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The hyperbolic formulations of numerical relativity due to Baumgarte, Shapiro, Shibata, and Nakamura
(BSSN) and Nagy Ortiz and Reula (NOR), among others, achieve stability through the effective embedding
of general relativity within the larger Z4 system. In doing so, various elliptic constraints are promoted
to dynamical degrees of freedom, permitting the advection of constraint violating modes. Here we
demonstrate that it is possible to achieve equivalent performance through a modification of fully covariant
and conformal Z4 (FCCZ4) wherein constraint violations are coupled to a reference metric completely
independently of the physical metric. We show that this approach works in the presence of black holes and
holds up robustly in a variety of spherically symmetric simulations including the critical collapse of a scalar
field. We then demonstrate that our formulation is strongly hyperbolic through the use of a pseudodiffer-
ential first order reduction and compare its hyperbolicity properties to those of FCCZ4 and generalized
BSSN (GBSSN). Our present approach makes use of a static Lorentzian reference metric and does not
appear to provide significant advantages over FCCZ4. However, we speculate that dynamical specification
of the reference metric may provide a means of exerting greater control over constraint violations than what
is provided by current BSSN-type formulations.

DOI: 10.1103/PhysRevD.108.124070

I. INTRODUCTION

The formulations of numerical relativity based on the
Baumgarte, Shapiro, Shibata, and Nakamura (BSSN)
decomposition effectively achieve strong hyperbolicity
and stability by performing a partial embedding of general
relativity (GR) within the larger Z4 system [1–3]. In this
paper we demonstrate that the Z4 system is not uniquely
suitable for this purpose and present an alternative formu-
lation of GR that is also well suited for numerical relativity.
This formulation is based on an alternative embedding
of GR and holds up well in a variety of simulations in
spherical symmetry including those of black holes with
puncture initial data as well as in the critical collapse of the
massless scalar field. Additionally, we show that our new
formulation is strongly hyperbolic and, in fact, has the
same principal symbol as fully covariant and conformal
Z4 (FCCZ4).
The Z4 formulation takes its name from the introduction

of a four vector, Zμ, to the Einstein equations,

Rμν þ 2∇ðμZνÞ − 8π

�
Tμν −

1

2
gμνT

�
¼ 0: ð1Þ

In the context of general relativity, the evolution of this
system acts to advect and/or damp violations of the
Hamiltonian and momentum constraints. In the limit
Zμ → 0 we recover GR [4].

If we examine formulations such as NOR [5] and
generalized BSSN (GBSSN) [6] in detail, we find that
they are essentially minor variations of Z4-derivable for-
mulations in which the temporal component of Zμ is not
evolved and substitutions or additions of the Hamiltonian
and momentum constraints have been made [1–3,7–9]. The
case could also be made that the equations of motion of Z4
formalisms arise naturally while those of NOR and GBSSN
come from experimentation to achieve stability and strong
hyperbolicity.
In that same spirit of experimentation, we note that if we

assume the Einstein equations are very nearly satisfied,
such that their violation is contained in a tensor, Eμν:

ϵEμν ¼ 8π

�
Tμν −

1

2
gμνT

�
− Rμν; ð2Þ

where ϵ ≪ 1, then the Z4 equations (1) may be written as

∇μZν þ∇νZμ ¼ ϵEμν; ð3Þ

with trace given by

∇μZμ ¼ 1

2
ϵEμ

μ: ð4Þ

Taking the divergence of (3) and using the commutator of
covariant derivatives, we find
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□Zν ¼ −∇μ∇νZμ þ∇μϵEμν;

¼ −∇ν∇μZμ þ Rμ
λ
ν
μZλ þ ϵ∇μEμν;

¼ ϵ

�
−
1

2
∇νEμ

μ þ∇μEμν

�
− Rμ

νZμ: ð5Þ

Heuristically, Zμ evolves according to some complicated
wave equation on gμν, which is sourced by the deviation from
theEinstein equations. This is desirable since itmeans thatZμ

has characteristics with magnitude∼1 on gμν when ϵ is small
and gμν is not too curved. In the presence of significant
curvature, however, the picture is less clear and we note that
we have completely ignored the backreaction of Zμ on Eμν.
If we modify the Z4 formulation such that Zμ is no

longer directly coupled to the physical metric, and is
instead coupled to some other metric ̊gμν with associated
connection ∇̊μ:

∇̊μZν þ ∇̊νZμ ¼ 8π

�
Tμν −

1

2
gμνT

�
− Rμν; ð6Þ

we find,

∇̊μZν þ ∇̊νZμ ¼ ϵEμν; ð7Þ
with trace:

∇̊μZ̊
μ ¼ 1

2
ϵE̊μ

μ: ð8Þ

Here, variables accented with “�” have had a covariant
tensorial index raised with ̊gμν. Taking the divergence
of (7), we find:

□̊Z̊ν ¼ −∇̊μ∇̊νZ̊μ þ ∇̊μϵE̊
μν;

¼ −∇̊ν∇̊μZ̊
μ þ R̊μ

λ
ν
μZλ þ ϵ∇̊μE̊

μν;

¼ ϵ

�
−
1

2
∇̊νE̊μ

μ þ ∇̊μE̊
μν

�
− R̊μ

νZ̊μ: ð9Þ

As such, if we choose ̊gμν so that R̊μν vanishes, we might
expect Z̊μ to propagate with speed ∼1 on ̊gμν when ϵ is
small, regardless of the curvature of gμν. Although Sec. V
demonstrates that this intuition does not hold in practice, it
served to motivate the original investigation and the core
concept bears some resemblance to the modified harmonic
gauges of Kovacs and Reall in which an auxiliary metric
is used to control the speed of propagation of constraint
violating modes [10,11]. In what follows, we expand upon
this idea and present a formulation of the Einstein equations
based on a flat, time-invariant reference metric which yields
a system which performs very similarly to the standard
GBSSN [1,6] and FCCZ4 [2] formulations. Further work
with dynamical specification of the reference metric may
allow for more fine-grained control over constraint damp-
ing and stability properties.

In Sec. II we give a brief derivation of our formulation; a
more detailed derivation may be found in Appendices A
and B. Section III introduces the equations of motion for
the GBSSN and FCCZ4 formulations of numerical rela-
tivity which we make use of in our various comparative
analyses. In Sec. IV we compare the performance of
our formulation with FCCZ4 and GBSSN in a variety of
numerical tests including strong field convergence testing,
simulation of black holes and the critical collapse of the
scalar field in spherical symmetry. After demonstrating that
the method works in spherical symmetry, we shift gears and
analyse the hyperbolicity of our approach: Sec. V sees us
derive the conditions under which our method is strongly
hyperbolic and examine how it compares to both GBSSN
and FCCZ4. Finally, in Sec. VI we present our conclusions
and suggestions for future research into related formula-
tions of numerical relativity.

II. DERIVATION OF RCCZ4

We begin with the Z4 equations coupled to a reference
metric as in (6), which we refer to as reference metric
Z4 (RZ4), with the aim of developing an ADM decom-
position equivalent of the system. Once we have this initial
value formulation, we perform a decomposition similar to
GBSSN or FCCZ4 in terms of a conformal metric and
conformal trace-free extrinsic curvature, arriving at refer-
ence metric covariant and conformal Z4 (RCCZ4). Again,
more details are provided in Appendices A and B.
Using standard notation in which nμ is the unit normal to

the foliation in a 3þ1 decomposition, α is the lapse, βi is
the shift and γij is the induced 3-metric on the foliation, the
RZ4 equations (with damping parameters κ1 and κ2) may
be written in canonical form as:

Rμν −
1

2
gμνRþ 2∇̊ðμZνÞ − gμν∇̊ðαZβÞgαβ

− κ1
h
2nðμZνÞ þ κ2gμνnσZσ

i
− 8πTμν ¼ 0: ð10Þ

Equivalently, the trace reversed form is

Rμν þ 2∇̊ðμZνÞ − 8π

�
Tμν −

1

2
gμνT

�

− κ1
h
2nðμZνÞ − ð1þ κ2ÞgμνnσZσ

i
¼ 0: ð11Þ

Taking the trace (with respect to gμν) of (11) yields:

Rþ 2∇̊ðμZνÞgμν þ κ1ð2þ 4κ2ÞnμZμ þ 8πT ¼ 0: ð12Þ

From here we roughly follow the ADM derivations
of [12,13] and take projections of (10)–(12) onto and
orthogonal to the spatial hypersurfaces which foliate four
dimensional spacetime in a standard 3þ1 decomposition
(see Appendix A). As the focus of this paper is the
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exploration of the feasibility of alternative embeddings
of general relativity, we have made the choice to simplify
our investigation and forgo all forms of scale dependent
damping. In what follows, we set κ1 ¼ κ2 ¼ 0 in (10)–(12)
yielding the simpler set of equations:

