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We study the collisions of two scalar wave packets in the asymptotically flat spacetime and
asymptotically anti–de Sitter spacetime in spherical symmetry. An energy transfer formula is obtained,
y ¼ Cmimo=r, where y is the transferred energy in the collisions of the two wave packets; mi and mo are
the Misner-Sharp energies for the ingoing and outgoing wave packets, respectively; r is the areal radius and
collision place; and C ¼ 1.873 and C ¼ 1.875 for the asymptotically flat spacetime and asymptotically
anti–de Sitter spacetime circumstances, respectively. The formula is universal, independent of the initial
profiles of the scalar fields.
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I. INTRODUCTION

Gravitational collapse, closely related to the formation of
stars, galaxies, and large-scale structures, has been an
important subject in gravitation and cosmology. During
the collapse, the collision of matter fields and energy transfer
processes usually occur, significantly affecting the eventual
outcomes of collapse.
The dust fluid is a dominant matter field in the Universe.

Nakao et al. investigated the collision of two spherical thin
shells of dust fluid in the asymptotically flat spacetime, and
derived an expression for the energy transfer and change in
the 3-momentum [1]. Ida and Nakao extended these results
to spherically symmetric spacetime with charge and cos-
mological constant [2]. Cardoso and Rocha studied the
dynamics of two thin shells of perfect fluid confined in a
spherical box [3] and asymptotically anti–de Sitter (AdS)
spacetime [4], where critical behaviors and chaotic phe-
nomena were displayed.
Dafermos and Holzegel conjectured the instability of the

AdS spacetime [5,6]. This conjecture was verified by Bizon
and Rostworowski via numerical simulations [7]. By
simulating the evolution of a spherical massless scalar
field in the asymptotically AdS spacetime, Bizon and
Rostworowski observed that the initial parameter could
be classified according to the number of round trips in
space. When the initial parameter is large enough, the scalar
field collapses directly to form a black hole. A scalar field
with an arbitrarily small initial amplitude oscillates enough

round trips and eventually collapses to form a black hole.
They attributed this nonlinear instability to the diffusion of
energy from low to high frequencies, resulting in an energy
concentration in spacetime. Maliborski obtained similar
results for the collapse of a massless scalar field confined in
a timelike worldtube with a perfectly reflecting wall [8]. It
was demonstrated that energy tends to gather during thewave
packet movement in restricted systems in Refs. [7–15].
Cai et al. investigated the gravitational collapse of a massless
scalar field and discovered a new power-law behavior for the
time of gapped collapse. They studied the critical phenome-
non near the threshold of black hole formation, in order to
better understand the difference between the results in
restricted asymptotically flat spacetime and asymptotically
AdS spacetime.
Moschidis mathematically proved the instability of the

AdS spacetime using the Einstein-massless Vlasov system
[16,17]. Moschidis dropped some Vlasov particles into the
AdS spacetime, which created concentric waves of matter
in spacetime. Among the many concentric waves, the first
two waves contain the most matter and energy, so it is
sufficient to focus on them. The first wave will expand
outward, hit the boundary, and bounce back toward the
center. So does the second wave. When the first wave
bounces off the boundary and begins to contract toward the
origin, it will hit the second wave, which is still expanding.
After the first wave arrives at the origin, it will expand again
and cross the second wave that is still contracting.
Moschidis showed that the expanding wave always trans-
fers energy to the contracting one, with the transferred
energy near the origin being greater than near the outer
boundary. Consequently, the second wave obtains more and
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more energy from the first one. Eventually, a black hole
forms. For a review on the instability of the AdS spacetime,
see Ref. [18]. In this paper, we simulate the collisions
between two scalar wave packets in the asymptotically flat
spacetime and asymptotically AdS spacetime, and obtain
universal energy transfer formulas.
The paper is organized as follows. In Sec. II, we describe

the methodology on simulating collisions of two scalar
wave packets in the asymptotically flat spacetime and
asymptotically AdS spacetime. In Secs. III and IV, we
report the energy transfer formulas for the collisions in the
two spacetimes, respectively. The results are summarized in
Sec. V. Throughout the paper, we set 4πG ¼ c ¼ 1.

