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We study the scalar probe in the near-horizon region of near-extremal five-dimensional black holes and
the problem of reattaching the asymptotic region. We consider the example of a Myers-Perry black hole
with two independent angular momenta, for which the problem can be solved analytically in terms of the
Riemann P-symbols and the confluent Heun special function. By prescribing leaking boundary conditions
similar to those considered in the context of Kerr/conformal field theory correspondence, we implement the
attachment of the asymptotically flat region, matching the solutions in the near-horizon Myers-Perry
geometry with those in the far region. This provides us with a set of explicit expressions for the field
response in the background of five-dimensional stationary black holes near extremality, which enables us to
highlight qualitative differences with the analogous problem in four dimensions.
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I. INTRODUCTION

The field dynamics in the high-redshift region of
extremal and near-extremal Kerr black holes is governed
by the infinite-dimensional local conformal symmetry
group. The concrete realization of this idea is Kerr/
conformal field theory correspondence [1], which states
that extremal Kerr black holes admit a dual description in
terms of a two-dimensional conformal field theory (CFT2).
The near-horizon limit of extremal Kerr black holes is
described by the so-called near-horizon extremal Kerr
(NHEK) geometry, which exhibits SLð2;RÞ ×Uð1Þ sym-
metry [2]. This geometry is closely related to squashed or
stretched deformations of three-dimensional anti–de Sitter
(AdS3) space [3,4], and presents features that are reminis-
cent of the AdS2 × S2 throat that emerges in the near-
horizon geometry of extremal Reissner-Nordström black
holes. This suggests the possibility of a dual description of
rapidly rotating black holes in terms of a quantum field
theory. It was shown in Ref. [1] that, when the question is
posed in terms of the asymptotic boundary conditions, the
exact SLð2;RÞ × Uð1Þ isometry of the NHEK geometry

gets enhanced to the set of asymptotic symmetries gen-
erated by the two copies of Virasoro algebra, namely the
symmetry algebra of a two-dimensional conformal field
theory CFT2. The conjecture that follows from this is that
extremal Kerr black holes are dual to a CFT2 with a central
charge given by c ¼ 12J, with J being the black hole
angular momentum. Evidence supporting this statement
comes from the observation that the Cardy formula for the
asymptotic growth of states in the CFT2 precisely matches
the Bekenstein-Hawking entropy of the black hole.
Besides, the conjecture has been seen to work in a vast
set of examples with remarkable success [5]; see [6] for a
living review. Later, it was observed in [7] that infinite-
dimensional conformal symmetry can also be found in
nonextremally rotating black holes. This symmetry is
manifested in the low-frequency limit of field equations
in the Kerr background. Computationally, this is related to
the fact that the field equations in such a limit admit
solutions in terms of hypergeometric equations, which
transform nicely under SLð2;RÞ. CFT observables such
as reflection coefficients follow from the mix coefficients
of the Kummer functional relations between hypergeo-
metric functions; therefore, what type of special functions
appear in the computation of a given probe field in the
near-horizon geometry is crucial for its dual interpretation.
Among the interesting applications of Kerr/CFT, there are
many that resort to the integrability of the field equations
on the NHEK geometry in the probe approximation.
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In [8,9], for example, the conformal symmetry description
of rotating black holes was employed to study the
gravitational energy radiated by a massive probe star
orbiting the near-horizon zone of an extremal or near-
extremal Kerr black hole. There, again, the crucial ingre-
dient in the calculation is the conformal symmetry of the
problem, which manifests itself in the fact that the
solutions of the field equations can be expressed in terms
of confluent hypergeometric functions, and so have a
natural action of SLð2;RÞ. This results in the bulk
observables precisely reproducing the structure expected
from the CFT2 analysis. This is why solving analytically
the field equation in the five-dimensional case is of
importance for a comparative analysis, cf. [10]. In this
paper, we undertake a field-theory computation similar to
that of [8] in five spacetime dimensions, and show that,
despite the apparent complexity of such a generalization,
the field equations can still be solved analytically. We
consider the extremal and near-extremal five-dimensional
black hole with two independent angular momenta in the
near-horizon limit, which is described by the NHEK
analogue for a rapidly rotating Myers-Perry black hole
(hereafter referred to as NHEMP). We consider the
solutions to the scalar field equation in this setting. As
it happens in four dimensions, in the extremal case the field
equations comprise confluent hypergeometric equations,
whose solutions can be expressed in terms of Whittaker
functions. In the near-extremal case, on the other hand, the
field equations yield the Riemann-Papperitz differential
equation, whose solutions, the so-called Riemann
P-symbols, or Papperitz symbols, can also be expressed
in terms of hypergeometric functions, with a consequent

natural SLð2;RÞ action. Finally, the spheroidal equation
for the azimuthal angle reduces to the confluent Heun
differential equation. Using all this, we explicitly compute
the scalar field response in the near-horizon geometry, and
then reattach the asymptotically flat region by considering
leaking boundary conditions similar to those discussed in
the context of Kerr/CFT. We discuss important differences
between the four- and five-dimensional cases.
The paper is organized as follows. In Sec. II, we review

the Myers-Perry black hole solution and its near-horizon
geometry for both the extremal and near-extremal configu-
rations. In Sec. III, we study the scalar field response on
these geometries and show that the field equation in the
near-horizon limit can be solved in terms of hypergeometric
equations. This enables us to compute the response of the
field excitations in the probe approximation, preserving
certain boundary conditions on the horizon and in the
asymptotic region.

II. MYERS-PERRY AND ITS NEAR-HORIZON
LIMIT

A. Myers-Perry solution

The Myers-Perry (MP) solution [11] is the five-
dimensional generalization of the Kerr solution, i.e. the
metric of the stationary black hole solution in asymptotically
flat spacetime, with spherical horizon topology and two
independent angular momenta. Its metric depends on three
parameters, a∈R, b∈R and μ∈R≥0, which are related to
the angular momenta and the mass; see (2.3) below. Written
in Boyer-Lindquist type coordinates, its metric is

ds2 ¼ gμνdxμdxν ¼ −dt̃2 þ μ

ρ̃2
ðdt̃ − asin2θ̃dϕ̃ − bcos2θ̃dψ̃Þ2

þ r̃2

Δ
ρ̃2dr̃2 þ ρ̃2dθ̃2 þ ðr̃2 þ a2Þsin2θ̃dϕ̃2 þ ðr̃2 þ b2Þcos2θ̃dψ̃2; ð2:1Þ

with the functions

Δ ¼ ðr̃2 þ a2Þðr̃2 þ b2Þ − μr̃2;