Rμν−
1

2
gμνRþ2∇̊ðμZνÞ−gμν∇̊ðαZβÞgαβ−8πTμν¼0; ð13Þ

Rμν þ 2∇̊ðμZνÞ − 8π

�
Tμν −

1

2
gμνT

�
¼ 0; ð14Þ

Rþ 2∇̊ðμZνÞgμν þ 8πT ¼ 0: ð15Þ

We have considered only the simplest case where ̊gμν is a
time-invariant, curvature-free Lorentzian metric with ̊gtt ¼
−1; ̊gtj ¼ 0. With these restrictions, projection of (13)–(15)
yields the ADM equivalent of the RZ4 equations:

Lmγij ¼ −2αKij; ð16Þ
LmKij ¼ −DiDjαþ α

�
Rij þ KKij − 2KikKk

j

�
þ 4πα

�½S − ρ�γij − 2Sij
�þ 2αD̊ðiZ̄jÞ; ð17Þ

LmΘ ¼ α

2

�
Rþ K2 − KijKij − 16πρ

�þ αγijD̊iZ̄j

−
Θ
α
Lmαþ Z̄i

α

�
Lmβ

i − βjD̊jβ
i
�
; ð18Þ

LmZ̄i ¼ α
�
DjKj

i −DiK − 8πji
�
− 2Z̄jD̊iβ

j

þ ΘD̊iαþ αD̊iΘ; ð19Þ

where Lm ¼ ∂t − Lβ and the quantities Θ and Z̄i are
defined as,

Θ ¼ −nμZμ; ð20Þ
Z̄i ¼ γμiZμ; ð21Þ
Z̄i ¼ γijZ̄j: ð22Þ

Once again, we direct readers to Appendix A for a more
detailed derivation.
In order to cast (16)–(19) in a form better suited to

evolving generic spacetimes, we perform the same covariant
and conformal decomposition that wewould for GBSSN and
FCCZ4. We rewrite the 3-metric, γij, and extrinsic curvature,
Kij, in terms of the conformal factor, χ, the conformal
metric, γ̃ij, the trace of the extrinsic curvature, K, and the
trace-free extrinsic curvature Ãij:

γij ¼ e4χ γ̃ij; ð23Þ

Kij ¼ e4χ
�
Ãij −

1

3
γ̃ijK

�
: ð24Þ

We also define the quantities Δ̃i
jk and Δ̃i in terms of the

difference between the Christoffel symbols of γ̃ij and those
of a flat background 3-metric ̊γij: the latter is chosen to
coincide with the spatial portion of ̊γμν:

Γ̃i ¼ Γ̃i
jkγ̃

jk; ð25Þ

Δ̃i
jk ¼ Γ̃i

jk − Γ̊i
jk; ð26Þ

Δ̃i ¼ Γ̃i − Γ̊i
jkγ̃

jk: ð27Þ

Additionally, we define the quantity Λ̃i which plays the same
role as the conformal connection functions in BSSN [1] and
FCCZ4 [2]:

Λ̃i ¼ Δ̃i þ 2γ̃ijZ̄j; ð28Þ

Z̄i ¼ 1

2

�
Λ̃i − Δ̃i

�
e−4χ : ð29Þ

Finally, adopting the Lagrangian choice for the evolution of
the determinant of the conformal metric:

∂tγ̃ ¼ 0; ð30Þ

and defining the quantity Θ̃ in terms of Θ, α, Z̄i and βi:

Θ̃ ¼ αΘ − βiZ̄i; ð31Þ

we find the RCCZ4 equations of motion:

Lmχ ¼ −
1

6
αK þ 1

6
D̃mβ

m; ð32Þ

LmK ¼ −D2αþ α
�
Rþ K2 þ 2γijD̊ðiZ̄jÞ

þ 4πðS − 3ρÞ
�
; ð33Þ

LmΘ̃ ¼ α2

2

�
R − ÃijÃ

ij þ 2

3
K2 − 16πρþ 2γijD̊iZ̄j

�

− βj
�
βlD̊jZ̄l þ D̊jΘ̃

�

− αβj
�
DlÃ

l
j −

2

3
D̃jK − 8πjj

�
; ð34Þ

Lmγ̃ij ¼ −2αÃij −
2

3
γ̃ijD̃mβ

m; ð35Þ

LmÃij ¼ e−4χ
h
−DiDjαþ αRij − 8παSij þ 2αD̊ðiZ̄jÞ

i
TF

þ α
�
KÃij − 2ÃikÃ

k
j

�
−
2

3
ÃijD̃lβ

l; ð36Þ
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LmΛ̃i ¼ γ̃mnD̊mD̊nβ
i − 2ÃimD̃mα

þ 2αÃmnΔ̃i
mn þ

1

3
D̃iD̃nβ

n þ 2

3
Λ̃iD̃nβ

n

þ 4α

�
Z̄jÃ

ij þ 3ÃliD̃lχ −
1

3
D̃iK − 4πj̃i

�

þ 2D̃iΘ̃þ 2γ̃ij
�
βlD̊jZ̄l − Z̄lD̊jβ

l
�
; ð37Þ

LmZ̄i ¼ α

�
DlÃ

l
i −

2

3
D̃iK − 8πji

	
− Z̄lD̊iβ

l

þ βlD̊iZ̄l þ D̊iΘ̃: ð38Þ

Here, either Z̄i or Λ̃i may be viewed as the dynamical
quantity associated with the momentum constraint violations
and all quantities denoted by a tilde are raised and lowered
with the conformal metric. “TF” denotes trace free with
respect to the 3-metric γij and the Ricci tensor may be split
into scale-factor and conformal parts as

Rij ¼ R̃ij þ Rχ
ij; ð39Þ

with

R̃ij ¼ −
1

2
γ̃mnD̊mD̊nγ̃ij þ γ̃mðiD̊jÞΔ̃m þ Δ̃mΔ̃ðijÞm

þ 2Δ̃mnðiΔ̃jÞmn þ Δ̃mn
iΔ̃mnj; ð40Þ

Rχ
ij ¼ −2D̃iD̃jχ − 2γ̃ijD̃kD̃kχ þ 4D̃iχD̃jχ

− 4γ̃ijD̃kχD̃kχ: ð41Þ

Note that the equations of motion for Θ̃, (34), and Z̄i, (38),
are essentially sourced by violations of the Hamiltonian
and momentum constraints respectively. In terms of the
conformal decomposition these constraints then take the
form

H ¼ 1

2

�
Rþ 2

3
K2 − ÃijÃ

ij

�
− 8πρ; ð42Þ

Mi ¼ e−4χ
�
D̃jÃ

ij −
2

3
γ̃ijD̃jKþ 6ÃijD̃jχ − 8πj̃i

�
: ð43Þ

III. FCCZ4 AND GBSSN EQUATIONS
OF MOTION

In testing the viability of RCCZ4 as a formulation for
numerical relativity, we make use of the formulation of
FCCZ4 due to Sanchis-Gual et al. [2] along with the
formulation of GBSSN by Brown [14] as presented by
Alcubierre and Mendaz [1]. In our notation, the equations
of motion for FCCZ4 are

Lmχ ¼ −
1

6
αK þ 1

6
D̃mβ

m; ð44Þ

LmK ¼ −D2αþ αRþ αðK2 − 2ΘKÞ
þ 2αDiZ̄i þ 4παðS − 3ρÞ; ð45Þ

LmΘ ¼ α

2

�
R − ÃijÃ

ij þ 2

3
K2 − 2ΘK þ 2DiZ̄i

− 2Z̄iDi ln α − 16πρ

�
; ð46Þ

Lmγ̃ij ¼ −2αÃij −
2

3
γ̃ijD̃mβ

m; ð47Þ

LmÃij ¼ −
2

3
ÃijD̃mβ

m þ αÃijðK − 2ΘÞ

þ e−4χ
h
−DiDjαþ α

�
Rij þ 2DðiZ̄jÞ

− 8πSij
�i

TF
− 2αÃikÃ

k
j; ð48Þ

LmΛ̃i ¼ γ̃mnD̊mD̊nβ
i þ 2

3
Λ̃iD̃nβ

n þ 1

3
D̃iD̃nβ

n

− 2Ãik
�
D̃kα − 6αD̃kχ

�
þ 2αÃjkΔ̃i

jk −
4

3
αD̃iK

þ 2γ̃ik
�
αD̃kΘ − ΘD̃kα −

2

3
αKZ̄k

�

− 16παγ̃ijjj; ð49Þ

LmZ̄i ¼ α

�
DjÃ

j
i −

2

3
DiK þDiΘ − ΘDi ln α

− 2Z̄jÃ
j
i −

2

3
Z̄iK − 8πji

�
; ð50Þ

where, as with RCCZ4, either Z̄i or Λ̃i may be viewed
as the fundamental dynamical quantity and the two are
related via

