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We construct novel scalarized black hole (BH) solutions beyond the general relativity (GR)
framework. These scalarized BH solutions are extended from the Schwarzschild one and the non-
Schwarzschild one in the pure Einstein-Weyl gravity. By studying the BH entropy and free energy, we
demonstrate that the scalarized BH extending from the Schwarzschild one exhibits thermodynamically
preferred. We obtain these novel solutions by directly solving the full fourth-order equations of
motion. This narrows the problematic solution space obtained by commonly adopted second-order
reduction to physically valid spaces. Our findings also unveil the evasion of the no-hair theorem
within the realm of higher-derivative gravity.
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I. INTRODUCTION

The direct detection of gravitational waves (GWs) [1–3]
and the images of black holes (BHs) [4–7] has heralded a
new era in physics, providing powerful tools for exploring
the realm of strong gravity. These breakthroughs have also
opened up new avenues for investigating the potential
existence of new fundamental scalar fields that may leave
distinctive imprints on BHs [8,9]. However, the no-hair
theorem in general relativity (GR) presents a significant
obstacle, as it precludes the existence of stationary, asymp-
totically flat BH solutions with scalar hairs [10–13]. This
theorem has been further extended to encompass other
theories of gravity, including scalar-tensor theories [14–16]
and fðRÞ gravity [17,18].
However, it is possible to bypass the no-hair theorem by

violating some of their assumptions [9,19–23]. One of the
ways is to introduce a scalar field that is nonminimally
coupled to the Gauss-Bonnet (GB) invariant. This coupling
leads to the emergence of scalarized BHs, which are
extended from the Schwarzschild BH in GR [24–26].
The presence of scalarized BHs enables the detection of
scalars in these theories by observing the distinctive imprint

they leave when excited [27,28], and serves as a valuable
criterion for singling out particularly intriguing theories.
The GB invariant, despite involving higher derivatives,

exhibits relative simplicity with its equations of motion
(EOMs) remaining second order. However, it remains
uncertain whether the inclusion of more extensive higher
derivatives will also lead to scalarization. This consider-
ation holds significant meaning as it has the potential to
extend the existence of scalar hair to a significantly broader
range of scenarios.
Motivated by these considerations, we focus our atten-

tion on a novel geometric invariant C2 which is defined as
C2 ≡ CμνρσCμνρσ coupled to a scalar field φ. The action we
consider is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μφ∇μφ − αFðφÞC2�: ð1Þ

Here α represents the coupling constant with dimensions of
½length�2, while FðφÞ is a coupling function that solely
depends on the scalar field φ.
When φ ¼ 0 and FðφÞ ¼ 1, the theory (1) reduces to the

pure Einstein-Weyl theory [29]:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − αCμνρσCμνρσÞ: ð2Þ

This theory is an extension of Einstein gravity, incorpo-
rating higher-order derivative terms that arise in string
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theory and other effective theories, and has been proven to
be renormalizable in four-dimensional spacetime [30].
However, it is worth noting that this theory also possesses
intrinsic significance and relevance in its own right.
Additionally, as demonstrated in [29], this theory describes
a system with a massive spin-2 mode with a squared
mass of m2 ¼ 1=ð2αÞ, in addition to the massless spin-2
graviton. Therefore, α is generally a positive parameter.
Moreover, this theory encompasses not only the conven-
tional Schwarzschild solution but also another branch of
BH solution, referred to as the non-Schwarzschild solution,
which significantly deviates from the Schwarzschild geom-
etry [29]. Although novel non-Schwarzschild solutions
can be obtained within this theory, it should be noted that
these novel solutions are not thermodynamically favored.
An interesting aspect to consider is whether the scalarized
solutions, when considering scalarization, would respond
to the two branches of solutions and, more importantly,
be more thermodynamically favored.
These theories lead to fourth-order differential equations

for the metric functions, which can be challenging to solve
directly. Previous studies have shown it is possible to
reduce these equations to second-order by eliminating the
higher-derivative terms [29,31], which may seem to sim-
plify the analysis. However, we argue that the full fourth-
order equations contain important information that could be
lost in the reduction process. In particular, the higher-
derivative nature of the theory points to new dynamics that
depend intrinsically on the fourth-order scale set by α.
Reducing the order of the equations prematurely may
ignore these novel effects. Therefore, in this work, we
tackle the full fourth-order differential equations directly
using numerical methods. This allows us to reveal the true
structure of the higher-derivative theory.
This letter aims to unveil the existence of scalarized

black holes, their profiles, and thermodynamic stability
in Einstein-scalar-Weyl gravity (1) by directly solving the
fourth-order EOMs.