ρ̃2 ¼ r̃2 þ a2cos2θ̃ þ b2sin2θ̃: ð2:2Þ

Coordinates are xμ ¼ ft̃; r̃; ϕ̃; ψ̃ ; θ̃g for μ ¼ 0; 1; 2; 3; 4,
with ranges t̃∈R, r̃∈R≥0, ϕ̃∈ ½0; 2π�, ψ̃ ∈ ½0; 2π�,
θ̃∈ ½0; π=2�. The determinant of the metric is det g ¼
− 1

4
r̃2ρ̃4 sin2ð2θ̃Þ.
The conserved charges associated to the Killing vectors

∂t̃, ∂ϕ̃ and ∂ψ̃ are given by

M¼ 3π

8G
μ; J ϕ̃¼

π

4G
μa; J ψ̃ ¼

π

4G
μb; ð2:3Þ

respectively. These correspond to the Arnowitt-Deser-
Misner mass and two angular momenta. The extremality
condition for the MP solution corresponds to

μ ¼ ðaþ bÞ2: ð2:4Þ

In this case, the degenerate event horizon is located
at r̃2 ¼ ab.
For convenience, we can write the MP metric (2.1) in

terms of a new radial coordinate ũ ¼ r̃2. This coordinate
will be useful later to study the near-horizon limit. In terms
of ũ, the MP metric reads

GASTON GIRIBET et al. PHYS. REV. D 108, 124078 (2023)

124078-2



ds2 ¼
�
μ

ρ2
− 1

�
dt̃2 þ ρ2dθ̃2 −

2aμ
ρ2

sin2θ̃dt̃dϕ̃þ 2
abμ
ρ2

cos2θ̃sin2θ̃dϕ̃dψ̃ −
2bμ
ρ2

cos2θ̃dt̃dψ̃

þ
�
ũþ a2 þ μa2

ρ2
sin2θ̃

�
sin2θ̃dϕ̃2 þ

�
ũþ b2 þ μb2

ρ2
cos2θ̃

�
cos2θ̃dψ̃2 þ ρ2

4Δ
dũ2; ð2:5Þ

with

Δ≡ ða2 þ ũÞðb2 þ ũÞ − ũμ; ρ2 ≡ ũþ a2 cos2 θ þ b2 sin2 θ; ð2:6Þ

and

det g ¼ −
1

16
ρ̃4 sin2ð2θ̃Þ: ð2:7Þ

To follow the details of the calculation, it is also convenient to have at hand the components of the inverse metric; namely

gθ̃ θ̃ ¼ 1

ρ2
; gũũ ¼ 4Δ

ρ2
;

gt̃ ϕ̃ ¼ −
aμðb2 þ ũÞ

ρ2Δ
; gt̃ ψ̃ ¼ −

bμða2 þ ũÞ
ρ2Δ

;

gt̃ t̃ ¼ −1 −
μða2 þ ũÞðb2 þ ũÞ

ρ2Δ
; gϕ̃ ψ̃ ¼ −

abμ
ρ2Δ

;

gϕ̃ ϕ̃ ¼ 1

a2 þ ũ

�
1

sin2θ̃
−
a2μðb2 þ ũÞ

ρ2Δ

�
; gψ̃ ψ̃ ¼ 1

b2 þ ũ

�
1

cos2θ̃
−
b2μða2 þ ũÞ

ρ2Δ

�
:

B. Near-horizon limit of extremal Myers-Perry

Now, let us study the geometry near the horizon in the
extremal limit. The extremality condition is (2.4). The
geometry of the near-horizon limit of the extremal MP
black hole (NHEMP) is obtained as follows: first, define the
rescaled time coordinate

t ¼ 2λffiffiffiffiffiffi
ab

p t̃; ð2:8Þ

together with the shifted radial coordinate

u ¼ ũ − ab
λðaþ bÞ2 : ð2:9Þ

Then, boost the polar coordinates as follows:

ϕ ¼ ϕ̃ −
t̃

aþ b
; ψ ¼ ψ̃ −

t̃
aþ b

; θ ¼ θ̃: ð2:10Þ

Finally, NHEMP geometry is obtained by taking λ → 0.
This yields

dŝ2 ¼
�
abðaþ bÞ2

4ρ20
u2
�
dt2 þ ρ20dθ

2 þ
ffiffiffiffiffiffi
ab

p �
ðaþ bÞ þ aðaþ bÞ2

ρ20

�
usin2θdtdϕ

þ
ffiffiffiffiffiffi
ab

p �
ðaþ bÞ þ bðaþ bÞ2

ρ20

�
ucos2θdtdψ þ abðaþ bÞ2

2ρ20
sin2ð2θÞdϕdψ

þ aðaþ bÞ2
ρ20

ðaþ bsin2θÞsin2θdϕ2 þ bðaþ bÞ2
ρ20

ðbþ acos2θÞcos2θdψ2 þ ρ20
4u2

du2; ð2:11Þ

with

ρ20 ≡ ðaþ bÞða cos2 θ þ b sin2 θÞ; ð2:12Þ
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see for instance [6]. The hat on the metric dŝ2 ¼ ĝμνdxμdxν indicates that it corresponds to the metric of the near-
horizon geometry and it has to be distinguished from the MP metric gμν. The components of the inverse of the NHEMP
metric are

ĝtt ¼ −
4

ρ20u
2
; ĝuu ¼ 4

u2

ρ20
;

ĝtϕ ¼ 2

ffiffiffi
b
a

r
1

ρ20

1

u
; ĝϕϕ ¼ 1

a

�
−

b
ρ20

þ bþ acos2θ
ðaþ bÞ2

1

sin2θ

�
;

ĝtψ ¼ 2

ffiffiffi
a
b

r
1

ρ20

1

u
; ĝψψ ¼ 1

b

�
−

a
ρ20

þ aþ bsin2θ
ðaþ bÞ2

1

cos2θ

�
;

ĝθθ ¼ 1

ρ20
; ĝϕψ ¼ −

1

ðaþ bÞ2 −
1

ρ20
; ð2:13Þ

while the determinant of the metric is

det ĝ ¼ −
abðaþ bÞ4

64
ρ40 sin

2ð2θÞ: ð2:14Þ

This geometry is the analog of the NHEK geometry in
four dimensions, cf. [2].

