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We study various aspects of higher-curvature theories of gravity built from contractions of the metric,
the Riemann tensor, and the covariant derivative, £(g%’, Rupeq» V). We characterize the linearized
spectrum of these theories and compute the modified Newton potential in the general case. Then, we
present the first examples of generalized quasitopological (GQT) gravities involving covariant
derivatives of the Riemann tensor. We argue that they always have second-order equations on
maximally symmetric backgrounds. Focusing on four spacetime dimensions, we find new densities of
that type involving eight and ten derivatives of the metric. In the latter case, we find new modifications
of the Schwarzschild black hole. These display thermodynamic properties which depart from the ones
of polynomial GQT black holes. In particular, the relation between the temperature and the mass of
small black holes, T~ M'/3, which universally holds for general polynomial GQT modifications of
Einstein gravity, gets modified in the presence of the new density with covariant derivatives to 7 ~ M>.
Finally, we consider brane-world gravities induced by Einstein gravity in the AdS bulk. We show that
the effective quadratic action for the brane-world theory involving arbitrary high-order terms in the
action can be written explicitly in a closed form in terms of Bessel functions. We use this result to
compute the propagator of metric perturbations on the brane and its pole structure in various
dimensions, always finding infinite towers of ghost modes, as well as tachyons and more exotic modes

2

in some cases.
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I. INTRODUCTION

Despite the spectacular list of experimental successes of
general relativity, there are good reasons to explore alter-
natives to Einstein’s theory. Firstly, it is expected that the
Einstein-Hilbert action is the first in an infinite series of
terms involving an increasing number of derivatives of the
metric [1]. This can be seen explicitly within the string
theory framework, where the new terms appear weighted
by powers of the inverse string tension [2—4]. Additionally,
holographic higher-curvature gravities can be used, through
AdS/CFT [5,6], as toy models of conformal field theories
(CFTs) which, being inequivalent from their Einsteinian
counterparts, can sometimes be used to unveil new uni-
versal properties valid for completely general CFTs [7-15].

From a different perspective, it is important to char-
acterize the possible existence (or lack thereof) of uni-
versal features of classical gravity in regimes in which the
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Einsteinian description is expected to receive higher-
curvature corrections [16,17]. In order to do this, it is
often convenient to consider particular classes of higher-
curvature gravities displaying certain special properties.
The list includes quadratic [18,19], Lovelock [20-23],
quasitopological [24-28] and generalized quasitopological
gravities (GQTs) [29-32], among others [33-36]. All of
these belong to the subset of theories built from contrac-
tions of the Riemann tensor and the metric. In particular,
GQTs—which are characterized by admitting “single
function” static and spherically symmetric solutions (see
Sec. III) as well as possessing second-order equations on
maximally symmetric backgrounds—have been shown to
provide a basis for general gravitational effective actions
built from general contractions of the Riemann tensor and
the metric: any £(g*, R,.q) theory can be mapped order
by order, via a field redefinition, to certain GQT [37].
Although seemingly less likely, it is also possible that
deviations from Einstein gravity are eventually measured in
unexpected situations (e.g. beyond the effective field theory
regime) and it is important to have alternative predictions
which can be tested [38]. Along this direction there have
been numerous attempts at constructing alternatives to
general relativity which are compatible with all current
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observations and internally consistent. This includes again
quadratic theories [39-41], f(R) models [42], as well
as nonlocal gravities which, by including an infinite
number of derivatives in the action, can be made free of
ghosts [43-50]. Nonlocal gravities are particular instances
of the general set of theories which will be the subject
of study in the present paper, namely, diffeomorphism-
invariant theories constructed from general contractions of
the Riemann tensor and its covariant derivatives,
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As a matter of fact, terms involving covariant derivatives of
the Riemann tensor generically appear in gravitational
effective actions [51,52]. A scenario in which this is apparent
corresponds to the so-called brane-world gravities [53-55].
These are effective gravitational theories defined on the
world volume of branes inserted on higher-dimensional
spacetimes. Originally introduced with phenomenological
motivations, they have received a lot of attention recently in
the holographic context—see e.g. [56-58].

In this paper we present the first examples of GQT
gravities with covariant derivatives. Analogously to their
“polynomial” counterparts, we show that they have second-
order linearized equations on maximally symmetric
backgrounds' and that they admit black hole solutions
characterized by a single function, g,,g,, = —1. Focusing
on four dimensions, we find that the lowest-order instances
of GQT densities involve eight derivatives of the metric.
However, we observe that all such theories admit the
Schwarzschild metric as a solution, and therefore do not
give rise to new solutions when considered as corrections to
general relativity. The first GQT density with covariant
derivatives which does correct the Schwarzschild solution
occurs at tenth order in derivatives of the metric—see
Eq. (111) below for its explicit form. For this, we find that
the corrected solution displays features similar to the ones
of polynomial GQTs, including a near-horizon expansion
fully determined by a single parameter to be fixed asymp-
totically or the possibility of determining their thermody-
namic properties in a fully analytic fashion for general
values of the coupling. We analyze some of the thermo-
dynamic properties of the new solution finding, in particu-
lar, that for small black holes the temperature behaves as a
function of the mass as T ~ M3 as r, — 0. This departs
from the behavior encountered for all polynomial GQT
theories, for which it has been argued that the relation
T ~ M'/3 holds universally for small black holes [16,60].

The analysis of the linearized spectrum of GQTs is
performed after obtaining some general results on the

"This provides a counterexample to the conjecture of [59]
regarding the absence of theories with covariant derivatives of the
curvature possessing an Einsteinian spectrum.

linearization of general higher-curvature theories with
covariant derivatives. We present general formulas which
allow for the computation of the linearized equations of a
given higher-curvature theory from its effective quadratic
action. Using this, we show that both GQTs as well as
brane-world gravities belong to the family of theories
which do not include scalar modes in their linearized
spectrum. Additionally, we obtain a formula for the
modified Newton potential valid for general higher-
curvature theories involving covariant derivatives in arbi-
trary dimensions.

Then, we move to brane-world theories. The effective
gravitational action induced on the brane world volume is
given by an infinite series of higher-derivative terms of the
form [61-68]
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where ¢ is the AdSp,; radius of the ambient spacetime.
Starting at sixth order in derivatives, all the higher-curvature
densities involve terms with covariant derivatives of the
Riemann tensor—e.g. see Eq. (136) for the next order. Here
we show that the effective curvature-squared action of the
full brane-world gravity—including the infinite tower of
terms with covariant derivatives—can be written as
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where

Fp(£20) =

and Y, are Bessel functions of the second kind. Using
this expression, we study the linearized spectrum of the
theory on Minkowski spacetime in various dimensions.
Generically, the metric perturbations propagator includes
poles of the form

2
(D =2)2[k* + m3]’

(3)

where the first is the usual Einstein gravity massless spin-2
mode, and the second corresponds to infinite towers of
massive spin-2 modes (labeled by j) which always have
negative kinetic energy. Depending on the dimension, some

1
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of those modes have positive squared masses, some of them
have negative squared masses, and some of them have
imaginary squared masses.

The structure of the paper is the following. Section II
contains some comments on the structure of the linearized
equations of general higher-curvature gravities with covar-
iant derivatives on general maximally symmetric back-
grounds, a characterization of the structure of poles of the
metric propagator on Minkowksi spacetime as well as a
derivation of the generalized Newton potential. In Sec. III
we construct GQTs with covariant derivatives in four
spacetime dimensions and study their new black hole
solutions and their thermodynamic properties. In Sec. IV
we study the linearization of brane-world gravities
obtaining their effective quadratic action and characterizing
the pole structure of the metric propagator in various
dimensions. We conclude in Sec. V with some comments
on future directions. Appendix A contains a complete list of
the curvature invariants at each order in derivatives up to
eight, as well as the nonexhaustive set we have used at
order ten. In Appendix B we present new hairy black hole
solutions of pure eight-derivative GQTs with covariant
derivatives. Finally, in Appendix C we present the linear-
ized field equations around an AdS background for the
simplest examples of the theories we consider here.

II. LINEARIZED HIGHER-CURVATURE
GRAVITIES WITH COVARIANT DERIVATIVES

Throughout the paper we will be interested in the
linearized equations of various higher-curvature theories
with covariant derivatives. In this section we analyze the
structure of such equations for a general theory of the
form (1) in general dimensions. We derive their general
form on a maximally symmetric background and then,
focusing on the Minkowski case, we identify the precise
relation between the effective quadratic action and the
linearized equations, classifying the different theories
according to the modes propagated. In particular, we identify
a set of generalizations of a particular type of quadratic
densities involved in the definition of the so-called “critical
gravities”—which have the peculiarity of propagating no
scalar modes. This set of theories will include both the
new GQTs theories presented in Sec. III and the brane-
world theories studied in Sec. IV as particular instances.
Additionally, we obtain an explicit formula for the
D-dimensional generalized Newton potential resulting from
a general higher-curvature gravity with covariant derivatives.

Before starting, let us point out that many of the
results presented in this section have appeared in different
forms in previous literature. Indeed, both the lineari-
zation on maximally symmetric backgrounds of general
L(g, Rypeas V) theories as well as the Newton potential
have been studied in the four-dimensional case in [69-77].

We are interested in gravity theories of the form (1). Some-
times it is convenient to split the Lagrangian as follows:

D-1)(D-2
‘C(gavaabcdv va) = (;#—'_ R+ £R(gavaabcd)
+ ‘CV(gavaabcdava)’ (4)

where we included an explicit Einstein-Hilbert plus
(negative) cosmological constant piece, Ly includes terms
which do not involve covariant derivatives, and Ly
includes terms which contain at least one covariant deriva-
tive of the Riemann tensor. The equations of motion for
this theory can be written as [78]

1
Sab = TaCdeRbcde - Egabﬁ - ZvcvdTacdb =0 (5)

where

Faed _ [_OL oLy
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In the case of maximally symmetric backgrounds with
metric g,;,, the Riemann tensor is given by

- 2
Ripea = _f_an[ng]b7 (7)
*

where #2% has dimensions of length? and it is a positive
number in the case of an AdSp background, a negative
number in the case of dSp, and infinite for Minkowski.
In order for §,, to be a solution of £(¢*, R peq. Va), the
equations of motion impose the algebraic equation [79]

f2

AR

2

Lrl0) =2 Lr(r)| =0, (8)
where we defined y = #2/¢%, Lz (y) stands for the on-shell
evaluation of the corresponding Lagrangian on the max-
imally symmetric background, and Ly (y) = dLg(y)/dy.
Observe that the piece of the Lagrangian involving covar-
iant derivatives of the Riemann tensor makes no contribu-
tion to this equation, which follows from V,g,. = 0.
Naturally, for Einstein gravity the above equation simply
imposes the condition y = 1. For a Lagrangian built from
polynomials of the Riemann tensor involving densities up
to order n in the curvature, the above equation is an order-n
algebraic equation for y, which will in general have many
possible solutions, depending on the values of the corre-
sponding higher-derivative couplings.

