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The detection of low-frequency gravitational waves astronomy has marked the advent of a new era in the
domain of astrophysics and general relativity. Using the framework of interaction between gravitational
waves (GWs) and a point two-particles-like detector, within a linearized gravity approach, we propose a toy
detector model whose quantum state is being investigated at a low frequency of GWs. The detector is in
simultaneous interaction with GWs and an external time-dependent (tuneable) two-dimensional harmonic
potential. We observe that the interaction with low-frequency GWs naturally provides adiabatic
approximation in the calculation and thereby can lead to a quantal geometric phase in the quantum
states of the detector. Moreover, this can be controlled by tuning the frequency of the external harmonic
potential trap. We argue that such a geometric phase detection may serve as a manifestation of the footprint
of GWs. More importantly, our theoretical model may be capable of providing a layout for the detection of
very-small-frequency GWs through the Berry phase.
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I. INTRODUCTION

The ground-based laser interferometric techniques
employed in the LIGO and the Virgo experiments have
been phenomenally successful in the detection of gravita-
tional waves (GWs) through a classical treatment of the arms
of the interferometer [1]. The typical frequency range of
detection of GWs in these experiments has been 5 Hz–
20,000Hz (e.g., see Ref. [2]). However, the European Space
Agency launched the LISA Pathfinder mission in 2015 to
test the technology required for a full-fledged space-based
gravitational wave detector, with the goal of detecting much
lower frequencies [3]. In fact, it is anticipated that inflation in
the early Universe is the source of primordial gravitational
waves, which have a very low frequency [4]. It is crucial to
find these gravitational waves in order to confirm the
inflationary theory. In this paper, we propose a theoretical
modelwhich has potential to be a candidate for experimental
detection of such low-frequency GWs (LFGWs).1

Usually, GWs are detected through interaction with
laboratory apparatus like interferometer arms in LIGO.
Particularly, the very LFGWs are capable of providing
adiabatic change in the detectors. A heuristic explanation
is as follows. Consider GWs propagating along the
z direction, whose form in the linearized approxima-
tion in the transverse-traceless gauge can be taken as
hijðtÞ ∼ cosðωgt − kzÞ. This induces a deviation of the
trajectory of a point particle detector which is deter-
mined by ḣijðtÞ ∼ ωg sinðωgt − kzÞ in the Hamiltonian
(see Ref. [5] for details). Therefore, for the very-low-
frequency range (10−5 Hz < ωg < 1 Hz), the perturbations
in the Hamiltonian caused by the GWs are ultra-slowly-
varying functions of time under adiabatic passage. This
behavior can be quantified by a dimensionless parameter
(we will denote this as ϵ), defined through the system’s
internal and external timescales, which wewill delve into in
detail in the respective portion of our analysis. Then, these
LFGWs are capable of inducing a geometric phase [known
as the Berry phase (BP)] along with the usual dynamical
phase in the quantum state of the detector. If this is true, then
the LFGWs can be distinguished through the BP.
Before describing our model to investigate the above

geometric phase, let us now mention a few earlier inves-
tigations on the gravitationally induced BP. There has been
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an opinion among the physicists from quite some time
through various investigations that the quantummechanical
domain will provide more a prominent and experimentally
tenable trace of gravitational waves on matter [6]. It has
also been known that gravitons exhibit Berry’s geometric
phase shift [7] in the presence of a background Friedmann-
Lemaître-Robertson-Walker metric [8]. Besides, in [9], a
connection has been pointed out between the lower bound
of von Neumann entanglement entropy and the BP defined
for quantum ground states of a generic solid-state system.
Such a phase then serves as another plausible quantum
fingerprint of the interaction of GWs with matter [10,11]. In
fact, some investigations have been carried out to under-
stand the features of interaction between the gravitational
force and quantum fluids. In [12], Anandan and Chiao
investigated how by employing superfluids one can build
antennas for gravitational radiation and then, making use of
superconducting circuits, it is possible to detect gravita-
tional radiation [13]. Interactions generated through the
Lense-Thirring effect in rotating superconductors had
been considered by DeWitt and Papini by computing the
resultant quantum phase shift [14,15]. Apart from quantum
fluids, the classical Weber bar detectors have also been
previously studied in the quantum regime by using quan-
tum nondemolition measurements [16].
Motivated by the above facts and investigations, we now

