3; t4; t5; t6 → t2:

Gð0Þ
2 ; Gð0Þ

4 ; Gð0Þ
6 ; Gð1Þ

2 ; Gð1Þ
4 : ð244Þ

Based on the zeroth- and first-order solutions for the
Green’s functions (180), (184), (185), (192), and (194),

one can check that Uð1Þ
2;þjg1 þUð2Þ

2;þjg0 cannot have the term
with factor e−it2. So we have

Uð1Þ
2;þjg1 þ Uð2Þ

2;þjg0 ¼ −
3

8
e−3it1þ3it2 þ 9

2
e−it1þit2

× ð3þ it1 − it2Þ; ð245Þ
which is consistent with (195) and (196). Then we can

obtain the time-translation invariant Gð2Þ
2 using the null

differential equations (240) with n ¼ 2.

2. Remarks on L− 1

One may wonder if we could determine L−1 by con-
sidering more Green’s functions and determining more

UðjÞ
n;þ. The answer is that we can determine L−1 up to some

free parameters, but they are not exactly the level-1 ladder
operators in the complete procedure. The reason is that we
only impose that L−1 annihilates j0i, and this constraint
here is weaker than the constraint that L−1 is a lowering
operator for all energy eigenstates.

3. A simplified approach

In parallel to the complete procedure, we can also
determine the Green’s functions without introducing more
time variables. We also consider the consistency between
the DS equations and null differential equations to con-

strain UðjÞ
n;�. The difference is that here we exchange the

order of time derivatives and coincident time limits, as

shown in (202). In other words, we think ofUðjÞ
n;� as a linear

combination of Green’s functions with n time variables and

their derivatives. Once UðjÞ
n;� is fixed by the consistency

condition, the corresponding Green’s function will be
determined by the null differential equations as above.
As an example, we carry out the calculation of

Gð2Þ
2 ðt1; t2Þ. We need to solve for the following Green’s

functions:

Gð0Þ
2 ðt1; t2Þ; Gð0Þ

4 ðt1; t2; t2; t2Þ; Gð0Þ
6 ðt1; t2; t2; t2; t2; t2Þ;

Gð1Þ
2 ðt1; t2Þ; Gð1Þ

4 ðt1; t2; t2; t2Þ: ð246Þ

Below, we will restrict the discussion to the case cþ ¼ þ1
and determine these functions. Since the ladder operator is
fixed at zeroth order, we can determine the zeroth-order
functions in (246).
For the calculation of Gð1Þ

2 ðt1; t2Þ, we have the consis-
tency condition

Uð1Þ
2;þjg0 ¼ −

3

2
e−it1þit2 þ 2e−it2Q10ðt1Þ; ð247Þ

which follows from (230) and (233). Note that Uð1Þ
2;þjg0 is a

linear combination of Gð0Þ
2 ðt1; t2Þ, Gð0Þ

4 ðt1; t2; t2; t2Þ and
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their derivatives. Using (180) and (207), we deduce that the

term with the factor e−it2 cannot appear in Uð1Þ
2;þjg0 . Then

(247) implies

Uð1Þ
2;þjg0 ¼ −

3

2
e−it1þit2 ; ð248Þ

which is the same as (234). Therefore, we can determine

Gð1Þ
2 ðt1; t2Þ using the null differential equations with n ¼ 2

and time-translation invariance.
The next Green’s function in the list (246) is

Gð1Þ
4 ðt1; t2; t2; t2Þ. In our discussion, it is more convenient

to consider Gð1Þ
4 ðt1; t1; t1; t2Þ, which is the same as

Gð1Þ
4 ðt1; t2; t2; t2Þ due to time-reversal symmetry. To

derive the consistency condition, we consider the DS
equation

ð∂2t2 þ 1ÞGð1Þ
4 ðt1; t1; t1; t2Þ þ 4Gð0Þ

6 ðt1; t1; t1; t2; t2; t2Þ ¼ 0;

