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Using an adapted version of the SGRID code, we construct for the first time consistent quasiequilibrium
configurations for a binary system consisting of two neutron stars in which each is admixed with dark
matter. The stars are modeled as a system of two noninteracting fluids minimally coupled to gravity. For the
fluid representing baryonic matter the SLy equation of state is used, whereas the second fluid, which
corresponds to dark matter, is described using the equation of state of a degenerate Fermi gas. We consider
two different scenarios for the distribution of the dark matter. In the first scenario the dark matter is confined
to the core of the star, whereas in the second scenario the dark matter extends beyond the surface of the
baryonic matter, forming a halo around the baryonic star. The presence of dark matter alters the star’s
reaction to the companion’s tidal forces, which we investigate in terms of the coordinate deformation and
mass shedding parameters. The constructed quasiequilibrium configurations mark the first step toward
consistent numerical-relativity simulations of dark matter admixed neutron star binaries.
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I. INTRODUCTION

In the present era of gravitational wave (GW) astronomy,
the internal properties of compact stars can be probed
during their mergers. Using numerical-relativity (NR)
simulations of the last stages of a binary coalescence, it
is possible to relate observational GW data to properties of
the source. While these simulations have undergone sig-
nificant improvements in the past, the impact of dark matter
(DM) on the binary neutron star (NS) dynamics has not yet
been investigated in detail and is not taken into account in
standard GWanalyses. In fact, considering a coalescence of
compact objects to occur in pure vacuum, could be an
oversimplification that may lead to incorrect conclusions.
Due to their high compactness, NSs can trap and

accumulate DM in their interior throughout the star’s
evolution. DM alters the compact star’s properties, e.g.
its mass, its radius, its tidal deformability, its energy density
and speed of sound profiles [1–20]. Its effect depends on
the relative fraction of DM and on the exact equation of
state (EoS) for the DM and baryonic matter (BM). For an
extended discussion of the impact of DM on compact star
properties and its smoking gun signals, see Refs. [21–23].
While the effect of DM on isolated NSs can be probed
through electromagnetic observations, GW observations of

binary systems of DM admixed compact stars open up a
new observational window and the possibility to probe a
density and temperature range larger that of isolated stars.
To push forward our understanding of the imprint of
DM, we construct quasiequilibrium configurations of DM
admixed NS binary system and study the impact of DM
focusing on quantities pertaining to binary systems, such as
the orbital binding energy and the tidal deformations.
It is worth noting that not only NSs, but also black holes

could be embedded into DM. A step toward understanding
the impact of DM on black hole mergers was made in [24],
where the behavior of wave DM around equal mass black
hole binaries was studied in numerical simulations.
Furthermore, GW signals from binary coalescences contain
information of the binaries surrounding medium [25].
The effect of DM on the inspiral and postmerger phases

of DM admixed NSs has been studied by a few groups. A
first study by Ellis et al. [26] used a simple mechanical
model, and showed that a DM core can lead to the
appearance of additional peaks in the postmerger GW
spectrum. In [27] NR simulations of equal-mass binaries
consisting of BM admixed with a bosonic Klein-Gordon
field were performed. For a DM mass fraction of 10%, a
redistribution of fermionic matter by the bosonic cores was
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found, followed by the formation of a one-arm spiral
instability. Another approach approximating compact dark
component as test particles was studied in [28]. The
simulations show the DM component to remain gravita-
tionally bound after the merger of BM and orbit the center
of the remnant with an orbital separation of a few km. The
DM core and the host star are likely to spin at different
rotational frequencies just after the merger due to the
absence of nongravitational interaction. Further on, they
may synchronize via the gravitational angular momentum
transfer, including tidal effects [29].
The evolution equations for two-fluid binaries are quite

well understood, but so far no formalism for the con-
struction of quasiequilibrium initial data exists. Equations
of motion for multi-fluid systems have been derived in
[30,31] for the general case of interacting fluids. Up to our
knowledge, the first two-fluid NR simulations describing
binaries of DM admixed NSs were performed by Emma
et al. [32] for a mixture of BM and mirror DM only
interacting via the gravitational field. The results demon-
strate that these systems tend to have a longer inspiral phase
with increasing amount of DM, which could be associated
to the lower deformability of DM admixed NSs. These
simulations however, did not start from initial data satisfy-
ing the Hamiltonian and momentum constraints [33–35]
and the fluids did not start in an equilibrium configura-
tion. Instead the initial data was approximated by super-
imposing Tolman-Oppenheimer-Volkoff (TOV)-like
solutions [36,37] of isolated DM admixed NSs. In this work
we construct consistent, constraint-solved, quasiequili-
brium conditions for a two-fluid system of BM and DM.
One possible scenario for the formation of DM admixed

NSs is the capture of DM particles during the lifetime of the
star, from a progenitor to the equilibrated NS stages. The
core of a NS is very dense and hence the chance of a DM
particle experiencing scattering is relatively high. In this
scattering process the particle transfers its kinetic energy
to the star, becoming gravitationally bound [38–40]. This
process is more efficient toward the Galactic center, where
the density of DM is many orders of magnitude greater than
in the galaxy’s arms [41–43]. A conservative estimate of
DM capture in the most central part of the Galaxy shows
that stars accumulate up to 0.01% of DM during the main
sequence and equilibrated NS stages combined [11].
However, also higher DM factions inside compact stars
can be achieved through other scenarios, e.g., DM pro-
duction during a supernova explosion, accretion of DM
clumps formed at the early stage of the Universe, or initial
star formation on a preexisting DM seed or local DM rich
environments [44,45]. If DM is symmetric, it cannot reach
a high fraction due to self-annihilation, producing an
electromagnetic or neutrino signal [46]. The latter scenario
could lead to additional heating of isolated NSs as well as
postmerger remnants [47,48], modification of kinematic
properties [49]. Moreover, production of light DM

particles, e.g., axions, in nucleon bremsstrahlung or in
Cooper pair breaking and formation processes in the NS
interior [50–53], could speed up the thermal evolution of a
star by contributing an additional cooling channel.
We consider DM to be either concentrated in a core or

extending beyond the surface of BM, forming a DM halo
around it. As a first step, we consider noninteracting,
fermionic DM with spin 1