propose the following theoretical model for a detector which
changes adiabatically under the LFGWs and therefore is
capable of acquiring BP on its quantum state. The detector
effectively consists of two uncoupled one-dimensional
anisotropic oscillators, and when the GWs pass through,
theywill weakly interact withGW. For example, each armof
the LIGO apparatus can be thought of as a point particle
which is oscillating with time-dependent frequency in two
independent directions. When a GW passes by, due to the
quadrupolar nature, it creates oscillations in the plane
perpendicular to its motion. Thus, the effective dynamics
of the interaction of GWs with the detector is a planar
problem. The interaction of linearized GWs with our
detector system is then manifested through a particular
quantal geometric phase shift in the quantum states of the
oscillators. Here, we provide the estimation of this phase
shift. Thus, we hope that visualization of the effects of this
BP on various physical phenomena can be a potential
candidate for knowing about LFGWs.
In fact, the universal appeal of the quantal BP can be

appreciated from the variety of contexts in which it has
surfaced such as the Born-Oppenheimer approximation in
molecular physics, fractional statistics, anomalies in gauge
field theories, the quantum Hall effect, and several other
situations [17–21]. Moreover, BP comes in great accor-
dance with the famous Unruh effect in the Unruh-DeWitt
detectors, as the presence of the Berry phase in a version of
Unruh-DeWitt detectors can serve as a direct consequence
of the Unruh effect [22]. This phase, if detected, will lead to

an indirect observation of the Unruh radiation. In this paper,
we intend to show the footprint of the GWs on the quantum
detectors. The gravitational counterpart of this geometric
phase is indicative of the deflection of the detector’s
trajectory on account of the passing of GWs [8]. Thus, a
study of emergent BP has its interesting interpretations and
consequences.
The organization of this article is as follows. In Sec. II, we

provide the quantum vibrating detector model with aniso-
tropic time-dependent frequencies interacting with the low-
frequency mode of GWs. The computation of the BP has
been presented in Sec. III. Section IV concludes the paper.
We also provide six appendixes to present the detailed steps
of the calculations and supporting analysis. In the first,
Appendix A, we provide a brief overview of linearized
gravitational waves. We then show in Appendix B how it is
possible to construct a Hamiltonian which is equivalent to
one we start with. This facilitates the subsequent compu-
tation. A brief derivation of BP in the Heisenberg picture is
then presented in Appendix C. In Appendix D, we provide
theBP’s derivation based in the Schrödinger picture. Finally,
we demonstrate an explicit computation of the BP and its
variations with respect to the detector frequency amplitude
in Appendix E.

II. VIBRATING DETECTOR MODEL

For the linearized version of Einstein’s theory of gravity,
it is observed that the separation of geodesics, perpendi-
cular to the direction of GW propagation, satisfies a very
simple relation ðd2ΔxiÞ=dt2 ¼ −Ri

0j0Δxj [5,23] (see also a
brief discussion in Appendix A). This can be considered as
the two-dimensional motion of a particle (hence, the spatial
indices i, j ¼ 1, 2), influenced by GWs, relative to a fixed
reference point under the forcing term given by −Ri

0j0Δxj.
Now, if we consider a detector, like LIGO, then the end
points of each of its arms can be taken as point particles. In
this scenario, each of the arms will follow two-dimensional
motion on a plane perpendicular to the direction of GW
propagation which is driven by this equation of motion. For
our case, we keep this detector under an influence of
another given force Fi (nongeometric); the explicit form
will be mentioned later.
Under this model, end points of each arm will be driven

by the equation of motion mẍl ¼ −mRl
0k0xk þ Fl, where

for brevity Δx’s is being denoted by x’s by considering a
fiducial fixed (reference) origin. Here, m is the mass of the
particle (e.g., end point of the arm). Now, using
Rj

0k0 ¼ ∂tΓj
k0, the Lagrangian corresponding to the above

equation is L0 ¼ P
jð12mẋj2 þ m

2

P
k x

jxk∂tΓ
j
0k − VjÞ,

which up to a total derivative term can be taken as

L ¼
X
j

�
1

2
mẋj2 −m

X
k

Γj
0kẋ

jxk − Vj

�
; ð1Þ
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where Vj represents the external potential corresponding to
the force Fj. The canonical Hamiltonian for (1) at the
linearized order is then