Λ̃i ¼ Δ̃i þ 2γ̃ijZ̄j: ð51Þ

The equations of motion for GBSSN, meanwhile, are

Lmχ ¼ −
1

6
αK þ 1

6
D̃mβ

m; ð52Þ

LmK ¼ −D2αþ α

�
ÃijÃ

ij þ 1

3
K2

�
þ 4παðρþ SÞ; ð53Þ

Lmγ̃ij ¼ −2αÃij −
2

3
γ̃ijD̃mβ

m; ð54Þ

LmÃij ¼ e−4χ


−DiDjαþ αRij − 8παSij

�
TF

−
2

3
ÃijD̃mβ

m þ α
�
KÃij − 2ÃikÃ

k
j

�
; ð55Þ
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LmΛ̃i¼ γ̃mnD̊mD̊nβ
i−2ÃimD̃mα

þ2α

�
6ÃijD̃jχ−

2

3
γ̃ijD̃jK−8πj̃i

�

þ1

3

h
D̃i

�
D̃nβ

n
�þ2Λ̃iD̃nβ

n
i
þ2αÃmnΔ̃i

mn; ð56Þ

where we note that we have replaced the usual variable Δ̃i

with Λ̃i for notational consistency when comparing to
FCCZ4 and RCCZ4. Note that in the evaluation of GBSSN
dynamical quantities Λ̃i is substituted for Δ̃i, such that (40)
becomes

R̃ij ¼ −
1

2
γ̃mnD̊mD̊nγ̃ij þ γ̃mðiD̊jÞΛ̃m þ Λ̃mΔ̃ðijÞm

þ 2Δ̃mnðiΔ̃jÞmn þ Δ̃mn
iΔ̃mnj: ð57Þ

IV. COMPARISON OF GBSSN, FCCZ4 AND RCCZ4

This section presents the results of three strong field tests
that compare RCCZ4 to FCCZ4 and GBSSN in spherical
symmetry using a massless scalar field matter source. In
Sec. IVAwe investigate the convergence of each formalism
for subcritical initial data on uniform grids. Section IV B
then studies the relative performance of each method
in simulating black hole spacetimes with puncture initial
data [12,15]. Finally, Sec. IV C investigates the perfor-
mance of each formalism in the context of critical collapse,
where we tune to the threshold of black hole formation
using adaptive mesh refinement (AMR).
For all investigations, we work in spherical symmetry

with conformal spatial metric, γ̃ij,

γ̃ij ¼

2
64
gaðt; rÞ 0 0

0 r2gbðt; rÞ 0

0 0 r2 sin2 θgbðt; rÞ

3
75; ð58Þ

unit normal, nμ, to the foliation,

nμ ¼ 1

αðt; rÞ


1 −rβaðt; rÞ 0 0

�
; ð59Þ

trace-free extrinsic curvature, Ãi
j,

Ãi
j ¼

2
64
Aaðt; rÞ 0 0

0 Abðt; rÞ 0

0 0 Abðt; rÞ

3
75; ð60Þ

stress tensor, Sij,

Sij ¼

2
64
Saðt; rÞ 0 0

0 Sbðt; rÞ 0

0 0 Sbðt; rÞ

3
75; ð61Þ

momentum density, ji,

ji ¼ 

rjaðt; rÞ 0 0

�
; ð62Þ

conformal connection functions Δ̃i and Λ̃i,

Δ̃i ¼ 

rΔ̃aðt; rÞ 0 0

�
; ð63Þ

Λ̃i ¼ 

rΛ̃aðt; rÞ 0 0

�
; ð64Þ

and spatial projections of Zμ,

Z̄i ¼


rZ̄aðt; rÞ 0 0

�
: ð65Þ

We take a massless scalar field, ψðt; rÞ, with stress-energy
tensor,

Tμν ¼ ∇μψ∇νψ −
1

2
gμν∇λψ∇λψ ; ð66Þ

as our matter model.
The equations of motion are found through application

of the results of Secs. II and III. In order to regularize the
equation of motion in the vicinity of black hole punctures,
we evolve the regular quantity X ¼ e−2χ in place of χ. As
defined above, all of α, βa, ga, gb, X, Ãa, Ãb, K, Δ̃a, Λ̃a, Θ,
Z̄a, ρ, j̃a, S, Sa and Sb are even functions of r as r → 0 and
the following identities hold:

ga ¼
1

g2b
; ð67Þ

Aa ¼ −2Ab: ð68Þ

A. Convergence and independent residual tests

We validate our evolution schemes and code through the
use of independent residual convergence and by monitoring
the convergence of various constraints. All tests are
performed for marginally subcritical initial data so that
slightly stronger initial data would result in black hole
formation.
Our code is implemented as a simple second order in

space and time Crank-Nicolson solver using a uniform grid
in r and t with fourth order Kreiss-Oliger dissipation [16]
applied at the current and advanced time levels. The code is
built on PAMR [17] and AMRD [18] and supports AMR in
space and time using the Berger-Oliger approach [19]. Grid
function values at refinement boundaries are set via third
order temporal interpolation.
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Our independent residual evaluators take the form of
alternative discretizations of the ADM equations applied to
our computed solutions. The application of these alter-
native discretizations helps to ensure that our evolution
scheme is free of subtle flaws while our use of the ADM
equations (as opposed to GBSSN, FCCZ4 or RCCZ4), aids
in demonstrating convergence to GR rather than some other
differential system.
Returning to the specific calculations performed in this

subsection, the initial data is taken to be time symmetric
with the massless scalar field, ψ , set according to:

ψð0; rÞ ¼ ae−ðr−r0Þ2=σ2 ; ð69Þ
∂tψð0; rÞ ¼ 0: ð70Þ

Specifically, for our testing we have taken a ¼ 0.035,
σ ¼ 2 and r0 ¼ 12 so that, as mentioned above, we are
in the subcritical regime but relatively close to the critical
point of a ≈ 0.0362. The dynamics are therefore non-linear,
span several orders of magnitude, and are far from trivial.
Initial data for the conformal factor, X ¼ e−2χ , is deter-
mined by solving the Hamiltonian constraint on a finite grid
where X is assumed to behave as 1þ a=r at the outer
boundary. This grid is sized so that errors at the outer
boundary are unable to propagate into the region of interest
during the course of the convergence testing.
Our simulations are run with generalized 1+log lapses

and a Lambda driver shift given by

∂tα ¼ −2αK; ð71Þ
∂tα ¼ −2αðK − 2ΘÞ; ð72Þ
∂tα ¼ −2αðK − 2Θ̃Þ; ð73Þ

∂ttβ
i ¼ 3

4
∂tΛi − 2∂tβ

i; ð74Þ

where (71)–(73) are the slicing conditions used for
GBSSN, FCCZ4 and RCCZ4, respectively.
Figures 1–3 demonstrate convergence of the Hamiltonian

and momentum constraints for each of GBSSN, FCCZ4
and RCCZ4. In each figure, the dashed lines show norms
evaluated on a r ¼ ½0; 64� grid at fixed resolutions of 1025,
2049 and 4097 points, respectively. AMR calculations with a
per-step error tolerance of 10−4 are shown with solid lines
and demonstrate that with an appropriate choice of param-
eters, the adaptive computations remain within the conver-
gent regime. For each simulation, and prior to the evaluation
of their norm, the constraints are interpolated to a uniform
grid of fixed resolution. This enables direct comparison of
the convergence rates among the simulations. In these
figures, a factor of 4 difference in the independent resi-
duals or constraint maintenance between runs which differ
by a factor of 2 in grid spacing indicates second order
convergence.

Figures 4–7 show the performance of each formalism
relative to one another. The simulations are run at a
resolution of 4097 grid points on a grid which extends
to r ¼ 64 (corresponding to the most refined unigrid run of
Figs. 1–3). We choose the domain on which the norms are
evaluated such that signals have not had sufficient time to
propagate from the outer boundary (which is set assuming
X ¼ 1þ a=r for some value a) into the domain of interest.

FIG. 1. l2 norms of the Hamiltonian and momentum constraint
violations for the GBSSN formulation. Simulations are shown for
fixed resolutions (dashed lines) of 1025, 2049 and 4097 points.
Results from an AMR simulation with a relative local error
tolerance of 10−4 are shown as the solid colored lines. The AMR
simulations are well within the convergent regime.

FIG. 2. l2 norms of the Hamiltonian and momentum constraint
violations for the FCCZ4 formulation. Simulations are shown for
fixed resolutions (dashed lines) of 1025, 2049 and 4097 points.
Results from an AMR simulation with a relative local error
tolerance of 10−4 are shown as the solid colored lines. The AMR
simulations are observed to be well within the convergent regime.
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It should be stressed that for all of the norms plotted in
Figs. 4–7, the solutions are well resolved. The significant,
and previously studied, improvements of the FCCZ4
method over GBSSN [7] in maintaining the Hamiltonian
constraint and independent residuals is a real effect which is
present even at high resolutions.

B. Evolution of black hole spacetimes

In order for RCCZ4 (or a to-be-developed formalism
based upon similar principles) to be competitive with
GBSSN or FCCZ4 in the domain of strong field numerical
simulations (which frequently involve singularities), it
first needs to be capable of stably evolving black holes.

FIG. 3. l2 norms of the Hamiltonian and momentum constraint
violations for the RCCZ4 formulation. Simulations are shown for
fixed resolutions (dashed lines) of 1025, 2049 and 4097 points.
Results from an AMR simulation with a relative local error
tolerance of 10−4 are shown as the solid colored lines. The AMR
simulations are well within the convergent regime.