2
. The single star properties of this

DM candidate have been discussed in Ref. [11]. The
baryonic component is modeled through a piecewise-
polytropic fit [54] of the SLy EoS [55] that reproduces
nuclear matter ground state properties, fulfils heaviest
pulsars measurements [56,57], x-ray observations by
NICER [58–62], and tidal deformability constraints from
GW170817 [63] and GW190425 [64] binary NS mergers.
The two components interact only through gravity, and

therefore do not repel each other, but overlap due to the
absence of nongravitational interaction. This assumption
is in very good agreement with the observations of the
Bullet Cluster [65,66] and direct DM searches [67], which
show that the DM-BM cross section is many orders of
magnitude lower than the typical nuclear one, σDM−BM ≈
10−45 cm2 ≪ σBM ∼ 10−24 cm2.
By varying the particle mass and relative fraction of DM,

we obtain either a core configuration with a radius of the
DM component less or equal to the baryonic one, RD ≤ RB,
or a halo with RD > RB [14]. For both scenarios, we
construct initial configurations employing SGRID [68,69].
Many other codes exist for the construction of quasiequili-
brium NS binary systems, notably the spectral codes
LORENE [70,71], SPELLS [72], FUKA [73,74], ELLIPTICA

[75], and the finite difference based code COCAL [76–78].
In [74] the authors compared results from their independent
implementation with those from the SGRID code and find
good agreement between both codes. Up to our knowledge,
all codes mentioned above are only able to solve systems
consisting of a single fluid. Here we construct for the first
time quasiequilibrium binary configurations with two
fluids.
The formalism and results are presented in geometric

units in which the gravitational constant G ¼ 1 and the
speed of light c ¼ 1. In these units, lengths are given as
multiples of the solar mass, M⊙. For the conversion to SI
units a spatial length must be multiplied by L0 ¼
1476.6250 m=M⊙ and a time by T0 ¼ 4.9254909×
10−6 s=M⊙. In Table I we provide the conversion to SI
units for various quantities. Where appropriate we also use
MeV to specify energy and mass of particles, as well as SI
units. Throughout the paper, Greek letter indices denote four
dimensional, spacetime indices, whereas Latin indices
denote three-dimensional, spatial indices.
The paper is organized as follows. In Sec. II we

summarize the two-fluid formalism and DM distribu-
tion regimes. Its implementation in the SGRID code is
described in Sec. III. In Sec. IV we analyze the convergence
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properties of the constructed configurations, quantify the
difference in the velocities of the two fluids and investigate
some physical properties of the quasiequilibrium configu-
ration over a sequence of separations. Section V summa-
rizes the results and discusses future perspectives.

II. FORMALISM

We describe the matter as a system of two noninteracting
perfect fluids only indirectly coupled through the gravita-
tional field. This model is well justified, because the
interaction between standard model BM and DM is weak.
Utilization of the perfect fluid model for DM is also
justified, as the mean free path and the scattering timescale
of DM particles can be small compared to the characteristic
timescales of the binary. In the following, we estimate the
mean free path and scattering time in a semi-classical
approach for a degenerate Fermi gas of particles. In this
work we study a range of DM particle masses, but it is only
necessary to show the validity of the perfect fluid model in
the case farthest away from the hydrodynamical limit, i.e.,
for the most dilute DM component or equivalently for the
largest mean free path. For the configurations considered

here, this is configuration 2 inTable II, where theDMparticle
mass is 170MeV (≈3 × 10−28 kg). The Fermi gas consists of
noninteracting fermions, for which a self-scattering cross
sectionσDM formally does not exist. Instead,we use thevalue
of the upper limit obtained from observations of merging

galaxies,which yield σDM=m
ðDMÞ
p < 1.25 cm2=g,withmðDMÞ

p

the mass of the DM particles [66,79]. In this work we
construct configurations with a particle density nðDMÞ as low
as 0.7 fm−3 in the center of the star. Together with the upper
limit for σDM this yields a mean free path λ ¼ 1=ðnðDMÞσDMÞ
of 3.7 × 10−17m, much smaller than the typical length scale
of a NS, which is on the order of 104 m. The scattering
timescale can be estimated using the Fermi velocity, which
reaches values up to 0.8c in the center of the star. Finally,
using the value of the mean free path, this yields a scattering
time of tc ¼ λ=vDM ¼ 1.5 × 10−25 s, much smaller than for
example the orbital period of the binary, which in our
configurations is as small as 3 × 10−4 s.
At the surface of the stars DM reaches the free streaming

limit and the perfect fluid limit breaks down, but there the
density is so small, that the impact on the gravitational field
is low and hence the matter in this region can be neglected.
For noninteracting fluids, the energy-momentum

tensor can be split into the two individual fluid components
given by:

TðsÞ
μν ¼ ðeðsÞ þ pðsÞÞuðsÞμ uðsÞν þ pðsÞgμν; ð1Þ

where e is the proper energy density, p is the pressure, uμ is
the four velocity of the fluid and the label (s) denotes the
particles species, which is either BM or DM. The Einstein
field equations are then given by

Rμν þ
1

2
gμνR ¼ 8πðTðBMÞ

μν þ TðDMÞ
μν Þ ð2Þ

TABLE II. Properties of the used isolated NS. All configurations have the same total rest mass: mðBMÞ
0 þmðDMÞ

0 ¼ 1.4M⊙. The ID is a

number used for reference in the text. mðDMÞ
p is the DM particle mass and mðDMÞ

0 =ðmðBMÞ
0 þmðDMÞ

0 Þ is the rest mass fraction of DM.
mðBMÞ and mðDMÞ are the gravitational masses of the BM and DM component respectively. RðBMÞ and RðDMÞ are the radii of the BM and
DM surface in Schwarzschild coordinates.

ID
mðDMÞ

p

½MeV�
mðDMÞ

0

mðBMÞ
0

þmðDMÞ
0

(%) mðBMÞ=M⊙ mðDMÞ=M⊙
mðBMÞþmðDMÞ

M⊙

RðBMÞ=M⊙
ðRðBMÞ½km�Þ

RðDMÞ=M⊙
ðRðDMÞ½km�Þ

DM
structure

1 0.0 1.27300 0.0 1.27300 6.4 (9.5)
2 170 0.5 1.26641 6.75 × 10−3 1.27316 6.4 (9.5) 11.1 (16.4) Halo
3 250 0.5 1.26590 6.81 × 10−3 1.27271 6.4 (9.5) 6.1 (9.0) Core
4 350 0.5 1.26557 6.86 × 10−3 1.27243 6.4 (9.5) 4.5 (6.6) Core
5 500 0.5 1.26534 6.91 × 10−3 1.27225 6.4 (9.5) 3.4 (5.0) Core
6 750 0.5 1.26518 6.94 × 10−3 1.27212 6.4 (9.5) 2.5 (3.7) Core
7 1000 0.5 1.26511 6.96 × 10−3 1.27207 6.4 (9.5) 2.0 (3.0) Core
8 350 5.0 1.20503 6.768 × 10−2 1.27271 6.2 (9.2) 8.2 (12.1) Halo
9 500 5.0 1.20056 6.827 × 10−2 1.26883 6.2 (9.2) 5.2 (7.7) Core
10 750 5.0 1.19713 6.877 × 10−2 1.26590 6.1 (9.0) 3.5 (5.2) Core
11 1000 5.0 1.19552 6.898 × 10−2 1.26450 6.1 (9.0) 2.7 (4.0) Core

TABLE I. Overview of the geometric units of various quantities
used in the text.