II. SCALARIZED BLACK HOLES

We are interested in a geometry that is static, spherically
symmetric, and asymptotically flat, described by the
following metric ansatz:

ds2 ¼ −hðzÞdt2 þ 1

z4fðzÞ dz
2 þ 1

z2
ðdθ2 þ sin2θdϕ2Þ;

hðzÞ ¼ ð1 − zÞU1ðzÞ; fðzÞ ¼ ð1 − zÞU2ðzÞ: ð3Þ

We assume that the scalar field φ depends solely on the
radial coordinate z, i.e., φ ¼ φðzÞ. In our convention, the
event horizon is located at z ¼ 1 and the infinite boundary
at z ¼ 0. In addition, we select a particular scalar coupling
function FðφÞ ¼ e−βφ. When β ¼ 0, the BH solutions will
reduce to those in pure Einstein-Weyl gravity [29]. Due to

the symmetry of the theory under the transformations
β → −β and ϕ → −ϕ, we solely consider β > 0.
The EOMs resulting from the action (1) with the

ansatz (3) involve fourth-order derivatives of the metric
functions hðzÞ and fðzÞ. Following a similar process as
[29,31], it is possible to reduce these to second-order by
eliminating higher-derivative terms, which seems to simplify
the analysis. However, just as argued in the introduction, any
true solution must satisfy both the second-order and original
fourth-order equations. The reduction process can discard
key constraints, so solutions from just the reduced equations
may be invalid.1 To obtain robust solutions reflecting the
complete theory, we directly solve the fourth-order system
using pseudospectral methods [32,33]. Please see the
Appendix A for more details.
Near the infinity the asymptotic behaviors for the metric

functions and scalar field read as

hðzÞ ¼ 1 − 2Mzþ � � � ;
fðzÞ ¼ 1 − 2Mzþ � � � ;
φðzÞ ¼ φ∞ þDzþ � � � ; ð4Þ

where we denote the mass of the BH as M, the asymptotic
value of the scalar field as φ∞, and the scalar charge
as D. At infinity, we impose the boundary conditions
U1ð0Þ ¼ U2ð0Þ ¼ 1, and at the horizon, without loss of
generality, we set the scalar field φð1Þ ¼ 1. Other boundary
conditions can be fixed by the regularity.
Before proceeding, it is worth noting that we have

conducted extensive numerical simulations. We have veri-
fied that the fourth-order solutions satisfy both equation
systems, while second-order solutions generally fail to
satisfy the fourth-order equations. By solving the full
system, we not only respect the higher-derivative structure
but also identify the true solutions that constitute a subset of
the larger but incorrect solution space obtained through
premature reduction. See Appendix B for more details.

A. Scalarized black hole extending
from the schwarzschild solution

Throughout this paper, we set α ¼ 0.5, as chosen in [29],
while allowing β to vary as a free parameter. We begin by
examining the behavior of the metric fields h and f, as well
as the scalar field φ, as functions of the radial coordinate z
for different values of β. These plots are presented in Fig. 1.
The Schwarzschild solution with a trivial scalar field is