FIG. 4. l2 norm of the Hamiltonian constraint violation for the
case of strong field initial data for each of GBSSN, FCCZ4 and
RCCZ4. The difference between RCCZ4 and FCCZ4 is largely
due to a more pronounced outgoing pulse of constraint violation
(which leaves nearly flat space in its wake) while the large static
constraint violation of GBSSN is concentrated at the origin and
leaves behind a metric that does not appear to be a valid solution
to the Einstein-scalar equations.

FIG. 5. l2 norm of the momentum constraint violation for the
case of strong field initial data for each of GBSSN, FCCZ4 and
RCCZ4. Not surprisingly, the performance of the three methods
is largely equivalent as they are all designed to advect away the
momentum constraint violation.

FIG. 6. l2 norm of Z̄r ¼ gaðΛ̃r − Δ̃rÞ=2 for the case of strong
field initial data for each of GBSSN, FCCZ4 and RCCZ4. As in
the case of the Hamiltonian constraint, the GBSSN errors are
concentrated at the origin where the curvature takes on its largest
values. This error remains essentially static save for the mitigating
factor of dissipation. At this resolution, FCCZ4 preserves the
constraint about 100 times better than GBSSN while RCCZ4
improves upon this by a further factor of ∼3 or so at late times.
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Here, we show that with minor modifications to the
standard 1+log and Delta driver gauges, RCCZ4 in spheri-
cal symmetry is at least as capable as FCCZ4 for the
evolution of black hole space times.
We start with standard time symmetric, black hole

puncture initial data [12,13] given by:

X ¼
�
1þM

2r

�
−2
; ð75Þ

α ¼
�
1þM

2r

�
−2
; ð76Þ

βa ¼ K ¼ Aa ¼ Ab ¼ 0; ð77Þ
ga ¼ gb ¼ 1: ð78Þ

The simulations are performed on large grids
(r ¼ ½0; 128M� with M ¼ 4) which are further refined
via fixed mesh refinement (FMR) [20]. The sizes of the
fixed refinement regions were determined by first evolving
the initial data with adaptive mesh refinement. At the
conclusion of this AMR run, each level of refinement had a
maximum extent and that maximum extent then defined the
limits of the corresponding level of refinement for the FMR
calculations. In the simulations, the use of mesh refinement
serves several purposes. First, it reduces the computational
load for high resolution simulations. Second, it allows
us to verify the compatibility of our implementation of
the GBSSN, FCCZ4 and RCCZ4 formalisms with AMR.
Third, by using fixed (as opposed to adaptive) mesh
refinement, we eliminate complications caused by each
formulation employing slightly different regridding proce-
dures. This, in turn, facilitates the analysis of convergence

properties. Table I shows the extent and refinement ratio of
each grid used for the black hole simulations.
We note that the quantities Z̄i and Θ are effectively error

terms which serve to propagate violations of the momen-
tum and Hamiltonian constraints and that they tend to grow
in the vicinity of refinement boundaries. As such, we find
that is is best to either evolve Λ̃i (rather than Z̄i) or to omit
Θ and Z̄i from the truncation error calculation used to
determine the placement of refined regions.
Figures 8 and 9 show the evolutions of α, βr and X as

well as the coordinate location of the apparent horizon.
determined by a zero of the quantity Ξ:

Ξ ¼ rX∂rgb
2

− rgb∂rX þ gbX −
rðK þ 3AbÞ

3
: ð79Þ

As is well known [1,14,15,21–23], puncture type initial
data evolves toward a trumpet like spacetime and performs
a form of automatic excision in the vicinity of the puncture.
In this region, the evolved and constrained quantities do not
converge.
The convergence of the l2 norms of the various con-

straints in the region external to the apparent horizon
(r ¼ ½rAH; 8M�) and for each formalism are shown in
Figs. 10–12. The dashed lines show simulations with
hr ¼ h0r , hr ¼ h1r and hr ¼ h2r while the solid color
denotes the most resolved hr ¼ h3r simulation. Figure 13
compiles the highest resolution runs of Figs. 10–12 and
permits a direct comparison of the implementations.
Independent residuals behave similarly and so have not
been plotted.
Examining Fig. 13, we see that for a stationary black

hole, GBSSN is favored over either FCCZ4 or RCCZ4.

FIG. 7. l2 norm of the independent residual evaluator for Kb. At
late times, as the solution should be approaching flat space,
RCCZ4 has better performance than either FCCZ4 or GBSSN.

TABLE I. Parameters for the meshes in fixed mesh refinement
convergence simulations. The fixed mesh refinement simulations
use a total of 7 refinement levels as labeled in the first column.
The extent of each mesh is displayed in columns 2 and 3 (rmin and
rmax). The grid spacings for the lowest resolution simulation are
shown in the fourth column (h0r ). Each of the final three columns
(h1r , h2r and h3r) give grid spacings for progressively higher
resolution simulations. As an example, the 6th refinement level
(Level 6) has a spatial extent of r ¼ ½0; 64�. For the most resolved
simulation (h3r), the grid spacing on that level is 2−5.

Level rmin rmax h0r h1r h2r h3r

1 0 512 8 4 2 1
2 0 512 4 2 1 2−1

3 0 256 2 1 2−1 2−2

4 0 256 1 2−1 2−2 2−3

5 0 128 2−1 2−2 2−3 2−4

6 0 64 2−2 2−3 2−4 2−5

7 0 32 2−3 2−4 2−5 2−6
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For a simulation where we are concerned with computing
the constraint violation external to the apparent horizon,
this makes intuitive sense: the formulation which does not
propagate Hamiltonian constraint violations away from
punctures or grid refinement boundaries should produce
superior results when the fields are nearly stationary.
However, as shown in [3], for more dynamical situations
we should not expect superior performance from BSSN-type
simulations even when constraint damping is employed.

As noted in Fig. 11, the errors in the momentum
constraint (and Z̄r) for FCCZ4 appear to be dominated
by the development of artifacts at the mesh refinement
boundaries. Doubtless, these issues could be mitigated
with proper attention. The relatively poor performance of

FIG. 9. Evolution of X and Ξ from t ¼ 0 to t ¼ 64M ¼ 256.
The initial puncture type initial data quickly evolves toward
trumpet type initial data with X going as r as opposed to r2 at the
puncture. As can be seen in the graph of Ξ, the coordinate
location of the apparent horizon (where Ξ ¼ 0) increases slowly
with coordinate time.

FIG. 10. l2 norms of the Hamiltonian and momentum constraint
violations for the GBSSN formulation. Each successive line
denotes a factor of 2 grid refinement. The solid line denotes the
most refined simulation.

FIG. 11. l2 norms of the Hamiltonian and momentum constraint
violations for the FCCZ4 formulation. The errors in the mo-
mentum constraint appear to be dominated by artifacts that arise
at the mesh refinement boundaries. Our GBSSN and RCCZ4
simulations used identical parameters and neither experienced the
same sort of issues arising at the mesh refinement boundaries.
Rather than attempting to find more optimal parameters which
could resolve these issues at the cost of preventing direct
comparison with GBSSN and RCCZ4, the simulation is left
as-is and we note that it would almost certainly be possible to find
better parameters for FCCZ4 which would mitigate these issues.

FIG. 8. Evolution of α and βr from t ¼ 0 to t ¼ 64M ¼ 256.
The initial puncture type initial data quickly evolves toward
trumpet type data with α going as r as opposed to r2 at the
puncture.
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FCCZ4 in comparison to GBSSN and RCCZ4 in these
simulations should therefore not be seen as a shortcoming
of the method, but as an issue arising from our demand that
the methods be compared via runs with identical param-
eters. Taking this into account, we see that at early times
(before the errors become dominated by issues arising from
grid refinement boundaries), the performance of each
method is roughly equivalent.

C. Critical collapse

Critical collapse represents the extreme strong field
regime of general relativity and is therefore an excellent
test case to determine the capabilities of a numerical
formulation. Here we compare the RCCZ4, FCCZ4 and
GBSSN formalisms, without constraint damping, in a test
that studies each formalism’s capacity to resolve the
threshold of black hole formation using gauges which
are natural extensions of the 1þ log slicing, (71)–(73), with
zero shift. For additional information concerning critical
collapse, see [24] for the original study concerning the
massless scalar field in spherical symmetry and [25,26] for
more general reviews.
For each of GBSSN, FCCZ4 and RCCZ4, we perform

AMR simulations of massless scalar field collapse with a
relative, per-step truncation error tolerance of 10−4. We
tune the amplitude of our initial data to the threshold of
black hole formation with a relative tolerance of ∼10−12.
Figures 14 and 15 plot the central value of the lapse and

the scalar field, respectively, against proper time at the
approximate accumulation point (the spacetime point at
which a naked singularity would form in the limit of infinite
tuning) for the subcritical simulation closest to criticality in
each formalism. Figures 16–18 plot the magnitudes of

FIG. 12. l2 norms of the Hamiltonian and momentum constraint
violations for the RCCZ4 formulation. Each successive line
denotes a factor of 2 grid refinement. The solid line denotes
the most refined simulation.