Quantity Geometric units SI units

Length 1M⊙ 1476.6250 m
Time 1M⊙ 4.9254909 × 10−6 s
Velocity 1 299792458 ms−1

Mass 1M⊙ 1.98892 × 1030 kg
Energy 1M⊙ 1.78755 × 1047 J
Specific enthalpy 1 8.98755 × 1016 m2 s−2

Angular momentum 1M2
⊙ 8.80457 × 1041 kgm2 s−1
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and, because the two particle species do not interact, each
fluid satisfies the equations of motion of a single fluid.
Consequently, each fluid satisfies energy momentum con-

servation separately: ∇μTðsÞ
μν ¼ 0.

For each fluid, we also define the rest mass density ρðsÞ0 ,
which is computed from the number density nðsÞ by

ρðsÞ0 ¼ mðsÞ
p nðsÞ; ð3Þ

with mðsÞ
p being the mass of the particles. Furthermore, the

specific enthalpy is then given by

hðsÞ ¼ eðsÞ þ pðsÞ

ρðsÞ0

: ð4Þ

To make the equations tractable, the spacetime metric gμν
is decomposed into a temporal and a spatial part by
introducing the spatial metric γij, the lapse α, and the shift
βi [34,35,80]. The line element in this 3þ 1 split reads

ds2 ¼ −α2dt2 þ γijðβidtþ dxiÞðβjdtþ dxjÞ: ð5Þ

The extrinsic curvature Kij is related to the time derivative
of γij, by the formula

Kij ¼ −
1

2α
ð∂tγij −Diβj −DjβiÞ; ð6Þ

where Di denotes the covariant derivative compatible with
the spatial metric γij.
We construct the partial differential equations governing

quasiequilibrium by following the derivation in [81], which
is trivially applied to a system of noninteracting fluids. To
generate quasiequilibrium configurations, we solve equa-
tions for velocity potentials ϕðsÞ, which are defined through
the following split of the four-velocity

γiμuðsÞμ ¼
1

hðsÞ
ðDiϕðsÞ þ wðsÞiÞ; ð7Þ

where wðsÞi is a divergence free vector, i.e., DiwðsÞi ¼ 0,
describing the rotational part of the fluid. Following the
derivation of [81], we fix the time derivatives of the fields
by assuming the existence of an approximate Killing vector
ξ and a set of quasiequilibrium conditions for the two fluids

LξeðsÞ ≈ 0; ð8Þ

LξpðsÞ ≈ 0; ð9Þ

γμiLξð∇μϕ
ðsÞÞ ≈ 0; ð10Þ

γμiL ∇ϕðsÞ
hðsÞuðsÞ0

wðsÞ
μ ≈ 0: ð11Þ

We omit further details of the derivation, since for non-
interacting fluids everything can be directly carried over to
the individual fluid components, and we state only the
resulting partial differential equation for the velocity
potentials ϕðsÞ:

Di

�
ρðsÞ0 α

hðsÞ
ðDiϕðsÞ þwðsÞiÞ−ρðsÞ0 αuðsÞ0ðβiþξiÞ

�
¼ 0; ð12Þ

where the boost factor uðsÞ0 is given by

uðsÞ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðsÞ2 þ ðDiϕ

ðsÞ þ wðsÞ
i ÞðDiϕðsÞ þ wðsÞiÞ

q
αhðsÞ

; ð13Þ

and the specific enthalpy is given by the expression

hðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðsÞ2 − ðDiϕ

ðsÞ þ wðsÞ
i ÞðDiϕðsÞ þ wðsÞiÞ

q
; ð14Þ

with

LðsÞ2 ¼ bðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðsÞ2 − 4α4ððDiϕ

ðsÞ þ wðsÞ
i ÞwðsÞiÞ2

q
2α2

ð15Þ

and

bðsÞ ¼ ððξi þ βiÞDiϕ
ðsÞ − CðsÞÞ2 þ 2α2ðDiϕ

ðsÞ þ wðsÞ
i ÞwðsÞi:

ð16Þ

The variable CðsÞ is a constant, which can vary for each star
and which controls the mass of the fluid component.
For the approximate Killing vector ξi we make the

following ansatz:

ξi ¼ Ωð−y; x − xCM; 0Þ þ
vr
D
ðri − riCMÞ; ð17Þ

where Ω is the instantaneous orbital frequency, D is the
separation between the star centres, vr is the radial velocity,
and xCM is the x-coordinate of the centre of mass.
At apsis the orbital frequency together with the separa-

tion of the stars control the orbital parameters like eccen-
tricity and length of the semimajor axis. Away from apsis
there is a nonvanishing radial component of the velocity to
be taken into account. In cases like the “circular” inspiral
there is no apsis, but there is a small, but nonvanishing,
radially inward directed velocity component vr. There
exist analytic approximations from effective-one-body-
or post-Newtonian theory, which provide a way to obtain
low-eccentricity configurations [82]. However, those
expressions are derived in coordinates, that are not trivially
related to the coordinates used in the extended conformal
thin sandwich (XCTS) formalism [34,35]. Hence, to obtain
really “circular” inspirals, in practice vr must be obtained
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through eccentricity reduction [83] evolutions of the data
and adjusting Ω and vr appropriately.
The configurations presented in this work are con-

structed within the quasicircular approximation for which
the radial component is neglected, vr ¼ 0. This approxi-
mation is well justified, because the change in orbital
separation ΔD during one orbit is much smaller than the
orbital period T. Even a few orbits before merger ΔD is
typically more than 100 times smaller than T.
We set the value of Ω to its value at second post-

Newtonian order in Arnowitt-Deser-Misner (ADM) gauge
[84–86]. Ω is then a function of the stellar masses and the
orbital separation D. For the stellar masses we use the sum
of the rest masses of the two fluids, which are computed by

mðsÞ
0i ¼

Z
Vi

ρðsÞi uðsÞ0α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγjkÞ

q
d3x; ð18Þ

where Vi is the spatial volume over which the ith star
extends. The value of xCM is then given by

xCM ¼ ðmðBMÞ
01 þmðDMÞ

01 Þxc1 þ ðmðBMÞ
02 þmðDMÞ

02 Þxc2
mðBMÞ

01 þmðDMÞ
01 þmðBMÞ

02 þmðDMÞ
02

; ð19Þ

where xc1=2 are the x-coordinates of the centers of the stars.
In this work, we present results for equal-mass configura-
tions only, i.e. xCM ¼ 0.
Besides the continuity equation [Eq. (12)] governing the

fluid velocity potentials ϕðsÞ, the metric must be fixed in a
way satisfying the ADM constraints. To this end we choose
a conformally flat ansatz for the spatial metric, i.e.
γij ¼ ψ4γ̄ij, with γij ¼ δij and ∂tγij ¼ 0, and construct
the data on maximally sliced hypersurfaces, i.e. the trace of
the extrinsic curvature vanishes: K ¼ 0 and ∂tK ¼ 0. The
free metric components are the lapse, shift, and conformal
factor ψ and their governing equations are formulated in
terms of the XCTS equations [34,35]. Together with
Eq. (12), the data is constrained by a set of seven coupled
partial differential equations, which are solved iteratively
one-by-one in a self-consistent manner.