ð249Þ

where we use55

Gð0Þ
6 ðt1; t1; t1; t2; t2; t2Þ ¼

9

8
e−it1þit2 þ 3

4
e−3it1þ3it2 : ð252Þ

The solution to (249) is

Gð1Þ
4 ðt1; t1; t1; t2Þ¼−

9

8
e−it1þit2 þ3

8
e−3it1þ3it2 þ9i

4
e−it1þit2t2

þeit2Q15ðt1Þþe−it2Q16ðt1Þ; ð253Þ

and it satisfies

Gð1Þ
4 ðt1; t1; t1; t4Þ þ i∂t4G

ð1Þ
4 ðt1; t1; t1; t4Þ

¼ −
9

4
e−it1þit4 −

3

4
e−3it1þ3it4 þ 2e−it4Q16ðt1Þ; ð254Þ

where we use t4 instead of t2 for convenience. On
the other hand, the corresponding null differential
equation is

Gð1Þ
4 ðt1; t1; t1; t4Þ þ i∂t4G

ð1Þ
4 ðt1; t1; t1; t4Þ ¼ ðUð1Þ

4;þjg0Þt2;t3→t1
;

ð255Þ

which is (223) with n ¼ 4 at zeroth order in the limit

t2; t3 → t1. Since ðUð1Þ
4;þjg0Þt2;t3→t1

is a linear combination of

Gð0Þ
4 ðt1;t1;t1;t2Þ¼Gð0Þ

4 ðt1;t2;t2;t2Þ, Gð0Þ
6 ðt1; t1; t1; t2; t2; t2Þ

and their derivatives, one can check that ðUð1Þ
4;þjg0Þt2;t3→t1

cannot contain the term with the factor e−it4 using the
zeroth-order solutions (207) and (252). Combining (254)
and (255), we have

ðUð1Þ
4;þjg0Þt2;t3→t1

¼ −
9

4
e−it1þit2 −

3

4
e−3it1þ3it2 : ð256Þ

This is (193) in the limit t2; t3 → t1. So we can determine

Gð1Þ
4 ðt1; t1; t1; t4Þ using n ¼ 4 null differential equations

and time-translation invariance.
Now all the functions in (246) are obtained. We consider

the consistency condition

Uð1Þ
2;þjg1 þUð2Þ

2;þjg0 ¼−
3

8
e−3it1þ3it2 þ 9

2
e−it1þit2ð3þ it1− it2Þ

þ 2e−it2Q14ðt1Þ; ð257Þ

which follows from (240) and (243). The left-hand side is a
linear combination of the Green’s functions in (246) and
their derivatives. Using (180), (207), (209), (217), and
(252), one can check that the term with the factor e−it2 is

cannot be present in Uð1Þ
2;þjg1 þ Uð2Þ

2;þjg0 . So (257) implies

Uð1Þ
2;þjg1 þUð2Þ

2;þjg0 ¼−
3

8
e−3it1þ3it2 þ9

2
e−it1þit2ð3þ it1− it2Þ;

ð258Þ

which is the same as (245). This allows us to determine the

time-translation invariant Gð2Þ
2 ðt1; t2Þ using the null differ-

ential equations with n ¼ 2. We have also verified that

Gð1Þ
4 ðt1; t2; t3; t4Þ can be determined using only four time

variables in the reduced procedure. In conclusion, we can
carry out the reduced procedure without introducing addi-
tional intermediate time variables.

55We derive Gð0Þ
6 ðt1; t1; t1; t2; t2; t2Þ using the null differential

equation (203) at zeroth order. The case n ¼ 6 and k ¼ 4
reads

Gð0Þ
6;t2;t3→t1;t5;t6→t4

þ i
6 − 4þ 1

∂t4G
ð0Þ
6;t2;t3→t1;t5;t6→t4

¼ 6 − 4

2
Gð0Þ

4;t2;t3→t1
; ð250Þ

where we have also taken the limit t2; t3 → t1. On the right-hand
side, Gð0Þ

4 ðt1; t1; t1; t4Þ ¼ Gð0Þ
4 ðt1; t4; t4; t4Þ due to time-reversal

symmetry. Then we consider (203) with n ¼ 6 and k ¼ 1

Gð0Þ
6;t2;t3;t4;t5;t6→t1

þ i
6 − 1þ 1

∂t1G
ð0Þ
6;t2;t3;t4;t5;t6→t1

¼ 6 − 1

2
Gð0Þ

4;t2;t3;t4→t1
: ð251Þ

The null differential equations (250) and (251) and time-trans-
lation invariance give (252).
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IV. DISCUSSION