H ¼
X
j

�
p2
j

2m
þ
X
k

Γj
0kx

kpj þ VjðxaÞ
�
: ð2Þ

This Hamiltonian, written in a slightly different manner,
was recently considered in [24] to probe the quantum
nature of gravity in a two-particle detector model. In fact, a
similar model, introduced earlier in [25], has also been
employed in the context of noncommutative quantum
mechanics (see e.g., [26]) for a different purpose.
The GW is expressed as hjk ¼ 2χðtÞðϵ×σ1jk þ ϵþσ3jkÞ

[5,23]. Here, 2χðtÞ is the amplitude of the GW, and σ1jk is
the ðjkÞth element of the Pauli matrix σ1, and so on. Then,
the second term in (2) will provide a term like
∼ðx1p2 þ x2p1Þ, which corresponds to mutual interaction
between the two directions of the single arm through GWs.
To simplify the future calculation, it is customary to work
on those phase-space variables in which such cross-terms
can be eliminated. This can be done using unitary trans-

formations exi ¼ Uijxj and epi ¼ Uijpj with U ¼ e−
iθσ2
2 . For

our model, we take Vðx̃aÞ ¼ 1
2
m
P

j Ω2
jðtÞx̃2j , and then we

have the total Hamiltonian in Hermitian form as (see
Appendix B)

H ¼
X
i¼1;2

�
αp̃2

i þ βix̃2i
�
þ γðx̃1p̃1 þ p̃1x̃1Þ

− γðx̃2p̃2 þ p̃2x̃2Þ; ð3Þ

where α ¼ 1
2m ; βj ¼ 1

2
mΩ2

j , and γ ¼ χ̇ðtÞϵ̃þ. Here, we have
ϵ̃þ ¼ ϵþ cos θ þ ϵ× sin θ, with tan θ ¼ ϵ×

ϵþ
. Note that Eq. (3)

represents the Hamiltonian for two anisotropic one-
dimensional oscillators, each interacting independently
with GWs. Mutual interaction among the oscillators has
been avoided by these choices to investigate the sole effect
of GWs. This scenario can be understood as follows.
Initially, the end points of one of the arms of LIGO are
undergoing anisotropic oscillations in two perpendicular
directions. When a GW passes through these arms, both
Ω1;2ðtÞ in the potential, as described above, take the form of
slowly varying periodic functions of time. Their time
periods are finely adjusted to match the frequency of the
incoming LFGW mode. This adjustment results in the
Hamiltonian (3), which exhibits periodicity with a period of
T ¼ 2π

ωg
. The choice of making Ωi time dependent and

anisotropic for calculating Berry phases will be elaborated
on in the next subsection.
Just for completeness, it may be mentioned that the form

of V in (2) as a function of original coordinates can be
found by applying the reverse unitary transformation. In
this case, this is given by

X
j

Vjðx1; x2; tÞ ¼
1

4
mðΩ2

1 þ Ω2
2Þðx21 þ x22Þ

þ 1

4
mϵþðΩ2

1 −Ω2
2Þðx21 − x22Þ

þ 1

2
mϵ×ðΩ2

2 − Ω2
1Þx1x2: ð4Þ

This structure of the potential indicates coupling between
the harmonic oscillator modes, with the strength of cou-
pling determined by ϵ×. Furthermore, the choice of oscil-
lation frequencies is contingent on the value of ϵþ. Notably,
this type of potential has previously been employed in
the study of gravity-induced entanglement, as discussed
in [27,28]. However, we will work on tilde coordinates.
This will not only simplify the analysis, but also such a
choice incorporates only the interaction among the indi-
vidual oscillators and GWs, while the intrainteraction
between them does not appear.
It is worth highlighting that our choice to synchronize the

time periods of the detector’s frequency parameters with the
low-frequency gravitational wave’s frequency holds sig-
nificant importance. This synchronization is critical, as it
requires a system Hamiltonian involving multiple time-
dependent parameters with the same time period to induce a
nontrivial adiabatic Berry phase shift in the quantum
detector states [29]. Consequently, low-frequency gravita-
tional waves naturally trigger an adiabatic evolution in the
adjustable oscillator detector. This alignment is crucial for
preserving the cyclicity condition of the Hamiltonian,
which guarantees that a set of parameters, varied through
a closed path (C) and subsequently returned to their original
values, complies with the principles of the traditional
adiabatic theorem. Ultimately, this alignment paves the
way for the emergence of a nontrivial Berry geometric
phase.
Note that (3) can be rewritten in terms of the generators