C. Near-horizon limit of near-extremal Myers-Perry

Now, let us consider the near-horizon geometry of the
near-extremal MPmetric (often referred to as near-NHEMP
or NHnEMP). It describes the geometry near the horizon of
an MP black hole whose mass is infinitesimally larger than

the one needed to saturate the extremality bound (2.4). To
approach the near-horizon limit we may use the same
coordinate transformations as before; namely, we define
coordinates as in (2.8)–(2.10) together with a new para-
meter, η, that controls the departure from extremality;
namely1

μ ¼ ðaþ bÞ2 þ ηλ2: ð2:15Þ

When Eq. (2.5) is rewritten in terms of these new
coordinates, and after taking the limit λ → 0, one obtains
the NHnEMP metric, whose components are

ĝtt ¼
abðaþ bÞ2

4ρ20

�
u2 þ ρ20

ðaþ bÞ6 η
�
; ĝuu ¼

ρ20
4

ðaþ bÞ4
ðaþ bÞ4u2 − abη

;

ĝtψ ¼
ffiffiffiffiffiffi
ab

p ðaþ bÞ
2ρ20

½ρ20 þ bðaþ bÞ�ucos2θ; ĝtϕ ¼
ffiffiffiffiffiffi
ab

p ðaþ bÞ
2ρ20

½ρ20 þ aðaþ bÞ�usin2θ;

ĝψψ ¼ bðaþ bÞ2
ρ20

½bþ acos2θ�cos2θ; ĝϕϕ ¼ aðaþ bÞ2
ρ20

½aþ bsin2θ�sin2θ;

ĝθθ ¼ ρ20; ĝϕψ ¼ abðaþ bÞ2
4ρ20

sin2ð2θÞ; ð2:16Þ

with

ρ20 ≡ ðaþ bÞða cos2 θ þ b sin2 θÞ: ð2:17Þ

One can easily verify that in the case η ¼ 0 the components of the NHnEMP metric reduce to those of the NHEMP
metric.
With the purpose of collecting useful formulas, let us write down the components of the inverse metric as well,

1The factor λ2 multiplying η is the minimal power for which all of the metric components become convergent when the limit λ → 0 is
taken.
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ĝtt ¼ −
4

ρ20

ðaþ bÞ4
ðaþ bÞ4u2 − abη

; ĝuu ¼ 4

ρ20

ðaþ bÞ4u2 − abη
ðaþ bÞ4 ;

ĝtψ ¼ 2

ffiffiffi
a
b

r
1

ρ20

ðaþ bÞ4u
ðaþ bÞ4u2 − abη

; ĝtϕ ¼ 2

ffiffiffi
b
a

r
1

ρ20

ðaþ bÞ4u
ðaþ bÞ4u2 − abη

;

ĝθθ ¼ 1

ρ20
; ĝϕψ ¼ −

1

ðaþ bÞ2 −
1

ρ20

ðaþ bÞ4u2
ðaþ bÞ4u2 − abη

ð2:18Þ

together with

ĝϕϕ ¼ −
1

ðaþ bÞ2 −
1

ρ20

�
1 − csc2θ þ b2η

ðaþ bÞ4u2 − abη

�
;

ĝψψ ¼ −
1

ðaþ bÞ2 −
1

ρ20

�
1 − sec2 θ þ a2η

ðaþ bÞ4u2 − abη

�
: ð2:19Þ

The determinant of the NHnEMP metric is independent of
η, and so it coincides with (2.14).

III. SCALAR FIELD RESPONSE

Having the explicit form of the NHEMP and NHnEMP
geometries, we are ready to study the field equation on
these two spaces. We study the wave equation for a
massless2 scalar field Φ in the probe approximation, and
in different regimes of the MP geometry. That is to say, we
explicitly solve the field equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦðt; u; θ;ϕ;ψÞ ¼ 0: ð3:1Þ

First, we solve the problem in the NHEMP and NHnEMP
geometries, and later we proceed in a similar manner
solving (3.1) in the far region of the full MP geometry.

In all these cases the problem is separable, in the sense that
the solution admits an ansatz of the form

Φðt; u; θ;ϕ;ψÞ ¼ RðuÞΘðθÞeið−ωtþk1ϕþk2ψÞ; ð3:2Þ

with ω∈C and k1; k2 ∈Z, and with RðuÞ and ΘðθÞ being
functions of the u and θ coordinates, respectively.

A. Fields in the near-horizon region
of extremal black hole

As said before, the wave equation in the NHEMP
geometry is separable, as is probably expected due to
the integrability of the problem. This separation of varia-
bles leads to the angular and the radial ordinary differential
equations forΘðθÞ and RðuÞ. On the one hand, the equation
for the angular coordinate takes the form

∂θðsin θ cos θ∂θΘðθÞÞ
sin θ cos θ

þ
�
ðk1 þ k2Þ2

acos2θ þ bsin2θ
aþ b

−
k21

sin2θ
−

k22
cos2θ

�
ΘðθÞ ¼ −KlΘðθÞ; ð3:3Þ

where Kl is the separation constant. On the other hand, the
equation for the radial coordinate is

∂uðu2∂uRðuÞÞ þ
�
A
u2

þ B
u
þ C

4

�
RðuÞ ¼ 1

4
KlRðuÞ; ð3:4Þ

with

A ¼ ω2; B ¼ ωffiffiffiffiffiffi
ab

p ðak2 þ bk1Þ; C ¼ ðk1 þ k2Þ2:

ð3:5Þ

The separation constant Kl is ultimately associated with
the quantity that controls the asymptotic behavior of RðuÞ.
As in Kerr/CFT computations, the scaling exponent Δ can
be read off from the large-u limit of the radial equation.
That is to say, as in AdS=CFT computations, one proposes
the asymptotic form RðuÞ ≃ u−Δ þ � � � and inserts this into
the equation above to find the condition

4ΔðΔ − 1Þ þ ðk1 þ k2Þ2 − Kl ¼ 0: ð3:6Þ

This gives two branches with different damping-off con-
ditions at large r; namely

2The solution for a massive scalar field follows straightfor-
wardly with no major adaptation.
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Δ� ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kl − ðk1 þ k2Þ2

q
: ð3:7Þ

The constant Kl also enters in the solutions of the
angular equation, of course. In Eq. (3.3), the Kl can be
thought of as eigenvalues and l represents the set of labels
of the modes. These labels are specified by the eigenvalue
problem of the five-dimensional version of the spheroidal
equation, cf. [8]. In fact, a more convenient notation for

ΘðθÞ would include subindices l labeling the solution of
the corresponding l mode; see (3.10) below.
One can easily check that Eq. (3.3) is invariant under

a ↔ b; k1 ↔ k2; θ ↔
π

2
− θ ð3:8Þ

as expected. After defining the variable z ¼ sin2 θ, the
angular equation takes the form

4∂zðzð1 − zÞFlðzÞÞ þ
�
ðk1 þ k2Þ2

að1 − zÞ þ bz
aþ b

−
k21
z
−

k22
1 − z

�
FlðzÞ ¼ −KlFlðzÞ; ð3:9Þ

with Flðsin2θÞ≡ ΘlðzÞ and z∈ ½0; 1�. This equation is of
the Sturm-Liouville type. For such an eigenvalue problem,
the corresponding eigenfunctions that obey certain
boundary conditions yield an orthonormal basis. In our
five-dimensional case, the orthogonality relation for the
elements of that basis reads