A. Linearized equations

Let us now consider the linearized equations of a general
theory of the form given by Eq. (1) around a maximally
symmetric background. We expand the metric as

Jab = Gap + hab’ (9)
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where h,, is a small perturbation. Every relevant object
built from the metric can then be expanded at the desired
order in the perturbation as 7 = 7 + T 4- T2 + O(h).

Given a particular theory we have two routes to derive its
linearized equations. On the one hand, we can take the full
nonlinear equations and expand each of the terms to linear
order in the perturbation. Alternatively, we can expand the
action to second order in the perturbation and derive the
linearized equations from the first variation. As we have
seen, the full nonlinear equations of a theory like (1) have a
rather complicated form. However, it is not difficult to
argue that the most general form of the linearized equations
is much simpler. In order to see this, let us start by
characterizing all possible terms that may arise in the
linearized equations. Doing this amounts to class1fy1ng all
symmetric tensors of two indices built from Ré b)c &> Gap> and

V, which are linear in the metric perturbation.

Let us start with a few observations. First, observe that
the linearized Riemann tensor is linear in %, and therefore
all possible terms will have a single Riemann tensor,
possibly acted upon with covariant derivatives and with
various indices contracted. Another observation is that all
terms must necessarily contain an even number of covariant
derivatives, since V, is the only available object with an
odd number of indices. In addition, note that all Riemann
tensors will actually appear in the form of Ricci tensors.
This is because (a) any term involving exclusively metrics
and Riemann tensors reduces to Ricci tensors or vanishes,
since at most two of the indices can remain uncontracted;
(b) any term involving covariant derivatives and Riemann
tensors reduces to covariant derivatives and Ricci tensors.
Indeed, when only two indices are left uncontracted, a
tensor of the form

vavacdef (10)

reduces to one of the following four possibilities:
VEVER gers OR 4, V, VLR, 0. In addition, using the second
Bianchi identity, it follows that the first possibility can only
give rise to a linear combination of the second and the third,
plus higher-order terms in 4. We therefore conclude that the
most general possible term will come from contracting all
but two indices in an expression of the form

OV, V..V, VR, (11)

Com-1

where ¢; # ¢; V i # j. Contracting 2m of the indices, we

immediately see that the only three possibilities are in fact
Ga'R, V,V,0OR, 'R, (12)

We then conclude that the linearized equations of a general

L(g**, Rypeas V,) theory around maximally symmetric

backgrounds will always take the form

EabEZfﬂ{aDG +ﬂ1 ab
=0

+ }’lJrll’ﬂzljl[gabD - vavb}R(l) = 0’ (13)

for certain dimensionless constants «;, f;, y; which will be
related to the gravitational couplings, and where we rearran-
ged some of the terms for later convenience. Implicitly, we
have assumed that the theory involves a polynomial depend-
ence on the covariant derivatives. Relaxing this requirement
would yield the more general form

for certain functions f{, f,, f3. The form of the equations can
be further constrained by noting that the tensor £, must be

divergence-free, that is, V“£,,, = 0. By commuting V¢ and
[, one can show that the divergence reads

Jog, = {fz(sz) +D—{ (20)0

(o)
L2200 - £ @O R0, )

where

g_ b+l z_g,L-1

A - ,
2 ta

(16)

Therefore, the function f, is not free, butit depends on f; and
/3 by

fxﬂi>:——3{hwﬁﬁ—fxﬂi+aaw

D —

+ D¢?

[ L(£20+ 2Dy) (2?0 - yD)
- f3(fzi)f2i], (17)

where we recall that y = #?/£7. Observe that in the case of
flat space, f, vanishes.

In the case of theories which do not involve covariant
derivatives, it is known that the most general form of the
linearized equations is captured by a general quadratic
action in the Riemann tensor. Something similar happens
for a general £(g*’, R,pcq, V) theory. Indeed, in that case
the most general quadratic action reads

124075-4
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(D-1)(D-2)

Loy = 4 22

+ R+ £*RF | (/*T)R

+ 2R, F,(*0)R + szabch3(£25)R“”Cd] ,
(18)

for certain functions F;, F,, F5. It is then possible to
relate these to the functions f, f,, f3 of the linearized
equations (14). Such relation turns out to be quite cum-
bersome in the case of (A)dS backgrounds, as we illustrate
in Appendix C. In what follows we analyze the case of
Minkowski backgrounds.

1. Minkowski background

When the background is flat, the linearized equations for
the quadratic Lagrangian (18) read’

%{[1 +[4F5(220) + Fy(220))20GY)

— 22F,(£*0) + Fo(£*0) + 2F5(£*0)]

<[99, - 2 CR" | 0. (20)

where

1_ - - - — 1.
Gl) = =5 0oy + Vi Vhap =5 VuVph = EgabR(l),

(21)

R =V*V’h,, —Oh (22)

are the linearized Einstein tensor and Ricci scalar, respec-
tively. We point out that the above linearized equations can
be obtained immediately using the result found in [79] for
theories which do not involve covariant derivatives of the
Riemann tensor. The idea is to use the same relations
between the quadratic action couplings and the constant
parameters (a, b, c, e) appearing in such equations but now
promoting the constants to functions of #2[].

“Note that, as far as the linearized equations on Minkowski
space are concerned, the term R*°“[J"R,,., is not independent
from the other two. Indeed, one finds

RO"R — 4R L' Ry, + R R ey
= total derivative + O(R3, ). (19)

Hence, in the Minkowski case we could have just redefined out
F5 in L. without loss of generality.

The trace of the equations reads

- % (D —2) — £?0[4F5(£*0) + DF,(¢20)

+4(D - 1)F(£*0)]]RM =0, (23)

and their traceless part is given by

l{u + [4F5(£20)) + Fz(fzil)]fZD]REiL

2 )

— 22F (£*0) + Fo(£*0) + 2F3(ﬂm>]v<av,,>ze<l>}
=0. (24)
Observe now that for theories satisfying the condition

4F;(?0) + DF,(£*0) + 4(D - 1)F (£?0) =0, (25)

the trace equation becomes second order and simply reads

—% (D -2)RM =0,

(26)
which is nothing but the Einstein gravity result. In the case
in which F; = a; are constants, condition (25) selects a
linear combination of quadratic terms which appear in the
so-called “critical gravities” in general dimensions—see
e.g. [80-86]. In particular, the action reduces in that case to

D-1)(D-2
ﬁeff:ﬂ[w#‘i‘]e"'fza:;/‘kz
4D-1)

+ (o) — a3) <R2 -~

RabR“hﬂ . (27)

where Xy = R? — 4R ,,R™ + R pcqR? is the Gauss-
Bonnet density and the second term can be written as a
linear combination of X, and the Weyl tensor squared. For
this theory, the linearized spectrum on a general maximally
symmetric background is known to involve the usual
massless graviton and the massive one, but not the scalar
mode. This is also the case for theories satisfying Eq. (25)
with nonconstant functions. As we will see later, both
generalized quasitopological and brane-world gravities
belong to that class.

In order to study the physical modes propagated by the
metric perturbation, let us now fix the harmonic gauge,
which amounts to setting

_ 1—
Vahab - Vbh

-2 (28)

Then, the linearized Einstein tensor and Ricci scalar
become
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O L e R (I 2
Gab 2 huh +4gah hv 2 h ( 9)

For theories satisfying Eq. (25), the trace equation (26)
imposes [Jh = 0. Using the residual gauge freedom
hap = hap + V&, with &, =0, we can set h = 0.
Therefore, the trace of the perturbation has no dynamics
and there are no scalar modes. On the other hand, the
traceless part of the equations becomes

y) _ o
~2 1+ [4F5;(2?0) + FZ(KZD)]KZD]Dh<ab> =0. (30)
By performing the Fourier transform in this expression,
which amounts to [J — —k?, we can read off the propagator

4

PR = 0 = AR () + F(—2R)]

(31)

Poles of the propagator inform about the degrees of freedom
of the theory. For each pole, k> = —m? indicates the mass.
Thus, imaginary poles correspond to massive modes, while
real poles are tachyonic modes. On the other hand, the
residue of each pole tells us about the energy carried out
by the corresponding mode. A positive residue—Ilike the
massless graviton one, k> = O—corresponds to positive
energy, and vice versa for a negative residue. For constant
functions, F; = a;, we have the poles

I

20
m ’ " (4a3 —|—a2)f2’

ESEN)

corresponding to the anticipated massless and massive
graviton, respectively, and in agreement with the result
of [79,87]. The next to simplest case corresponds to

F;(£*0) = a; + p;¢*0. For that, one finds

m?=0,

> (o +4a3) £ \/(0’2 +4a3)? — 4(B, 4 4p;)
" 26, + 4657 3

which correspond, in addition to the usual massless
graviton, to two new massive gravitons.

An additional simplification occurs for theories
such that, besides Eq. (25), also satisfy the condition
F4(£*0) = —F,(£*0)/4. Those two conditions can then
be rewritten as

Fi(£?0) = F5(¢*0) = —F,(£*0) /4, (34)

and, in that case, the linearized equations reduce to

Gy =0, (35)

namely, to the usual linearized Einstein equation. Hence,
for theories whose effective action satisfies the pair of
conditions (34), the linearized equations on Minkowski
space are identical to the Einstein gravity ones—or, in other
words, the higher-derivative densities do not contribute at
all to the linearized equations. Gauss-Bonnet gravity is a
particular instance, which corresponds to setting all func-
tions equal to constants, but the set of higher-derivative
theories with this property contains infinitely many den-
sities with an arbitrarily large number of covariant deriv-
atives. We will see later that generalized quasitopological
gravities fall within this category (not so for brane-world
gravities).