of the SUð1; 1Þ group,

H ¼ αðTð1Þ
1 þ Tð2Þ

1 Þ þ
X
i¼1;2

βiT
ðiÞ
2 þ γðTð1Þ

3 − Tð2Þ
3 Þ; ð5Þ

where TðiÞ
1 ¼ p̃2

i , T
ðiÞ
2 ¼ x̃2i , and TðiÞ

3 ¼ x̃ip̃i þ p̃ix̃i are the
three Lie algebra elements of SUð1; 1Þ. It is a direct sum of
two independent SUð1; 1Þ algebras corresponding to the
two oscillator modes. The geometry associated with the
parameter space of SUð1; 1Þ when traversed by the state
vector cyclically, the vector picks up a geometric phase
shift after the complete cycle (see Ref. [30] for more
details). Therefore, the corresponding states must acquire
BP. We will now calculate this.

III. COMPUTATION OF BERRY PHASE

To perform the quantum mechanics, we define two
ladder operators,

LOW FREQUENCY GRAVITATIONAL WAVES THROUGH BERRY … PHYS. REV. D 108, 124069 (2023)

124069-3



a1;2 ¼ A1;2ðtÞ
h
p̃1;2 þ C1;2ðtÞx̃1;2

i
; ð6Þ

such that only the nonvanishing one is ½ai; a†i � ¼ 1 with

Ai¼
ffiffiffiffiffiffiffiffiffiffi

1
2mℏωi

q
, C1;2¼ 1

αð�γ− iω1;2

2
Þ, and ωi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

i −4γ2
p

>0.

The positive sign is for C1, and other one is for C2. These
two, along with their adjoints, readily diagonalize (3) as

H ¼ ℏ
X
j

ðωjaj†ajÞ þ
ℏ
2
ðω1 þ ω2Þ: ð7Þ

The time evolution of these operators is determined from
the Heisenberg equation of motion. This yields

ȧ1 ¼ ½M1 − η1�a1 þ η1a
†
1; ð8Þ

where M1 ¼ −iω1 þ Ȧ1

A1
and η1 ¼ Ċ1

2imω1
. The same for ȧ†1 is

obtained by taking the Hermitian conjugate of (8). Note
that γ is related to the GWs and so can be regarded as a
time-dependent parameter, which is taken to be varying
adiabatically. To quantify the adiabaticity, let us define a
dimensionless parameter ϵ as

ϵ ¼ Ti

Te
∼

ωg

ωn1;n2

≪ 1: ð9Þ

Here, Ti ¼ ℏ
En1 ;n2

∼ ω−1
n1;n2 represents the internal timescale,

whereωn1;n2 ¼ ðn1 þ 1
2
Þω1 þ ðn2 þ 1

2
Þω2 corresponds to the

instantaneous frequency associated with the nondegenerate
energy level En1;n2 ¼ ℏωn1;n2 , characterized by the quantum
numbers n1 and n2, of the system Hamiltonian (7).

On the other hand, the term Te ¼ j hn1;n2j
∂HðtÞ
∂t jfi

En1 ;n2
−Ef

j−1 ∼ ω−1
g

characterizes the external timescale. This is because the
parameter space of the system Hamiltonian depends on a
periodic function of time with a periodicity that depends on
ω−1
g , as mentioned earlier. In this context, ωg represents the

frequency of external gravitational wave perturbations. The
parameter ϵ quantifies how slowly the external perturbation
changes the systemHamiltonian compared to the energy gap
between the initial quantum states, defined by the quantum
numbers n1 and n2, and other final states represented by jfi.
Under the adiabatic approximation, we consider γðtÞ and

ΩiðtÞ as slowly varying periodic parameters. As a result, we
retain their first-order derivatives (representing the first
order in adiabaticity) while neglecting higher-order deriv-
atives (higher adiabaticity). Furthermore, we do not take
into account terms that involve the square of their first
derivatives. In this situation, a combination of (8) and that
for a†1 under adiabatic approximation yields

ä1 ¼ ðM1 − η1Þȧ1 − iω̇1a1 þ η1M̃1a
†
1: ð10Þ

Finally, eliminating a†1 by using (8), one obtains a linear
second-order differential equation for a1 as