III. SGRID

We have adapted the pseudospectral SGRID code [68,69]
to generate quasiequilibrium configurations for two fluid
systems. We use the same iteration scheme that is used in
[69] for single-fluid NSs. We sketch the iteration scheme in
the following with an emphasis on the adaptions and
changes made.
(1) To ensure the convergence of the solver, it is

necessary to provide an initial guess sufficiently
close to the true solution. This initial guess is chosen
as a superposition of two boosted TOV-like two fluid
stars of a given mass. To generate solutions with
particular rest masses for the fluid components, one

has to find the central pressures for which the masses
are realized. Since we are dealing with two fluids,
this is a two-dimensional root finding problem. In
our tests, we found that using the Newton-Raphson
method is not always reliable, because the masses
are not a monotonous function of the central
pressures, hence, a Newton-Raphson solver easily
gets caught in a local extremum of the mass
function. Instead, we employ a series of bisections
on the central pressure of one fluid component while
keeping the central pressure of the other fluid fixed.
The series of bisections iterates between the two
fluid components in a self-consistent manner until
the fluid masses are sufficiently close to the target
parameters.

(2) If the residuals of Eq. (12) are larger than 10%
of the combined residuals of the XCTS
equations, we solve Eq. (12) and set the new ϕðsÞ

to be the average of the old solution ϕðsÞ
old and the

just obtained solution ϕðsÞ
ell , using the following

weights ϕðsÞ ¼ 0.8ϕðsÞ
old þ 0.2ϕðsÞ

ell .
(3) We proceed by solving the XCTS equations and

update α, β, and ψ in the same way, averaging the
old and new solution.

(4) We do not adjust the values of Ω and xCM as in [69].
The value ofΩ would be fixed within an eccentricity
reduction scheme. xCM is left at its Newtonian
value, Eq. (19).

(5) We adjust the four constants CðsÞ, such that the rest
masses of each component and in each star match
our desired target masses. We then update the values
of hðsÞ keeping it fixed until the end of the next
iteration.

(6) If the sum of the residuals is below a certain
tolerance or a prescribed maximum number of
iterations is reached, the iteration ends here and is
concluded with a final solving of the XCTS
equations.

(7) The system of partial differential equations does not
fix the position of the stars and, hence, they will
slowly drift if not kept under control. To keep the
stars in place, the center of the stars are driven back
to the desired position. For single fluids, the center is
usually defined in an unambiguous way as the point
of maximum density. For two fluids the definition is
ambiguous, because the tidal deformations due to
the companion star are different for each fluid
component and, consequently, the maximum den-
sities are at different points. In most cases, however,
the two maximum points will still be close. The
results shown in this work are obtained by choosing
the point with the maximum of the total proper
energy density, eðtotÞ ¼ eðBMÞ þ eðDMÞ, as the center
of the stars. We have chosen eðtotÞ, in particular,
because it is a covariant scalar and it is the major
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quantity determining the gravitational potential,
hence giving an estimate for the center of mass of
the star. To drive the center of mass back, the values
of hðsÞ are transformed by

hðsÞ;new ¼ hðsÞ þ Δri∂ihðsÞ; ð20Þ

where Δri ¼ ricurrent − ridesired.
(8) Continue with step 2.
The SGRID code uses surface-fitted coordinates to reduce

the Runge phenomenon at the surface of the star. Each time
we update the specific enthalpy hðsÞ (step 5 in the iteration),
we adapt the grid such that the boundaries of spectral
elements coincide with the new surface of the outer fluid.
That means we only construct configurations in which the
surfaces of the two fluids do not intersect, which would in
principle be possible given the different deformabilities of
the fluids. Furthermore, we do not construct domains that
are adapted to the surface of the inner fluid. Therefore, at
the surface of the inner fluid one can expect to observe the
Runge phenomenon and a slight degradation of the con-
vergence in the truncation error. Figure 1 shows a visuali-
zation of the deformed spectral elements inside the NS and
the distribution of matter in terms of the specific enthalpy,
for a configuration with a DM particle mass of 170 MeV.
To close the system, the EoS is required to relate eðsÞ,

pðsÞ, ρðsÞ0 , and hðsÞ. For the EoS, SGRID reads in either
parameters of piecewise polytropes or EoS tables. EoS
tables are interpolated in a thermodynamically consistent
manner [87] using a cubic Hermite interpolation. To find
the thermodynamic quantities for a given specific enthalpy
a Newton-Raphson root finder is used. At low densities we

use a polytrope that is matched at the lowest density of
the table.
We validated our implementation of the TOV equations

and the EoS interpolation by comparison of the SGRID

implementation and the code used in [11]. We find that the
TOV-like solutions of the two implementations deviate
only by machine round-off.

IV. RESULTS

A. Parameters of constructed configurations

We consider different configurations by varying DM
particle mass, mass fraction of DM and separation between
NSs. In all configurations the individual NSs have the same
total rest mass, i.e. the combined rest mass of BM and
DM is 1.4M⊙. In all setups, the NSs have equal masses and
are irrotational, wi ¼ 0, i.e. they are nonspinning. The
assumption of vanishing spin is reasonable, because NSs
spin down, e.g. due to magnetic breaking, and the NSs in
binary mergers are usually very old, i.e. they have spun
down for a long time.
We select six values of the DM particle mass in the range

between 170 MeVand 1000 MeV, i.e., 170, 250, 350, 550,
750, and 1000 MeV. Furthermore we consider configura-
tions with a DM rest mass fraction of 0%, 0.5%, and 5%. In
Table II we give an overview of the different configurations
and report the properties a corresponding isolated NS
would have. There we also show the gravitational masses
defined as