2. Newton potential

Here we study how the usual Newtonian potential gets
modified by the introduction of higher-derivative terms as
in Eq. (18). This will give us another perspective on the
new types of massive modes propagated by these theories.
We consider a metric perturbation on Minkowski spacetime
of the form

dsf = —[1 +20(r)]de* 4+ [1 = 2V (r)]5;;dx'dx/,  (36)
where r = |X| and U(r) will be the Newtonian potential.
Now, we evaluate (20). We find two linearly independent
equations for a static source in the stress tensor as

1
T(<)0) = ID(I"),

Oy U(r) + Oy V(r) =2 (r)

204"
Oy V(r)+ 0y U(r) =0 (37)
where
Oy, =2(2F5 +2F; + F,)1%,
= (D -2)(¢7* —(4F, + F»))0,
= (((-4F5 — D(4F, + Fy) + 8F, + F)
+(D=3)£72)P,
= ((4F, + F,)0 - £72))00. (38)

We can solve this system of second-order ordinary differ-
ential equations using Fourier transforms. Denoting by pr
the Fourier transform of p(r) in momentum space and

FY = F.(=£2k?), we find

1
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- 20 o) gl i §
v _/ dP-1% peR@EFY +4FY (D -2) + (D - DFY)) + (D - 3)¢7 Jis
_ A . 4 _ :
QD) 4R @R @FD 4+ FO) - 2R AFD + 4D - )FP + DFP) + (D - 2)277)
17 72 k
Vi) = / dP-1k pel @0 1+ FP) 4 22 §F(39)
D1 > z = > = .
o 42 @ @FP 4 FO) - 2[R0 + 40 - )FP + DFP) + (D = 2)¢77]

These are rather implicit formulas, but we can make further progress in the case of theories for which the functions Fy, F»,
F5 are polynomials, namely,

N, N, N3
Fi=> a,(20),  F=) o,¢0)0,  Fi=) a,(0)". (40)
n=0 n=0 n=0

where a,,, a,,, az, are constant coefficients. Introducing the notation
NEmaX{Nl,Nz,N:;}, (41)

and considering a pointlike source of mass M, we find the following result for the modified Newton potential in the most
3
general case’:

AresY  Gm o u
U(r):_(D_iQ’éﬂ%rD_‘%[ 2 Z|: g % —I—I/San(m r)” (42)
Here K,(x) are modified Bessel functions of the second kind, we denoted G = 1/(16z1), and
=3 D=
— (D 2)2 x m_lz]i - — msiz 5 mgi -
v, :—42 oy [ BRI b= vy [I{r-%) - (43)
(57) G 9i TTR) J Sj

In these expressions, m, and m,, correspond, respectively, to the masses of new spin-2 and spin-0 modes. They are nothing
but the poles of the integrals in (39), namely, the roots of

my: KRAFY + F9Y -2 =0, (44)
my,: KR@4FY + 4D - 1)FY + DFY) + (D - 2)72 = 0. (45)

The net negative contributions in the Newtonian potential indicate which of the modes are ghosts. In the case of constant F;
previously studied in [79,87], the scalar mode is always contributing positively and is never a ghost, whereas the opposite
holds for the massive spin-2 mode, which is always a ghost. In the general case, we observe that some of the scalar modes
can also be ghosts, while some of spin-2 modes can carry positive energy. Note also that for theories satisfying condition
(25), the second equation becomes rootless and there are no new scalars, in agreement with the analysis of the previous
subsection. On the other hand, if F5(£?[]) = —F,(¢>[1J)/4 holds then there are no new spin-2 modes. If both conditions
hold at the same time, the Newton potential reduces to the Einstein gravity one.
On the other hand, we find for the other metric function,

N3 GM { b ]
Vr:—724 rz Knsmr—l-vSanmr 46
") = >k () (46)
where
D-3 D-3
_ —(D _ 2)mlT N m2i -1 . _mj N m%‘ -1
Vg = b gD 3 H 1- g ’ Vs, = s H l1-— : (47)
27(D =I5 G My, 27(D - )I(5P) i s,

As expected, the expressions above reduce to the results in [79] for the potentials U(r) and V(r) when N = 0 in ((42), (46)).

3This result assumes that all the masses are different. The limit in which two or more masses coincide must be taken with care. This
result also does not capture the case in which the denominators in (39) are entire functions with no zeros (besides k> = 0). This can only
happen with an infinite number of derivatives [46].
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III. GENERALIZED QUASITOPOLOGICAL
GRAVITIES IN D=4

In this section we present the first examples of gener-
alized quasitopological (GQT) densities involving covari-
ant derivatives of the Riemann tensor. We focus on D = 4.
In that number of dimensions, in the absence of covariant
derivatives it has been shown that there exists a unique
nontrivial GQT density at each curvature order. Here we
show that the landscape of GQT theories is modified consi-
derably by allowing covariant derivatives of the Riemann
tensor to appear in the action. In particular, while we find
no new densities at four- and six-derivative (of the metric)
orders, we obtain four new inequivalent GQTs at eight-
derivative order. Of these, only one possesses an integrated
equation for f(r) which is of second order in derivatives,
two of them have third-order equations, and the remaining
one has an integrated fourth-order equation for the metric
function. In all cases, we find that the Schwarzschild
solution is also a solution of these theories. As a conse-
quence, coupling Einstein gravity to these theories does not
give rise to new spherically symmetric black hole solutions.
Extending the analysis to ten-derivative order, we find new
examples which do not admit Schwarzschild as a solution.
For those, the coupling to Einstein gravity does produce
new nontrivial modifications of the Schwarzschild black
hole. Similarly to what happens for polynomial GQTs, we
find that the thermodynamic properties of those solutions can
be computed analytically. We study the relation between their
temperature and their mass and find a deviation from the
universal behavior previously observed in the case of general
polynomial GQTs for small black holes. Instead of the
prototypical T~M'/3 scaling universally found for such
theories [16,60], the density with covariant derivatives
induces a different behavior of the form 7' ~ M?>.

Let us start by recalling the basic definition and proper-
ties of GQTs. Consider a general static and spherically
symmetric (SSS) spacetime parametrized by two functions,
N(r) and f(r),

dr? 2 12
m + r dQ(D—Z)’ (48)

where dQ%D_2> is the (D — 2)-dimensional sphere metric.

dsy , = =N(r)*f(r)de* +

The following comments extend, with minor modifications,
to the cases in which the horizon is hyperbolic or planar
instead. The expressions below will incorporate those cases
through a parameter denoted k& which will take the values
+1,0, —1, respectively for the spherical, planar, and hyper-
bolic cases.

For a given curvature invariant of order 2m in derivatives
of the metric and involving p covariant derivatives of the
Riemann tensor, R (2, ), let Sy ; and Ly ; be, respectively,
the effective on-shell action and Lagrangian resulting from

the evaluation of /|g|R 2, p) in the ansatz (48), namely,

LN,f = N(r>rD_2R(2m,p)|N,f’

SN,fEQ(D—2)/dt/erN,fv (49)

where we performed the trivial integral over the angular
directions, Qp_y) = 277 JT25Y. We denote by L, = L,
and Sy = S ; the expressions resulting from setting N = 1
in Ly ;. Now, solving the full nonlinear equations of
motion for a metric of the form (48) can be shown to be
equivalent to solving the Euler-Lagrange equations of Sy ;
associated to N(r) and f(r) [16,88-90], namely,
gab|N,f = Li‘fb -0 <o 5SN’f _ 5SN~f -0
\/\—QT 591y, p ON of

(50)

We say that R 2, ) 18 a GQT density if the Euler-Lagrange
equation of f(r) associated to S, is identically vanishing,
namely, if

oS
— =0, V . 51
5 7) (51)
This condition is equivalent to asking L, to be a total
derivative,

for certain function Ty(r, f(r), f'(r). ..., fPHV).

Thus, the variation with respect to f(r) of the on-shell
action S, determines whether or not a given density is of
the GQT class. When that is the case, the full nonlinear
equations of Ry, ,) reduce to a single equation for f(r)
which can in fact be integrated once. Such integrated
equation can be obtained from the variation of Ly ; with
respect to N(r) as

A

=0 <&
ON |y

equation of  f(r). (53)

Let us see this in more detail. As explained in [30],
whenever Eq. (52) holds, the effective Lagrangian Ly ;
takes the form

LN,f = NT6 +NT,+N'Ty+ -+ N(p+2)Tp+2
+ O(N"?/N), (54)

where T,T5,...,T,., are functions of f(r) and its
derivatives (up to f(P*2), and O(N?/N) is a sum of
contributions which are all at least quadratic in derivatives
of N(r). Integrating by parts one finds
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p+2
Sy = Qo) / d / dr[ (TO +Z

+ O(N"” /N)] )

JT11>

(55)

Therefore, one can write every term involving one power
of N(r) or its derivatives as a certain product of N(r) and
a total derivative which depends on f(r) alone. As a
consequence, Eq. (53) equates such a total derivative to
zero. Integrating it once one we are left with [30]

p+2

TO+Z

where the integration constant was written in terms of the
ADM mass of the solution [91-94].

In sum, given some linear combination of GQT densities,
the equation satistied by f(r) can be obtained from Ly ; as
defined in Eq. (49) by identifying the functions T{ j) from
Eq. (54). The order of the integrated equation F R 1s at

|

JT (=1 M 7
T Qo)

FRomp (56)

RI

(2m.p) <

inequivalent from R 2m.p)

Otherwise we will call them ‘“equivalent.” Two equiva-
lent densities differ by densities which make no con-
tribution whatsoever to the integrated equation of f(r).
Those densities are “trivial” as far as SSS solutions are
concerned.

In the p = O case, it has been argued that (i) there exist
no (nontrivial) GQTs in D = 3 [95]; (ii) there exists a
single inequivalent GQT density at each curvature order m
in D =4 whose integrated equation is a differential
equation of order 2 [32]; there exists a single inequivalent
quasitopological density at each curvature order min D > 5
whose integrated equation is algebraic [31]; there exist
(m — 2) inequivalent GQT densities at each curvature order
in D >5 whose integrated equation is a differential
equation of order 2 [31,32].

A. Linear spectrum

A remarkable property of all GQTs built from poly-
nomial curvature invariants is that their linear spectrum
on maximally symmetric backgrounds is devoid of ghosts.
In fact, the linearized equations of motion are proportional
to those of Einstein gravity on the same background. In
the case of polynomial GQTs, the second-order nature
of the linearized equations was first verified explicitly
in case-by-case examples—see e.g. [24,25,27,29,96]. It
was subsequently proven that the single-metric-function

least two orders less than the one of the equations deter-
mining f(r) and N(r) in the most general case, namely,

f’/g -

(2m.p)

F Ry (oS f e fOPF2).(5T)

In particular, when p =0, corresponding to the case
without covariant derivatives of the Riemann tensor, the
integrated equation is at most second order in derivatives
of f(r). In that case, one can see that the integrated
equations are either of order O in derivatives—these are
called simply “quasitopological” theories [24-28], which
includes Lovelock theories [20,21] as particular cases—or,
alternatively, of order 2. As we will see in a moment, the
actual order of the integrated equations that we will find in
our new GQT densities with covariant derivatives will be
considerably lower than the 2p + 2 upper bound.

We will say that two GQT densities {R{,,, . R{3, ,}
are “inequivalent” (as far as SSS solutions are concerned)
whenever the quotient of their respective integrated equa-
tions is not constant, namely,

f(2p+2))
f(2p+2))

f'RI )(r,f,f/,...,
Fru (rofofs ..