II. METHODOLOGY

A. Asymptotically flat spacetime

We first consider the collision of two scalar wave packets
in the asymptotically flat spacetime in spherical symmetry
with a reflecting wall on the outer boundary. The scalar
fields possess a potential VðϕÞ. The action for the system is
described as

S1 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∇μϕ∇μϕ − VðϕÞ

�
: ð1Þ

Einstein’s equation and the equation of motion of the scalar
field ϕ are

Rμν −
1

2
gμνR ¼ 8πGTμν; ð2Þ

∇μ∇μϕ ¼ V 0ðϕÞ; ð3Þ

where Tμν is the energy-momentum tensor for the scalar
field,

Tμν ¼ ∇μϕ∇νϕ − gμν

�
VðϕÞ þ 1

2
ð∇ϕÞ2

�
: ð4Þ

We run the simulation in the coordinates [7],

ds2 ¼ −Aðr; tÞe−2δðr;tÞdt2 þ 1

Aðr; tÞdr
2 þ r2dΩ2: ð5Þ

Then the equations are

A;r ¼
1 − A
r

− rAðΦ2 þ Π2Þ þ 2rVðϕÞ; ð6Þ

δ;r ¼ −rðΦ2 þ Π2Þ; ð7Þ

Π;t ¼
ðr2Ae−δΦÞ;r

r2
− eδV 0ðϕÞ; ð8Þ

Φ;t ¼ ðAe−δΠÞ;r; ð9Þ

where ð;rÞ and ð;tÞ denote the partial derivatives with respect
to r and t, respectively, Φ≡ ∂ϕ=∂r, and Π≡ A−1eδ∂ϕ=∂t.
Regarding the boundary conditions, for regularity con-

cern, we set A ¼ 1 and Φ ¼ 0 at the center. We use the
normalization δ ¼ 0 at the center, so that t is the proper
time at the center. On the outer boundary, we set A ¼ Const
and ϕ ¼ Const to characterize a nondissipative physical
system with a mirror on the outer boundary. The initial
conditions are set up as below:

Outgoing∶ ϕojt¼0 ¼ 0;

Πojt¼0 ¼ ϵ1 exp

�
−
tan2 π

2
ðr − r1Þ
σ21

�
: ð10Þ

Ingoing∶ ϕijt¼0 ¼ ϵ2 exp

�
−
tan2 π

2
ðr − r2Þ
σ22

�
;

Πijt¼0 ¼ 0: ð11Þ

We change the energy of the outgoing wave and ingoing
wave by varying ϵ1, σ1, r1 and ϵ2, σ2, r2, respectively. We
use the Misner-Sharp energy [19] to describe the total
energy inside a sphere of radius r,

m≡ r
2
ð1 − gμνr;μr;νÞ

¼ r
2
ð1 − AÞ

¼ 1

2

Z
r

0

AðΦ2 þ Π2Þr02dr0: ð12Þ

Denote mi and mo as the Misner-Sharp energies for the
spacetimes occupied by the (outer) ingoing and (inner)
outgoing wave packets, respectively. We define the point on
which jΦj is smaller by a factor of 3 orders of magnitude
than the maximum value of jΦj in the two wave packets as
the separation point between the two packets.

mo ≡mjr¼ro ; mi ≡mjr¼rb −mo; ð13Þ

where ro is the separation point and rb is the outer
boundary. The transferred energy is defined as the energy
change for the wave packets before and after the collision.
In the simulation, we integrate Eqs. (6) and (7) by the

fourth-order accurate finite-difference method, and evolve
Eqs. (8) and (9) by the fourth-order Runge-Kutta method.
The numerical code we use is described in detail
in Ref. [10].

