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Recently, various types of the regular black hole model are reintroduced as the solution of the Einstein
equations coupled with nonlinear electrodynamics (NED). In NED, it is known that photons do not
propagate along the null geodesics of the spacetime geometry, but of so-called effective geometry, which
suggests the possibility of so-called “faster/slower than light” photons. We study the relation between the
causality of photons and the dominant energy condition (DEC) in some static and spherically symmetric
black hole spacetimes in NED. We show that if photon trajectories with a nonzero angular momentum are
timelike in the spacetime geometry, DEC is always satisfied in static and spherically symmetric spacetimes
in any NED that admits the Maxwell limit, and vice versa, at least, in the weak field limit. Thus, this implies
that in such NED, the violation of DEC admits the existence of faster than light photons.
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I. INTRODUCTION

It is well-known that in nonlinear electrodynamics
(NED), photons do not propagate along null geodesics
of the spacetime geometry, but rather of another geometry
which is called an effective geometry [1–3]. In such a
theory, even if photons move in Minkowski spacetime, they
move while feeling a “virtual” curved spacetime, whereas
other massless particles move on the light cone in
Minkowski spacetime. For instance, this occurs in the
Euler-Heisenberg effective theory derived by the one-loop
quantum correction in QED [4–10] and in the Born-Infeld
electrodynamics [11,12]. Therefore, there is a possibility of
faster-than-light photons and slower-than-light photons,
namely, the light cone of the effective geometry lies outside
the light cone of the spacetime geometry, and vice versa.
Moreover, It is remarkable that in general, the velocities of
photons in NED are doubled, which occurs in the former
theory but does not in the latter [12].
Regular black holes (RBH), which have no singularity

inside/outside an event horizon, have been studied as one of
the candidates of quantum black holes since Bardeen [13]
proposed the first model of asymptotically flat, static, and
spherically symmetric black holes with a regular center.
Subsequently, other RBHs with the same symmetry and
asymptotic structure were proposed by many researchers.
Remarkably, some of these are exact solutions to the
Einstein equation coupled with a physical source of a
magnetic monopole in NED. Recently, Fan and Wang [14]

found a wide class of asymptotically flat, static, and
spherically symmetric RBH solution in a certain NED,
which can considered to be the generalization of the
Bardeen BH [13] and the Hayward BH [15].
The propagation of photons has been studied for the

Ayón-Beato-García spacetime in Ref. [2], for the Bardeen
spacetime in Ref. [16] and for the Hayward spacetime in
Ref. [17]. The photon orbits are also studied in rotating
versions of several RBHs of NED [18]. Moreover, in
Ref. [19], we discuss photons moving around regular black
holes of Fan andWang and find an unstable circular orbit of
photons inside the event horizon. The purpose of this paper
is to study the relation between the energy conditions and
the causality of photon propagation around regular black
holes in such NEDs and see whether the light cone of the
effective geometry lies outside/inside the light cone of the
spacetime geometry under the dominant energy condition
(DEC). Furthermore, we show that in the Born-Infeld
theory, where DEC is satisfied everywhere, photons with
a nonzero angular momentum are always timelike for a
purely magnetic/electric field. Moreover, generalizing these
to arbitrary NED with the Maxwell limit, we show that
under DEC, photon trajectories in static and spherically
symmetric spacetimes cannot be spacelike, at least, in the
weak field. In addition, we show that in any NED with
the Maxwell limit if photon trajectories with a nonzero
angular momentum are timelike in the spacetime geometry
and null in the corresponding effective geometry, DEC is
always satisfied in static and spherically symmetric space-
times, which means that the violation of DEC leads to
the existence of spacelike photons, i.e., faster than light
photons.