In this work, we have used the null bootstrap to
investigate the quartic anharmonic oscillator in perturbation
theory. Although the spacing of energy levels is not
constant, there exist anharmonic ladder operators that
can generate the full energy spectrum from a given energy
eigenstate. In the complete procedure, we determined the
energy spectrum (143) and the matrix elements from the
analytic solutions for the ladder operators. To order g3,
the explicit expressions of the level-1 ladder operators are
given in (44), (52), (59), and (61). In the reduced procedure,
we derived the low energy eigenvalues and matrix elements
without using the exact ladder operators. We described
three versions of the perturbative reduced procedure and
compared the results to those from the nonperturbative
method in the Hamiltonian formalism. We obtained the
results for the low energy levels to higher orders in the
coupling constant g. The results are presented in (99),
(101), (103), and (105)–(116). Moreover, we discussed
some properties of the anharmonic operator algebra. The
anharmonic number operator and the level-1 ladder oper-
ators form a closed algebra (130) and (132), as in the case
of the harmonic oscillator. In (144), the Hamiltonian is
written as a nonlinear function in the anharmonic number
operator. Furthermore, we showed that the dynamical
Schrödinger equation is encoded in the null state condition
generated by the lowering operator, according to (145).
Besides the Hamiltonian formalism, we have also studied

the Dyson-Schwinger equations in the Lagrangian formal-
ism. We showed that the underdetermined system of a finite
set of the DS equations can be solved by imposing the null
state condition. In the complete procedure, the null state
conditions are deduced from the exact expression of the
lowering operator and the Green’s functions can be deter-
mined order by order from the null differential equa-
tion (174). In the reduced procedure, the exact expression
for the lowering operator is not needed. Using the null
differential equation (203) and the consistency with the DS
equations, the n-point Green’s functions can be computed
order by order as well. In the explicit examples, the numbers
of points in theGreen’s functions range fromn ¼ 2 ton ¼ 6.
We also presented simplified methods that do not introduce
additional time variables in the intermediate steps, which
significantly reduces the complexity of the functions in the
computation.
We would like to extend these perturbative results to

genuine quantum field theory with at least two spacetime
dimensions. It would be interesting to examine if the
standard issues of divergences and the renormalization
procedure are simplified in the bootstrap approach. Some
insights from our perturbative analysis should also extend
to the nonperturbative bootstrap approach.
Another interesting direction is to revisit the multiplet

recombinationmethod for conformal field theory [53],which
is closely related to the Dyson-Schwinger equations [56].

The null state condition may be crucial to the derivation of
higher order corrections in the ϵ expansion.56 In addition, the
conformal field theory classification program at higher
dimensions should share some features with the two-
dimensional minimal models, in which the null state con-
dition plays a central role. This may also shed light on
themore ambitious goal of classifyingmoregeneric quantum
field theories by the principle of nullness.
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APPENDIX: TRADITIONAL PERTURBATION
THEORY

For comparison, we review the traditional perturbation
theory for the quartic anharmonic oscillator in this appen-
dix. We will first solve the Schrödinger equation to find
the eigenenergies and then obtain the perturbed ladder
operators.
The stationary Schrödinger equation reads

Hjni ¼ Enjni: ðA1Þ

The Hamiltonian is H ¼ Hharmonic þ gH0, where g is a
small parameter and H0 ¼ x4. The quartic term leads to
perturbative corrections to the harmonic oscillator eigen-
states and energy eigenvalues. They take the form of power
series in g

En ¼ Eð0Þ
n þ gEð1Þ

n þ g2Eð2Þ
n þ g3Eð3Þ

n þ…; ðA2Þ

jni ¼ jnð0Þi þ gjnð1Þi þ g2jnð2Þi þ g3jnð3Þi þ…: ðA3Þ

To order g3, Eq. (A1) implies

Hharmonicjnð1Þi þH0jnð0Þi ¼ Eð0Þ
n jnð1Þi þ Eð1Þ

n jnð0Þi; ðA4Þ

Hharmonicjnð2Þi þH0jnð1Þi ¼ Eð0Þ
n jnð2Þi þ Eð1Þ

n jnð1Þi
þ Eð2Þ

n jnð0Þi; ðA5Þ

Hharmonicjnð3ÞiþH0jnð2Þi ¼Eð0Þ
n jnð3ÞiþEð1Þ

n jnð2Þi
þEð2Þ

n jnð1ÞiþEð3Þ
n jnð0Þi: ðA6Þ

56Constraints on the subleading corrections can be derived
from the null state condition (this is work in progress [57]).
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The zeroth-order equation is the same as the Schrödinger
equation of the harmonic oscillator. The first-order correc-