B. Asymptotically AdS spacetime

Now we consider the collision of two massless scalar
fields in the asymptotically AdS spacetime in spherical
symmetry. We follow the methodology in Ref. [7]. The
action governing the dynamics of the system is expressed as
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S2 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ
16πG

−
1

2
∇μϕ∇μϕ

�
; ð14Þ

where Λ is the negative cosmological constant. Then the
equations of motion for the system are

Rμν −
1

2
gμνRþ Λgμν ¼ 8πGTμν; ð15Þ

∇μ∇μϕ ¼ 0: ð16Þ

We use the coordinates

ds2 ¼ l2

cos2x

�
−Aðx; tÞe−2δðx;tÞdt2 þ 1

Aðx; tÞ dx
2

þ sin2xdΩ2

�
; x∈

�
0;
π

2

�
; ð17Þ

where the AdS length scale l is related to Λ by l2 ¼ −3=Λ.
Then we obtain the equations

A;x ¼
1þ 2sin2x
sin x cos x

ð1 − AÞ − sin x cos xAðΦ2 þ Π2Þ; ð18Þ

δ;x ¼ − sin x cos xðΦ2 þ Π2Þ; ð19Þ

Π;t ¼
ðtan2xAe−δΦÞ;x

tan2x
; ð20Þ

Φ;t ¼ ðAe−δΠÞ;x; ð21Þ

whereΦ≡ ∂ϕ=∂x andΠ≡ A−1eδ∂ϕ=∂t. It is notable that the
length scale l only appears in the definition of energy and is
absent in the equations of motion.
Regarding the boundary conditions, for regularity con-

cern, we set A ¼ 1 and Φ ¼ 0 at the center. We use the
normalization δ ¼ 0 at the center. For regularity concern,
we set A ¼ 1 on the outer boundary x ¼ π=2. In addition,
we set ϕ ¼ Const on the outer boundary. The initial
conditions are set up as below:

Outgoing∶ ϕojt¼0 ¼ 0;

Πojt¼0 ¼ ϵ3 exp

�
−
tan2 π

2
ðx − x3Þ
σ23

�
; ð22Þ

Ingoing∶ ϕijt¼0 ¼ ϵ4 exp

�
−
tan2 π

2
ðx − x4Þ
σ24

�
;

Πijt¼0 ¼ 0: ð23Þ

The Misner-Sharp energy m within a sphere of radius
rð¼ l tan xÞ can be written as [20]

m≡ r
2

�
1þ r2

l2
− gμνr;μr;ν

�

¼ lð1 − AÞ sin x
2cos3x

¼ l
2

Z
x

0

AðΦ2 þ Π2Þtan2x0dx0: ð24Þ

For simplicity, we set l ¼ 1. In the simulation, we
integrate Eqs. (18) and (19) by the fourth-order accurate
finite-difference method, and evolve Eqs. (20) and (21) by
the fourth-order Runge-Kutta method.

III. RESULT I: ENERGY TRANSFER IN THE
ASYMPTOTICALLY FLAT SPACETIME

A. Energy transfer for VðϕÞ= 0
By numerically integrating Eqs. (6)–(9), we simulate the

collision of two scalarwave packets in the asymptotically flat
spacetime. In this subsection, we set VðϕÞ≡ 0. We impose
the outer boundary at r ¼ 1. The first wave packet is placed
near the origin andwillmove outwards, and the second one is
put near the outer boundary and will move inwards. As
shown in Fig. 1, we observe that the transmitted energy
during the collision of the two packets always flows from the
outgoing wave to the ingoing one, which is consistent with
the results obtained in Refs. [16,17].
We fix the parameters in the initial condition for the

outgoing wave (10), and vary those for the ingoing packet
(11). As shown in Fig. 2, we find that the transferred energy
y during the collisions has a simple expression with respect
to the mass of the ingoing wave packet mi,

y ¼ ð0.01717� 0.00002Þmi: ð25Þ

Similarly, as shown in Fig. 3, by fixing the parameters in
the initial condition for the ingoing wave (11), and varying
those for the outgoing one (10), we have

y ¼ ð0.06689� 0.00068Þmo: ð26Þ

In Figs. 2 and 3, the ranges for the masses, mi and mo,
are very limited. Actually, as shown in Fig. 4, when we
expand the ranges for mi and mo till black hole formation,
the results (25) and (26) remain valid. Some details are the
following:

(i) When the initial mass of the (outer) ingoing wave is
large enough, the ingoing wave will collapse to form
a black hole directly before colliding with the (inner)
outgoing wave. In this circumstance, the outgoing
wave will be totally absorbed into the black hole. So
the transferred energy y is equal to the initial mass
of the outgoing wave mo, which generates the
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horizontal line in Fig. 4(a). In Fig. 4(a), the critical
absorption point signifies the critical collision
of the two waves, which just leads to black hole
formation.