*tomizawa@toyota-ti.ac.jp
†sryotaku@toyota-ti.ac.jp

PHYSICAL REVIEW D 108, 124072 (2023)

2470-0010=2023=108(12)=124072(8) 124072-1 © 2023 American Physical Society

https://orcid.org/0000-0001-5253-5267
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.124072&domain=pdf&date_stamp=2023-12-27
https://doi.org/10.1103/PhysRevD.108.124072
https://doi.org/10.1103/PhysRevD.108.124072
https://doi.org/10.1103/PhysRevD.108.124072
https://doi.org/10.1103/PhysRevD.108.124072


In the following section,we give the brief review onNED.
In Sec. III, we discuss what conditions the Lagrangian
density of NED should satisfy in order that four energy
conditions, null energy condition (NEC), weak energy
condition (WEC), DEC, and strong energy condition
(SEC) are satisfied in a purelymagnetic and a purely electric
cases. In Sec. IV, we briefly review the known results on the
effective geometry which photons in NED feel during
propagating in the spacetime. In Sec. V, we first consider
photons moving around the regular black hole of Fan and
Wang, which can be regarded as a solution in a certain NED.
We also consider Einstein-Born-Infeld theory and discuss
the relation between the energy conditions and the speed of
photons. In Sec. VI, we discuss the general cases with the
Maxwell limit. In Sec. VII, we summarize our results and
discuss possible generalization.

II. BRIEF REVIEW

Let us consider the Lagrangian density for Einstein
gravity coupled with one parameter NED, which is
given by

L ¼ R − LðF Þ; ð1Þ

where L is an arbitrary function of F ≔ FμνFμν with the
field strength of the vector field Aμ, i.e., Fμν ¼ ∂μAν−∂νAμ.
From the action (1), the Einstein equations and the field
equations for NED can be written as, respectively,

Gμ
ν ¼ 2Tμ

ν; ð2Þ

∇μðLFFμνÞ ¼ 0; ð3Þ

where the energy momentum tensor for NED is given by

Tμ
ν ¼ LFFμαFνα −

1

4
δμνL: ð4Þ

The static and spherically symmetric solution with a purely
magnetic field is written as

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dθ2 þ r2sin2θdϕ2; ð5Þ

fðrÞ ¼ 1 −
2mðrÞ

r
; ð6Þ

Aμdxμ ¼ Qm cos θdϕ; F ¼ 2Q2
m

r4
; ð7Þ

where the magnetic charge Qm is defined by

Qm ≔
1

4π

Z
S
F; ð8Þ

and Eq. (4) can be written as

ðTμ
νÞ ¼

1

2
diag

�
−
1

2
L;−

1

2
L;FLF −

1

2
L;FLF −

1

2
L
�
:

ð9Þ

From Eq. (2), the ðt; tÞ, ðr; rÞ components and ðθ; θÞ, ðϕ;ϕÞ
components are written as, respectively,

LðF ðrÞÞ ¼ 4m0

r2
; ð10Þ

LF ðF ðrÞÞ ¼ −
2rm00 − 4m0

F 2r6
¼ −

r2ðrm00 − 2m0Þ
2Q4

m
: ð11Þ

Moreover, the static and spherically symmetric solution
with a purely electric field is written as

ds2¼−fðrÞdt2þfðrÞ−1dr2þ r2dθ2þ r2sin2θdϕ2; ð12Þ

fðrÞ ¼ 1 −
2mðrÞ

r
; ð13Þ

Aμdxμ ¼ aðrÞdt; ð14Þ

where the function aðrÞ cannot be written explicitly since it
is not easy to solve the field equation in the electric case as
in the magnetic case. The electric charge Qe is defined by

Qe ≔
1

4π

Z
S
LF � F; ð15Þ

and Eq. (4) can be written as

ðTμ
νÞ ¼

1

2
diag

�
LFF −

1

2
L;LFF −

1

2
L;−

1

2
L;−

1

2
L
�
:

ð16Þ

III. ENERGY CONDITIONS IN NED

In this section, we consider the conditions which the
Lagrangian LðF Þ should satisfy in order that four energy
conditions, NEC, WEC, DEC, and SEC are satisfied in a
purely magnetic case (F > 0) and a purely electric case
(F < 0) with the same spacetime geometry.