(2m.p)

# constant. (58)

|
condition that defines GQTs also implies the linearization
is second-order in general [30]—cf. page 102 of [97] for the
most up-to-date version of this proof. Here we show that
this result in fact holds for all GQTs, including those that
contain covariant derivatives of the curvature (and hence
have equations of motion of order greater than four).
The idea behind the proof consists in considering a
metric perturbation within the single-function static spheri-
cally symmetric ansatz. Thus, we start by considering the
metric (48) with N(r) = 1. For convenience, let us rewrite
this metric as

ds*> = —f(r)du® — 2drdu + r*dQ?

b (59)

where u = t 4 r,, and where r, is the tortoise coordinate,
defined by dr, =dr/f(r). One can show that in this
coordinate system the GQT condition (51) is equivalent
to the vanishing of the rr component of the equations of
motion, that is,

Er=0, V¥ f(r) (60)
We then take f(r) to be
f()—1+—2+h() h(r) <1, (61)

2/ﬂ2
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corresponding to a maximally symmetric vacuum plus a
small perturbation %,;, given by

huu = h(l") (62)
Then, the idea is to impose the condition (60) at the level

of the linearized equations by using this perturbation.
|

4h  2n" 12h  6h"
£y =a1f2<—7+—r2 > +71f2(—7+r——
32 56 32K
4 e - _
+(12£ (h( r6 +L2}"4) + }"5 + (
80 120 80H
4 I o _
+}’2f (h( /6 +L21"4> + /5 + <

6 12r r?
A § A ) 1= \n®].
# (- (- )

Then, the GQT condition (60) implies that this must vanish
for any choice of h(r). Clearly, this only happens if
a; =a, =y =y, =0, since all the terms are linearly
independent. The same conclusion follows in general
dimensions and if the theory has higher-order equations
of motion. In the latter case Eq. (63) will include @; and y,
terms with higher /, but these are all linearly independent
because they contain different numbers of derivatives of &
and/or different radial dependence.

In conclusion, (60) implies the vanishing of all the ; and
except for «p, corresponding to the coefficient of the
linearized Einstein tensor. Finally, the relation (17) implies
the vanishing of the f3, coefficients. Therefore, the linearized
equations must be proportional to the linearized Einstein
tensor.

B. Classification of four-dimensional theories

In this section, we will classify all possible GQT
Lagrangians, based on the number of derivatives of the
metric appearing in the action. In the case of four and six
derivatives, the result is in line with previous considerations
[24,25,29,30]: nothing new beyond those theories con-
structed from the polynomial invariants is found. However,
the cases of eight and ten derivatives reveals new features
not seen before.

Let us briefly summarize the methodology. At a given
derivative order, we construct the most general Lagrangian
density by performing a linear combination of all curvature
invariants that appear at that order:

Lm0
Lom =D ¢ Ry (64)

i

Here, 2m refers to the number of derivatives of the metric

(2m.p)

appearing in the term, while the a8 ’s are constants.

We know that, in general, the linearized equations are
given by (13) for certain coefficients «;, f;, and y;. Let
us for instance assume that our theory has sixth-order
equations of motion—so that only the coefficients with
[ <2 are nonzero—and let us set D = 4. We get, after a
direct evaluation of (13) on (62),

(3)
4h @
p
16 28 1643 4 4
e W ()
40 60 4043 20 10
T s (<

(63)

.. (i)
The densities R(Zm,p)

tensor and its covariant derivatives. In Appendix A we
present a generating set of these invariants for up to eight
derivatives of the metric. The action is then evaluated on a
single-function SSS metric ansatz and we impose Eq. (51),
namely, that the Euler-Lagrange equation for f(r) vanishes.

involve contractions of the Riemann

This leads to constraints on the cg)m’p )°s such that the
resulting theory is of the GQT type.

Let us make a few further comments regarding the
densities involving derivatives of the curvature. In general it
is possible to reduce the number of invariants that make
non-trivial contributions to the equations of motion by
integrating by parts and utilizing the Bianchi identities.
However, we have not pursued this option here. The
reasons are simply because, at high order in derivatives,
there are so many terms that it would be impractical to
do so. Furthermore, as will be obvious below, it is not
necessary to do this to understand the effects of these terms.
Therefore, in constructing our actions at the four-, six-, and
eight-derivative levels, we include all possible terms at a
given order (as listed in the Appendix). On the other hand,
in the case of ten-derivative theories our analysis will not be
exhaustive.

1. Two-derivative actions

For completeness, we include here the two-derivative
sector, which is simply Einstein gravity,
m _
L(z,o) =R. (65)

The integrated equation for the metric function is given by

Fiapy = =2r(f = k). (66)
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2. Four-derivative actions

There are no nontrivial four-derivative GQT actions in four dimensions.

3. Six-derivative actions

There is a single nontrivial six-derivative GQT action in four dimensions. The action for this theory may be taken to be
that of Einsteinian cubic gravity [96]

£

(é,O) = +12RacbdRc€df~Reafb 4 RZ?i?ngRZ? _ 12RabcdRacRbd + SRZRZRZ, (67)

whose integrated equation for the metric function f(r) reads [98,99]

f/

Flyy == |15 +2k = ) =5 (22 4 3rks" + 67k - 1) (68)

4. Eight-derivative actions

There are five nontrivial eight-derivative GQTG actions in four dimensions. The first of these possibilities may be taken
to be that given by the standard polynomial invariants—see e.g. [16]. However, the additional four theories require terms
involving covariant derivatives of the Riemann tensor. Of these, a single combination can be formed such that the integrated
equations are second order, while the remaining three involve higher derivatives of the metric function. As examples of
actions that give rise to each of the new sets of GQTGs, the following choices may be made:

Ligly = +RPR, "R "R,y — 15—3RP‘I”RM’“R,”,WRSWW - éRPq”RPq‘“Rm”WRMW + %RR"q”qus“Rtpu,, (69)
L) = +RPTR! ) "Ry = RPFTR Ry + 2RPR R sy + RPR™R
— 2RPETR, % Ry + RPESR )" Ryg — RPIR™ R,y — %R”’R‘”“‘RPW
+ RPIR™ R,y — % CIRPIR™ R g1 (70)
LY, = +21RrerR

(8.4)
33 pqrs;tu \Pq RISt 21 pq RISt pPq;rs pt u
T RIS UR g+ ORTIR™ Ry = = CORPIR™ Ry + 36RP 7R Ry

prgs — 120RPATIR . — 12RPIR™R oy + 153RPIR™R 0. + 6RPICIR,,,

77 o
+ I83RPPR, ™ Ry, = SIRPIR™ Ry = =~ RPRIVR gy = 8IRPFR SR

— 93RPETR SR iy, — 60RPITRY MR, + 33RPISRMY R
- 27qurthm)p;rRtm;q;s - 63qurSRtpurthqus;m (71)

£(g) + 8qu;rStR

(84) = +52RPIR"™R

rspiq prasu — AIRPILIR 5y = 20RPETR )R gy

- 24qu;rRStpuRStqr;Ll - 4qu;rRsmesqtr;u + 12qursRmvp;quvr;s
— 1ORP4™R™ R s — 20RPUSR! VR o+ 2RPICIR -+ SRPSUR

sriNtuvgss

+ T2RPISR R iy — SRPURT R,y — 22RPRYR s — 36RPETR SR ), (72)

rsiq

Ll

oy = F1IT8RPIRR

Ly = + 171RPESIR

— 95CIRPCIR,,, — T6RPIRR .,

}’tSp;q prqs;t
— 646RPTR SR,y — ATSRPSTR “R e, + 228RPITRS MR o,
+ 266RPISRMY Ry — 209RPISRIY R, — 4OARPISR! R,

95 N 133 rs; N rs Jrs
5 RPIOR g + 5= RPUR gy + 38RPIR™ Ry + 228RV7R Ry

+ 1520RPISR "R s, — 342RPIRT R, ., — GAGRPRI™R . — 646RPTR SR, .. (73)
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The integrated equations for each of these densities read,
respectively,

AL
_J; <3r;f'2 420+ 3f (k= f))], (74)
Py =L (75)
Fy = +i2(5a —2rad +r*a?),  (76)
Fily == ala-arr), (7)
F, = 49£2 (4la=arp+d'ra+p).  (78)

where we defined the functions®

(k= f(r)) +r2f"(r).

2
2(k = f(r)) +2rf'(r) =

r2f"(r). (79)
From the densities involving covariant derivatives,
while the first three exclusively depend on a(r) and its
derivatives, the fourth one also includes a dependence on
p(r)—which cannot be expressed in terms of a(r) and its
derivatives.

Observe that a(r) and f(r) identically vanish when

evaluated for a maximally symmetric background. Namely,
if we set

2
QI ds—L2+k = a(r)|ajas =B(r)|(a)s =0, (80)

and therefore

2 34,5
‘7:28,)2)|(A)d5 = fEs,4) )|(A)ds =0, (81)

or, in other words, the equations of motion of the new
GQTs identically vanish for maximally symmetric back-
grounds. Furthermore, it is easy to see that the usual
Schwarzschild-(A)dS solution satisfies the equations of
the new densities. This follows from the fact that

12M

a(r)lsen-(a jas =—— (82)

dS_O

G

*The functions a(r) and f§(r) are directly proportional to the
nontrivial components of the traceless Ricci tensor and Weyl
tensor for the single-function static, spherically symmetric back-
ground, respectively.

where

£ lnayas =13 + k= (83)

Since all terms appearing in fgi:2,3.4,5)

a(r) or its derivatives, it follows that

are proportional to

fEé?z)lSch-(A)dS = f(345 |Sch yds — 0. (84)
This implies that if we couple the new densities to Einstein
gravity, the Schwarzschild solution will not receive correc-
tions from such terms. As we explore in Appendix B, new
solutions do exist when the new densities are considered as
full theories by themselves, but these are less interesting. In
order to obtain GQTs which give rise to continuous mod-
ifications of the Einstein gravity Schwarzschild solution we
need to move up yet another curvature order.

5. Ten-derivative actions

To the best of our knowledge, a full classification of
curvature invariants at ten-derivative order has not been
undertaken. Therefore, our analysis in this section is
necessarily incomplete but, as we shall see, interesting.