tions Eð1Þ
n and jnð1Þi are obtained by projecting (A4)

onto jmð0Þi

Eð0Þ
m hmð0Þjnð1Þiþhmð0ÞjH0jnð0Þi ¼Eð0Þ

n hmð0Þjnð1Þi
þEð1Þ

n hmð0Þjnð0Þi: ðA7Þ

When m ¼ n, we obtain the first-order correction to the
energy

Eð1Þ
n ¼ hmð0ÞjH0jnð0Þi ¼ 3

4
ð1þ 2nþ 2n2Þ: ðA8Þ

When m ≠ n, we have

hmð0Þjnð1Þi ¼ hmð0ÞjH0jnð0Þi
Eð0Þ
n − Eð0Þ

m

; ðA9Þ

which are the expansion coefficients of jnð1Þi in jmð0Þi.
However, the part parallel to jnð0Þi remains arbitrary. The
expansion coefficient hnð0Þjnð1Þi is assumed to be real and
chosen such that the norm hnjni is independent of g, or in
other words hnjni ¼ 1þOðg4Þ. We have

jnð1Þi ¼
�
3

4
a2 −

3

4
ða†Þ2 þ 1

16
a4 þ 1

2
a†a3 −

1

2
ða†Þ3a

−
1

16
ða†Þ4

�����nð0Þi≡ fð1Þjnð0Þi: ðA10Þ

Wehavewritten the terms involving the occupationnumbern
in terms ofDirac’s ladder operators, which ismore natural for
the operator algebra perspective and more convenient for the
discussion of the anharmonic ladder operators below.
For the second-order corrections, we consider (A5).

Following the same procedure of projection, we obtain

Eð0Þ
m hmð0Þjnð2Þi þ hmð0ÞjH0jnð1Þi
¼ Eð0Þ

n hmð0Þjnð2Þi þ Eð1Þ
n hmð0Þjnð1Þi þ Eð2Þ

n hmð0Þjnð0Þi:
ðA11Þ

The case of m ¼ n gives

Eð2Þ
n ¼ hnð0ÞjH0jnð1Þi ¼ −

1

8
ð21þ 59nþ 51n2 þ 34n3Þ:

ðA12Þ

For m ≠ n, we have

hmð0Þjnð2Þi ¼ hmð0ÞjðH0 − Eð1Þ
n Þfð1Þjnð0Þi

Eð0Þ
n − Eð0Þ

m

: ðA13Þ

As before, we assume the expansion coefficient hnð0Þjnð2Þi
is real, and the part parallel to jnð0Þi is fixed by the
condition that hnjni is independent of g

jnð2Þi ¼
�ða†Þ8

512
þ ða†Þ7a

32
þ ða†Þ6a2

8
þ 17ða†Þ6

192
−
ða†Þ5a3

32
þ 15ða†Þ5a

16
−
65ða†Þ4a4

256

þ 117ða†Þ4a2
64

þ 9ða†Þ4
8

−
ða†Þ3a5

32
−
65ða†Þ3a3

32
þ 15ða†Þ3a

2
þ ða†Þ2a6

8

−
147ða†Þ2a4

64
−
333ða†Þ2a2

64
þ 75ða†Þ2

16
þ a†a7

32
þ 9a†a5

16
− 9a†a3 −

69a†a
16

þ a8

512
þ 25a6

192
þ 3a4

16
− 6a2 −

39

64

�
jnð0Þi;

≡ fð2Þjnð0Þi: ðA14Þ
Finally, for the third-order corrections, Eq. (A6) yields

Eð0Þ
m hmð0Þjnð3Þi þ hmð0ÞjH0jnð2Þi ¼ Eð0Þ

n hmð0Þjnð3Þi þ Eð1Þ
n hmð0Þjnð2Þi þ Eð2Þ

n hmð0Þjnð1Þi þ Eð3Þ
n hmð0Þjnð0Þi: ðA15Þ

When m ¼ n, we obtain

Eð3Þ
n ¼ hnð0ÞjH0jnð2Þi − Eð1Þ

n hnð0Þjnð2Þi;¼ 3

16
ð111þ 347nþ 472n2 þ 250n3 þ 125n4Þ: ðA16Þ

When m ≠ n, we have

hmð0Þjnð3Þi ¼ hmð0ÞjðH0 − Eð1Þ
n Þfð2Þ − Eð2Þ

n fð1Þjnð0Þi
Eð0Þ
n − Eð0Þ

m

; ðA17Þ

SOLVING ANHARMONIC OSCILLATOR WITH NULL STATES: … PHYS. REV. D 108, 125002 (2023)