A. Purely magnetic case

Applying, for instance, the discussion with the effective
energy-momentum tensor for type I matter fields in ref. [20]
to Eq. (9), we can write four energy conditions as follows:

(i) NEC, “Tμνkμkν ≥ 0 for any null vectors kμ”, is
equivalent with

FLF ≥ 0: ð17Þ
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(ii) WEC, “Tμνvμvν ≥ 0 for any timelike vectors vμ”, is
equivalent with

L ≥ 0 and FLF ≥ 0: ð18Þ

(iii) DEC, “Tμνvμvν ≥ 0 and JμJμ ≤ 0 for any timelike
vectors vμ and the current Jμ ≔ −Tμ

νvν”, is equiv-
alent with

L ≥ 0; FLF ≥ 0 and L − FLF ≥ 0: ð19Þ

(iv) SEC, “ðTμν − 1
2
Tλ

λgμνÞvμvν ≥ 0 for any timelike
vectors vμ” is equivalent with

L ≥ 0; FLF ≥ 0 and 2FLF −L ≥ 0: ð20Þ

B. Purely electric case

Similarly, the energy-momentum tensor (16) leads to the
following:

(i) NEC, “Tμνkμkν ≥ 0 for any null vectors kμ”, is
equivalent with

FLF ≤ 0: ð21Þ

(ii) WEC, “Tμνvμvν ≥ 0 for any timelike vectors vμ”, is
equivalent with

FLF ≤ 0 and 2LFF − L ≤ 0: ð22Þ

(iii) DEC, “Tμνvμvν ≥ 0 and JμJμ ≤ 0 for any timelike
vectors vμ and the current Jμ ≔ −Tμ

νvν”, is equiv-
alent with

FLF ≤ 0; and LFF − L ≤ 0: ð23Þ

(iv) SEC, “ðTμν − 1
2
Tλ

λgμνÞvμvν ≥ 0 for any timelike
vectors vμ”, is equivalent with

FLF ≤ 0 and L ≤ 0: ð24Þ

IV. EFFECTIVE GEOMETRY
AND TIMELIKE PHOTONS

As mentioned previously, in NED given by the
Lagrangian LðF Þ, photons do not propagate along null
geodesics in the spacetime geometry, but rather in the
corresponding effective geometry [1]. In Ref. [1], by using
the Hadamard method, the propagation of low-energy
photons can be described by the evolution of the wave
front, i.e., characteristic surface S ¼ const, across which
the electromagnetic field is continuous but the first deriva-
tive is not. In Ref. [16], the alternative method, the eikonal
approximation for photons, was used. Under the short-
wave approximation in NED, where the Faraday tensor can
be regarded as local plane waves,

Fμν ¼
�
Fð0Þ
μν þ ε

i
Fð1Þ
μν þOðϵ2Þþ � � �

�
e

i
εS ðε≪ 1Þ; ð25Þ

from Eq. (3) and the Bianchi equations, one can show that
the gradient of the phase S, kμ ≔ ∇μS, must satisfy

g̃μνkμkν ¼ 0; ð26Þ

where g̃μν is the metric of the effective geometry, which is
given by

g̃μν ¼ gμν −
4LFF

LF
Fμ

αFαν; ð27Þ

with LFF ≔ d2L=dF 2. For a static and spherically sym-
metric spacetime with a magnetic charge, the correspond-
ing effective metric is denoted by

ðg̃ðmÞ
μν Þ ¼ diag

�
−f;

1

f
;
r2

ΦðmÞ ;
r2sin2θ

ΦðmÞ

�
; ð28Þ

where ΦðmÞ ≔ 1þ 2LFFF=LF jmagnetic. On the other hand,
in the electric case, the effective metric is given by