To study ten-derivative actions we do the following. We
construct all possible combinations of ten-derivative
actions built from lower-order densities—for example,
by multiplying all six-derivative densities by the four-
derivative ones, and so on. In addition to this, we include 20
additional terms that are explicitly order ten in derivatives.
We list the ones used for this purpose in Appendix A.
However, particularly relevant is the following density:

CabcdcadeCefrs;u Cefrs;u. (85)

As discussed in [51,52], in four space-time dimensions
there are four nontrivial parity-preserving contributions to
the effective field theory of gravity at the ten-derivative
level. Two of them involve the square of a dual Riemann
tensor and hence they vanish identically on spherically
symmetric spacetimes. We thus are left with two contri-
butions that modify spherically symmetric solutions. The
first contribution can be taken, as usual, to be a contraction
of five Weyl tensors. The density appearing above is a
particular choice for the second nontrivial contribution.
The ten-derivative action is the first instance where more
than one nontrivial contribution to the EFT appears.
Moreover, it is the first instance where terms involving
covariant derivatives of the metric play an essential role—i.e.
cannot be removed by field redefinitions. For these reasons,
we expected to find novel GQT theories at this order that
explicitly modify the solutions to vacuum Einstein gravity,
corresponding to the two possible nontrivial effective field
theory contributions. This expectation will be borne out.
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From the entire set of ten-derivative invariants that fzaz (f = k)
we construct, there turn out to be 21 independent con- F E% =T, (87)
. . . ’ r
tributions. This represents notable growth compared to the
eight-derivative case where there were five independent Fa(a+ )
contributions. Of the 21 independent ten-derivative GQT F 82)’@ =4+——, (88)
theories, only two of these are nontrivial when evaluated on "
the Schwarzschlld solution—corresponding to .7-' 10 0) and }_(4) fza(ga( f—k) + a? — ﬂ2) (89)
- + )
Vs (10.4) below. Of the 21 theories, 5 have second-order (104) r’
1ntegrated equations, 7 have third-order, 6 have forth-order, 202(6(k — f) —
2 have fifth-order, and 1 has sixth-order. As we have not F E?())A) = +f o (6 = /) a)’ (90)
included all possible ten-derivative densities in our starting r
action, these numbers are likely to be incomplete. However, . (a+p>(ra - 2a)
we expect that any additional GQTs, should they exist, F 212)’4) =+ 7 (91)
will not correct the solutions of vacuum general relativity. r
The list of 21 inequivalent integrated equations reads 2 r_
F oy =+1 a(a+ﬁ)£§a CARORCR)
o _ SR 2R 2 (=R
F 00y =tz |5+ - 2
: |5 4r r ®) frap(rd —a+p)
f 1 ‘7(10,4) = — 3 , (93)
ey 200- 1), (86)
|
1
Fltoa =+ [PPR 1+ 200+ 200 = )K= 1"
!
+ f(2(65f + 16k)rf + 4(2k — 65f)(k —f))( g + k- f> r2f" — dkrt 1
—3(3k% + 4kf + 121f2) P £ — 2(2k* + 38kf + 127112)(k — f)r* f7?
—40rf(k + 122f)(k—f)2f’—3448f2(k—f)3], (94)
Fo S [4 k- 2r(4(k / 3 95
a P(k - f)a? - 2r(4(k - f) + a + plac’ - ala+ ) (f - 3a)] . (95)
Flol = +f—2 [rz (4(k=f)—a—=p)a? =2r((4(k = f) + fla + p*)a + 3a(a + ﬂ)ﬂ (96)
(10.4) Py )
2
]:83?4) = +]:—7 [2r2(2(k —f)—a)ad? =2r(4(k = f) + 3 — a)ad + a(a* + 6ap — 3,32)} , (97)
f2
Fliow =+ [Pk =@+ P = r(e@ +ap + 4Bk = ) + (202 = ald(k = f) = 28) + 4B(k = /)a] . (98)
f2
Fliow = +27 [Plat BBk —f) —a=pa’ —4r(e + f8(k = f) = P)) +8(8 - a)(4(k— /) —a=fla|  (99)
5 f a
Fliow = 55 [Pl=a = (a+p)(rd —a+ ). (100)
f2
Fllow = +57 [P(=a* + (6(k = ) = Pa+26(k = ))a" = 2r(@® + ap + plk - )’
4@ = (k= ) = Pa+ 2Bk = f))al, (101)
fa
Fliow = +57 [Pk = f) - a)a’ = 4(ra’ = a+ p)f] (102)
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2
f§}§>4) = +f_7 [rz(—4r(3a + 3B+ 4f — 12k)d + 430 + 4fa — 12ka — 362 — 4ff + 4kp))a”
’ r
+16r2(3a + 3a + 4f — 9k)a® = 2r(47a* — aff + 92fa — 28ka — 48/% — 3215 + 32kp)d
+ (5a® — 178ap + 176 fa + 464ka — 183> — 64ff + 64kﬂ)a} : (103)

2
Fliog =15 [96 friad" =32/ (=rfd + (19f = 9K)a + plk — f))a" + 64r>(3k — 2f)a

+ 4r(=1630 + (—148k — 76 — 163f)a + 328(k — f))o!
—2(=722a% — 2(350 + 2481 + 392k)a + f(64(k — f) + 291 ﬁ))a} , (104)

2
Fliow = +Ji7 [6r3 flra =2a)d” + 6fr*a” — 4(4rfa’ + (18k — 13f)a + Sp(k — f))r*a”
’ r

2
@ <23k 41f B

—4(3k+14f)r2a’2+80< —+—+—>a+ﬂ(k—f))ra’

16 \20 " 20 "16
Ta? 13k 23f 5P 3p
—80( o (= L 2E — 1
80(32 +< 10 "0 +16>a+ﬁ(k f+32>>“]’ (105)
(21) 3 1, 9% op w
]:(10,4):_7 -3 —afr—7+ 4k+2f—7 a+pk-f)|rra (106)
4 " 2
—rf%—{—r3(—'§+k—i—g—%)aa”’—i—Z(k—?f)rza”z (107)

4( 163> (77k 21f 163p
= - N+ k— ! 1
3( D ( s T3t )a—i—ﬂ( f) |ra (108)
da (B fr 36la> [69k 356 3f  291p
-— - — | —+8f+—= k——+—- . 109
3<4 64 g Py Jat Akt (109)
As we can see, all densities but F Eiz),o) and F E?B)_ 4 involve linear combinations of terms proportional to either a(r), or f(r),

or their derivatives. Hence, for all those the Schwarzschild metric solves the corresponding equations of motion. The
explicit form of the covariant densities is rather complicated in general, so we have preferred not to include the full list here.

The corresponding expressions for F 82).0) and F E?g) 4 read, respectively,

i
£, = + 3165 [SR5 +132R (Ra,,R“”)2 18R (RadeR“b”d)z —272R?R,” 4R, /R,

+ 10R*R R4/ R, ;"> — 30R°R ;,R** — 102RR ;,R*’R .4, /R“%/

+ 552R;;RVR,* R, /R, — 156R;;,R'¥ R > "R, ;// R, fv} , (110)
1113943 - 19309071 :
£(9) — _ C Cubcdcefgh;lc o RaRbR cdR efR gh
10.4 20864 abcd efghi + 39446 prcDae gh df
2168502179 : 23092199 : .
RaRbR cdR efR gh _ RYR bcR deR _ng hi
4733520 ATl Db Tab 10758 “bTed b et e
7605694303 . 2051116779 .
RYR th‘ deR ng hi R. abR cdR _efR --th ij
4733520 pitde” Ry R Rag T Toaggng ed ey TRai Ry o
6886022969 . 176696887 .
_ R abR cdR 'efR _ghR ij R abR cdR <efR <ghR ij
2366760 ce af gi bj dh + 215160 ce fg hi aj bd
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C. Black hol luti 1 5 A
i L= pos R+ Lty + 2] 012
In this section we present the first examples of black hole 16zG 4 ’ 8 ’

solutions to GQT theories with covariant derivatives. These
are continuous deformations of the Schwarzschild metric
and solve the equations of motion of FEinstein gravity
coupled to the two nontrivial ten-derivative GQT densities
presented above. Note that in Appendix B we construct
additional (analytic) examples of non-Schwarzschild sol-
utions in the case of eight-derivative GQT densities.
However, those correspond to the less interesting case in
which we consider a linear combination of GQT densities
but no Einstein gravity term.

Let us then consider the gravitational Lagrangian
given by

where the explicit form of the ten-derivative densities
can be found in Sec. III B and for convenience we redefined
the gravitational couplings in terms of two new para-
meters, ¢(j) = 5u/4 and c(g) = 4/8. For this theory, the
field equations for the SSS ansatz reduce to’

p
Sf(” —4GM,  (113)

(10.4) —

i
o —
e
_|_
-
SL
=2

_|_
|

SHenceforth we set G = 1 in this section.
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where again the individual contributions can be found in
Sec. III B.

We present a relatively brief analysis of the solution.
Working perturbatively at large r and to linear order in
the coupling constants, we find the correction to the
Schwarzschild solution to be

2M  4752AM3  90(u + 2082)M*
f(”)zl_T_ A 12
2(83u + 92362)M°
- e + (114)

This makes clear already that the two densities correct the
solution in inequivalent ways. On the other hand, since
we are interested in black hole solutions, we consider a
near-horizon solution of the field equations. In this regime,
we write an expansion for the metric function

o0

f(r) =42T(r=ry)+> ai(r—ry)’,

i=2

(115)

and expand the field equations as r — r;,. Remarkably, the
usual characteristic property of GQT theories continues to
hold. The first two terms in the near horizon expansion of
the field equations suffice to fully determine the black hole
thermodynamics analytically. These equations read,

) N 84 T*u(5 + 8xr,T)

M =—
2 r
B 272 T?A[1 + 12m;hT + 1622277 ’ (116)
Ty
1672*T*u(5 + 4zr, T
0:1—47757']1T+ ” Iu( 4+ Tk )
Ty
A72T2 (1 + 4zr, T)(5 + 47r, T
+ ( i I ). (117)

T

The first equation above expresses the mass M as a function
of the temperature 7" and the horizon radius r,, while the
second determines the temperature as a function of the
horizon radius. At the next order in the near horizon
expansion, the parameters a, and az appear, the latter
linearly. The higher-order terms in the expansion can be
solved for a, (n > 3) in terms of a single free parameter a,.
This is exactly the same behavior typically seen for GQT
theories with second-order integrated equations [16,29,99].
Here, one of the theories has second-order integrated
equations, while the other has third order. Nonetheless,
we find that this does not change the usual picture for the
near-horizon solution.

We wish to understand the effects of the corrections to
the thermodynamics of the Schwarzschild black hole. The
near-horizon equations give us the mass and temperature,

and so only the entropy remains. Computing the Wald
entropy [78,100] for this theory is rather involved, so we
instead use the first law itself to determine the entropy.
Regarding the temperature as a function of horizon radius
T = T(r,), we can obtain an expression for dM in terms of
the temperature, its first derivative, and r;,. The first law
tells us that dM /T must be an exact differential. By adding
—1/(2T) times the constraint (117) to the expression for
dM /T we can confirm that it is exact, and therefore can be
directly integrated. This gives for the entropy

8073 T3u(2 + 3zr,,T)
3r;
4xTA(3 + 27zr, T + 322%r2T?)

7
Ty

S=nri|l+

(118)

By construction, the thermodynamic quantities satisfy the
first law dM = TdS. It should be possible to verify this
relation by a direct computation of the Wald entropy,
although this would be rather challenging computationally.

It is interesting to compare the effects of the u-controlled
corrections (which correspond to the previously known
family of GQT theories first studied in [16]) with the new
A-controlled higher-derivative corrections. For 4 > 0 we
plot the relationship between temperature and mass for
these black holes in Fig. 1. The plot compares the cases
with (u,2) € {(=1,1),(0,1), (—1,0)}.° In all cases there is
a maximum value of the temperature of the corrected black
holes. Below this temperature the specific heat becomes
positive.