125002-31



The third-order corrections to the eigenstates are

jnð3Þi ¼
�
−
ða†Þ12
24576

−
ða†Þ11a
1024

−
ða†Þ10a2
128

−
25ða†Þ10
6144

−
61ða†Þ9a3

3072
−
61ða†Þ9a

768
þ 129ða†Þ8a4

8192

−
1005ða†Þ8a2

2048
−
37ða†Þ8
256

þ 33ða†Þ7a5
512

−
1213ða†Þ7a3

1536
−
145ða†Þ7a

64
þ 4145ða†Þ6a4

3072

−
10123ða†Þ6a2

1024
−
587ða†Þ6

256
−
33ða†Þ5a7

512
þ 267ða†Þ5a5

128
−
7ða†Þ5a3

2
−
6903ða†Þ5a

256

−
129ða†Þ4a8

8192
−
2785ða†Þ4a6

3072
þ 6675ða†Þ4a4

256
−
17097ða†Þ4a2

256
−
16709ða†Þ4

1024

þ 61ða†Þ3a9
3072

−
1987ða†Þ3a7

1536
þ 141ða†Þ3a5

16
þ 3531ða†Þ3a3

32
−
16703ða†Þ3a

128

þ ða†Þ2a10
128

þ 93ða†Þ2a8
2048

−
12277ða†Þ2a6

1024
þ 5967ða†Þ2a4

64
þ 5877ða†Þ2a2

32

−
12099ða†Þ2

256
þ a†a11

1024
þ 59a†a9

768
−
83a†a7

64
−
7425a†a5

256
þ 23445a†a3

128
þ 3141a†a

32

þ a12

24576
þ 41a10

6144
þ 17a8

128
−
125a6

32
−
14571a4

1024
þ 19485a2

256
þ 279

32

�
jnð0Þi

≡ fð3Þjnð0Þi; ðA18Þ

where the expansion coefficient hnð0Þjnð3Þi is assumed to be
real and then fixed by the condition that hnjni is indepen-
dent of g.
We can also study the corrections to Dirac’s ladder

operators. We define the raising and the lowering operators
by their action on a generic energy eigenstate

L�1jni ¼ C�jn� 1i; ðA19Þ

where C� are real numbers. The ladder operators L�1 and
C� have the perturbative expansion

L�1 ¼ Lð0Þ
�1 þ gLð1Þ

�1 þ g2Lð2Þ
�1 þ g3Lð3Þ

�1 þ…; ðA20Þ

C� ¼ Cð0Þ
� þ gCð1Þ

� þ g2Cð2Þ
� þ g3Cð3Þ

� þ…: ðA21Þ

To be consistent with the discussion in Sec. II, we adopt the
normalization

Cð0Þ
− ¼ ffiffiffi

n
p

; Cð0Þ
þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

; Cð1Þ
� ¼ Cð2Þ

� ¼ … ¼ 0:

ðA22Þ

The zeroth-order solution to (A19) is the Dirac’s ladder

operators:Lð0Þ
−1 jn:t: ¼ a,Lð0Þ

þ1jn:t: ¼ a†. At higher orders, let us
first focus on the lowering operator. Equation (A19) implies