FIG. 13. l2 norms of the Hamiltonian constraint and momentum
constraint violation for the hr ¼ h3r run of each of the RCCZ4,
FCCZ4 and GBSSN formulations. Here we can observe key
differences in the constraint violating behaviors of each formu-
lation. As the GBSSN simulation does not couple the Hamil-
tonian constraint to a propagating degree of freedom, errors
within the horizon and at refinement boundaries are unable to
propagate. Due to the fact that the black hole is not moving and
the simulation quickly approaches a nearly stationary state, this
lack of time dependence is advantageous. As shown in Sec. IVA,
the opposite is true when the simulation is highly dynamic. In
those cases, both RCCZ4 and FCCZ4 provide orders of magni-
tude better constraint conservation.

FIG. 14. Lapse, α, at the accumulation point as a function of
− lnðτ⋆ − τÞ with τ⋆ an approximate accumulation time which is
different for each set of simulations. Each of GBSSN, FCCZ4 and
RCCZ4 are well suited to performing the critical evolutions. The
observed discrepancies in α are primarily due to our output of
data with insufficient frequency to resolve the peaks adequately.
As expected, we are able to resolve approximately 3 echoes at a
relative search tolerance of 10−12.
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constraint violations from these calculations. For these
simulations we expect all dimensionful quantities to grow
exponentially in − ln ðτ⋆ − τÞ due to the discretely self-
similar nature of the critical solution. To facilitate analysis of
the overall growth rate of constraint violations, we plot the
cumulative maximum, cummaxðfðtÞ; tÞ, of each quantity.
This function returns the largest magnitude encountered
on the domain of the simulation up until that point in time

(e.g. cummaxðR; t0Þ would return the largest value of R
encountered during the simulation for t ¼ ½0; t0�).
As seen in Figs. 16–18, when evolved using identical

error tolerances and parameters, we find that GBSSN does

FIG. 15. Scalar field, ψ , at the accumulation point as a function
of − lnðτ⋆ − τÞ. The discrete self similarity (DSS) is evident.
Tuning the amplitude of our initial data to the threshold of black
hole formation with a relative tolerance of ∼10−12 allows us to
resolve approximately three echoes.

FIG. 16. Cumulative maximal values of R, Z̄r, the Hamiltonian
constraint and momentum constraint violations for critical
collapse of the scalar field in the GBSSN formulation. For
clarity, we have not shown the behavior of the Hamiltonian
constraint postdispersal, where it is dominated by a large non
propagating remnant similar to that seen in Fig. 1.

FIG. 17. Cumulative maximal values of R, Z̄r, the Hamiltonian
constraint and momentum constraint violations for critical collapse
of the scalar field in the FCCZ4 formulation. For subcritical
simulations close to criticality, the postdispersal constraint violat-
ing remnant is much smaller than that of GBSSN but is still too
large to continue the simulation for long periods of time.

FIG. 18. Cumulative maximal values of R, Z̄r, the Hamiltonian
constraint and momentum constraint violations for critical
collapse of the scalar field in the RCCZ4 formulation. For
subcritical simulations close to criticality, the postdispersal
constraint violating remnant is much smaller than that of GBSSN
but is still too large to continue the simulation for long periods of
time. Close to criticality, the constraint violations grow noticeably
faster than either GBSSN or FCCZ4 (while still providing
adequate resolution to investigate criticality).

REFERENCE METRIC APPROACH TO THE Z4 SYSTEM PHYS. REV. D 108, 124070 (2023)

124070-11



the best at maintaining a constant level of relative constraint
violation throughout the simulation. We find that with a per-
step error tolerance of 10−4, GBSSN maintains a constant
error ratio of about 10−3 relative to the magnitude of the
Ricci scalar. For FCCZ4, this is reduced to 10−2 while
RCCZ4 performs similarly to FCCZ4 for the first echo or so
and then gradually accumulates more error, performing
worse than either GBSSN or FCCZ4 at late times.
At this point, the cause of this dip in performance for

RCCZ4 is unclear to us. However, it is entirely possible that
it is due to a suboptimal regridding strategy. Alternatively, it
could very well be that the variant of the 1+log slicing
condition used, Eq. (73), is not ideal for controlling the
Hamiltonian constraint. We tried several variations of the
form ∂tα ¼ −2αðK − 2fðαÞΘ̃Þ, which, for the most part,
resulted in similar performance and stability properties.
The superior performance of GBSSN in the approach to

criticality contrasts with its poor performance post dis-
persal. As in Sec. IVA, after a simulation achieves its
closest approach to criticality, the scalar field disperses to
infinity and would ideally leave flat space in its wake. Both
FCCZ4 and RCCZ4 perform better than GBSSN in this
regime although this is not evident when plotting cumu-
lative maxima as in Figs. 16–18.

V. HYPERBOLICITY OF RCCZ4

We now turn to an analysis of the hyperbolicity of RCCZ4.
We demonstrate that, relative to GBSSN, RCCZ4 has one
fewer zero-velocity modes, which roughly corresponds to
the fact that in Z4 derived formulations the equivalent of the
Hamiltonian constraint is dynamical [3,7,27]. As outlined
in [28–30], and in the context of numerical relativity, these
zero-velocity modes often correspond to constraint violations
and are thought to contribute to instabilities. Consequently,
formulations that minimize these modes are generally
favored.
Here we derive the conditions under which RCCZ4 is

hyperbolic, performing a pseudodifferential reduction [5,31]
following the procedure of Cao and Wu [28] who have
previously applied the method to a study of the hyperbolicity
of BSSN in fðRÞ gravity. We consider the RCCZ4 equations
of motion (32)–(38) in the vacuum and choose a generali-
zation of the Bona-Masso family of lapses [12,32] together
with generalized Lambda drivers for the shift. Specifically,
defining

∂0 ¼ ∂t − βi∂i ð80Þ

the equation for the lapse is

∂0α ¼ −α2hðα; χÞ
�
K − K0 −

mðα; χÞ
α

Θ̃
�
: ð81Þ

Our generalized Lambda driver takes the form

∂0β
i ¼ α2Gðα; χÞBi; ð82Þ

where the auxiliary vector Bi satisfies

∂0Bi ¼ e−4χHðα; χÞ∂0Λ̃i − ηðBi;αÞ; ð83Þ

and G and H are some specified functions.
We wish to determine the conditions under which the

RCCZ4 system is strongly hyperbolic. This essentially
amounts to verifying that the system admits a well-defined
Cauchy problem; i.e., that there exist no high frequency
modes with growth rates which cannot be bounded by
some exponential function of time [5]. We can thus study
strong hyperbolicity by linearizing the equations about
some generic solution and examining the resulting per-
turbed system in the high frequency regime where it takes
the form

∂0u ¼ Mi
∂iuþ Su: ð84Þ

Here, u is a vector of n perturbation fields, Mi are n-by-n
characteristic matrices and Su is a source vector that may
depend on the fundamental variables u but not on their
derivatives. Fourier transforming the perturbation u via

ûðωÞ ¼
Z

eiðωkxkÞuðxÞd3x; ð85Þ

we can write (84) as

∂0û ¼ iωiMiûþ Sû: ð86Þ

From this, we define the principal symbol of the system as
P1 ¼ ijωjP ¼ iωiMi. The hyperbolicity of the system can
then be discerned from the properties of P:

(i) If P has imaginary eigenvalues, the system is not
hyperbolic and cannot be formulated as a well-posed
Cauchy problem.

(ii) If P has only real eigenvalues but does not possess
a complete set of eigenvectors, the system is
weakly hyperbolic and may have issues with ill-
posedness.

(iii) If P has both real eigenvalues and a complete set of
eigenvectors, the system is strongly hyperbolic and
the Cauchy problem is well-posed.