Let us explore the features of the small black holes,
keeping in mind that for sufficiently small black holes
additional corrections would be expected to become
impor“[ant.7 Generically the A-controlled theory dominates
in the small black hole regime. The two theories give rise to
different scaling behavior for the temperature of small
black holes. The u-controlled theory has T ~M!/3 as
r, — 0, while the A-controlled theory has T ~ M>.
Interestingly, the infinite class of GQT theories based on
polynomial curvature invariants as studied in [16,60]
uniformly display a temperature scaling of T ~ M'/3 for
small black holes. Similarly, in the case of exclusively
polynomial invariants, the modified Smarr relation M =
2TS universally holds for small black holes for general
GQT theories [16]. When only 4 is active, we find yet
another version of the Smarr relation in this regime,
namely, M = T'S. Hence, the A-controlled theory, deviating
from these patterns, is a unique and noteworthy instance.

®In this case,
analysis of [16].

For sufficiently small horizon radius, the entropy becomes
negative. However, the entropy can be shifted by an arbitrary
constant by adding a topological Gauss-Bonnet term to the
action. So the region of negative entropy is not worrisome.

that u <O follows from the general
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FIG. 1. We show the effect of the higher derivative corrections
on the temperature versus mass relation, relative to the Einstein
gravity case (red curve). The colored curves show the temperature
versus mass for A = 1 and y = —1 (black curve),A =landy =0
(green curve), and 4 =0 and ¢ = —1 (blue curve). The correc-
tions controlled by 4 generically dominate in the small black hole
regime. Dimensionful parameters are measured in units of the
coupling constants.

It is tempting to speculate with the possibility that the
universal patterns identified in the case of polynomial
theories may have universal counterparts for theories
involving covariant derivatives. Additionally, these devia-
tions from the purely polynomial case suggest that terms
with covariant derivatives might play a pivotal role in
understanding characteristics of small black holes, such as
their evaporation.

We consider next the situation with 1 < 0, which dis-
plays some significant differences relative to what we have

0.30 T T
025 — A
0.20; ]
~ 0.5 ‘
0.10; ]

0.05F 1

P S S S S SR

0.00 momm
-1.0 -05 00 05 1.0 15 20 25

M

FIG. 2. We show the effect of the higher derivative corrections
on the temperature versus mass relation, relative to the Einstein
gravity case (red curve). The colored curves show the temperature
versus mass for 4 = —2 and y = —1 (black curve), 1 = —2 and
u =0 (green curve), and 1 = 0 and p = —1 (blue curve). When
both higher-derivative couplings are active, the mass is un-
bounded from below with M — —co as r;, — 0. Dimensionful
parameters are measured in units of the coupling constants.

just seen. In the previous case, the qualitative behavior of
the two theories was similar, here they are different—see
Fig. 2. The A-controlled theory, for negative coupling 4, has
a minimum black hole size and mass when y is strictly zero.
However, for any finite value of y the situation is com-
pletely different and qualitatively similar to the black curve
shown in the figure. First, let us note that when both 4 and y
and are negative we have

N

x4 /x(x+1)1

T with x=- asr, - 0.
27 rp

=

(119)

So small black holes have large temperature (for x = 1/8
the relationship is the same as in FEinstein gravity).
However, for sufficiently small r;, the black hole mass
ultimately becomes negative and approaches M — —oo as
r, = 0. As such, this branch of solutions exhibits rather
pathological behavior, as the small black holes exhibit large
negative masses. This results in an order of limits issue, and
flat space is not recovered as r, — O.

We postpone a more detailed and systematic study of the
thermodynamic properties of the black holes of GQTs
involving covariant derivatives for future work.

IV. BRANE-WORLD GRAVITIES

In this section we consider a different class of gravitational
theories constructed from contractions of the Riemann
tensor and its covariant derivatives, namely, brane-world
gravities [54]. We find a closed expression for the quadratic-
order action, which involves a combination of inverse
polynomials and Bessel functions of the Laplace operator.
Using this, we analyze the linearized spectrum of brane-
world gravities. We generically find infinite towers of
massive ghostlike gravitons. In five dimensions we find an
additional tachyonic mode, whereas in seven dimensions we
find two extra modes with complex squared masses which
are conjugate of each other. On the other hand, both in four
and six dimensions, we find infinite towers of pairs of modes
with conjugate complex squared masses.

In the context of (D -+ 1)-dimensional Einstein-AdS
gravity, the insertion of a codimension one brane near
the AdS boundary gives rise to an effective theory for the
brane induced metric coupled to a cutoff CFT. The
gravitational theory involves an infinite series of higher-
derivative terms built from the Riemann tensor and its
covariant derivatives. Let us quickly review how this comes
along. Consider the action of Einstein gravity coupled to a
cosmological constant in general dimensions

! UM dPHXV-G <R[G] + M)

I =
167G £?

+2 A y de\/—_gK] . (120)
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Inserting a brane near the AdSp.) boundary amounts to
introducing an additional term of the form

Ib = —T/ de -9,
p=¢

where ¢ < ¢, T is the brane tension and p is the holo-
graphic coordinate which we can use to write the bulk
metric in a Fefferman-Graham expansion [101]

(121)

2 2

LA, A o
G dxtdx” = 4—/)2(1!72 + zgij(!”x)dx dx/.

(122)
The total action, I + I, can be alternatively written as a
sum of a gravitational action for the brane induced metric
and a quantum effective action of a CFT living on the
brane, namely,

I+ 1), = Lhygray + Icpr- (123)
The defining property of the induced theory of gravity on
the brane Iy,,;,,—which follows from the Israel junction

conditions in the AdS bulk [102]—is that its equations of
motion,

2 6 /
=~ — [ dPx,/—gL, 124)
V=969ap (
satisfy the identity [61]
L _p,me ~ 2= 4 (125)
D-1 it T,

in the case of a tensionless brane. The claim is that there
exists a unique theory with this property. This can be
reformulated as the fact that there is a unique conserved
tensor (i.e., satisfying the identity V,I1%* = 0) built out of
the intrinsic metric g,, that satisfies this relation. Both
facts, the existence and uniqueness of this theory, are
remarkable.

This theory has a definite value of the cosmological
constant, but it is possible to shift this value by adding a
tension to the brane. Introducing a nonvanishing tension
amounts to performing

Huh - Huh + Tgah (126)
in (125). We fix the brane tension so that the theory has
a vanishing cosmological constant, as we will be interested
in asymptotically flat solutions. This is achieved for
T = (D —1)/¢, so that the equation satisfied by the new
I1,, reads

% 1
=2 |R+ T, — TP .

D1 (127)

In order to solve this equation, we assume that the
Lagrangian allows for a derivative expansion of the form

L=> "1, (128)
n=1
and similarly
ab __ 2n—1yyab
I = ;f e, (129)
Then, we get [67]
R
M ==, 130
M =3 (130)
1 n—1 > 1
My =5 Mol = 5= oMo |- 722
i=1
(131)

The other ingredient we need to solve this recursive relation
is [61]

I, = (D - 2n)£(,,> + total derivative.  (132)

Since the total derivatives are irrelevant for the Lagrangian,
this allows us to get L, from the trace of the equation of
motion I1(,). Thus, we get

R 1

e |
M7 2(D-2) Wb =" p_2

G, (133)

In a similar fashion, this process allows us to generate all
the Lagrangian densities L,). Observe that all of these

Lagrangians will be of the form

[: = ,C(Rab,VCRab,VCVdRab, ), (134)
since Riemann curvature appears nowhere in the pro-
cess. The quadratic and cubic densities read, respectively,
[61-68]

Ly =+ R, R — b R?
@~ Tap-22(D-4)| ap-1" |
(135)
1 3D+2
Ly =— RR_, R
®) (D—2)3(D—4)(D—6)[4(D—1) ab
D(D +2)

S S A S} LY ) e —— L VR VY
16(d—1)2 be “+2(D—1) ath
2RV°V, R .— R®R ——  _ROR

+ b ac ah+2(D_l) :|’

(136)
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where already at cubic order we start seeing the appearance
of covariant derivatives of the Ricci tensor. Explicit for-
mulas for the quartic and quintic terms appear in [67].

A. Quadratic action

We are interested in studying the linearized equations of
these theories around the Minkowski vacuum. As we have
seen, the only higher-derivative terms that contribute to the
linearized equations are those quadratic in the curvature
(but with an arbitrary number of covariant derivatives) and,
therefore, the only possible quadratic Lagrangians are
RO"R and R[1"R,,. Thus, at order 2n in derivatives,
we will necessarily have

Ly = a,RO"2R + B,R*TI"?R,, + O(R?).  (137)
Our goal is to determine the coefficients «, and f,, for
which we will use Eq. (131). First of all, in order to evaluate
the left-hand side of Eq. (131), we use Eq. (132), so that
we get

ab 1
My = Mnapllf_y) =571 )+
Rabnab_ RH
_ (n—1) +
D-2 "2(D

In order to evaluate this expression we need the equations
of motion I, .. Notice that we will compare the resulting
expression with Eq. (138), which is quadratic in the curva-
ture. Now, Eq. (141) is already quadratic in the equations
of motion, and this means that, in order to obtain the terms
that are quadratic in the curvature we only need to obtain
the terms in the equations of motion that are linear in the
curvature. Fortunately, all of these come from the term

oL

—4V”V€Pache C H(n),ab’ 5Rabcd :

where P,.,, = (142)

For a theory that only depends on Ricci curvatures this can be
expressed as

H(n),ab = _29abvcvepce —20P,, + 4vcv(an)c
oL

+ ... W.

where P, = (143)

Thus, for the Lagrangians (137) we get

H(n).ab = _(4an +ﬁn)gabDn_1R
+22a, + B)V,V, 0" 2R — 28,00 'R, + ...,

(144)

NI*—‘

1
2

M, = (D - 2n)(a,RO" 2R + B,RCI2R,,) +

(138)

Now we must evaluate the right-hand side. The case n = 2
must be considered independently, and it yields

1 ab 1 2
Te) =7 (Moe i) = 523
D 1
= R RR,,, (139
S(D—l)(D—Z)z +2(D_2)2 ab ( )
so that we identify
D
a = — ’
T 8(D-1)(D-2)%(D-4)
1
- . 140

hr =320 270-4) (140)
Now, for n > 3 we have
n—2 1
Z n i) _mn(i)n(n—i)
=2
n—2 1

[ )" D_1 1“(:’)“@—:’)]- (141)
i=2

) = —(4(D = Da, + DB,)T" 'R+ ... (145)

Then, we can use these expressions to evaluate Eq. (141), and
after some simplifications we find

D Bu-i
M, =2( ———— ROO"2R + Re[I"2R n
2 ( 4D—1) " ) {<D—z>
n—-2
+ Zﬁiﬂn_i] .. (146)
i=2

where the ellipsis also contain total derivatives that arise
when rearranging the derivatives. Therefore, comparing with
Eq. (138), we conclude that

D

D-1)

4( ﬂn’

(147)

a, =—

while /3, satisfies the recursive relation

Pn =

T [ +Zﬁﬂn |- oa

We can transform this recursive relation into a differential
equation by introducing the generating function
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fx) = Z;/Jn b (149)
By taking the derivative and using the recursive relation for 3,3, we have
£ = D0 = D)0 = (4= Dpor? 2y Dt Zﬂﬂn Jre-
n=2 n=3

= (4= D)px>P - 2 2xf(x) —2xP1f(x)2. (150)

Now, the action can in fact we written in terms of this function. The full action (at quadratic order) reads

o =y | 5 3 (RE R =y )|

=1 6;GD / dPx\/=g [R + 2R F(£20)R,, — ﬁﬂRF(ﬂD)R] : (151)

where

[Se]

F(20) =2(D-2)) B, (£*0)">

n=2

(152)

and Gp = 2(D —2)Gp /€. We see that this F is related to
f in Eq. (149) by

1

flx) = mx“_DF(xz). (153)
Thus, F(x) satisfies the equation
P =04 2R () 2P ),
(154)
where
F(0) = 2(D = 2)p, = m. (155)

Remarkably, this differential equation allows for a general
solution in terms of Bessel functions. We find that the
appropriate solution, that corresponds to the summation of
the series Eq. (152), is given by

I (D=2)You(v/5)
2Yp(vx)
where Y, are the Bessel functions of the second kind.
Inserting Fp(#?00) in Eq. (151) we obtain our final

expression for the quadratic action of the brane-world
theory in general dimensions.