ðg̃ðeÞμν Þ ¼ diag

�
−

f

ΦðeÞ ;
1

fΦðeÞ ; r
2; r2sin2θ

�
; ð29Þ

where ΦðeÞ ≔ 1 þ 2LFFF=LF jelectric. As shown in
Ref. [21], from the duality in NED for the same metric,

L2
FF jelectric ¼ −F jmagnetic;

LF jmagnetic ¼ ðLF Þ−1jelectric; ð30Þ

one can show

ΦðmÞ ¼ 1

ΦðeÞ ; ð31Þ

which means that two effective geometries for the electric
and magnetic solutions are related by the conformal
transformation,

g̃ðeÞμν ¼ ΦðmÞg̃ðmÞ
μν ; ð32Þ

and hence, have the same causal structure. Thus, although
the effective metrics for both the electrically and magneti-
cally charged spacetimes are different, the photon trajecto-
ries coincide in both effective geometries. Therefore, it is
sufficient to discuss the magnetic solution only. Let us
denote ΦðmÞ with Φ simply as

g̃μν ¼ diag

�
−
1

f
; f;

Φ
r2

;
Φ

r2sin2θ
Φ
�
; ð33Þ
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where

Φ ≔ 1þ 2FLFF

LF
: ð34Þ

If kμ satisfies g̃μνkμkν ¼ 0, then the norm of kμ in the
spacetime geometry is given by

gμνkμkν ¼ −
2FLFF

r2LF

�
ðkθÞ2 þ

ðkϕÞ2
sin2θ

�
: ð35Þ

Thus, under NEC and WEC, FLF ≥ 0, and if

LFF < 0; ð36Þ

the trajectories of photons with ðkθ; kϕÞ ≠ ð0; 0Þ can
become timelike, namely, photons propagate on the time-
like characteristic surfaces of S ¼ const because the gra-
dient, kμ ¼ ∇μS is spacelike. We should note that for
photons moving in the radial direction, the trajectories are
also null even in the spacetime geometry.

V. EXAMPLES

We consider two examples of BHs in NED, regular Fan-
Wang (FW) black holes and Eisntein-Born-Infeld BHs.

A. Regular black holes

As the first example, we consider the magnetic FW black
holes [14], which are solutions to Einstein equations
coupled with NED given by the Lagrangian,

LðF Þ ¼ 4μ

α

ðαF Þνþ3
4

ð1þ ðαF Þν4Þμþν
ν

; ð37Þ

where μ > 0, ν > 0 are dimensionless constants and α > 0
has the parameter of the theory with the dimension of
length squared. We note F > 0 for a purely magnetic case.
The Bardeen BHs [13] and Hayward BHs [15] are solutions
in NED with ðμ; νÞ ¼ ð3; 2Þ and ðμ; νÞ ¼ ð3; 3Þ, respec-
tively. In terms of x ≔ ðαF Þν=4, the energy conditions are
denoted by

(i) NEC⇔ FLF > 0 ⇔ εNEC ≔ νþ 3− ðμ− 3Þx > 0,
(ii) WEC ⇔ FLF > 0, L > 0 ⇔ εNEC > 0,
(iii) DEC ⇔ FLF > 0, L > 0, L − FLF > 0 ⇔

εNEC > 0, εDEC ≔ 1 − νþ ðμþ 1Þx > 0,
(iv) SEC ⇔ FLF > 0, L > 0, 2FLF − L > 0 ⇔

εNEC > 0, εSEC ≔ 1þ ν − ðμ − 1Þx > 0,
where we note that the Lagrangian L is always positive for
magnetic black holes and εNEC is always positive for
regular FW black holes with μ ¼ 3, ν ≥ 1, i.e., NEC and
WEC are always satisfied. The condition that timelike
photons exist under WEC is written as

gμνkμkν > 0 ⇔ LFF < 0

⇔ εγ ≔ ðμþ 1Þðμ − 3Þx2 − ðð3νþ 2Þμþ ν2 − 2νþ 6Þxþ ðνþ 3Þðν − 1Þ < 0: ð38Þ

In what follows, we classify four specific cases (i) μ ¼ 3,
ν ¼ 1, (ii) μ > 3, ν ¼ 1, (iii) μ ¼ 3, ν > 1, and
(iv) μ > 3, ν > 1.