(ii) We also increase the initialmass of the (inner) outgoing
wave mo. Certainly, when mo is large enough, the
outgoing wave will directly form a black hole before
colliding with the (outer) ingoing wave. See Fig. 4(b).

FIG. 1. The change of energy for the (a) outgoing and (b) ingoing wave packets during the collision of two shells of massless scalar
fields in the asymptotically flat spacetime. Parameters in the initial profiles of the scalar fields in Eqs. (10) and (11): ϵ1 ¼ 200,
σ1 ¼ 1=50, r1 ¼ 0, ϵ2 ¼ σ2 ¼ 1=50, and r2 ¼ 0.9. The blank area in the middle part corresponds to the collision process.
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FIG. 2. The transferred energy y vs the initial energy mi of the ingoing wave packet with VðϕÞ ¼ 0 in the asymptotically flat
spacetime. We fix the parameters in the initial condition for the outgoing wave (10), ϵ1 ¼ 200, σ1 ¼ 1=50, r1 ¼ 0, and vary those for the
ingoing one (11), ϵ2, σ2, r2, respectively. (a), (b), and (c) Results obtained by varying ϵ2, σ2, and r2, respectively.
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FIG. 3. The transferred energy y vs the initial energy mo of the outgoing wave packet with VðϕÞ ¼ 0 in the asymptotically flat
spacetime. We fix the parameters in the initial condition for the ingoing wave (11), ϵ2 ¼ 1=500, σ2 ¼ 1=50, r2 ¼ 0.9, and vary those for
the outgoing one (10), ϵ1, σ1, r1, respectively. (a), (b), and (c) Results obtained by varying ϵ1, σ1, and r1, respectively.

LI-JIE XIN, JUN-QI GUO, and CHENG-GANG SHAO PHYS. REV. D 108, 124071 (2023)

124071-4



The combination of Eqs. (25) and (26) generates

y ¼ KðrÞmimo: ð27Þ

By fitting the numerical results of y=ðmimoÞ vs r, as shown
in Fig. 5, we obtain

y ¼ ð1.873� 0.050Þmimo

r
: ð28Þ

We run the simulation with three sets of initial data for the
two wave packets as described in Table I. As shown in
Fig. 5, the results remain the same. So the formula (28) is
universal and independent of the initial profiles of the wave
packets.
In Ref. [1], Nakao et al. studied the collision of two

spherical thin shells of dust. An energy transfer formula
was derived,

y ¼ −uai uoa
mimo

r
; ð29Þ

where uai and u
a
o are the 4-velocities for the shells and other

quantities are defined in the same way as above. With
Eqs. (28) and (29), one can see that the energy transfer
formulas for the collisions of scalar field and dust are
very close.

B. Energy transfer for VðϕÞ= 1
2 μ

2ϕ2

We also explore the collision of two massive scalar wave
packets. Let the potential VðϕÞ in Eq. (1) take the form
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FIG. 4. The results of (a) y vsmi and (b) y vsmo when the ranges ofmi andmo are expanded in comparison with Figs. 2 and 3. (a) We
fix the parameters in the initial condition for the outgoing wave (10), ϵ1 ¼ 200, σ1 ¼ 1=50, r1 ¼ 0, and vary ϵ2 for the ingoing one (11).
The critical absorption point signifies the critical collision of the two waves, which just leads to black hole formation. The horizontal line
indicates that the (outer) ingoing wave collapses to form a black hole before collisions, preventing the escape of the (inner) outgoing
wave from the black hole. (b) We fix the parameters in the initial condition for the ingoing wave (11), ϵ2 ¼ 1=500, σ2 ¼ 1=50, r2 ¼ 0.9,
and vary ϵ1 for the outgoing one (10). When mo is greater than the critical value, the (inner) outgoing wave will directly form a black
hole before colliding with the (outer) ingoing one.
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FIG. 5. The function K in Eq. (27) vs r. K ¼ 1.873=r. The
result is universal, independent of the initial profiles of the wave
packets described in Table I.