Fylx) = D(sz— 2) -

(156)

IS

Despite the singular appearance of this function at x = 0,
it is actually analytic around that point for odd D. In
fact, for odd D, Fp can actually be written in terms of
trigonometric functions. We have

sin(v/x)
xsin(y/x) + v/xcos(v/x)

2x  Txr 3453
A=l+— -t ——+ ..,

F3(x) = -

(157)

cos(v/%)
(3= 2) cos(v) + 3y/asin(v)
1 2x  x2 2%
3

Fs(x) =

“5 s T
Vxsin(y/x) + cos(v/x)
(x — 15)y/x sin(y/x) + 3(2x — 5) cos(1/x)
12w 13x7 2247

15775 1125 T 16875

(158)

Fa(x) = -

(159)

where we included the first terms in the expansions around
x = 0. On the other hand, in even D > 4, the expansion
around x = O contains logarithmic divergences, which are
the counterpart of the 1/(D — 2n) divergences in the defini-
tion of these theories. For instance, for D = 4 one finds

2Y5(vx) 1

= 2 W ~ Z [_27E - IOg(x/4)]

(160)

where yg is the Euler-Mascheroni constant. Finally, the
D =2 case is a bit different, as it simply yields
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Fy(x) = —-, (161)
which means that the corresponding quadratic action is pro-
portional to the Polyakov induced-gravity action [103]—
see also [56].

B. Linearized equations and modes

It is obvious from Eq. (151) that the brane-world theory
belongs to the class of theories which satisfy condition (25),
as in this case we have F; = F, F, = -D/(4(D — 1))F,
F5 = 0. As a consequence, the linearized equations of the
theory impose the condition (26), namely,

(D -2)
647G

RY =0, (162)

so the trace of the equation has no dynamics and one is left
with

1
322G

[1+ F(£20)20)6Y) = o. (163)

By going to the Lorentz gauge as in Sec. Il A 1, one finds

~ G [1+ F(£20)2*0)0h . (164)
and the corresponding propagator is given by
4 ikYpn(ick -1
P (k) = 276D 2,( )—D . (165)
(D-2) Yo (ick)

Using this we can analyze the pole structure in various
dimensions.

1. Three dimensions
In D = 3 the propagator becomes

¢k tanh(¢k)
%

Py(k) 1
647G;  2k*

(166)

m, & ; (0.69937,1.72832,2.73619,3.73987,4.742,5.74339, 6.74437,7.7451, ...).

Studying its pole structure we find a massless mode as well
as an infinite tower of massive gravitons. The massless
mode is the same as the one appearing in the pure Einstein
gravity spectrum and it is pure gauge in three dimensions.
On the other hand, the massive gravitons have masses

/4
=—02n-1 =1,2,... 1
m,, Zf(n )7 n s &y ’ (67)

and all of them have negative kinetic energy. This can be
seen by expanding the propagator around each of the poles
and comparing the overall sign with the one of the positive-
energy would-be massless mode. For this, one has

P3(k2 —)0) 1

= O(1). 168
647G 2k? +0() (168)
For the new modes one finds, instead,
P’; (k2 - —m%) 2
- = - O(1). 169
647G, 2k + m2) +0() (169)

Hence, all the new modes are ghosts.

2. Four dimensions

In D = 4, the analysis of the propagator becomes more
cumbersome. To begin with, there is no simplified way
to write down the propagator in terms of trigonometric
functions. Instead, we are left with

Py(k)  iY,(itk)
647G, 20kY,(itk)’

(170)

Again, we find the Einstein-like massless graviton and an
infinite tower of massive ghost gravitons, with masses

(171)

In this case, the masses are not equispaced, but the difference between pairs of modes tends to z/# as n — oo. Indeed, the
m, tend to Z(n —1/4) as n — co. Moreover, we now find a tower of modes with complex squared masses which are

conjugate of each other,

T
mn,i N

4

(£0.1790 + 1.220i, £0.1762 + 2.2334,+0.1755 + 3.238i, - - -).

(172)

These tend to Z (£0.17485 + (n + 1/4)i) as n — co. Again we find that all massive modes, including the complex ones,

have negative kinetic energy, namely,

Py (k> — —m5)

1

K> + m?]

647G,

V je{n, £} so again they are all ghosts.

+O(1), (173)

J
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3. Five dimensions

In D =5 one finds

Ps(k) 1

1

647Gs k>

3 — 3¢ktanh(Zk)’

(174)

In addition to the Einstein-like massless graviton, we again find an infinite tower of massive gravitons with masses

m, &

AN

Now, however, there is only one tachyonic mode with
Imaginary mass

1.43923

2
myg f2

~ —
~

(176)

Once again, we find that all the massive modes have
negative kinetic energy, namely,

Ps(k* = —m3) 2

= - 1
647Gs 302k 4 m3) +0),

(177)

V j&€{n,t}, so they are all ghosts.

m, .+~

AN

These tend to % (£0.17485 + (n — 1/4)i) as n — co. More-
over, we find an extra conjugate pair,

moyizgi0.47l6—0.1503i. (181)

As before, all massive modes are ghosts, including the
complex ones, since

Pg(k* — —m?)
647[G6

= ! +0O(1),

- 182
21/”2[k2—|—m§] (182)

V je{n, £}, so they all have negative kinetic energy.

5. Seven dimensions
Finally, in D = 7, one finds
P, (k) 1 . 1 k2
647G, 15 k> 15(3 + £2k* — 3¢k tanh(£k))
(183)

(0.89075, 1.9485,2.9660, 3.9746,4.9797,5.9831,6.9855, ...).

(£0.3382 + 0.4711i,+0.1877 + 1.636i, +0.1795 + 2.680i, +0.1773 + 3.699i, - - -).

(175)

4. Six dimensions
The case of D = 6 is similar to the four-dimensional
case. The propagator reads
Pg(k) B iY3(itk)
647G, ACkY,(itk)’

(178)
and again, we find the Einstein-like massless graviton, an
infinite tower of massive ghost gravitons, with masses

m, z%(1.077,2.163,3.191,4.205, 5.214,6.220,7.224, ...),
(179)

which tend to Z (n 4- 1/4) as n — oo; and a tower of modes
with complex squared masses which are conjugate of
each other,

(180)

Again, we find the Einstein-like massless graviton, and an
infinite tower of massive ghost gravitons with masses

m, & ; (1.2604,2.3719,3.4109,4.4314,5.4442,

6.4529,7.4593, ...) (184)

with the difference between pairs of modes tending to z/¢
as n — oo. Now, there are only two extra modes with
complex squared masses which are conjugate of each other,
namely,

2.01933 £+ 3.19512i
2 '
Once more, we find that all the massive modes, including

the ones with complex squared-masses, have negative
kinetic energy, namely,

mi ~— (185)

Py (K> —» —m?) 2

D= o(1),
647G+ s T OW

(186)

V je{n, £} so they are all ghosts.
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We have found that, regardless of the number of
dimensions, there are always pathological modes appear-
ing in the linearized spectrum of these brane-world
gravities, with squared masses of order ~1/#7%. Since
the bulk theory is Einstein gravity, which is perfectly well
defined, the appearance of these pathological modes on
the gravitational effective theory induced on the brane
might seem worrisome at first. The bulk, however, is dual
to this induced theory on the brane plus a cutoff CFT,
which we have neglected in this analysis. The CFT cutoff
is precisely ~1/¢2, and so it is not surprising that patho-
logies might appear at this order. Moreover, when one
takes the coupling between this cutoff CFT and the induced
gravity on the brane into account, the observed pathologies
disappear. In a sense, coupling the induced action to the
cutoff CFT allows one to “UV-complete” the theory by
making it dual to the perfectly defined Einstein gravity in the
bulk. These results, along with a careful analysis of the linear
spectrum in this case, will appear in future work.

V. CONCLUSIONS

A summary of the main findings of this paper can be
found in the Introduction. Let us close with some com-
ments regarding open questions and future work.

In this work we have initiated the study of GQTs with
covariant derivatives. Our analysis has been restricted to
four dimensions and to the first few curvature orders. It
would be interesting to pursue a full classification of
GQTs with covariant derivatives in general dimensions as
well as for arbitrary curvature orders, similar to the one
achieved for polynomial GQTs in [31,32]. Similarly, it
would be interesting to determine whether the departure
from the universal behavior observed in polynomial
GQTs for the temperature of small black holes in the
case of the new GQT with covariant derivatives extends
to other theories of that kind, and whether a new
universal behavior arises in that case. The implications
for the evaporation process of black holes should also be
studied in this context.

Additionally, it would be interesting to prove that any
gravitational effective action can be mapped to a GQT.
This is established for general polynomial densities [37],
but the proof for terms involving covariant derivatives is
thus far limited to theories with up to eight derivatives of
the metric and also for theories with any number of
Riemann tensors and two covariant derivatives.

On a different front, it would be interesting to char-
acterize the generalized symmetries of general linearized
higher-curvature gravities with covariant derivatives along
the lines of [104], where such analysis was performed for
L(g®, Rypeq) theories.