(i) μ ¼ 3, ν ¼ 1:

εNEC¼ 4; εDEC¼ 4x; εSEC¼ 2−2x: ð39Þ

Thus, we can see from these that NEC, WEC, and
DEC are satisfied everywhere but SEC are satisfied
only for x ≥ 1, i.e., not satisfied in the neighborhood
of the regular center of black holes. On the other
hand, from

εγ ¼ −20x < 0; ð40Þ

we find

gμνkμkν > 0; ð41Þ

which means photons are timelike.

(ii) μ > 3, ν ¼ 1:

εNEC ¼ 4 − ðμ − 3Þx; εDEC ¼ ðμþ 1Þx;
εSEC ¼ 2 − ðμ − 1Þx: ð42Þ

From this, we can show that NEC, WEC, DEC, and
SEC are all satisfied for x < 2

μ−1, NEC, WEC, DEC

only are satisfied 2
μ−1 < x < 4

μ−3, and all energy

conditions are not satisfied for x > 4
μ−3. Since in

this case, εγ is written as

εγ ¼ ðμþ 1Þ½ðμ − 3Þx − 5�x; ð43Þ

we can summarize the energy conditions and photon
causality in Table I.

(iii) μ ¼ 3, ν > 1:

εNEC ¼ νþ 3; εDEC ¼ 1 − νþ 4x;

εSEC ¼ 1þ ν − 2x: ð44Þ
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From this, both NEC and WEC are satisfied every-
where. DEC and SEC are satisfied for ν−1

4
< x < νþ1

2
,

DEC is satisfied, but SEC is not for x > νþ1
2
, and

SEC is satisfied, but DEC is not for x < ν−1
4
. For

μ ¼ 3, εγ becomes

εγ ¼ ðνþ 3Þ½ðν − 1Þ − ðνþ 4Þx�: ð45Þ

Therefore, we can summarize the energy conditions
and photon causality in Table II.

(iv) μ > 3, ν > 1:
NEC, WEC, DEC, and SEC are all satisfied for

ν−1
μþ1

< x < νþ1
μ−1. NEC, WEC, DEC are satisfied, but

SEC is not for νþ1
2

< x < νþ3
μ−3, and NEC, WEC, SEC

is satisfied, but DEC is not for x < ν−1
μ−3. In general,

εγ ¼ 0 can be solved as

x ¼ x� ≔
3μνþ 2μþ ν2 − 2νþ 6�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ νÞð5μν2 þ 4μνþ 16μþ ν3 − 4ν2 þ 28νÞ

p
2ðμþ 1Þðμ − 3Þ : ð46Þ

From εγðν−1μþ1
Þ < 0, εγðνþ3

μ−3Þ < 0, we can see

0 < x− < ν−1
μþ1

< νþ3
μ−3 < xþ. Therefore we can sum-

marize the energy conditions and photon causality in
Table III.

In these cases, we can conclude that if we assume that DEC
is satisfied, photon trajectories can be timelike in the
spacetime geometry, though null in the effective geometry.