Z π
2

0

dθ sin θ cos θΘlðθÞΘl0 ðθÞ ¼ clδl;l0 ; ð3:10Þ

with cl being constants that can be reabsorbed in the
normalization of the eigenfunctions. This orthogonality
relation enables the decomposition of the scalar field in
modes. By writing FlðzÞ as

FlðzÞ ¼ zk1=2ð1 − zÞk2=2HlðzÞ; ð3:11Þ

with k1 and k2 being the constants in (3.2), Eq. (3.9)
reduces to

∂
2
zHlðzÞ þ

�ðk1 þ 1Þ
z

þ ðk2 þ 1Þ
z − 1

�
∂zHlðzÞ

þ 1

4

�
ðk1 þ k2Þ2 þ 2k1 þ 2k2 −

a
aþ b

ðk1 þ k2Þ2 −
b − a
bþ a

ðk1 þ k2Þ2z − Kl

�
HlðzÞ
zðz − 1Þ ¼ 0:

This is the single confluent Heun differential equation

∂
2
zHlðzÞ þ

�
γ

z
þ δ

z − 1

�
∂zHlðzÞ þ

αz − ql
zðz − 1ÞHlðzÞ ¼ 0;

ð3:12Þ

whose solution is the Heun special functionHðα; ql; γ; δ; zÞ
with parameters [12]

α¼−
ðk1þk2Þ2

4

b−a
bþa

;

4ql¼−ðk1þk2Þ2−2k1−2k2þðk1þk2Þ2
a

aþb
þKl;

γ¼k1þ1; δ¼k2þ1: ð3:13Þ

Therefore, the solution to the angular equation takes the
form

Θl;k1;k2ðθÞ ¼ ðsin θÞk1ðcos θÞk2Hðα; ql; γ; δ; sin2θÞ; ð3:14Þ

with Hðα; ql; γ; δ; zÞ being the solution to the confluent
Heun equation evaluated in the parameters (3.13).While it is

not obvious from (3.12) and (3.13), one can verify that the
equation is still invariant under

a ↔ b; k1 ↔ k2; z ↔ 1 − z: ð3:15Þ

While the functionHða; b; c; zÞ is an extensively studied
special function [12] and it appears in many physics
problems, including black holes in three, four and five
dimensions, it is certainly much more involved than other
functions that are more familiar to us, such as hyper-
geometric functions. This is why we find it illustrative to
comment on some special cases for which the solution to
the azimuthal equation (3.12) notably simplifies. In fact, for
specific values of the parameters, the confluent Heun
function does become the hypergeometric function. This
is useful because, among other things, it enables to connect
the regular behavior at z ¼ 0 with that at z ¼ 1. One can
immediately see that there is an s-wave mode for
k1 ¼ k2 ¼ Kl ¼ 0, leading to a function HlðzÞ with a
constant profile. A nontrivial case for which the solution to
the angular equation simplifies as well is k1 ¼ −k2 ∈Z; in
that case, we get
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KðIÞ
n ¼ 4ðk2þnÞð1þ k2þnÞ with n¼ 0;1;2;… ð3:16Þ

It is worth noticing that these eigenvalues do not depend on
the black hole angular momenta, in contrast to what
happens in the generic case. A second family for which
the eigenvalues can be found analytically is a ¼ b, with
arbitrary k1;2. Also in this case, the angular momentum of
the black hole does not appear in the angular equation,
yielding

KðIIÞ
n ¼ 1

2
ðk1 þ k2Þð4þ k1 þ k2Þ þ 4ð1þ k1 þ k2Þnþ 4n2

with n ¼ 0; 1; 2;… ð3:17Þ

When k1 ¼ −k2, the set K
ðIIÞ
n reduces to KðIÞ

n ; nevertheless,

the set KðIÞ
n is valid for arbitrary values of the black hole

angular momenta. For arbitrary values of k1; k2 ∈Z
and a; b∈R one must solve the equation numerically.
Opposite to what happens in four dimensions, the equation
for the angular dependence of the probe does depend on the
angular momenta. Still, due to symmetry, to explore the
parameter space it is sufficient to vary the quotient 0 ≤ a=b,
fixing k1 and varying k2; see Fig. 1.
Now, let us focus on the radial equation (3.4); that is,

∂uðu2∂uRðuÞÞþ
�
1

4
ðk1þk2Þ2þ

ωðak2þbk1Þffiffiffiffiffiffi
ab

p
u

þω2

u2

�
RðuÞ

¼1

4
KlRðuÞ: ð3:18Þ

After a change of variable, this equation becomes the
confluent hypergeometric equation; defining ζ≡ −2iωu−1,
it reads

∂
2
ζWðζÞ þ

�
−
1

4
þ λ

ζ
þ 1 − 4μ2

4ζ2

�
WðζÞ ¼ 0; ð3:19Þ

with3

λ¼ i
ðbk1þak2Þ

2
ffiffiffiffiffiffi
ab

p ; μ2¼Klþ1−ðk1þk2Þ2
4

: ð3:20Þ

The latter equation admits solutions of the form

WðζÞ ¼
X
ϵ¼�1

CϵMλ;ϵμðζÞ

¼
X
ϵ¼�1

Cϵζ
ϵμþ1=2e−ζ=21F1

�
1

2
þ ϵμ − λ; 1þ 2ϵμ; ζ

�
;

ð3:21Þ

where C� are arbitrary coefficients and where the confluent
hypergeometric function 1F1ðα; γ; ζÞ is defined as

1F1ðα; γ; ζÞ ¼
X∞
s¼0

ΓðαÞΓðγ þ sÞ
ΓðγÞΓðαþ sÞ

ζs

s!
: ð3:22Þ

The set of solutions of the form (3.21) is valid for
2μ ∉ Z; it is not complete otherwise. In order to obtain a
basis that is also valid for 2μ∈Z, one introduces the
Whittaker functions

FIG. 1. The solid lines represent the first three eigenvalues Kl of the angular equation (3.3), for different values of k1 and k2, as a
function of the ratio of the angular momenta a=b. The dashed line represents a critical value of Kl above which the eigenvalues Kl lead
to bound states in the near-horizon geometry, instead of traveling waves; namely, for eigenvalues above the dashed line, the Δ� in (3.7)
are real. The behavior is similar to that presented in the table with numerical values on p. 9 of [2].