Returning to the specific case of the RCCZ4 formulation
in vacuum, we linearize (32)–(38) about some generic
solution and consider perturbations in the high frequency
regime. In such a regime, the length scale associated with
the unperturbed solution will be large relative to the
perturbations and we may safely freeze the coefficients
in the perturbed equations. Upon decomposing the
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resulting linear constant coefficient into Fourier modes,
we obtain:

∂0χ̂ ¼ −
1

6
αK̂ þ 1

6
ðiωkÞβ̂k; ð87Þ

∂0K̂ ¼ αR̂þ ωlωmγ
lmα̂þ 2αγlmðiωlẐmÞ; ð88Þ

∂0
ˆ̃Θ ¼ 1

2
α2
�
R̂þ 2ðiωiÞẐjγ

ij
�
; ð89Þ

∂0
ˆ̃γij ¼ −2α ˆ̃Aij −

2

3
γ̃ijðiωmÞβ̂m þ γ̃imðiωjÞβ̂m

þ γ̃mjðiωiÞβ̂m; ð90Þ
∂0

ˆ̃Aij ¼ e−4χ


ωiωjγ

ijα̂þ αR̂ij þ 2α
�
iωðiẐjÞ

��
TF; ð91Þ

∂0
ˆ̃Λi ¼ γ̃mnð−ωmωnÞβ̂i þ

1

3
γ̃ikð−ωkωnÞβ̂n

−
4

3
αγ̃ijðiωjÞK̂ þ 2γ̃ikðiωkÞ ˆ̃Θ; ð92Þ

∂0Ẑi ¼ α

�
ðiωjÞ ˆ̃Akiγ̃

jk −
2

3
ðiωiÞK̂

	
þ ðiωjÞ ˆ̃Θ; ð93Þ

∂0α̂ ¼ −α2hK̂ þ αhm ˆ̃Θ; ð94Þ
∂0β̂

i ¼ α2GB̂i; ð95Þ
∂0B̂

i ¼ 2Hγim∂0Ẑm þHðiωnÞγ̃mi
∂0
ˆ̃γmn: ð96Þ

Here, since we are interested in the high frequency regime,
we have kept only the leading order derivative terms. In
these equations, R̂ij may either be considered as a function
of Λ̃i (as would be the case for GBSSN):

R̂ij ¼
1

2
γ̃lmðωlωmÞ ˆ̃γij þ

1

2
γ̃miðiωjÞ ˆ̃Λm þ 1

2
γ̃mjðiωiÞ ˆ̃Λm

þ 2ðωiωjÞχ̂ þ 2γijγ
lmðωlωmÞχ̂; ð97Þ

or as a function of Δ̃i (as derived in Sec. II):

R̂ij ¼
1

2
γ̃lmðωlωmÞ ˆ̃γij þ

1

2
γ̃miðiωjÞ ˆ̃Δm þ 1

2
γ̃mjðiωiÞ ˆ̃Δm

þ 2ðωiωjÞχ̂ þ 2γijγ
lmðωlωmÞχ̂: ð98Þ

In what follows, ϵ ¼ 1 corresponds to the use of Δ̃i while
ϵ ¼ 2 corresponds to the definition in terms of Λ̃i. Roughly
following [28], we introduce the variables:

ωi ¼ jωjω̃i; ð99Þ
jωj2 ¼ γijωiωj; ð100Þ

α̂ ¼ −iα
jωj â; ð101Þ

χ̂ ¼ −i
jωj X̂; ð102Þ

ˆ̃Θ ¼ αΩ̂; ð103Þ
ˆ̃Λi ¼ γ̃ij ˆ̃Λj; ð104Þ

β̂i ¼ −iα
jωj γ

ijb̂j; ð105Þ

B̂i ¼ γijB̂j; ð106Þ

ˆ̃γij ¼
−ie−4χ

jωj l̂ij; ð107Þ

ˆ̃Aij ¼ e−4χL̂ij; ð108Þ

which permits us to write (87)–(96) as a first order
pseudodifferential system of the form

∂0û ¼ ijωjαPû; ð109Þ

where

û ¼
h
â χ̂ Ω̂ K̂ b̂i B̂i

ˆ̃Λi l̂ij L̂ij

i
T
: ð110Þ

Provided that P is diagonalizable with purely real eigen-
values, the system will be strongly hyperbolic [5,28,30].
Then, following the methodology of Nagy et al. [5,28], we
decompose the eigenvalue equation

Pû ¼ λû; ð111Þ

by projecting û into longitudinal and transverse compo-
nents with respect to ω̃i via application of the projection
operator

qij ¼ γij − ω̃iω̃j: ð112Þ

Explicitly, we split all rank-1 and 2 covariant tensors into
their components in and orthogonal to qij. In such a
decomposition, symmetric rank-2 tensors on the 3D hyper-
surface with metric γij may be represented as:

X̂ij ¼ ω̃iω̃jX̂ þ 1

2
qijX̂

0 þ 2ω̃ðiX̂0
jÞ þ X̂0

hiji; ð113Þ

with

X̂ ¼ ω̃iω̃jX̂ij; ð114Þ
X̂0 ¼ qijX̂ij; ð115Þ
X̂0
i ¼ qijω̃kX̂jk; ð116Þ

X̂0
hiji ¼ qilqjm

�
X̂lm −

1

2
X̂0qlm

�
; ð117Þ

and where angle brackets denote a tensorial quantity which
is trace free with respect to qij. Similarly, covectors may be
split according to
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Ŷi ¼ ωiŶ þ Ŷ 0
i; ð118Þ

with

Ŷ ¼ ω̃iŶi; ð119Þ
Ŷ 0
i ¼ qijŶj: ð120Þ

Upon application of these tensor and vector decompo-
sitions to (109), we find that P can be written in block
diagonal form:

P ¼

2
64
PS 0 0

0 PV 0

0 0 PT

3
75; ð121Þ

with PS, PV and PT denoting scalar, vector and tensor
components. Following a lengthy calculation, we find the
following results for (1) the scalar components:

∂0â ¼ ijωjα
h
−hK̂ þ hmΩ̂

i
; ð122Þ

∂0b̂ ¼ ijωjα
h
GB̂

i
; ð123Þ

∂0B̂ ¼ ijωjα
�
4H
3

b̂ −
4H
3

K̂ þ 2HΩ̂
	
; ð124Þ

∂0X̂ ¼ ijωjα
�
1

6
b̂ −

1

6
K̂

	
; ð125Þ

∂0 l̂ ¼ ijωjα
�
4

3
b̂ − 2L̂

	
; ð126Þ

∂0 l̂
0 ¼ ijωjα

�
−
4

3
b̂þ 2L̂

	
; ð127Þ

∂0K̂ ¼ ijωjα
�
−â − 8X̂ þ 1

2
l̂ −

1

2
l̂0 þ 2ϵẐ

	
; ð128Þ

∂0Ω̂ ¼ ijωjα
�
−4X̂ þ 1

4
l̂ −

1

4
l̂0 þ ϵẐ

	
; ð129Þ

∂0L̂ ¼ ijωjα
�
−
2

3
â −

4

3
X̂ þ 1

3
l̂þ 1

6
l̂0 þ 4ϵ

3
Ẑ

	
; ð130Þ

∂0Ẑ ¼ ijωjα
�
L̂ −

2

3
K̂ þ Ω̂

	
; ð131Þ

(2) the vector components:

∂0b̂
0
i ¼ ijωjα

h
GB̂0

i

i
; ð132Þ

∂0B̂
0
i ¼ ijωjα

h
Hb̂0i

i
; ð133Þ

∂0l̂
0
i ¼ ijωjα

h
b̂0i − 2L̂0

i

i
; ð134Þ

∂0L̂
0
i ¼ ijωjα

h
ϵẐ0

i

i
; ð135Þ

∂0Ẑ
0
i ¼ ijωjα

h
L̂0
i

i
; ð136Þ

and (3) tensor components:

∂0 l̂
0
hiji ¼ ijωjα

h
−2L̂0

hiji
i
; ð137Þ

∂0L̂
0
hiji ¼ ijωjα

�
−
1

2
l̂0hiji

	
: ð138Þ

Note that since Âij is trace-free we have L̂
0 ¼ −L̂, which is

why no evolution equation for L̂0 appears. Expressing these
systems of equations as matrix equations of the form (111)
and (121), the eigenvalues of PS are

λ ¼ 0; 0; � 1; � ffiffiffi
ϵ

p
; �

ffiffiffi
h

p
; �

ffiffiffiffiffiffiffiffiffiffiffi
4

3
GH

r
: ð139Þ

Comparing with the results of [27,28] (which consider
various BSSN-type systems), we observe that RCCZ4
has one fewer zero velocity eigenvalue than GBSSN. It is
this eigenvalue which corresponds to the Hamiltonian
constraint advection and it is largely responsible for the
superior performance of FCCZ4 relative to GBSSN [3,7,27].
Treating R̃ij as a function of Λ̃i versus Δ̃i (ϵ ¼ 2 versus
ϵ ¼ 1) has the effect of increasing the speed of propagation
of several modes, but otherwise has no effect on hyper-
bolicity. In fact, we see that RCCZ4 appears to be well
defined for a fairly wide range of ϵ which roughly corre-
sponds to modified equations of motion in which the
Ricci tensor is supplemented by additional terms of the
form D̃ðiZ̄jÞ.
In the case of the vector components, the eigenvalues

of the matrix PV each have multiplicity 2 (rather than 3) due
to the projection constraints of the form ω̃iX̂i ¼ 0. The
eigenvalues are

λ ¼ 0; � ffiffiffi
ϵ

p
; �

ffiffiffiffiffiffiffiffi
GH

p
: ð140Þ

Finally, for the tensor components, the eigenvalues of PT

have multiplicity 2 (rather than 6) due to the three pro-
jection constraints of the form ω̃iX̂0

ij ¼ 0 and the trace-free
condition X̂0

hijiγ
ij ¼ 0. The eigenvalues are the same as we

would find for BSSN and ADM [5,27,28]:

λ ¼ �1: ð141Þ
In order to guarantee weak hyperbolicity, all of these
eigenvalues must be real, so we must have