B. Eisntein-Born-Infeld black holes

As the second example, we consider BHs in the Einstein-
Born-Infeld theory [22], whose Lagrangian density of NED
is given by

LðF Þ ¼ −4β2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2β2

s �
; ð47Þ

which has the Maxwellian limit L ≃ F in the weak field
approximation F ≃ 0. It is easy to show that the first and
second derivatives have definite signatures,

LF ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2β2

q > 0; ð48Þ

LFF ¼ −
1

4β2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F
2β2

q
3
< 0: ð49Þ

It is sufficient to consider the purely magnetic case F > 0,
in which all the energy conditions are satisfied because it is
obvious that

(i) NEC ⇔ FLF ≥ 0,
(ii) WEC ⇔ FLF ≥ 0, L ≥ 0,
(iii) DEC ⇔ FLF ≥ 0, L ≥ 0, L − FLF ≥ 0,
(iv) SEC ⇔ FLF ≥ 0, L ≥ 0, 2FLF − L ≥ 0,

are satisfied everywhere. Therefore, from

gμνkμkν ¼ −
2FLFF

r2LF

�
ðkθÞ2 þ

ðkϕÞ2
sin2θ

�
≥ 0; ð50Þ

in general, the photons propagating along null geodesics in
the effective geometry move along timelike curves in the

TABLE I. The energy conditions and photon causality for
μ > 3, ν ¼ 1. “Yes” and “No” mean that the corresponding
energy condition in each region is satisfied and is not satisfied,
respectively, and “�” denote the signatures of gμνkμkν.

x 0<x< 2
μ−1

2
μ−1<x< 4

μ−3
4

μ−3<x< 5
μ−3

5
μ−3<x<∞

εNEC þ þ − −
εDEC þ þ þ þ
εSEC þ − − −
εγ or LFF − − − þ
NEC Yes Yes No No
WEC Yes Yes No No
DEC Yes Yes No No
SEC Yes No No No
gμνkμkν þ þ − þ

TABLE II. The energy conditions and photon causality for
μ ¼ 3, ν > 1 “Yes” and “No”mean that the corresponding energy
condition in each region is satisfied and is not satisfied,
respectively, and “�” denote the signatures of gμνkμkν.

x 0<x< ν−1
νþ4

ν−1
νþ4

<x< ν−1
4

ν−1
4
<x< νþ1

2
νþ1
2
<x<∞

εNEC þ þ þ þ
εDEC − − þ þ
εSEC þ þ þ −
εγ or LFF þ − − −

NEC Yes Yes Yes Yes
WEC Yes Yes Yes Yes
DEC No No Yes Yes
SEC Yes Yes Yes No
gμνkμkν − þ þ þ
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spacetime geometry except for photons moving in the
radial direction with ðkθ; kϕÞ ¼ ð0; 0Þ, which propagate
along null curves in both geometries.

VI. MORE GENERAL DISCUSSION

In more general cases, if we assume that the Lagrangian
density with the Maxwell limit in the weak field limit has
smoothness of L at F → 0, since

L ≃ F þ 1

2
LFF ð0ÞF 2 þ � � � ; ð51Þ

LF ≃ 1þ LFF ð0ÞF þ � � � ; ð52Þ

we can see

L − FLF ≃ −
1

2
LFF ð0ÞF 2: ð53Þ

If we assume that DEC,L ≥ 0,FL ≥ 0,L − FLF ≥ 0, are
satisfied in the weak field, the second-order derivative
LFF ð0Þ must be nonpositive, which means that photons
can be timelike or null in the weak field such as at infinity.
On the contrary, let us assume that photon propagation

can be timelike, i.e.,

gμνkμkν > 0;

which can be classified in two cases,LFF < 0,LF > 0 and
LFF > 0, LF < 0 from Eq. (35). The latter case does not
admit the Maxwell limit, and hence, we consider only the
former case. Moreover, from

∂F ðL − FLF Þ ¼ −FLFF > 0; ð54Þ

we find that

L−FLF > ðL−FLF ÞjF¼0¼0; L>LjF¼0¼0; ð55Þ

which means that DEC holds in such a region. In other
words, the violation of DEC implies the existence of “faster
than light” photons.
However, we should note that, without the Maxwell

limit, the violation of DEC does not necessarily imply the
existence of the spacelike propagation of photons as seen in
examples shown in Tables II and III.