3Do not mistake the parameter μ here for the mass parameter in
the MP solution (2.3)–(2.5). Since we are involved with extremal
solutions, we no longer need to refer to the black hole mass
parameter.
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Wλ;μðζÞ ¼
Γð−2μÞ

Γð1=2 − μ − λÞMλ;μðζÞ

þ Γð2μÞ
Γð1=2þ μ − λÞMλ;−μðζÞ: ð3:23Þ

In our case, λ ¼ iðak2 þ bk1Þ=ð2
ffiffiffiffiffiffi
ab

p Þ, μ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kl − ðk1 þ k2Þ2

p
=2, and ζ ¼ −2iω=u. Also, from

(3.7) we have Δþ ¼ 1=2þ μ. Therefore, we can write the
solution in terms of the scaling dimensions Δ� and the
parameter

p1;2 ≡ 1

2

ffiffiffi
a
b

r
k2 þ

1

2

ffiffiffi
b
a

r
k1 ¼ −iλ: ð3:24Þ

The functions Mλ;�μðζÞ and Wλ;�μðζÞ obey some func-
tional relations that it might be convenient to collect as they
will be useful for our analysis. In particular, from (3.23) and
the series expansion (3.21) we obtain the following
asymptotic expansion, valid for small juj (i.e. large jζj):

Mip;Δþ−1
2

�
−
2iω
u

�
≃

Γð2ΔþÞ
ΓðΔþ − ipÞe

−iω
u

�
−
2iω
u

�
−ip

þ Γð2ΔþÞ
ΓðΔþ þ ipÞ

�
−
2iω
u

�
ip
e
iω
u�ðΔþ−ipÞiπ

ð3:25Þ

with

Δþ −
1

2
∓ ip ≠ −

1

2
;−

3

2
;… ð3:26Þ

and

Wip;Δþ−1=2

�
−
2iω
u

�
≃ e

iω
u

�
−
2iω
u

�
ip
: ð3:27Þ

For large juj (i.e. small jζj), the asymptotic behavior is

Mip;Δþ−1
2

�
−
2iω
u

�
≃
�
−
2iω
u

�
Δþ
; 2Δþ−1≠−1;−2;−3;…

ð3:28Þ

and either

Wip;Δþ−1
2

�
−
2iω
u

�
≃
Γð2Δþ − 1Þ
ΓðΔþ − ipÞ

�
−
2iω
u

�
1−Δþ

;

Re½Δþ� ≥ 1;Δþ ≠ 1 ð3:29Þ

or

Wip;Δþ−1
2

�
−
2iω
u

�
≃
Γð2Δþ − 1Þ
ΓðΔþ − ipÞ

�
−
2iω
u

�
1−Δþ

þ Γð1 − 2ΔþÞ
Γð1 − Δþ − ipÞ

�
−
2iω
u

�
Δþ
;

1

2
≤ Re½Δþ� < 1;Δþ ≠

1

2
: ð3:30Þ

All these formulas will be useful when solving the
matching problem between the solution in the near-horizon
geometry and that in the flat region.

B. Fields in the near-horizon region
of a near-extremal black hole

Now, let us perform a similar analysis for the near-
extremal case (η ≠ 0). In this case, the near-horizon
analysis is much more involved; however, it can still be
solved analytically by following the same method: first, in
Eq. (3.1) with the background (2.16) we propose a
separable ansatz, yielding

∂u

��
u2−

abη
ðaþbÞ4

�
∂uRðuÞ

�
þ
�ðk1þk2Þ2−Kl

4
þ ðaþbÞ4
ðaþbÞ4u2−abη

�
ω2þak2þbk1ffiffiffiffiffiffi

ab
p ωuþðak2þbk1Þ2

4ðaþbÞ4 η

��
RðuÞ¼0

ð3:31Þ

which in the limit η → 0 reduces to that of the NHEMP case, cf. (3.4). Then, we notice that the differential equation (3.31) is
of the class

∂uððu − αÞðu − βÞ∂uRðuÞÞ þ
�

Auþ B
ðu − αÞðu − βÞ þ C

�
RðuÞ ¼ 0; ð3:32Þ

with its constants being

A ¼ bk1 þ ak2ffiffiffiffiffiffi
ab

p ω; B ¼ ω2 þ ðak2 þ bk1Þ2
4ðaþ bÞ4 η; C ¼ ðk1 þ k2Þ2 − Kl

4
; ð3:33Þ
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and its roots4

α ¼ −β ¼
ffiffiffiffiffiffiffiffi
abη

p
ðaþ bÞ2 : ð3:34Þ

Then, we rewrite

Auþ B
ðu − αÞðu − βÞ ¼

D
u − α

þ E
u − β

; ð3:35Þ

with

D ¼ Aαþ B
α − β

; E ¼ Aα − B
α − β

; ð3:36Þ

and get

∂u½ðu−αÞðu−βÞ∂uRðuÞ�þ
�

D
u−α

þ E
u−β

þC
�
RðuÞ¼0:

ð3:37Þ

Defining u ¼ 1=t, the equation takes the form

∂
2
t TðtÞ þ

�
1

t− t1
þ 1

t− t2

�
∂tTðtÞ

þ
�
C
αβt

−
D

α2βðt− t1Þ
−

E
αβ2ðt− t2Þ

�
TðtÞ

tðt− t1Þðt− t2Þ
¼ 0;

ð3:38Þ

where TðtÞ ¼ Rð1=tÞ and

t1 ¼
1

α
; t2 ¼

1

β
¼ −

1

α
: ð3:39Þ

Finally, we can compare (3.38) with the so-called Riemann-
Papperitz differential equation [13], whose generic expres-
sion is given by

0 ¼ ∂
2
t TðtÞ þ

�
1 − a1 − a2

t − t0
þ 1 − b1 − b2

t − t1
þ 1 − c1 − c2

t − t2

�
∂tTðtÞ þ

�
a1a2ðt0 − t1Þðt0 − t2Þ

t − t0

þ b1b2ðt1 − t0Þðt1 − t2Þ
t − t1

þ c1c2ðt2 − t0Þðt2 − t1Þ
t − t2

�
TðtÞ

ðt − t0Þðt − t1Þðt − t2Þ
: ð3:40Þ

The regular singular points of this equation are t0, t1 and t2,
with the pairs of exponents for each point being a1, a2; b1,
b2; c1, c2, respectively. These exponents are constrained to
fulfill the condition

a1 þ a2 þ b1 þ b2 þ c1 þ c2 ¼ 1; ð3:41Þ

which is equivalent to demanding the sum of the numer-
ators of the terms multiplying ∂tTðtÞ to equal 2. The
condition (3.41) is actually satisfied for (3.38). In fact, by
comparing (3.38) and (3.40), we get

a1 þ a2 ¼ 1; b1 þ b2 ¼ 0; c1 þ c2 ¼ 0: ð3:42Þ

In order to completely identify the parameters in (3.38)
with those in (3.40), we have to solve the system

a1a2ðt0 − t1Þðt0 − t2Þ ¼
A
αβ

; ð3:43Þ

b1b2ðt1 − t0Þðt1 − t2Þ ¼ −
D
α2β

; ð3:44Þ

c1c2ðt2 − t0Þðt2 − t1Þ ¼ −
E
αβ2

; ð3:45Þ

which in our case, since t0 ¼ 0 and t2 ¼ −t1, reduces to

a1a2t21 ¼
A
α2

; 2b1b2t21 ¼
D
α3

; 2c1c2t21 ¼ −
E
α3

:

ð3:46Þ

This yields six algebraic equations, which are solved by

a1 ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4C

p

2
; a2 ¼

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4C

p

2
; ð3:47Þ

b1 ¼
1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Aα − B

p
b2 ¼ −b1; ð3:48Þ

c1 ¼
1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aα − B

p
c2 ¼ −c1: ð3:49Þ

Notice also that

Aα� B ¼ �
�
−ω ∓ ak2 þ bk1

2ðaþ bÞ2
ffiffiffi
η

p �
2

¼ �ð−ω ∓ pαÞ;

ð3:50Þ4This procedure is valid for complex roots α; β∈C.
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where p ¼ p1;2 is given in (3.24). In summary, the radial equation (3.38) is a Riemann-Papperitz equation5 whose
exponents are given by

a1 ¼
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kl − ðk1 þ k2Þ2

q
¼ Δþ; a2 ¼

1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kl − ðk1 þ k2Þ2

q
¼ Δ−;

b1 ¼
1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð−ω − pαÞ2

q
¼ −i

ω

2α
− i

p
2
; b2 ¼ −b1;

c1 ¼
1

2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð−ωþ pαÞ2

q
¼ −i

ω

2α
þ i

p
2
; c2 ¼ −c1; ð3:51Þ

and

t0 ¼ 0; t1 ¼
1

α
¼ ðaþ bÞ2ffiffiffiffiffiffiffiffi

abη
p ; t2 ¼ −

1

α
¼ −

ðaþ bÞ2ffiffiffiffiffiffiffiffi
abη

p :

ð3:52Þ

Interestingly enough, the solution of the Riemann-
Papperitz equation (3.40) can be written in terms of
hypergeometric functions as well. In fact, one such solution
is given by (see u5 on page 284 of [14])

TðtÞ ¼
�
t − t1
t − t2

�
b1
�

t
t − t2

�
a1

2F1ðl; m; s; ξÞ;

ξ ¼ ðt − t1Þt2
ðt − t2Þt1

; ð3:53Þ

with

l ¼ a1 þ b1 þ c1; m ¼ a1 þ b1 þ c2 ¼ a1 þ b1 − c1;

s ¼ 1þ b1 − b2 ¼ 1þ 2b1: ð3:54Þ

A more general solution to (3.40) is given by the linear
combination

TðtÞ ¼ FðξÞ ¼ ð1 − ξÞa1ξb1ðC1hðξÞ þ C2kðξÞÞ; ð3:55Þ

with (see y5 ibid.)

hðξÞ ¼ 2F1ðl; m; s; ξÞ; ð3:56Þ

and (see y6 ibid.)

kðξÞ ¼ ξ1−s2F1ðl − sþ 1; m − sþ 1; 2 − s; ξÞ; ð3:57Þ

with C1 and C2 being two arbitrary constants.
The singular point t ¼ t1 corresponds to ξ ¼ 0; the

solutions expanded around this point are valid near the
horizon. The point t ¼ 0, on the other hand, corresponds to
ξ ¼ 1, and the solutions expanded around this point are
valid in the asymptotic region u → ∞. Let us start by
analyzing the solutions close to the horizon, i.e. around
ξ ¼ 0. We observe that the second term in (3.55) goes like
ξ−b1 and then it violates the incoming condition at the
horizon. Then, we have to set C2 ¼ 0, so that the solution
takes the form

FðξÞ ¼ C1ð1 − ξÞa1ξb1 2F1ðl; m; s; ξÞ: ð3:58Þ

In order to see what happens at infinity, we resort to the
Kummer relations and write

FðξÞ ¼ C1ð1 − ξÞa1ξb1 ΓðsÞΓðs − l −mÞ
Γðs − lÞΓðs − lÞ 2F1ðl; m;lþm − sþ 1; 1 − ξÞ þ C1ð1 − ξÞa1ξb1

ð1 − ξÞs−l−m ΓðsÞΓðlþm − sÞ
ΓðlÞΓðlÞ 2F1ðs − l; s −m; s − l −mþ 1; 1 − ξÞ: ð3:59Þ

keeping in mind that

a1 ¼ Δþ; l ¼ Δþ −
iω
α
; m ¼ Δþ − ip; s ¼ 1þ i

�
−
ω

α
− p

�
; ð3:60Þ

lþm − s ¼ 2Δþ − 1; a1 þ s − l −m ¼ 1 − Δþ: ð3:61Þ

5Do not mistake the parameter z here for the variable introduced in (3.9).
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Then, close to ξ ≃ 1, we find that the solution behaves as follows:

FðξÞ ≃ C1ð1 − ξÞΔþ
Γð1 − iω

α − ipÞΓð1 − 2ΔþÞ
Γð1 − Δþ − ipÞΓ

�
1 − Δþ − iω

α

�þ C1ð1 − ξÞ1−Δþ
Γð1 − iω

α − ipÞΓð2Δþ − 1Þ
Γ
�
Δþ − iω

α

�
ΓðΔþ − ipÞ

: ð3:62Þ

These behaviors are useful for solving the matching
condition when reattaching the asymptotic region.

C. Reattaching the asymptotic region

Now, we study the scalar field equation (3.1) formulated
on the full MP geometry and then analyze the behavior in
the far region. We study the solution in the extremal case
and for large ũ, and then we match this solution with the
solution we obtained for the problem in the near-horizon

zone. The types of matching conditions we consider are the
same leaking boundary conditions studied in [8] in the
context of Kerr/CFT in four dimensions.
Considering in (3.1) the ansatz

Φðt̃; r̃; θ̃; ϕ̃; ψ̃Þ ¼ Uðr̃ÞΘðθ̃Þeið−ω̃ t̃þk1ϕ̃þk2ψ̃Þ ð3:63Þ

we get

0 ¼ 1

r̃Uðr̃Þ ∂r̃
�
1

r̃
Δ∂r̃Uðr̃Þ

�
þ 1

Δ
ðα̃þ β̃r̃2 þ γ̃r̃4Þ − k21

sin2θ̃
−

k22
cos2θ̃

þ ω̃2ρ̃2 þ 1

cos θ̃ sin θ̃

1

Θðθ̃Þ ∂θ̃ðcos θ̃ sin θ̃∂θ̃Θðθ̃ÞÞ; ð3:64Þ

with

α̃ ¼ −ða2 − b2Þða2k22 − b2k21Þ þ ðak2 þ bk1Þ2μ − 2abðak2 þ bk1Þμω̃þ a2b2μω̃2;

β̃ ¼ ða2 − b2Þðk21 − k22Þ − 2ðak1 þ bk2Þμω̃þ ða2 þ b2Þμω̃2;