TABLE I. Three sets of initial conditions for the outgoing (10) and ingoing (11) wave packets.

Initial conditions Outgoing wave Ingoing wave

Set 1 ϕojt¼0 ¼ 0, Πojt¼0 ¼ ϵ1 exp
h
− tan2π

2
ðr−r1Þ
σ2
1

i
ϕijt¼0 ¼ ϵ2 exp

h
− tan2π

2
ðr−r2Þ
σ2
2

i
, Πijt¼0 ¼ 0

Set 2 ϕojt¼0 ¼ 0, Πojt¼0 ¼ ϵ1r3 exp
h
− ðr−r1Þ2

σ2
1

i
ϕijt¼0 ¼ ϵ2r3 exp

h
− ðr−r2Þ2

σ2
2

i
, Πijt¼0 ¼ 0

Set 3 ϕojt¼0 ¼ ϵ1 tanhðr1−rσ1
Þ, Πojt¼0 ¼ 0 ϕijt¼0 ¼ 0, Πijt¼0 ¼ ϵ2 exp

h
− tan2ðr−r2Þ

σ2
2

i
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VðϕÞ ¼ 1

2
μ2ϕ2; ð30Þ

and set μ2 ¼ 5. We put the two wave packets in the same
places as in the massless scalar field circumstance. We
obtain

y ¼ ð0.01718� 0.00004Þmi; ð31Þ

y ¼ ð0.06614� 0.00068Þmo; ð32Þ

y ¼ KðrÞmimo ¼ ð1.879� 0.042Þmimo

r
: ð33Þ

See Figs. 6 and 7. The coefficients in Eqs. (31)–(33) are
very close to those in the massless scalar field circumstance
(25)–(28). We also vary the value of μ2 from 1 to 15, and
get similar results as the case of μ2 ¼ 5. See Table II.
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FIG. 6. The transferred energy y vs the initial energymi of the ingoing wave packet with VðϕÞ ¼ ð1=2Þμ2ϕ2 in the asymptotically flat
spacetime. μ2 ¼ 5. We fix the parameters in the initial condition for the outgoing wave (10), ϵ1 ¼ 200, σ1 ¼ 1=50, r1 ¼ 0, and vary
those for the ingoing one (11), ϵ2, σ2, x2, respectively. (a), (b), and (c) Results obtained by varying ϵ2, σ2, and r2, respectively.

FIG. 7. The function K in Eq. (33) vs r. VðϕÞ ¼ ð1=2Þμ2ϕ2 and
μ2 ¼ 5. K ¼ 1.879=r.

TABLE II. The coefficient C in the energy transfer formula y ¼ Cmimo=r vs μ2 in the function
VðϕÞ ¼ ð1=2Þμ2ϕ2.