VII. SUMMARY AND DISCUSSION

In this paper, we have studied the causality of photon
propagation in NED when the energy conditions are
satisfied. As instances, we have considered the causality
of photons around static and spherically symmetric
Einstein-Born-Infeld BHs and well-known regular BHs
such as Bardeen BHs, Hayward BHs, and Fan-Wang BHs,
which can be regarded as static and spherically symmetric
solutions to the Einstein equations coupled with NED. For
such example, we have seen that as long as DEC is
satisfied, the photon trajectories can be timelike in the
spacetime geometry, though they are null in the effective
geometry; i.e., the light cone of the effective geometry does
not lie outside the light cone of the spacetime geometry.
In general, DEC can be interpreted as that the speed of

energy flow of matter is always less than the speed of light.
Hence, the existence of “faster than light photons” in NED
contradicts with DEC. Indeed, we have shown that the
violation of DEC always leads to the existence of such
photons, at least, in NED with the Maxwell limit, where we
should note that this cannot necessarily be true in NEDwith
no Maxwell limit; we have seen this in the examples of
RBHs. The timelike photons do not necessarily mean that
they can become massive since as can be seen from
Eq. (35), the causality depends on the directions of the
propagation; i.e., its propagation in the angular directions
becomes timelike but null in the radial direction.
In this paper, for simplicity, we have dealt with static and

spherically symmetric spacetimes with a purely magnetic
field or a purely electric field but we are not sure whether
our results are also true for spacetimes with both fields,

TABLE III. The energy conditions and photon causality for μ > 3, ν > 1. “Yes” and ”No” mean that the
corresponding energy condition in each region is satisfied and is not satisfied, respectively, and “�” denote the
signatures of gμνkμkν.

x 0 < x < x− x− < x < ν−1
μþ1

ν−1
μþ1

< x < νþ1
μ−1

νþ1
μ−1 < x < νþ3

μ−3
νþ3
μ−3 < x < xþ xþ < x < ∞

εNEC þ þ þ þ − −
εDEC − − þ þ þ þ
εSEC þ þ þ − − −
εγ or LFF þ − − − − þ
NEC Yes Yes Yes Yes No No
WEC Yes Yes Yes Yes No No
DEC No No Yes Yes No No
SEC Yes Yes Yes No No No
gμνkμkν − þ þ þ − þ
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where an easy construction is shown in Ref. [23], or
rotating regular black holes [24]. This deserves our future
work.
Finally, we wish to comment on the consistency with the

results by Gibbons and Herdeiro in [12]. As discussed by
them, the eigenvalues of the effective metric are propor-
tional to

μþ F ; μþ F ; μ − F ; μ − F ; ð56Þ

where μ is a root of the quadratic equation,

wμ2 þ μþ ω − wðF þ GÞ ¼ 0; ð57Þ

where G ≔ Fμν � Fμν. Here, for the one-parameter
Lagrangian density LðFÞ, the functions w and ω are
written as

w ≔
LFFLGG − L2

FG

LF ðLFF þ LGGÞ
¼ 0; ð58Þ

ω ≔
LF þ F ðLFF − LGGÞ þ 2GLFG

LFF þ LGG
¼ F þ LF

LFF
; ð59Þ

therefore, the function μ turns out to be

μ ¼ −F −
LF

LFF
: ð60Þ

The velocities of photons, the ratio of spacelike to timelike
eigenvalues, are given by

�
1;
μ−x
μþx

;
μ−x
μþx

�
¼
�
1;1þ2FLFF

LF
;1þ2FLFF

LF

�
; ð61Þ

where the fact that the first component in the above
equation is one means that there are two directions in
which the light cone in the effective geometry touches the
usual light cone in the spacetime geometry. Under DEC, the
condition of LFF < 0 is equivalent with that the light cone
in the effective geometry does not lie outside the light-cone
in the spacetime geometry; i.e., photons are timelike or null
in the spacetime geometry.
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