γ̃ ¼ μω̃2: ð3:65Þ

Defining ũ ¼ r̃2, the equation for the radial and azimuthal coordinates reads

0 ¼ 4

R̃ðũÞ ∂ũðΔ∂ũR̃ðũÞÞ þ
1

Δ
ðα̃þ β̃ ũþγ̃ũ2Þ þ ω̃2ρ̃2 −

k21
sin2θ̃

−
k22

cos2θ̃
þ 1

Θðθ̃Þ
∂θ̃ðcos θ̃ sin θ̃∂θ̃Θðθ̃ÞÞ

cos θ̃ sin θ̃
; ð3:66Þ

for R̃ðũÞ ¼ RðuÞ; see the coordinate change in (2.9). Finally, we find that the equation separates into its radial and angular
parts; namely

4

RðuÞ ∂uðu
2
∂uRðuÞÞ þ

1

λ2μ2u2
ðα̃þ β̃ðλμuþ abÞ þ γ̃ðλμuþ abÞ2Þ þ ω̃2λμu ¼ Kl ð3:67Þ

and

ω̃2ðaþ bÞðacos2θ þ bsin2θÞ − k21
sin2θ

−
k22

cos2θ
þ 1

ΘðθÞ
∂θðcos θ sin θ∂θΘðθÞÞ

cos θ sin θ
¼ −Kl; ð3:68Þ

respectively. More succinctly, we have

∂uðu2∂uRðuÞÞ þ
1

4

�
αðω̃Þ
u2

þ βðω̃Þ
u

þ γðω̃Þ − Kl þ uλμω̃2

�
RðuÞ ¼ 0 ð3:69Þ

with

α ¼ α̃þ β̃abþ γ̃a2b2

λ2μ2
; β ¼ β̃ þ 2γ̃ab

λμ
; γ ¼ γ̃: ð3:70Þ

FIELD RESPONSE IN THE NEAR-HORIZON LIMIT OF NEAR- … PHYS. REV. D 108, 124078 (2023)

124078-11



We can read the relation between the NHEMP frequency
ω and MP frequency ω̃ by comparing the exponents in the
dependence on t, ϕ, ψ and t̃, ϕ̃, ψ̃ . This yields

ð−ω̃ t̃þk1ϕ̃þk2ψ̃Þ¼
ffiffiffiffiffiffi
ab

p

2λ

�
−ω̃þk1þk2

aþb

�
tþk1ϕþk2ψ

¼−ωtþk1ϕþk2ψ ; ð3:71Þ
so that

2λω ¼ −
ffiffiffiffiffiffi
ab

p

aþ b
ðk1 þ k2Þ þ ω̃

ffiffiffiffiffiffi
ab

p
: ð3:72Þ

In the λ → 0 limit, we see that the frequencies ω on the
NHEMP geometry flow to the unique frequency ω̃ ¼ ðk1 þ
k2Þ2=ðaþ bÞ in the asymptotic region. The latter is
analogous to the threshold frequency in superradiance.
We can use the relation (3.72) between frequencies to

implement the matching condition. In order to do so, we
need to match the small-u behavior of the solution in the far
region, with the large-u behavior of the solution in the near-
horizon region. This would build a bridge between both
regimes. In the u ≪ 1 limit, the radial equation becomes

∂uðu2∂uRðuÞÞ þ
�
α

4u2
þ β

4u
þ γ

4
−
Kl

4

�
RðuÞ ¼ 0: ð3:73Þ

This permits to verify that Eqs. (3.67) and (3.68), once the
frequency (3.72) is replaced in the coefficients (3.70),
coincide with the NHEMP analogs (3.4) and (3.3) in the
limit λ → 0. It is also worth noticing that considering (3.72)
and taking the limit λ → 0, i.e. ω̃ ¼ ðk1 þ k2Þ=ðaþ bÞ in
(3.69), the coefficients α and β identically vanish. As a
consistency check, in the limit λ → 0 we get α ¼ A, β ¼ B
and γ ¼ C, as defined in (3.5).
Now, taking the opposite limit, namely u ≫ 1, in the

extremal case μ ¼ ðaþ bÞ2 the Eq. (3.69) becomes

∂u½u2∂uRðuÞ� þ
�
Ω2u
4

þ 1

4
− q2

�
RðuÞ ¼ 0; ð3:74Þ

with

q2 ≡ 1þKl − ω̃2ðaþ bÞ2
4

; Ω2 ≡ ðaþ bÞ2ω̃2: ð3:75Þ

The condition given in (3.72) with λ ¼ 0 yields

q2¼1þKl−ðk1þk2Þ2
4

; Ω2¼ðk1þk2Þ2ω̃¼k1þk2
aþb

:

ð3:76Þ

It is remarkable that the solution to this radial equation
can be written in terms of Bessel functions; more precisely,
it can be written as a linear combination of the functions

u−
1
2J2qðΩu1

2Þ and u−
1
2J−2qðΩu1

2Þ; ð3:77Þ

where J2q are Bessel functions. Therefore, up to confluent
points, the general solution in the far region takes the form

RFðuÞ ¼ Au−
1
2J2qðΩu1

2Þ þ Bu−
1
2J−2qðΩu1

2Þ; ð3:78Þ

where the subindex F refers to the solution that is valid in
the far region. For u ≫ 1, the Bessel functions behave like

J2qðΩu1
2Þ≃

ffiffiffiffiffiffiffi
2

Ωπ

r
u−

1
4

�
cos

�
Ωu1

2−
π

2

�
2qþ1

2

��
þOðu−1

2Þ
�

ð3:79Þ

and, then, the solution goes like

RFðuÞ≃
ffiffiffiffiffiffiffi
2

Ωπ

r
u−

3
4½eiΩu

1
2ðAe−iπ2ð2qþ1

2
Þ þBe−i

π
2
ð−2qþ1

2
ÞÞ

þ e−iΩu
1
2ðAeiπ2ð2qþ1

2
Þ þBei

π
2
ð−2qþ1

2
ÞÞ þ � � ��; ð3:80Þ

the ellipsis stand for subleading terms in powers of 1=u.
Demanding no incoming flux from past null infinity, for