μ2 Coefficient of y ∝ mi Coefficient of y ∝ mo Coefficient of y ∝ mimo=r

1 0.01718� 0.00004 0.06617� 0.00068 1.878� 0.042
2 0.01718� 0.00004 0.06616� 0.00068 1.878� 0.042
3 0.01718� 0.00004 0.06616� 0.00068 1.878� 0.042
4 0.01718� 0.00004 0.06615� 0.00068 1.878� 0.042
5 0.01718� 0.00004 0.06614� 0.00068 1.879� 0.042
6 0.01718� 0.00004 0.06612� 0.00068 1.878� 0.042
7 0.01717� 0.00003 0.06610� 0.00068 1.878� 0.042
8 0.01717� 0.00003 0.06606� 0.00068 1.878� 0.042
9 0.01716� 0.00004 0.06601� 0.00069 1.878� 0.042
10 0.01715� 0.00004 0.06654� 0.00106 1.879� 0.042
11 0.01713� 0.00003 0.06585� 0.00070 1.878� 0.042
12 0.01711� 0.00003 0.06574� 0.00071 1.876� 0.042
13 0.01707� 0.00003 0.06558� 0.00072 1.876� 0.042
14 0.01703� 0.00002 0.06539� 0.00073 1.876� 0.042
15 0.01698� 0.00001 0.06515� 0.00075 1.876� 0.041
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IV. RESULT II: ENERGY TRANSFER IN THE
ASYMPTOTICALLY AdS SPACETIME

With the same method implemented above, by integrat-
ing Eqs. (18)–(21), we obtain that in the asymptotically
AdS spacetime circumstance, the transferred energy is also
proportional to mi and mo,

y ¼ ð0.004634� 0.000025Þmi; ð34Þ

y ¼ ð0.02040� 0.00044Þmo: ð35Þ

As an example, we plot the result of y ∝ mi in Fig. 8. Then
we obtain

y ¼ KAdSðxÞmimo: ð36Þ

Equation (24) shows that the energies, mo and mi, are
proportional to l. On the other hand, the numerical results
generate that y is proportional to mimo. So a compatible
expression is y ∝ mimo=l, which has been verified by the
numerical results. As shown in Fig. 9(b), by fitting the
numerical results of y=ðmimoÞ vs x, we obtain

y¼ð1.875�0.135Þmimo

l tanx
¼ð1.875�0.135Þmimo

r
: ð37Þ

Regarding the result (37), we make the following
discussions:

(i) We examine the validity of the result (37). At the
limit x → 0, Eq. (37) is reduced to

y ≈ 1.875
mimo

lx
≈ 1.875

mimo

r
; ð38Þ

which is very close to the fitting results shown in
Fig. 9(c),

y ¼ ð1.812� 0.099Þmimo

lx
≈ 1.812

mimo

r
: ð39Þ

Note that at the limit x → 0, the metric for the
asymptotically AdS spacetime (17) is reduced to the
form for the asymptotic flat spacetime (5). Corre-
spondingly, Eqs. (38) and (39) are very close to the
energy transfer formula in the asymptotically flat
spacetime (28).

According to Eq. (37), the transmitted energy
asymptotes to zero at the limit x → π=2. Thismatches
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FIG. 8. The transferred energy y vs the initial energy of the ingoing wave packet mi in the asymptotically AdS spacetime. We fix the
parameters in the initial condition for the outgoing wave (22), ϵ3 ¼ 200, σ3 ¼ 1=50, x3 ¼ 0, and vary those for the ingoing one (23), ϵ4,
σ4, x4, respectively. (a), (b), and (c) Results obtained by varying ϵ4, σ4, and x4, respectively.
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with the fact that x ¼ π=2 corresponds to the spatial
infinity of the AdS spacetime.

(ii) In Refs. [16,17], Moschidis mathematically proved
that in the collision of two shells of Vlasov particles
in the AdS spacetime, the transferred energy near the
origin is greater than that near the outer boundary.
Equation (37) matches well with Moschidis’ results.

(iii) Based on Eqs. (28) and (37), we speculate that the
energy transfer formula, y ¼ Cmimo=r, is valid in
general spherically symmetric spacetimes.

V. SUMMARY

The energy transfer during the collisions ofmatter fields is
a basic physical process in gravitational collapse, and affects
significantly the final outcomes of gravitational collapse.
With numerical simulations, we studied the collisions

of two scalar wave packets in the asymptotically flat

spacetime and asymptotically AdS spacetime. By fitting
the numerical results, we obtained succinct and universal
formulas for the energy transfer during the collisions of
matter fields. Such expressions bring us further information
on gravitational collapse and help to interpret the instability
of the enclosed spacetimes. We speculate that in general
spherically symmetric spacetimes, the energy transfer can
be written in a unified format, y ¼ Cmimo=r.
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