ä1¼
�
2
Ȧ1

A1

þ i
Ċ1

2mω1

�
ȧ1−

�
ω2
1þ iðω̇1−η1ω1Þ

�
a1: ð11Þ

The solution of the above equation can be obtained using
a Wentzel-Kramers-Brillouin (WKB)-like trick. Consider
the ansatz

a1ðtÞ ¼ ρðtÞe1
2

R
dτ½i Ċ1

2mω1
þ2Ȧ1

A1
�; ð12Þ

where the time-dependent function ρðtÞ has to be deter-
mined. Then, a detailed calculation yields the solution as
(see Appendix C for details)

a1ðTÞ ¼ a1ð0Þe−i
R

T

0
ðω1−

γ̇ðτÞ
ω1ðτÞÞdτ: ð13Þ

This suggests that, apart from the usual dynamical phase

factor of e−i
R

T

0
ω1dτ, the system develops an additional

geometric phase given by

ϕð1Þ
g ¼

Z
T

0

γ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2

1 − 4γ2Þ
p dτ: ð14Þ

Similarly, on studying the evolution of the second mode a2,
the BP obtained is given by

ϕð2Þ
g ¼ −

Z
T

0

γ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2

2 − 4γ2Þ
p dτ: ð15Þ

Note the appearance of the overall negative sign here in
contrast to (14), as can be anticipated from the structure of
the Hamiltonian (3).
Before we proceed further, let us pause for a while and

make some pertinent comments:
(i) It is important to recognize that our internal time-

scale (Ti) is intimately related to the instantaneous
normal mode frequencies ω1ðtÞ and ω2ðtÞ of the
system Hamiltonian (7). Specifically, we have
ωiðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

i ðtÞ − γ2ðtÞ
p

. So, it becomes clear from
the expression of ωi thatΩi indeed contributes to the
determination of the system’s internal timescale, Ti.
Notably, in the absence of any gravitational wave
perturbations, the primary responsibility for defining
this timescale falls upon Ωi. Furthermore, the time-
dependent behavior of the frequencies ΩiðtÞ and the
parameter γðtÞ in our mechanical oscillators is of
significant importance, as it introduces an additional
timescale to the dynamical system. This additional
timescale is referred to as the external time Te, as
defined previously. Te determines the rate at which
the system’s parameters change. When we mention
adiabaticity, we are essentially emphasizing that Te
is significantly greater than the internal timescale Ti
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(or that ϵ ≪ 1, as mentioned earlier). This condition
implies that the system’s parameters change slowly
compared to the internal dynamics of the system.
Consequently, it prevents the system from making
abrupt transitions to different, nondegenerate states.

(ii) From the expression of the BP that emerges in
Eqs. (14) and (15), it can be noted that the extra
phase will be an integral of exact differential, thus
becoming zero over a complete cycle if the oscillator
frequencies are taken to be just constants, not time
dependent [ϕðiÞ ¼ 1

2

H
dðsin−1 2γ

Ωi
Þ]. Therefore, it is

crucial to consider these frequencies as time-
dependent ones. From the standpoint of differential
geometry [31,32], the geometric significance of the
Berry phase becomes nontrivial when the integral of
the 1-form (the phase integral) is a closed but not
exact form. This condition highlights the importance
of time-dependent oscillator frequencies in captur-
ing nontrivial geometric effects associated with the
Berry phase. On the other hand, since we have
previously observed that our time-dependent system
Hamiltonian is an algebraic element of the SUð1; 1Þ
Lie group (expressible as a linear combination of
SUð1; 1Þ group generators [33]), the emergence of
the Berry phase can be attributed in our case
to the breaking of time-reversal symmetry in the
Hamiltonian due to the presence of a generator
explicitly breaking this symmetry at the instanta-
neous level [34]. Furthermore, the parameter space
of the system Hamiltonian can be identified with the
parameter space of the SUð1; 1Þ group manifold. To
obtain a nontrivial geometric phase shift, a set (of at
least two) parameters, including the time-dependent
coefficient of the time-reversal symmetry-breaking
term, must be varied adiabatically to form a closed
loop “C” in the parameter space (see details in the
reference [35,36]). Therefore, it is common wisdom
that for a nontrivial Berry geometrical phase to exist
the Hamiltonian must possess more than one time-
dependent parameter, allowing the state vector to
exhibit anholonomy when transported around a
closed loop C adiabatically in the corresponding
parameter space. In contrast, the presence of only
one time-dependent parameter causes the closed
loop to be trivial (effectively collapsing to a one-
dimensional line), making it contract to a point in the
parameter space, resulting in a vanishing geometric
phase. This rationale justifies our consideration of
the Ωi’s as time dependent.
Furthermore, if the frequencies of the oscillators