mðsÞ ≔
Z

RðsÞ

0

4πr2eðsÞdr; ð21Þ

with RðsÞ the radius of the surface of fluid. In a binary
system the gravitational mass of an individual NS can only
be defined in a meaningful way in the limit of infinite
separation, in which the binary components can be viewed
as isolated. Hence we chose to work with fixed baryonic

rest masses mðsÞ
0 instead, which is invariantly defined even

in binary systems.
The choice of the lowest DM particle mass value,

170 MeV, is motivated by the results of Ref. [11], where
it was shown that for the DM particle masses below
174 MeV DM admixed NSs agree with astrophysical
observations of the heaviest NSs for an arbitrary relative
fraction of DM. Note, that this is not the case for the higher
particle mass, where the fraction of DM is constrained in
some interval (for more details see Ref. [11]). Moreover,
the chosen mass of 170 MeVand the fraction of 0.5% leads
to a relatively small halo of approximately twice the radius
of the BM component, which is easy to model. When the
size of the halos overlap, it is no longer possible to fit the
element surfaces to the outer fluid of a star. Hence, we are
discarding the configurations of DM particles with DM
particle masses of 170 MeVand 250 MeV in the 5.0% DM

FIG. 1. Specific enthalpy in the z ¼ 0 plane for a configuration
with DM halo. In the upper halves only the specific enthalpy of
DM is shown, whereas in the lower halves the BM component
lies on top of it. The black lines indicate the boundaries of the
spectral elements. Each NS is comprised of a central cubical
element and six cubed sphere elements (of which only four
intersect the z ¼ 0 plane). The DM particle mass in this
configuration is 170 MeV (corresponding to ID 2 in Table II)
and the separation between the NS centres amounts to 32M⊙
(47.3 km).
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case. Fermionic DM particles with a mass of 1000 MeV
present an interesting case, that resembles nucleons.
We focus on three particular configurations on the

extreme opposite of our parameter spectrum. Configura-

tion 2 has the smallest DM particle mass, mðDMÞ
p ¼

170 MeV, and the smallest nonvanishing DM fraction,
0.5%. In this configuration the DM extends beyond the
surface of the baryonic fluid and in figures we consequently
label it as the dark halo configuration. On the other side of
the spectrum we find configuration 11 with the largest DM

particle mass, mðDMÞ
p ¼ 1000 MeV, and a DM fraction of

5%, for which the DM is concentrated in the core of the
stars. Consequently we label the latter as the dark core
configuration. We note however, that the name dark halo
does not indicate that DM exists only in the surroundings of
the star. In fact most of the DM is still concentrated in the
center as can be appreciated from Fig. 1. In the same way
the core of the dark core configuration includes a mixture
of BM and DM. The third configuration is the special
case of a purely baryonic star, the single fluid configuration
(ID 1), which we use as a reference.
We describe BM by a piecewise-polytropic fit [54] to the

SLy EoS [55]. As a model of DM, we investigate the
degenerate, relativistic Fermi gas of spin-1

2
particles at zero

temperature, for which the EoS is read in as tabulated data.
EoSs at zero temperature are sufficient for our calculations,
because the Fermi energy of the system is much higher than
its temperature. The typical temperature T0 of NS cores is
on the order of 106–108 K [88,89]. We assume that DM
has the same temperature as the BM, because the captured
DM particles keep scattering with baryons, rarely but often
enough to thermalize with the BM component. A core
temperature of approximately 108 K is much lower than the
Fermi energy of BM. This is also true for the Fermi gas EoS
we consider, e.g., in the dark halo case the Fermi energy of
DM reaches 403 MeV in the center of the star, an energy
smaller than that of the BM, but still much larger than the
temperature of the star, kBT0 ≈ 0.009 MeV. In evolutions
the neutron stars heat up when they collide, so that it would
become necessary to use finite temperature EoSs. This can
be achieved by employing EoS tabulated at finite temper-
atures, e.g. the finite-temperature SLy EoS of [90,91], or by
adding a temperature dependent term to the pressure [92].

B. Convergence

To validate the code, we check the convergence of the
Hamiltonian constraint for a dark halo configuration of
NSs with a separation of 44M⊙ (65.0 km) on a quasicir-
cular orbit.
Figure 2 shows the magnitude of the Hamiltonian

constraint H on the z ¼ 0 plane. The constraint violations
are largest in the interior of the star, where they reach values
up to 4 × 10−5, whereas in the vacuum regions the error
drops to values below 10−9, but with some spikes on the

order of 10−7 at the element boundaries, which is a
behavior commonly seen for spectral codes, an example
being Fig. 10 of [69]. Such spikes in the Hamiltonian
constraint usually do not cause any problems in subsequent
evolutions. Furthermore the magnitude of these spikes
converges toward zero with increasing resolution.
The Hamiltonian constraint is largest in the region where

the inner fluid is nonvanishing. In Fig. 2 one can observe a
clear transition on the surface of the baryonic fluid to lower
constraint violations in the DM halo.
Figure 3 demonstrates the development of the volume-

normalized L2-norm of the Hamiltonian constraint for the
inner cube of one of the stars during the iterative solving
process. The figure shows the behavior for different
number of points n in each dimension, which is the same
for each spectral element. All curves show a saturation in
the norm of the Hamiltonian constraint toward the end of
the iteration process, which for all configurations is stopped
after 40 iterations. Furthermore, it is visible that higher
resolution leads to smaller violations of the Hamiltonian
constraint in the final solution. For comparison Fig. 3 also
shows the sequence for a corresponding single fluid

FIG. 2. Hamiltonian constraint in a dark halo configuration
(ID 2) in the z ¼ 0 plane. White solid outline: surface of the BM
fluid. White dotted outline: surface of the DM fluid.

FIG. 3. L2-norm over the inner cube in one of the stars,
normalized by the volume of the inner cube for single fluid
(ID 1) and dark halo configurations (ID 2). The different lines
show configurations with different number of points n in each
dimension.
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configuration with the same mass and separation. After 40
iterations the single fluid configuration has a Hamiltonian
constraint 10 smaller than the dark halo configurations and
it does not show any signs of saturation, i.e., it would
probably reach even smaller constraint violations if iterated
further. The reason for this discrepancy is the position of
the boundary of the BM, which in the dark halo case lies in
the interior of the spectral element instead of the element
surface and therefore due to Gibbs’ phenomenon requires
more resolution to reach the same constraint violations. To
improve the efficiency of the method it would be possible
to introduce an advanced domain decomposition with
surface adapted coordinates for the inner and outer fluid.
The convergence in the final solution is further inves-

tigated in Fig. 4, which shows its L2-norm of the
Hamiltonian constraint with respect to the number of
collocation points in the spectral elements. The figure
shows the constraint violation for the inner cube element
and for the cubed sphere facing toward the companion
star, which is also representative for all other cubed
sphere elements inside the NSs. The curves are almost
straight lines on the log-log-plot of Fig. 4, which is
compatible with a polynomial convergence of the con-
straints, i.e. jHjL2