1Despite utilizing the reduced second-order equations to find
solutions in pure Einstein-Weyl gravity, we have validated the
black hole solutions presented in [29], which satisfy both the
second-order and fourth-order equations simultaneously. Hence,
their findings are valid. However, the multiple solution cases
demonstrated in the subsequent developments only comply with
the reduced second-order equations and fail to satisfy the fourth-
order equations.
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represented by the black dashed lines. We can observe
slight deviations between the hairy BH and the
Schwarzschild solution, as highlighted in the inset plots.
Although the dilatonlike coupling function FðφÞ ¼ e−βφ

only allows nontrivial solutions for the scalar field φ
according to the EOMs, we propose that as β approaches
zero, the hairy black hole gradually converges to the
Schwarzschild solution with a vanishing scalar field.
This convergence is supported by the asymptotic behavior
of the coupling function FðφÞ, which tends to unity in the
limit of β → 0. Consequently, the Einstein-scalar-Weyl
system (1) reduces to the pure Einstein-Weyl system.
This result indicates the Einstein-scalar-Weyl theory can
evade the no-hair theorem and permits the existence of a
hairy black hole that seamlessly extends from the
Schwarzschild solution within the framework of pure
Einstein-Weyl gravity.
We proceed by examining the behaviors of the scalar

charge D, the asymptotic value of the scalar field denoted
as φ∞, and the BH mass M as we vary β. These results are
displayed in Fig. 2. Notably, the scalar charge exhibits an
upward trend with increasing β, starting from zero, which
corresponds to the Schwarzschild case. It reaches its
maximum value when β ≈ 1 and subsequently decreases,
eventually approaching zero. In contrast, as β increases, φ∞
exhibits an opposite trend in comparison to the scalar
charge. The scalarization process results in the change of
the BH mass, as depicted in Fig. 2. It is observed that the
BH mass initially decreases as β increases from the mass
of the Schwarzschild BH, then it begins to increase.
The maximum value is reached at β ≈ 1, after which it
gradually decreases, eventually approaches the mass of the
Schwarzschild BH.
It is worth noting that as β approaches infinite, the system

shifts from Einstein-scalar-Weyl gravity to Einstein-scalar
gravity. This occurs becausewhen β approaches infinity, the

coupling function FðφÞ approaches zero. Consequently, the
impact of the Weyl term becomes negligible, and the BH
solution reduces to the Schwarzschild solution described by
pure Einstein gravity. In addition, wewould like to point out
that the scalar charge D depends on the BH mass M. As a
result, the hair in this scenario is secondary.

B. Scalarized black hole beyond
the schwarzschild solution

In this subsection, we address the emergence of a
distinctive class of hairy BH solutions for the same
parameters, which is shown in Fig. 3. From this figure,
it is evident that these solutions exhibit substantial devia-
tions from both the Schwarzschild case (the black dashed
curves in Fig. 3) and the non-Schwarzschild case (the red
dashed curves in Fig. 3) as the parameter β increases.
Remarkably, as β approaches zero, the hairy BH converges
to the non-Schwarzschild solution, indicating that this

FIG. 1. The metric fields h and f, along with the scalar field φ
as functions of the radial coordinate z for different parameter β.
The black dashed curves are the Schwarzschild solution with
trivial scalar field. The inset plots show the differences between
the hairy BH and the Schwarzschild solution.

FIG. 2. The scalar charge D, φ∞ and the BH mass M as a
function of β. The black dashed curves denote the case with trivial
scalar hair.

FIG. 3. The metric (h and f) and scalar (φ) functions for
different parameter β. The black dashed curves represent the
Schwarzschild solution with a trivial scalar field, whereas the red
dashed curves depict the non-Schwarzschild solution with a
trivial scalar field.
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solution extends from the non-Schwarzschild BH in
pure Einstein-Weyl gravity. It is different from the one
we obtained in the previous subsection.
We also show the scalar charge D, φ∞ and the BH mass

M as a function of β in Fig. 4. It is evident that as β
increases, the scalar charge D increases and eventually
approaches infinity, while φ∞ monotonically decreases
and tends toward negative infinity. Correspondingly, after
a slightly decrease, the BH mass M undergoes a signifi-
cant rise with β increasing, ultimately approaches infinity
as well. This behavior arises because, in this limit, the
coupling function FðφÞ approaches infinity, which is
distinct from the case studied in the previous subsection.
In addition, it is no doubt that the hair in this scenario is
also secondary.