λ ¼ 0 we find

A
B
¼ −e2πiq ¼ −eiπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þKl−ðk1þk2Þ2

p
¼ e2πiΔþ : ð3:81Þ

It is worth noticing that, unexpectedly, the solution (3.78)
we find in the five-dimensional case is substantially simpler
than its four-dimensional analog, cf. (3.50) in [8]. The fact
that the solution to the equation above can be expressed in
terms of Bessel functions—in contrast to the hypergeomet-
ric functions appearing in the four-dimensional Kerr/CFT
calculation—leads to the rather simple expression (3.81),
which is much simpler than the four-dimensional expres-
sions (3.50) and (4.37) in Ref. [8]. This is relevant because
these expressions are what ultimately leads to the CFT2

interpretation of a reflection coefficient. This phenomenon
had already been observed in [10]; see footnote 9 on page 10
therein. The authors of [10] noticed that, unlike in four
dimensions, where one encounters hypergeometric func-
tions, in five dimensions the solution in the far region
involves Bessel functions. This was interpreted as an
indication that there may be some kind of SLð2;RÞ or even
conformal symmetry associated with the far region in four
dimensions: in the four-dimensional case, the expression
analogous to (3.81) has additional Γ functions, exhibiting
the characteristic form of a CFT2 correlator.
To implement the matching condition, we have to

compare the expressions of the solution RF for u ≪ 1
with the solution in the NHEMP geometry for u ≫ 1. The
former behaves like
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RFðuÞ ≃ −
�
Ω
2

�
2q Be2πiq

Γð1þ 2qÞ u
−1
2
þq

þ
�
Ω
2

�
−2q B

Γð1 − 2qÞ u
−1
2
−q þ � � � ð3:82Þ

On the other hand, the NHEMP solution

RNðuÞ ¼ PWip;μ

�
−
i2ω
u

�
þQMip;μ

�
−
i2ω
u

�
; ð3:83Þ

for u ≫ 1 behaves like

RNðuÞ ≃ Pc1u−
1
2
þμ þ ðQð−2iωÞ12þμ þ Pc2Þu−1

2
−μ; ð3:84Þ

with

c1 ¼ ð−2iωÞ12−μ Γð2μÞ
Γ
�
1
2
þ μ − ip

� and

c2 ¼ ð−2iωÞ12þμ Γð−2μÞ
Γ
�
1
2
− μ − ip

� : ð3:85Þ

Comparing (3.82) with (3.84) we can express P and Q as
functions of B. This can be achieved if and only if μ ¼ q, a
condition that is guaranteed by the identity C ¼ γ in the
limit λ → 0. In this way, we obtain

B ¼ Qð−2iωÞ12þq

�
Ω
2

�
2q
Γð1 − 2qÞ

�
1 −

�
Ω
2

�
4q
ei2qπð−2iωÞ2q Γð1 − 2qÞ2

Γð1þ 2qÞ2
Γð1

2
þ q − ipÞ

Γð1
2
− q − ipÞ

�−1
ð3:86Þ

together with

P ¼ −
�
Ω
2

�
2q e2πiqB
Γð1þ 2qÞ : ð3:87Þ

Equation (3.86) is different from its four-dimensional
analog; cf. Eq. (3.53) in [8]. More precisely, the five-
dimensional expression lacks a quotient of Γ functions to
admit the same CFT2 interpretation than its four-
dimensional counterpart. The reason for this qualitative
difference can be traced back to the Bessel functions in
(3.77), which in four dimensions get replaced by hyper-
geometric functions.

D. Horizon boundary conditions

So far, we have examined solutions in both the far
and the near-horizon regions. Now, let us impose
conditions at the horizon: by imposing incoming
boundary conditions for the modes on the horizon and
outgoing boundary conditions in the far region, we
obtain a constraint for the wave numbers k1;2 and
the frequency ω̃. The condition for purely outgoing
flux at infinity was addressed above; the incoming
boundary conditions at the horizon can be implemented
by expanding the NHEMP solution (3.83) for u ≪ 1,
namely

RNðuÞ≈ ð−i2ωÞipPeifðuÞ þQ

2
64ð−i2ωÞ−ipe−ifðuÞ Γð1þ2μÞ

Γ
�
1
2
þμ− ip

�þð−1Þ12þμþipð−2iωÞipeifðuÞ Γð1þ2μÞ
Γ
�
1
2
þμþ ip

�
3
75þ���; ð3:88Þ

where we define the function

fðuÞ ¼ p log
1

u
þ ω

u
: ð3:89Þ

We observe from this that both incoming and outgoing
modes are present in this solution. Considering that near
u ¼ 0, the u−1 term dominates in (3.89), which is a
decreasing dependence on the radial coordinate, the out-
going part of the solution [remember thatΦ ∼ RðuÞe−iωt] is
given by the first term inside the brackets in (3.88), namely

Qe−ifðuÞð−i2ωÞ−ip Γð1þ 2μÞ
Γ
�
1
2
þ μ − ip

� ; ð3:90Þ

which, therefore, must vanish. This can be achieved by
either setting the coefficient Q equal to zero or by studying
the poles of the Γ function in the denominator. Let us focus
on the latter possibility: for Q ≠ 0, (3.90) exhibits zeros at

1

2
þ μ − ip ¼ −n with n∈Z≥0: ð3:91Þ

With the definitions of μ in (3.20), of p in (3.24), and of Δ�
in (3.7), we have
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Δ� − i
1

2

� ffiffiffi
a
b

r
k1 þ

ffiffiffi
b
a

r
k2

�
¼ −n: ð3:92Þ

In order to satisfy these equations, and for signðaÞ ¼
signðbÞ, we need Δ� to be real. This implies
bk1 þ ak2 ¼ 0, which makes (3.92) become simply
Δ� ¼ −n, or equivalently

k1 ¼
a

a − b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kl − ð2nþ 1Þ2

q
;

k2 ¼
b

b − a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Kl − ð2nþ 1Þ2

q
: ð3:93Þ

This yields the quantization condition for the frequency ω̃
in the limit λ → 0, namely

ω̃ ¼ k1 þ k2
aþ b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kl − 4nðnþ 1Þp

aþ b
: ð3:94Þ

Before concluding, let us briefly discuss the interpreta-
tion of the frequency (3.94). ω̃ is the frequency of the
solution in the asymptotic region that, according to (3.72),
matches the solutions in the near-horizon region. That is to
say, all the frequencies of the solutions in the NHEMP
geometry connect with (3.94) in the limit λ → 0; this is
due to the high redshift. The frequency (3.94) is the

five-dimensional analog to the superradiance threshold
frequency of a Kerr black hole (cf. [15]), i.e. the critical
frequency to extract energy from the black hole by
subtracting angular momentum carried by the k1;2 quantum
numbers; this yields (3.72). In addition, we observe that ω̃
in (3.94) is the frequency for which the effective potential in
the radial equation (3.69) qualitatively changes, sup-
pressing the terms that would be dominant for small u.
In this sense, ω̃ can be thought of as a penetration
frequency. More precisely, in (3.69) we can demand that
the functions αðωðω̃ÞÞ and βðωðω̃ÞÞ vanish, which pre-
cisely yields the first equality in (3.94). The second identity
in (3.94) is nothing but the quantization condition for the
frequency ω̃ induced by the incoming flux condition in
the horizon. A similar result is obtained for the near-
extremal case.
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