GH > 0; h > 0; ϵ > 0: ð142Þ

Strong hyperbolicity additionally requires that each of PS,
PV and PT are diagonalizable. For this to be the case, all of
the following conditions must hold:

h ≠ ϵ; HG ≠
3

4
; HG ≠

3

4
h; HG ≠

3

4
ϵ; ð143Þ
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so that P has a complete set of eigenvectors. Here, ϵ ∉
f1; 2g would occur if we were to substitute some other
combination of Δ̃i and γ̃ijZ̄j in the definition of R̃ij.
Note that as h, G and H are generically functions of α
and χ, we cannot guarantee that our equations of motion
will be everywhere strongly hyperbolic. However, if
we perform the same sort of pseudodifferential decom-
position for FCCZ4 (using a slightly modified gauge),
we find that RCCZ4 and FCCZ4 share the same principal
part and we thus conclude that the two methods have
identical stability characteristics in the high frequency
limit.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have introduced our novel RCCZ4
formulation of numerical relativity. We have demonstrated
that it is possible to achieve roughly equivalent perfor-
mance to GBSSN and FCCZ4 through a modification of Z4
wherein constraint violations are coupled to a reference
metric completely independent of the physical metric.
We have shown that this approach works in the presence
of black holes and holds up robustly in a variety of 1D
simulations including the critical collapse of a scalar field.
In addition to stably evolving spherically symmetric
simulations in the strong field, we have demonstrated that
our formulation is strongly hyperbolic through the use of a
pseudodifferential first order reduction.
Our formulation of RCCZ4 chose the simplest possible

reference metric, but we can easily imagine formulations
in which the components of ̊gμν are chosen or evolved
in such a way so as to provide additional beneficial
properties aside from the vanishing of the Ricci tensor.
We suspect that it will be in modifications to the choice of
̊gμν in which the full utility of RCCZ4-like formulations is
realized.
The core idea behind RCCZ4—coupling the constraint

equations to a metric different from the physical
metric—could potentially be used to derive methods with
greater stability and superior error characteristics than
either GBSSN or FCCZ4. In our opinion, the main
takeaway should not be that RCCZ4, as it stands, is a
complete formulation with performance approaching or
exceeding FCCZ4 and GBSSN. Rather, the main lesson
should be that the Z4 formulation of general relativity can
be modified such that the constraints are coupled to a
metric other then the physical one, and that such a
modification may be useful in tailoring the properties
of the system as they pertain to constraint advection and
damping.
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APPENDIX A: 3+1 FORM OF RZ4

The RZ4 equations in canonical and trace-reversed form
with damping are given by (10) and (11). As we have been
predominantly interested in investigating scale invariant
problems, we set the damping parameters κ1 and κ2 to zero,
yielding the simpler set of equations:

Rμν−
1

2
gμνRþ2∇̊ðμZνÞ−gμν∇̊ðαZβÞgαβ−8πTμν¼0; ðA1Þ

Rμν þ 2∇̊ðμZνÞ − 8π

�
Tμν −

1

2
gμνT

�
¼ 0; ðA2Þ

Rþ 2∇̊ðμZνÞgμν þ 8πT ¼ 0: ðA3Þ

Here, (A1) is RZ4 written in canonical form, (A2) is
written in trace-reversed form and (A3) is the trace of (A2)
taken with respect to the physical metric gμν.
To derive the ADM equivalent of the RZ4 equations we

roughly follow the ADM derivations of [12,13] and take
projections of (A1)–(A3) onto and orthogonal to the spatial
hypersurfaces which foliate four dimensional spacetime
in a standard 3þ1 decomposition. In what follows, we
consider only the simplest case where ̊gμν is a time-invariant,
curvature-free, Lorentzian metric with ̊gtt ¼ −1; ̊gtj ¼ 0.

1. Spatial projection

We begin by finding the evolution equation for the
extrinsic curvature by projecting both indices of (A2) onto
Σ. The terms present in the Einstein equations follow the
ordinary ADM derivation so we concentrate on the terms
containing Zμ:

γμλγ
ν
σ∇̊μZν ¼ γμλγ

ν
σ

�
∂μZ̄ν þ Θ∂μnν

−Γ̊ρ
μνðZ̄ρ þ nρΘÞ

�
: ðA4Þ

We now note that, since ni ¼ 0, when restricting to spatial
indices we have:

γμlγ
ν
m∂μnν

¼ ðδμl þ nμnlÞðδνm þ nνnmÞ∂μnν;
¼ ðδμlδνm þ δμlnνnm þ δνmnμnl þ nμnlnνnmÞ∂μnν;
¼ ð∂lnm þ nνnm∂lnν þ nμnl∂μnm þ nμnlnνnm∂μnνÞ;
¼ 0; ðA5Þ

and therefore

2γμiγ
ν
j∇̊ðμZνÞ ¼ 2γμiγ

ν
j

�
∂ðμZ̄νÞ þ Θ∂ðμnνÞ

− Γ̊ρ
μνðZ̄ρ þ nρΘÞ

�
;

¼ 2γμiγ
ν
j

�
∂ðμZ̄νÞ − Γ̊ρ

μνðZ̄ρ þ nρΘÞ
�
: ðA6Þ
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Assuming ̊gμν ¼ δtt þ ̊γij with R̊ij ¼ Γ̊t
ij ¼ 0 (e.g. we take

the simplest possible flat background 3-metric), this sim-
plifies further to,

2γμiγ
ν
j∇̊ðμZνÞ ¼ 2γμiγ

ν
j

�
∂ðμZ̄νÞ − Γ̊k

μνZ̄k

�
;

¼ 2ðδμiδνj þ δμinνnj þ δνjnνni

þnμninνnjÞ
�
∂ðμZ̄νÞ − Γ̊k

μνZ̄k

�
;

¼ 2∂ðiZ̄jÞ − 2Γ̊k
ijZ̄k;

¼ 2D̊ðiZ̄jÞ: ðA7Þ

Here, we have made use of the fact that, with the
connection given above, the Christoffel symbols for the
spatial component of the background metric are identical to
those of its four dimensional counterpart. Adding (A7) to
the evolution equation for the extrinsic curvature,

LmKij ¼ −DiDjαþ α
�
Rij þ KKij − 2KikKk

j

�
þ 4πα

�
γijðS − ρÞ − 2Sij

�
; ðA8Þ

we recover (17).

2. Temporal projection

Next, we modify the Hamiltonian constraint by consid-
ering the full projection of (A1) onto nμnν. Focusing on
the terms that have been added to the original Einstein
equations we have:

nμnν∇̊μZν

¼ nμ∇̊μðnνZνÞ − nμZν∇̊μnν;

¼ −nμ∇̊μΘ − nμZν∇̊μnν;

¼ −
1

α
LmΘ − nμZν∇̊μnν; ðA9Þ

nμnνgμν
�∇̊λZσ

�
gλσ

¼ −
�∇̊λZσ

�
gλσ;

¼ −gλσ∇̊λðZ̄σ þ nσΘÞ;

¼ −
1

α
LmΘ − gλσ∇̊λZ̄σ − gλσΘ∇̊λnσ: ðA10Þ

Thus, we find

nμnν
�
2∇̊ðμZνÞ − gμν∇̊λZσgλσ

�

¼ −
1

α
LmΘ − 2nμ

�
Z̄ν þ nνΘ

�∇̊μnν

þ gλσ∇̊λZ̄σ þ gλσΘ∇̊λnσ: ðA11Þ

Now, expressing nμ and gμν in terms of α, βi and γij and
simplifying, (A11) becomes:

nμnν
�
2∇̊ðμZνÞ − gμν∇̊λZσgλσ

�

¼ −
1

α
LmΘ−

Θ
α2

Lmαþ
Z̄i

α2
�
Lmβ

i − βjD̊jβ
i
�

þ γijD̊iZ̄j: ðA12Þ

Adding these to the ADM Hamiltonian constraint,

H ¼ 1

2

�
Rþ K2 − KijKij

�
− 8πρ ¼ 0; ðA13Þ

and solving for LmΘ, we recover (18).