C. The black hole thermodynamics

The thermodynamic stability of these solutions is crucial
for their physical plausibility. Therefore, it is necessary to
investigate the thermodynamic characteristics of the hairy
black holes that extends from the Schwarzschild solution
and beyond. Because we are working with the gravity
theory involving higher derivative term, we adopt the
entropy formula developed by Wald [34,35]

Sh ¼ 2π

Z
Σ
d2x

ffiffiffiffiffiffi
−h

p ∂L
∂Rμνρσ

ϵμνϵρσ; ð5Þ

where L represents the Lagrangian density, ϵμν is the
binormal on the horizon Σ and h the induced metric.
Specifically for our model, the BH entropy can be explicitly
worked out as follows:

Sh ¼ π −
παFðφð1ÞÞ
3U1ð1Þ

½3U2ð1ÞU0
1ð1Þ þU1ð1ÞðU0

2ð1Þ

þ 8U2ð1Þ þ 4Þ�: ð6Þ

Once the entropy is at hand, the free energy Fh can be
determined by Fh ¼ M − TSh, where the temperature for
our ansatz (3) is given by

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1ð1ÞU2ð1Þ

p
4π

: ð7Þ

Fig. 5 shows the entropy Sh (left panel) and the free
energy Fh (right panel) of hairy BH extending from the
Schwarzschild and the non-Schwarzschild solutions as
functions of β. Notably, the entropy of the hairy BH
extending from the non-Schwarzschild BH is consistently
lower than that of the one extending from the Schwarzschild
BH. Conversely, the free energy is always larger for the
hairy BH extending from non-Schwarzschild BH. This
feature indicates that the hairy BH extending from the
Schwarzschild solution is thermodynamically favorable than
the one extending from the non-Schwarzschild BH.

III. DISCUSSION

In this letter, we present novel scalarized BH solutions
beyond the GR framework. These scalarized BH solu-
tions are extended from the Schwarzschild one and
non-Schwarzschild one found in the pure Einstein-
Weyl gravity [29].
Importantly, our direct solution of the full fourth-order

EOMs was crucial for obtaining these novel solutions and
uncovering new physics. By retaining the complete struc-
ture of the higher-derivative theory, we found solutions that
differ significantly from those in the literature obtained
from reduced second-order equations. In particular, our
solutions go beyond the scalarized black holes found in
4-dimensional Einstein-scalar-Gauss-Bonnet theory [24–26],
which are merely extensions of the Schwarzschild sol-
utions in GR. We further studied the entropy and free
energy of these new scalarized black holes. We find the
solution extending from the Schwarzschild case exhibits
higher entropy and lower free energy compared to the one
extending from the non-Schwarzschild case. This indi-
cates the Schwarzschild-extended solution is thermody-
namically more stable.

FIG. 4. The scalar charge D, φ∞ and the BH mass M as a
function of β. The red dashed curves denote the case with trivial
scalar hair.

FIG. 5. The entropy Sh (left panel) and the free energy Fh (right
panel) of hairy BHs extending from the Schwarzschild and non-
Schwarzschild solutions as a function of β. The black dashed line
represents the Schwarzschild case, while the red dashed line
represents the non-Schwarzschild case.
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In conclusion, by directly solving the full fourth-order
equations of motion arising from the higher-derivative
theory, our findings unveil the evasion of the no-hair
theorem and discover new scalarized black hole solutions
beyond those in GR. The significance of retaining the
complete higher-derivative structure is also demonstrated.
In addition to the findings presented above, there are two

important directions for further research on scalarization in
higher derivatives that can enrich our understanding of this
phenomenon. The first direction involves exploring more
general higher derivatives and a richer style of coupling.
This approach aims to expand and diversify the scenarios
of scalarization. This direction offers the opportunity to
explore a wider range of phenomena and mechanisms of
scalarizations. The second direction is studying scalariza-
tion in higher derivatives using dynamical methods. This
may involve solving the fourth-order equations dynami-
cally. Although this poses significant challenges, tackling
them will provide a solid foundation for the main findings
and shed light on the potential imprints that these higher
derivative theories may leave on GW.
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APPENDIX A: NUMERICAL METHODS FOR
SOLVING THE FOURTH-ORDER EQUATIONS