∼ n−p, with p the order of convergence.
This is the expected convergence behavior for nonsmooth
data, which we have due to the surface of the inner fluid.
Using the highest and lowest resolution we can estimate
the order of convergence in the inner cube element to
be p ≈ log22=10ðjHjL2;n¼10=jHjL2;n¼22Þ ≈ 2.7.
To investigate the convergence of the actual solution

variables we interpolate the data from different resolutions
on a common set of points and compute norms of the
estimated errors on these points. We interpolate the solution
onto a 10 × 10 × 10-grid equidistant in each direction, with
coordinate components given by ri ∈ f20m=9; m∈ ½0..9�g.
This grid includes some points with pure vacuum, points

with only one fluid present and points with both fluids
present. The error in the solution is estimated by taking the
difference to the solution with the highest resolution, i.e.
the solution that has 22 points in each dimension of the
spectral elements. In Fig. 5 we show the convergence of the
1-norm and the maximum norm over the set of interpolated
points for the gxx component of the metric and the lapse α.
Both quantities do not show a monotonic decay of the error,
but there is an overall trend of decaying error. This
somewhat broken convergence behavior can again be
attributed to the presence of nonsmooth fields on the
surface of the inner fluid. Figure 6 shows the convergence
of the error in the specific enthalpy. The DM in this
configuration is fitted to the element boundaries and its
specific enthalpy displays a relatively clear convergence
behavior. The BM fluid on the other hand shows a very
broken convergence and only very little improvement from
the lowest to the highest number of points. The maximum

FIG. 4. Normalized L2-norm of the Hamiltonian constraint in a
dark halo configuration (ID 2) for a different number of points
per dimension. The norm is normalized by the volume of the
spectral element. Note that the x-axis and y-axis are scaled
logarithmically.

FIG. 5. Self-convergence of metric variables in dark halo
configurations (ID 2). Black: error norm of the gxx component
of the metric. Blue: error norm of the lapse, α. We note that the 1-
norm is not normalized by the number of points.

FIG. 6. Self-convergence of the specific enthalpy in dark halo
configurations (ID 2). Black: error norm of the baryonic specific
enthalpy hðBMÞ, which is the inner fluid. Blue: error norm of the
specific enthalpy of DM, hðDMÞ. We note that the 1-norm is not
normalized by the number of points.
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norm of the error is actually growing for the two largest
number of points, whereas the 1-norm of the error is also
slightly broken, but with an overall behavior similar to that
of gxx and α.
It should be noted, that it is not clear whether the

formalisms used to construct NS binary initial data actually
possesses a unique solution and likewise this is true for our
formalism in Sec. II. The partial differential equation (12) is
not strictly elliptic on the fluid surface and hence the
standard theorems for the uniqueness of the solution cannot
be applied. Instead our algorithm might find a solution of
many possible, which is another possible explanation for
the slightly broken convergence behavior.

C. Difference in the fluid velocities

It is worth pointing out that even if the BM and DM fluid
components are both irrotational, i.e. nonspinning, the
exact velocity profiles are not the same. The reason for
this does not lie in the notion of an irrotational fluid, but is
caused by differences in the fluids’ equations of motion. An
irrotational fluid [34,81,93] is defined by the vanishing of
its kinematic vorticity tensor [94]

ωαβ ≔ Pμ
αPν

β∇½μuν� ¼ 0; ð22Þ

with Pμ
α ¼ δμα þ uμuα and its rotational component, wðsÞi in

Eq. (7), vanishes. This notion does not depend on the
thermodynamic properties of the fluid and hence
differences in the velocities can only be the result of the
of the equations of motion used in the derivation of the
formalism in Sec. II, i.e., the Euler equations [34,81,93]

uðsÞμ∇μðhðsÞuðsÞν þ∇νhðsÞÞ ¼ 0; ð23Þ

which follow from ∇μTðsÞ
μν ¼ 0, and the continuity equation

∇μðρðsÞ0 uðsÞμÞ ¼ 0: ð24Þ

If for example the DM would have the same four-velocity
as the BM, it would still be irrotational, but might be
incompatible with the laws of energy-momentum or par-
ticle number conservation.
In nature the disparity in the fluid velocities is affected by

two counteracting effects, particle scattering between BM
and DM on the one hand and physics determining spin-
down on the other hand. In our formulation the two fluids
are modeled as noninteracting, but the BM-DM scattering
cross section might be nonzero in nature, which would
drive the two fluids toward a common velocity. This
process is counteracted by effects driving the fluid into
an irrotational state, as for example magnetic braking for
BM [95–97]. It is unclear whether a similar effect exists for
DM and whether it is dominant over the effect of BM-DM
scattering. By assuming vanishing of the kinematic

vorticity for the DM component, we assume that such
an effect exists and it is also dominating over the scattering
with BM.
We find that both fluids move with basically the same

velocity, with coinciding velocities in the star center, but
increasing difference toward the surface of the inner fluid.
We quantify this effect in terms of the residual three-
velocity VðsÞi, in which the orbital movement given by the
Killing vector ξμ is split off,

VðsÞi ¼ uðsÞi=uðsÞ0 − ξi: ð25Þ

Figure 7 shows the x-component of VðsÞi and the relative
difference of the fluid velocities for the region in which
both fluids are present. We present results for configura-
tions at a separation of 32M⊙, a separation at which the DM
halos in the dark halo configurations (ID 2) are already
relatively close and deformed, as we demonstrate in Fig. 1.
We find that differences in the two fluids are smaller for
larger separation, which is intuitively understandable,
because for large separations the system goes to the limit
of isolated NSs in which the fluid velocities coincide.
The data in Fig. 7 is shown along a diagonal through the

star parametrized in the following way: riðsÞ ¼ sð1; 1; 0Þþ
ric, where ric is the center of the star. We choose to present
the data along this diagonal because the difference VðBMÞi −
VðDMÞi has a quadrupolar structure with nodes going
through ric and being approximately parallel to the x-
and y-axes. Hence the difference is basically zero on the
x- and y-axes, but very prominent along the specified
diagonal. The relative difference between the residual
velocities is below 0.2% near the center of the star and
reaches up to 10% on the surfaces of the inner fluids. The
difference between the velocities of the dark halo (ID 2)

FIG. 7. Relative difference in the velocities for configuration 2
(dark halo) and 11 (dark core) with a separation of 32M⊙. The
difference is shown along a diagonal with the parametrization
riðsÞ ¼ sð1; 1; 0Þ þ ric, going through the center of the star
located at ric ¼ ð16M⊙; 0; 0Þ. VðBMÞx (black, dash-dotted line)
and VðDMÞx (gray, dash-dotted line) show the x-component of the
velocity of the respective inner fluid.
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and dark core (ID 11) configurations is relatively small,
which can be seen from the fact that the curves of the
velocities of the inner fluids lie on top of each other.