Lð0Þ
−1 jnð1Þi þ Lð1Þ

−1 jnð0Þi ¼ Cð0Þ
− jðn − 1Þð1Þi; ðA23Þ

Lð0Þ
−1 jnð2Þi þ Lð1Þ

−1 jnð1Þi þ Lð2Þ
−1 jnð0Þi ¼ Cð0Þ

− jðn − 1Þð2Þi;
ðA24Þ

Lð0Þ
−1 jnð3Þi þ Lð1Þ

−1 jnð2Þi þ Lð2Þ
−1 jnð1Þi þ Lð3Þ

−1 jnð0Þi
¼ Cð0Þ

− jðn − 1Þð3Þi: ðA25Þ

To solve these equations, we write all the states in terms
of jnð0Þi

ðLð0Þ
−1f

ð1Þ þ Lð1Þ
−1 − fð1ÞLð0Þ

−1Þjnð0Þi ¼ 0; ðA26Þ

ðLð0Þ
−1f

ð2Þ þ Lð1Þ
−1f

ð1Þ þ Lð2Þ
−1 − fð2ÞLð0Þ

−1Þjnð0Þi ¼ 0; ðA27Þ

ðLð0Þ
−1f

ð3Þ þLð1Þ
−1f

ð2Þ þLð2Þ
−1f

ð1Þ þLð3Þ
−1 −fð3ÞLð0Þ

−1Þjnð0Þi ¼ 0:

ðA28Þ

At first order, the solution reads

Lð1Þ
−1 jn:t: ¼ ½fð1Þ;Lð0Þ

−1 jn:t:� ¼
3

2
a†−

1

2
a3þ3

2
ða†Þ2aþ1

4
ða†Þ3:
ðA29Þ
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At second order, we obtain

Lð2Þ
−1 jn:t: ¼ ½fð2Þ; Lð0Þ

−1 jn:t:� − Lð1Þ
−1 jn:t:fð1Þ;

¼ 9

16
a −

81

8
a† þ 9a3 þ 81

32
a†a2 −

189

8
ða†Þ2a −

9

8
ða†Þ3 þ 9

16
a5 þ 9

2
a†a4

þ 27

32
ða†Þ2a3 − 63

8
ða†Þ3a2 − 9

16
ða†Þ4aþ 1

8
ða†Þ5; ðA30Þ

At third order, we have

Lð3Þ
−1 jn:t: ¼ ½fð3Þ; Lð0Þ

−1 jn:t:� − Lð1Þ
−1 jn:t:fð2Þ − Lð2Þ

−1 jn:t:fð1Þ;

¼ −
11ða†Þ7

64
−
103ða†Þ6a

32
−
285ða†Þ5a2

128
−
309ða†Þ5

32
þ 4159ða†Þ4a3

64
−
1425ða†Þ4a

128

−
351ða†Þ3a4

64
þ 12477ða†Þ3a2

32
−
243ða†Þ3

128
−
2673ða†Þ2a5

64
−
1053ða†Þ2a3

32

þ 33519ða†Þ2a
64

−
315a†a6

64
−
13365a†a4

64
−
729a†a2

32
þ 8565a†

64
þ 7a7

32
−
945a5

64

−
5985a3

32
þ 81a

8
: ðA31Þ

For the raising operator, the solutions are

Lð1Þ
þ1jn:t: ¼ ½fð1Þ; Lð0Þ

þ1jn:t:� ¼
3

2
aþ 1

4
a3 þ 3

2
a†a2 −

1

2
ða†Þ3; ðA32Þ

Lð2Þ
þ1jn:t: ¼ ½fð2Þ; Lð0Þ

þ1jn:t:� − Lð1Þ
þ1jn:t:fð1Þ

¼ 9ða†Þ5
16

þ 9ða†Þ4a
2

þ 27ða†Þ3a2
32

þ 9ða†Þ3 − 63ða†Þ2a3
8

þ 81ða†Þ2a
32

−
9a†a4

16

−
189a†a2

8
þ 9a†

16
þ a5

8
−
9a3

8
−
81a
8

; ðA33Þ

Lð3Þ
þ1jn:t: ¼ ½fð3Þ; Lð0Þ

þ1jn:t:� − Lð1Þ
þ1jn:t:fð2Þ − Lð2Þ

þ1jn:t:fð1Þ

¼ 7ða†Þ7
32

−
315ða†Þ6a

64
−
2673ða†Þ5a2

64
−
945ða†Þ5

64
−
351ða†Þ4a3

64
−
13365ða†Þ4a

64

þ 4159ða†Þ3a4
64

−
1053ða†Þ3a2

32
−
5985ða†Þ3

32
−
285ða†Þ2a5

128
þ 12477ða†Þ2a3

32

−
729ða†Þ2a

32
−
103a†a6

32
−
1425a†a4

128
þ 33519a†a2

64
þ 81a†

8
−
11a7

64
−
309a5

32

−
243a3

128
þ 8565a

64
: ðA34Þ

Using the explicit expressionofDirac’s ladder operators (8), one can check that the results agree exactlywith those from the null
bootstrap in the main text.
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