Regarding brane-world gravities, the existence of
ghosts as well as of tachyonic and complex-squared-
mass modes in the linearized spectrum of these effective
theories seems to be in tension with the absence of such

pathologies in the bulk theory (Einstein gravity). In
particular, the appearance of imaginary poles in the
propagators of particles has been suggested as an indication
of confinement—see e.g. [105-107]. It would be interest-
ing to understand their origin from the bulk perspective.
Naturally, here we have ignored the effects of the cutoff
CFT which is also induced on the brane, so one could try to
understand if and how its coupling to the brane-world
gravities resolves the pathologies.
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APPENDIX A: BASIS OF INVARIANTS

We present here a complete list of the curvature
invariants at each order in derivatives. The same list
can be found in [108]. Our ordering also follows [108]:
The invariants are ordered by the number of covariant
derivatives acting on individual curvature tensors. We begin
with those invariants that involve the largest number of
derivatives acting on curvature, and end with the poly-
nomial curvature invariants (those built exclusively from
contractions of the Riemann tensor).
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1. Four derivatives

There are four possible terms involving four derivatives of the metric:

RV =0OR, RY =R, R =~rrR,,

2. Six derivatives

There are 17 terms involving six derivatives of the metric:

RV =0RrR, RY=ROR, R =RrRMR,,, R =rRreOR,, R =Rr™R,,,
©) _ g () _ prar (®) _ prar ©) _ prars (10) _

RY =RPR,, R =RMR,.,, RY =RMR,... Ry =RR,.... R =FR,
11 12 13 14

R\ = RRPOR,,,  R\? =RPiR,’R,,  R{” =RPIR"R,.,  R\Y =RRr"R,,.,,

Réls) = quRrStpR Rél6) = qurXqutuRrStu’

rstq»

3. Eight derivatives

There are 92 terms involving eight derivatives of the metric:

Ry =PR, Ry =ROPR, Ry =R,,0rR?™,  R{Y =RriPR,,
Rz(36> = R;pDR;pv Rg) = qu;erq;w Rgg) = qu;rDqu;r’ Rz(ag

Ry = (OR)?,
Ry = RrarR

RYY = RrersiR Ry = RPR.,,,

prgsit>
RM = ORPIOIR,,, R{® = RparsR

Rélg) _ qurs;tuRp

pqirs»
RY” = R?OR,

RéZ?)) — R;I’CIRerqr’

prigs-»
RYY = RRPIR,,, R

qrs;tus

(22) _ (24) _
Ry = RRMOR,,, Ry = RPR,'OR,,.

RYY = RP9R™R,,..., RV =RPR™R,,,, Ry = RRPO-R

RYY = RP4R 7R RV = RPaR™ 'R

qsrts prst»

RYY = Rrorsgr, R

rfltugs»

RYY = ORPaR™ R

rstq>

R§37> — qu;rSR[purR R§38) — quRrSlMR

tqus:

RV = RPR4R,,,

rstu;pq»

Ry = RRPR,,, Ry = RRP7R

pq:r>

'R,§g44) = R7RYR,,.,. Rs(;45) = RPRTR,.,, Ré%) = RPIR,R s,

R2(§48) = RPGR” R, sq, Rg‘g) = RPR".,R Rz(aSO) = RPRI™R

rq;s>

Réﬂ) = qu;ers;thrst» ’R;SZ) = qu;ers;thm, R(853) = Rqr;pRSl;p

RYY = RPTRY Ry REY = RPIR™R, 0 REY = RPIRMIR

124075-24

R\ = RrR

R(617) — querptruR

prqs»
R = ORRrR

Ré%) — R;pqrthpuqR
RSQ) — qursttm;R
Ré‘m = RRP4TR

pqrs:*

qtsu-:

) _ ;
= RPPLIR .

RY? = RP4OIR,,,

Ré”) — qu;rSRrs;pq’

@1 _

@Y — ORRPR,,,
Ry = RPIR™R

R = RPaOIR™s
pqrs:»
trus»
qrru;svs

priq:
Rgﬂ) — quRpr;sR

pqrs»

R

qsrt»

rtsp;q»

R = RrarsR

pgirs>

R

RYY = RPIR™ R

qsr»

prqs»

prgs»

(A1)
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Réﬂ) — R;PR’Irsthr”;p’ Réﬂ) — RRquS;lqurs;ta Résg) — quR”m;pRrstu;q’

(6()) — rstu (61) — Sr RSt u (62) — P RPSt u
Ry =RPIR™™ R, 0w Ry =RPERIUR, ... Ry =RPERY IR ..

Rg(;&) = RPE"RY " Rgirous Rg(;64) = RPI™R™ | Ry
Ré67) _ R4,

Ré“) — qureruvp. R

N tuvgss
Ré&‘) — Rquthpur;vR R<868) = RZRP(Iqu7

RY? = RRP4R™R

Rf<$69> = RR"R,'R,,,

tqus;vs

RSO) _ (ququ)Z’ Rg(;ﬂ) _ quRerqSRrw R§73> _ quRrSR,tR

prqs> psqts

R§74) — R2RPATSR R§75) _ RRP"R”’pqu’ Rgﬁ) — ququRmuRrstuv

pars»

Rf(;ﬂ) — quRersqustur’ Rgg) _ quRrthup R

rfftugs»

Rgg) — quRrthputhrum

RéSO) _ quRrthpurthuS’ Rgﬂ) — RRpsrstqurstu’ R5(582) — RRquSRptruR

qtsus

Ré83> — quRpr thuv R R(84) — quRrstuR v R R(SS) — quRrstuR v R
q

rfftuvss 8 rs pMtuvgs 8 r tpftsvugs

RéSﬁ) _ (qursR Ré87) _ qu”quleu 1)meUW’ 'R(SSS) — qurstqtuRm 1;mevw’

pqrs)z’

Réw) = RPqi’SqututhanquW’ Rég()) — qurSqutuRrvtszqu’ R§91> — RPqi’SRptruRtvuwR

qusw»

Ré92> _ qursttruRthwRuUSW' (A3)

4. Ten derivatives

The number of independent invariants grows rapidly with an increasing number of derivatives. To the best of our
knowledge, a complete classification of terms involving more than eight derivatives of the metric has not been completed.
However, for example, at ten-derivative order it is known that there are 668 invariants. The set of ten-derivative invariants
we have used consists of 180 =20 4 92 + 4 x 17 elements, and so it is necessarily very incomplete. Out of the 180
densities that we use, only 20 are not built from products of lower-order densities. These are

Rg})) = Cubcdcaha[cefgh;iCefgh;i
R{Y = RIRIRSR,“R.9, Ry = RIRIRSR,, RS9, Ry = RIRVR“Ryy Ry,

R\ = RARPR, ;R R, R\ = RIRER,, R, Ry™, R = RIRER R R,y

8 . 9 g 10 :
R(m) - RZRZRaeCnghebefgh’ Rgo) - R(CJRZRedeRghefRabgh? Rgo ) = R?RZRengRahebefgha

R(IBZ) _ RZRadbCthdeRcifyReghi, RE}E) _ RszebCRcfdeRhingaghiv

R%l) = RIRZR Ry Ry,
ng) = RszfbcRacdeRhingeghi1

725107) _ RcdabRengRaiefRfjgthhijv

15 " : , ~
7?’(10 : = RhRdbeRahdeReingcghl?

R(IE)S) — RceabRadeRgiebejghRdhijv

R(&)@ = RszfbcRghdeReingachi ’

RE?) _ RceabRangRbiefRfjghRdhij» R%O) — RceabengRhiefRajgthdij'

APPENDIX B: HAIRY BLACK HOLES IN PURE
EIGHT DERIVATIVE GQTs

Excluding the fourth-order density E(?O, all the other
eight-derivative Lagrangians allow the "Schwarzschild-
(A)dS spacetime as an exact solution. However, due to
the fact that the equations of motion are of higher order, one
may wonder if additional solutions exist.

In order to illustrate the possibility of having non-
Schwarzschild black holes, let us consider the simple

(yet unrealistic) case in which we do not have an

Einstein-Hilbert term in the action. In fact, for the sake
of simplicity let us just consider a higher-derivative gravity
given by the following eight-derivative Lagrangian:

! 2) 3) ()
162G €L T oLy T ewliyl:

(B1)

The integrated equation for the function f becomes in this
case

2 3 4
co)F 28,)2) T Eslx) +ewF Es,)zt) =4GM, (B2)
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which explicitly reads

f2
2
+ 2ar(2cgyra’ = 3czd')) = 4GM.

(az(—8C(2) + 15C(3) - 16C(4)> + 36‘(3)}"2(1/2
(B3)

Now, for M =0, a solution to this equation is the
Schwarzschild-(A)dS black hole with arbitrary mass
parameter and cosmological constant, which has a = 0.
However, this is not the most general solution. If we again
set M = 0, we find a homogeneous equation for «, that has
the following general solution:

2-2

a(r) = ar’(r' 4 b)w,

(B4)
|

34+u-2v

fr)==Ar*+k—-—+

2m ar'(b+r*) = [ 1
r 3b

1/—22F1

where a and b are integration constants, and

6¢ 3 ¢(3) —9¢> 350 242
_ ‘@ @) (3) _ W
p= |17+ 8: + 2 ., V= T34
*) (4) c@
(BS)

Thus, solving now the equation

v+ 172 u(l+p)

where 4 and m arise as integration constants. This repre-
sents a biparametric modification of Schwarzschild’s
solution. In the limit » - 0, we get a much simpler
solution,

3c) 4+ 20 (n+1)
30(3) + 4C(4)

3

2

f(r)= —irz—l—k——m—f—&r“, o=
r

(B8)

where @ «x a. For ¢ < —1 this represents an asympto-
tically flat/AdS/dS black hole solution with continuous
hair. On the other hand, for ¢ > 2 the asymptotic behavior
is exotic.

APPENDIX C: LINEARIZED EQUATIONS
ON AN AdS BACKGROUND

Here we present the explicit linearized equations of
motion around an AdS background for the simplest
examples of the theories considered in the main text.
First consider the effective quadratic theory arising from
purely polynomial theories,

L(0)=MR=2No) +a0)R* +P0)RapR™ +7(0)RapcaR*".
(C1)

1 F<11+4/4+/42+1/—,u1/.1+/4+v_ i‘”ﬂ
1 ) s P

PI 42k ) = a (B6)
we get the general solution
<1 (1 — 1)(2+u—v),ﬂ+v—2__ﬁ>
10 I ) A
-— B7
p 5 (B7)

For this theory, the linearized equations were computed in
[79] and read

)
gjllb) — [E — (D(D = 1a) + (D =2)p
*

+(D=3)(D - 4)y0) + Bo3|G)

+ Rag) + B0))[GurD — V.V, ]JRD
1

—72*[2@—

Da) + ﬁ(O)]gabR(l)v (C2)

and we are using the following conventions for the back-

ground curvature tensor:

o _
abed = _f_2 [gacgbd - gadgbc]'
*

=

(C3)

Now consider the effective action
d’Alembertian acting on curvature,

involving one

L1y = ayROR + 1y R s TOR™ + 7 (1) R e IR (C4)

For this theory, the linearized equations of motion take
the form
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5(1) _
ab f*

+ (2a0) + Bay +2r0)) 90 ~
(D —1)(2a

2 a
f*

8 2
——rrn(D=3)D +f2 By +2rq)

)+ By +2 )
By +2ra )ngR

5-D)0+ (B + 4rq)) 2 Gl

2(D =2)(4rqy +By) =

fZ
4(D-2)(D-3)
_f—i

avaU)

7(1)§abR<])- (CS)

In particular, note that the linearized field equations of this six-derivative action involves terms with two, four, and six
derivatives. It may be that the linearized equations can be simplified in alternative gauges, see e.g., [75].
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