D. Binding energy

NSs with a DM component are more tightly bound,
because the DM component adds gravitating mass, but
provides no additional repulsion to balance the gravita-
tional pressure. This effect is well studied and was already
demonstrated by several authors [4,11,98]. In the following
we investigate the effect of DM on the energetics of the
binary system, i.e., the orbital binding energy.
The gravitational binding energy of the particles is the

difference of the ADM mass [33,34,99] and the sum of the
rest masses mðsÞ

0i of the components. If all fluid particles
would fall in from infinity, the true ADMmass would equal
the total rest mass. However, the configurations that we
construct do not contain GWs and therefore they do not
model the energy lost in gravitational radiation. The
difference in our ADM mass estimate and the total rest
mass is, therefore, a measure of the particle binding energy:

Ebind;p ¼MADM−mðBMÞ
01 −mðDMÞ

01 −mðBMÞ
02 −mðDMÞ

02 : ð26Þ

We have constructed the configurations with fixed baryonic
masses, but configurations with different separation dis-

tance between the stars or particle mass mðDMÞ
p will have a

different ADM mass, similar to how the isolated stars in
Table II have different gravitational masses. To make the
results comparable in the figures we show quantities
appropriately rescaled by MADM.
We construct a series of configurations with varying

orbital separation D. The orbital frequency Ω changes as
well, since it is a function of the masses and the orbital
separation. Figure 8 shows the rescaled particle binding
energy as a function of our estimate for the ADM angular
momentum JADM. It can be seen that dark core configu-
rations (ID 11) are more tightly bound than single fluid
configurations. The dark halo configurations (ID 2) seem-
ingly coincide with the single fluid case. This can be
attributed to the relatively low DM fraction of only 0.5% in
these configurations. All configurations are more tightly
bound for smaller JADM corresponding to smaller stellar
separations. This is due to the stronger orbital binding
between the two stars.
Most of the binding energy is contained in the individual

stars and the contribution of the orbital binding energy is
universal in all configurations. The orbital binding energy
Ebind;orb is the energy necessary for the two NSs to escape to
infinity. It can be computed using the gravitational mass

mðsÞ
i of the components, by

Ebind;orb ¼MADM−mðBMÞ
1 −mðDMÞ

1 −mðBMÞ
2 −mðDMÞ

2 : ð27Þ

The gravitational masses mðsÞ
i are obtained by solving a

TOV-like equation for isolated stars that have the same rest

masses. The gravitational mass mðsÞ
i is smaller than the rest

mass mðsÞ
i0 , because it accounts for the binding energy.

Hence, Ebind;orb contains only contributions of the binding
energy that are due to the mutual binding between the stars.
Figure 9 shows that the relation between orbital binding
energy and ADM angular momentum (both appropriately
rescaled by MADM) is mostly independent of the DM
configuration as the lines are falling on top of each other.
To investigate the small effect of the particle mass, we

construct configurations at a range of DM particle masses

mðDMÞ
p from 170 MeV to 1000 MeV at a fixed binary

separation of 36M⊙ (53.2 km) Fig. 10 shows the orbital
binding energy for the case of 0.5% and 5% of DM. For the
case of 0.5% DM (IDs 2 to 7) we find that the orbital
binding energy has a minimum around 550 MeV. The value
of the minimum lies even below that of the corresponding
single fluid configuration. For the case of 5% of DM
(IDs 8 to 11) we do not observe a minimum, but an orbital
energy always larger than in the corresponding single fluid

FIG. 8. Particle binding energy Ebind;p as a function of the ADM
angular momentum. We show results for configuration 1 (single
fluid), 2 (dark halo), and 11 (dark core).

FIG. 9. Orbital binding energy Ebind;orb as a function of the
ADM angular momentum. We show results for configuration 1
(single fluid), 2 (dark halo), and 11 (dark core).
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configuration and increase roughly linear with mðDMÞ
p . We

emphasize that for this comparison one has to keep in mind

that configurations with different mðDMÞ
p also have different

angular momentum. However, as is shown in Fig. 11 the
variation in the rescaled ADM angular momentum is
below 1%. We also find no clear relation between the ADM

angular momentum and mðDMÞ
p , but we find that larger

amounts of DM tend to lead to larger angular momentum.
Figures 10 and 11 also demonstrate that by decreasing

the amount of DM the configurations reach the single fluid
limit. In almost all cases the configurations with lower DM
fraction have a binding energy and angular momentum that
is closer to that of the single fluid case. Only for the particle
masses of 350 MeV the angular momentum of the 5.0%
configuration is closer to the single fluid limit. However, it
must be noted that for this case the DM forms a halo around
the BM and therefore this configuration is not representa-
tive for the limit of low DM content.

E. Deformation

To quantify the deformation of the stars we compute
the ratio of the diameters along the orbital radius and
along the polar axes. The diameter along the orbital radius
is taken as Δx, the largest difference in the x-coordinates
of two points on the fluid surface. The polar diameter Δz,
is the largest difference in the z-coordinate of two points
on the fluid surface. The tidal force of the companion
stretches the star in x-direction, whereas the poles are
slightly flattened. This measure of deformation is of
course coordinate-dependent, but it still provides some
physical insights.
We analyze the same set of configurations with varying

orbital separation D as in the previous section. Figure 12
shows the deformationΔx=Δz for each fluid surface. When
the NSs are closer, the tidal forces on the companion are
stronger and hence the deformation is stronger. It can be
observed that NSs with a DM core are systematically less
deformed than their one-fluid counterparts.
The strong deformation in the dark halo case (ID 2) can

also be seen in Fig. 1, which shows a cut through the z ¼ 0
plane. For a separation of 32M⊙ (47.3 km) the deformation
is clearly visible by eye. At a separation of 28M⊙ (41.3 km)
the deformation becomes already so strong that the surfaces
of the NSs touch and mass shedding occurs.
The closeness to mass shedding can be quantified in

terms of the mass-shedding parameter χ, which was first
introduced in [71] and which we define as

χðsÞ ¼ ∂xhðsÞjeq
∂zhðsÞjpole;avg

; ð28Þ

FIG. 12. Deformation Δx=Δz of the fluid surfaces as function
of the separation of the NS. The deformation is computed as the
ratio of the largest extents in x and z direction. Curves labeled BM
show the deformation of the surface of the baryonic fluid,
whereas curves labeled DM show the deformation of the DM
surface. We show results for configuration 1 (single fluid), 2 (dark
halo), and 11 (dark core).