OF MOTION

Numerical methods play a crucial role in solving differ-
ential equations. In this section, we will display the
application of numerical methods to solve second and
fourth-order equations.
To begin, let us consider the equations for functions f, h,

and φ, which are functions of the variable z. We discretize
the axis z using the Gauss-Lobatto quadrature. This
discretization allows us to represent U1, U2, and φ as
vectors W. Therefore, the problem can be reformulated as
finding the appropriate values for the elements of W that
satisfy the equations. To recover the function representation
of the discretized values, a convenient approach is to
employ the fast Fourier transform (FFT) method. By
applying the FFT, we can obtain the expansion coefficients,
denoted as ai. These coefficients can subsequently be

utilized to reconstruct the function using a combination
of Chebyshev polynomials, denoted as aiTiðzÞ.
Derivatives of these functions up to fourth order can be

obtained using standard methods, such as the NDSolve
function in Mathematica. This capability allows us to
accurately compute the derivatives required for our numeri-
cal methods.
Due to the highly nonlinearity of the equations, we

employ the Newton-Raphson iteration method. To apply
this method, we first linearize the equations and then
iteratively update the solution until convergence is
achieved. It is important to note that the success of the
iteration process heavily depends on the initial solution
guess. Therefore, providing a good initial guess for the
solution is crucial to obtaining accurate results.
We have observed that for the second-order case, varying

the initial seeds leads to multiple branches of solutions. This
suggests that the system possesses unfixed degrees of
freedom, likely resulting from an inappropriate second-order
reduction. However, for the fourth-order equations, we have
only obtained four branches of solutions: Schwarzschild,
non-Schwarzschild, and their scalarized versions.
Remarkably, after testing thousands of random initial seeds,
all successful cases converged to these four branches.
Furthermore, we explored the relationship between the

solutions of the second-order and fourth-order cases. We
found that when introducing the second-order solutions into
the fourth-order equations, they often fail to satisfy the latter.
However, when we introduce the solutions obtained from the
fourth-order equations into the second-order case, they
satisfy the system. This provides strong evidence that the
fourth-order equations single out the correct solution space
from the spaces obtained by the second-order reduction.
In the next section, wewill present more explicit examples

and further support our observations and conclusions.

APPENDIX B: THE VALIDATION OF THE
SOLUTIONS OBTAINED FROM THE FOURTH

ORDER EQUATIONS

In this section, we provide concrete numerical examples
to demonstrate that the solutions derived from the fourth-
order equations consistently satisfy the reduced second-
order equation systems. Conversely, the solutions obtained
from the second-order equations often fail to satisfy the
fourth-order equations. Our results of this Appendix have
been made available in an open-source repository (Repo
link [36]).
To effectively evaluate the accuracy of the solutions, we

introduce the residualRIðzÞ of the Ith EOMs as a measure,
which is obtained by discretizing the equations of motion,

RIðzÞ ¼ discretized eomsjWðzÞ¼WNðzÞ: ðB1Þ

Ideally, the residual function tends to zero for exact
solutions, indicating that the numerical results precisely
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satisfy the EOMs. However, in the case of numerical
solutions, we anticipate an approximate zero value, denoted
as RIðzÞ ≈ 0. Since the complete second-order and fourth-
order EOMs are too lengthy, we have included them in the
provided repository for convenience, rather than presenting
them directly in this document.
As an example, let us set α ¼ 0.5 and β ¼ 0.1.

Numerical simulations reveal that the reduced second-order
equations yield multiple solutions instead of just fixed
ones. Figure 6 depicts one branch of these solutions with
red dashed lines. Then, we evaluate the residual function
for this solution. The left panel in Fig. 7 illustrates the one
of the residualRIðzÞ where the solution is brought back to
the second-order equations, while the right panel demon-
strates the case where it is brought back to the fourth-order
equations. It is evident that the residual function shown in
the left panel of Fig. 7 is approximately zero. However, we

observe that the residual function exhibited in the right
panel significantly exceeds Oð1Þ. This indicates that the
solution obtained from the reduced second-order equations
fails to satisfy the original fourth-order equations.
However, regardless of whether we bring the solution

obtained from the fourth-order equations back to the
reduced second-order equations or the original fourth-order
equations, we observe that the residual function is approx-
imately zero, as depicted in Fig. 8. This suggests that the
solution satisfies both the second-order equations and the
fourth-order equations.
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