3. Mixed projection

We find the evolution equation for the momentum
constraint propagator by taking the mixed projection onto
γμλnν of the terms that have been added to the Einstein
equations in (A1). Upon restricting to spatial indices
we find:

γμinν∇̊μZν

¼ −γμi∇̊μΘ − γμiZν∇̊μnν;

¼ −∂iΘ − ninμ∇̊μΘ − γμiðZ̄ν þ ΘnνÞ∇̊μnν;

¼ −DiΘ − γμiðZ̄ν þ ΘnνÞ∇̊μnν; ðA14Þ
γμinν∇̊νZμ

¼ nν∇̊νðγμiZμÞ − Zμnν∇̊νγ
μ
i;

¼ nν∇̊νZ̄i − Zμnν∇̊νðδμi þ nμniÞ;
¼ nν∇̊νZ̄i − niZμnν∇̊νnμ þ Θnν∇̊νni;

¼ nν∇̊νZ̄i þ Θnν∇̊νni;

¼ 1

α
LmZ̄i − Z̄μ∇̊inμ; ðA15Þ

γμinν
�
gμνgλσ∇̊λZσ

�
¼ γμinνðγμν − nμnνÞ

�
gλσ∇̊λZσ

�
;

¼ 0: ðA16Þ

Now, expressing nμ and gμν in terms of the 3þ1 variables
(α, βi and γij) and simplifying the resulting expression,
we find:

γμanν
�
2∇̊ðμZνÞ − gμνgλσ∇̊lZm

�

¼ 1

α
LmZ̄i − Z̄μ∇̊inμ − D̊iΘ − γμiðZ̄ν þ ΘnνÞ∇̊μnν;

¼ 1

α
LmZ̄i þ

2

α
Z̄jD̊iβ

j − D̊iΘ − ΘD̊i lnðαÞ: ðA17Þ

Upon substitution of this expression into the ADM
momentum constraint,
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Mi ¼ DjKij − γijDjK − 8πji ¼ 0; ðA18Þ

and solving for LmZ̄i, we recover (19).

APPENDIX B: DERIVATION OF RCCZ4

Now that we have the ADM equivalent of the RZ4
equations, the derivation of the RCCZ4 equations proceeds
in a fairly straightforward manner. To recap, the ADM
equivalents of the RZ4 equations so far derived are

Lmγij ¼ −2αKij; ðB1Þ
LmKij ¼ −DiDjαþ α

�
Rij þ KKij − 2KikKk

j

�
þ 4πα

�½S − ρ�γij − 2Sij
�þ 2αD̊ðiZ̄jÞ; ðB2Þ

LmΘ ¼ α

2
ðRþ K2 − KijKij − 16πρÞ þ αγijD̊iZ̄j

−
Θ
α
Lmαþ Z̄i

α

�
Lmβ

i − βjD̊jβ
i
�
; ðB3Þ

LmZ̄i ¼ αðDjKj
i −DiK − 8πjiÞ − 2Z̄jD̊iβ

j

þ ΘD̊iαþ αD̊iΘ; ðB4Þ

and the process of determining the RCCZ4 equations
essentially boils down to substituting for the conformal
variables in a manner exactly analogous to FCCZ4 [2].
We observe that (B1), the evolution equation for γij, is

unchanged from the ADM case and therefore the evolution
equations for χ and γ̂ij are the same as in FCCZ4 and
GBSSN [2,6]:

Lmχ ¼ −
1

6
αK þ 1

6
D̃mβ

m; ðB5Þ

Lmγ̃ij ¼ −2αÃij −
2

3
γ̃ijD̃mβ

m: ðB6Þ

1. Evolution of the extrinsic curvature trace

Beginning with the Lie derivative of K along m:

LmK ¼ γijLmKij þ KijLmγ
ij; ðB7Þ

and (B2), the RZ4 form of the evolution of the extrinsic
curvature, we substitute (B1) for Lmγ

ij, to find (33):

LmK ¼ γijLmKij þ KijLmγ
ij

¼ −DiDiαþ αðRþ K2 − 2KijKijÞ
þ 4παð3½S − ρ� − 2SÞ þ 2αγijD̊ðiZ̄jÞ þ 2αKijKij

¼ −D2αþ αðRþ K2 þ 2γijD̊ðiZ̄jÞ

þ 4πðS − 3ρÞÞ: ðB8Þ

2. Evolution of the trace-free extrinsic curvature

The evolution of LmÃij is given by

LmÃij ¼ Lm

�
e−4χ

�
Kij −

1

3
γijK

��

¼ −4ÃijLmχ þ e−4χ
�
LmKij −

1

3
KLmγij

−
1

3
γijLmK

�
: ðB9Þ

If we express this equation in terms of the conformal
decomposition and make use of (B2) and (B8), the RZ4
evolution equations for Kij and K respectively, we find (36):

LmÃij ¼ e−4χ
h
−DiDjαþ αRij − 8παSij þ 2αD̊ðiZ̄jÞ

i
TF

þ α
�
KÃij − 2ÃikÃ

k
j

�
−
2

3
ÃijD̃lβ

l: ðB10Þ

Equivalently, we could start from the GBSSN equation
for Ãij [1,6]:

LmÃij ¼ e−4χ


−DiDjαþ αRij − 8παSij

�
TF

þ α
�
KÃij − 2ÃikÃ

k
j

�
−
2

3
ÃijD̃lβ

l; ðB11Þ

and note that (B2) is, save for the term involving D̊ðiZ̄jÞ,
identical to the ADM expression for the evolution for the
extrinsic curvature. If we define

R̄ij ¼ Rij þ 2D̊ðiZ̄jÞ; ðB12Þ

and note that this new pseudocurvature has the same sym-
metries as a true curvature, we may follow the GBSSN
derivation of LmÂij exactly and substitute the definition of
this new quantity as a final step. Doing so recovers (36) in a
much simpler manner.

3. Evolution of Theta

Essentially trivial substitution of the conformal variables
into (B3), the augmented Hamiltonian constraint, gives:

LmΘ ¼ α

2

�
R − ÂijÂ

ij þ 2

3
K2 − 16πρ

�
þ αγijD̊iZ̄j

−
Θ
α
Lmαþ Z̄i

α

�
Lmβ

i − βjD̊jβ
i
�
: ðB13Þ

4. Evolution of Lambda

From (28), the definition of Λ̃i we find the following
expression for the evolution of LmΛ̃i

LmΛ̃i ¼ LmΔ̃i þ 2Lm

�
γ̃ijZ̄j

�
: ðB14Þ
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In this equation, an expression for LmZ̄i may be found
through substitution of the conformal variables into (B4):

LmZ̄i ¼ α

�
DlÂ

l
i −

2

3
DiK − 8πji

�
− 2Z̄jD̊iβ

j

þ ΘD̊iαþ αD̊iΘ: ðB15Þ

Now, the quantity Δ̃i can be expressed in terms of the
action of the flat space covariant derivative on the con-
formal metric:

D̊jγ̃
ij ¼ −Δ̃i −

1

2
Dk ln

�
γ̃

̊γ

�
γ̃ik; ðB16Þ

and, noting that since γ̃ ¼ ̊γ (we have chosen our conformal
and flat space metrics to have the same determinant), Δ̃i

may be expressed as:

Δ̃i ¼ −D̊jγ̃
ij: ðB17Þ

We may then find an evolution equation for Δ̃i entirely in
terms of (B6), the equation of motion for γ̃ij, and the
definition of Δ̃i

jk:

LmΔ̂i ¼ γ̂mnD̊mD̊nβ
i − 2D̊j

�
αÂij

�þ 1

3
γ̂miD̊mD̊nβ

n

þ 2

3
Δ̂iD̊mβ

m: ðB18Þ

Finally, (B14) may be expressed as:

LmΛ̃i ¼ LmΔ̃i þ 2Lmðγ̃ijZ̄jÞ;

¼ γ̂mnD̊mD̊nβ
i − 2ÂijD̊jαþ 1

3
γ̂miD̊mD̊nβ

n

þ 2

3
Λ̃iD̃nβ

n þ 4αZ̄jÃ
ij þ 12αÃliΔ̃lχ −

4

3
αD̃iK

− 16παj̃i þ 2αD̃iΘþ 2αΘD̃i ln α

− 4Z̄lγ̃
ijD̊jβ

l: ðB19Þ

5. Simplifying substitution

Equation (B13) is not particularly well suited to evolu-
tion: when the lapse approaches 0, terms on the right hand
side approach infinity. Fortunately, it can be regularized by
defining a new evolutionary variable Θ̃ in terms of Θ, α, Z̄
and βi:

Θ ¼ Θ̃
α
þ βiZ̄i

α
: ðB20Þ

In terms of these variables, we recover the evolution forms
for LmΘ̃, LmΛ̃i and LmZ̄i expressed in (31), (37), and (38)
respectively:

LmΘ̃ ¼ α2

2

�
R − ÃijÃ

ij þ 2

3
K2 − 16πρþ 2γijD̊iZ̄j

�

− βj
�
βlD̊jZ̄l þ D̊jΘ̃

�

− αβj
�
DlÃ

l
j −

2

3
D̃jK − 8πjj

�
; ðB21Þ

LmΛ̃i ¼ γ̃mnD̊mD̊nβ
i − 2ÃimD̃mα

þ 2αÃmnΔ̃i
mn þ

1

3
D̃iD̃nβ

n þ 2

3
Λ̃iD̃nβ

n

þ 4α

�
Z̄jÃ

ij þ 3ÃliD̃lχ −
1

3
D̃iK − 4πj̃i

�

þ 2D̃iΘ̃þ 2γ̃ij
�
βlD̊jZ̄l − Z̄lD̊jβ

l
�
; ðB22Þ

LmZ̄i ¼ α

�
DlÃ

l
i −

2

3
D̃iK − 8πji

	
− Z̄lD̊iβ

l

þ βlD̊iZ̄l þ D̊iΘ̃: ðB23Þ
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