FIG. 10. Orbital binding energy Ebind;orb as a function of the
DM particle mass mDM for a binary separation of 36M⊙
(53.2 km). As a reference the horizontal black dotted line shows
the value for the single fluid configuration (ID 1).

FIG. 11. Angular momentum as a function of the DM particle
mass mDM for a binary separation of 36M⊙ (53.2 km). As a
reference the horizontal black dotted line shows the value for the
single fluid configuration (ID 1).
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where the label “eq” denotes the point on the surface, which
is facing toward the companion star and for which the
x-coordinate is extremal. The label “pole” denotes the
surface points at which the z-coordinate is extremal and
where in Eq. (28) the label “avg” indicates that we have
averaged over the values at the “north and south pole”. Note
that for nonspinning stars the “north” and “south pole”
values only differ slightly due to round-off error. In the
mass shedding limit χðsÞ will tend to 0. We evaluate the χðsÞ
for each fluid component individually on the respective
fluid surfaces. We show the resulting χðsÞ as a function of
the distance of the centers of the stars in Fig. 13. The DM
fluid in the dark halo scenario (ID 2) is easily deformable,
which leads to a relatively small mass shedding parameter

of 0.9 already at a separation of 44M⊙. We find that a
separation of 28M⊙ leads to a configuration with touching
star surfaces, from which we conclude that mass shedding
occurs somewhere at a separation between 28 and 29M⊙,
which means the system will transition relatively slowly to
the mass shedding regime over a time where the two NSs
decrease their separation by 16M⊙. For the dark core
configurations (ID 11), on the other hand, the transition to
mass shedding is rather sudden with χ reaching a value of 0.9
at separation of approximately 23M⊙ and the mass shedding
occurring for the baryonic fluid at a separation of 16M⊙.
In Figs. 14 and 15 we show the deformation Δx=Δz and

mass shedding parameters χðsÞ as functions of the DM

particle mass mðDMÞ
p corresponding to all configurations in

Table II and for a fixed binary separation of 36M⊙
(53.2 km). For the case of 0.5% DM the BM deformation
as well as χðBMÞ have practically the same value as in the
single fluid case. For 5% of DM the BM deformation is
smaller and χðBMÞ is larger owing to the higher compactness
in these configurations. The DM fluid is less strongly

deformed when mðDMÞ
p is large. In particular when the DM

fluid changes character from being the halo to being the
core component, the deformation decreases rapidly and
χðDMÞ increases rapidly.

V. CONCLUSION

We have extended the SGRID code to construct con-
straint-solved, quasiequlibrium configurations of binaries
of NSs consisting of two noninteracting fluids. The second
fluid represents DM that can comprise some part of the
matter of NS. In this study we have used the EoS of a
degenerate, relativistic Fermi gas with different particle
masses to model the DM fluid. These quasiequlibrium
configurations can be used as initial data for NR inspiral

FIG. 13. Mass shedding parameter χ as a function of the
separation of the NS. χðBMÞ is computed from the deformation of
the surface of the baryonic fluid, whereas χðDMÞ is computed from
the DM surface. We show results for configuration 1 (single
fluid), 2 (dark halo), and 11 (dark core).

FIG. 14. Deformation Δx=Δz as a function of the DM particle
mass mDM for a binary separation of 36M⊙ (53.2 km). Open
symbols denote the fluids with the larger diameter, i.e. the halo
component. Filled symbols denote the inner component, i.e., the
core. As a reference the horizontal black dotted line shows the
value for the single fluid configuration (ID 1).

FIG. 15. Mass shedding parameter χ as a function of the DM
particle mass mDM for a binary separation of 36M⊙ (53.2 km).
Open symbols denote the fluids with the larger diameter, i.e. the
halo component. Filled symbols denote the inner component, i.e.
the core. As a reference the horizontal black dotted line shows the
value for the single fluid configuration (ID 1).
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simulations of DM admixed NS binaries. The BAM code
can already evolve mirror DM [32] and could be easily
extended to allow for general EoS for the DM fluid.
Another possible application of the two fluid approach

are superfluid NS cores. At sufficiently high density BM
forms a state made of superfluid neutrons and super-
conducting protons, which can be described in a two fluid
approach. However, the two fluids still interact with each
other due to the entrainment effect and the condition of
beta-equilibrium [100]. The evolution equations for inter-
acting multifluid systems have been discussed in [30,31],
but so far no formalism exists for the construction of initial
data for NS binary systems. For the construction of such
initial data the formalism in this work could be extended
using an interaction model similar to the one used in
solutions of isolated NS with superfluid cores [101,102]
and taking into account mutual friction [103]. In binary NS
collisions the temperature will rise above the critical
temperature for superfluidity and superconductivity. The
case of finite temperature superfluid dynamics was dis-
cussed in [104].
We have tested the convergence of the constructed

configurations with respect to resolution. The Hamiltonian
constraint converges polynomially with an order of ≈2.7.
The lack of exponential convergence can be attributed to the
presence of the nonsmooth transition of the density at the
surface of the inner fluid,which is not fitted to the boundaries
of the spectral elements. Self-convergence tests for metric
components and the specific enthalpies show that the
solution improves with increasing resolution, but with a
slightly broken convergence toward higher resolution, which
we again attribute to the surface of the inner fluid. For future
improvements to the code it is a worthwhile consideration to
implement a new grid layout that allows fitting to the surface
of a second fluid.

We have shown that the two fluids do not have the exact
same velocities, but that the difference in the residual
velocities reaches up to 10% on the surface of the inner
fluids. The difference in the velocity profiles will be even
stronger if one assumes independent rotational states for the
components. In this work we only investigated purely
irrotational configurations, but our formalism, in principle,
allows to construct configurations with arbitrary spin for
the individual stars and fluid components. This is relevant
in particular for the DM component, which might only have
insufficient mechanisms to lose angular momentum and
hence could be in a state of rapid rotation.
The presence of DM affects the compactness and

deformability of NSs, which will change the merger
dynamics. We have shown that the presence of DM can
delay the point of mass-shedding to a later stage of the
inspiral, i.e. toward closer separations. This is in accor-
dance with the findings in numerical evolutions of two-
fluid binary mergers [32]. In the case of a DM halo, mass
shedding could occur much earlier than for the baryonic
component. However the matter contained in the DM halo
is rather low and hence the impact of DM mass shedding
on the dynamics of the BM is potentially small, never-
theless, dynamical simulations are needed to verify this
assumption.
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