are assumed to be zero, it would render the resulting
system nonoscillatory and purely damped, hence
unstable, with no lower bound for the energy. More
importantly, from a practical standpoint, our model
detector closely adheres to Weber’s initial concept of

mechanical resonant bar detectors for gravitational
wave detection [37,38].

(iii) In the context of time-dependent systems, the
occurrence of level crossings is significant. Level
crossing happens at a specific moment when the
time-dependent parameters of the Hamiltonian
reach values such that, for a particular pair of
nondegenerate states, En1;n2ðtÞ ¼ Em1;m2

ðtÞ with
ðn1; n2Þ ≠ ðm1; m2Þ. In standard quantum mechan-
ics, the proof of the adiabatic theorem asserts that
during the evolution of a system in parameter space
there should be no level crossings. This theorem
ensures that as one traces the curve in the parameter
space defining the Hamiltonian from Hi to Hf an
nth eigenstate under the initial Hamiltonian
Hðti ¼ 0Þ is adiabatically transported to the nth
eigenstate under the final Hamiltonian Hðtf ¼ TÞ,
provided the system changes gradually. Indeed, this
theorem is based on the assumptions of a discrete
and nondegenerate spectrum, as long as it is ensured
that the trajectories of two eigenvalues do not
intersect [39–41]. Additionally, the occurrence of
level crossings can lead to nonadiabatic transitions,
which in turn introduce complexity into the system’s
behavior, as discussed in [42,43]. In our specific
problem, it is worth noting that we do not encounter
level crossing even when the oscillator frequencies
ΩiðtÞ are equal. Nonetheless, when we introduce
anisotropy to intentionally break the rotational
symmetry within these oscillator frequencies, we
can avoid the non-Abelian characteristics of the BP,
as discussed in [44–46]. Then, the system continues
to support a discrete, nondegenerate spectrum
throughout its time evolution.

(iv) Furthermore, it is also crucial to emphasize the
absolute necessity of nonvanishing denominators
(ωiðtÞ > 0) in the integrands during the adiabatic
variation over the period T. This condition is abso-
lutely essential, as our entire phase derivation relies
on the adiabatic approximation, which must hold
throughout the system’s evolution. Should the denom-
inator reach zero (i.e.,ωi ¼ 0) at any point during this
evolution, it would result in a catastrophic breakdown
of the adiabatic theorem at that particular point [see
Eq. (9)]. This underscores the need for continuous
nonzero denominators to maintain the adiabatic the-
orem’s integrity (see detailed analysis in chapter XVII
of [39] as well as [40]). Therefore, physically, it is
natural to assume thatωi is always positive at all times.
This condition ensures that the integral form of the
Berry phase is always well defined.

Now, returning back to our main objective. An important
aspect of BP is its geometrical nature. This will be more
transparent when expressed as the integral of a 1-form
along a closed circuit within the parameter space,
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ϕðiÞ
g ½C� ¼ ð−1Þiþ1

I
C

1

ωi
∇Rγ · dR; i ¼ 1; 2; ð16Þ

where R is a vector in the space of parameters and the
Hamiltonian changes via the parameters in such a manner
that it makes a closed circuit in the space of parameters
where it returns to its initial value after a cycle. Thus, this
additional phase is a functional of the circuit traversed in
the parameter space and is manifestly independent of how
the path has been traversed.
We obtained this geometric phase shift in Heisenberg

picture, but it can be readily obtained in the more
familiar form of BP acquired by state vectors. For that,
we revert back to the Schrödinger picture, and after a
straightforward calculation (see Appendix D), we have
the geometric phase acquired by an arbitrary Fock state
jn1; n2;Rðt ¼ 0ÞiH:O:þGWs to be given by (also see Ref. [36]
for details)

ϕðn1;n2Þ
B ¼ ϕð0;0Þ

B þ n1ϕ
ð1Þ
g þ n2ϕ

ð2Þ
g ð17Þ

and the total phase as

Φðn1;n2Þ ¼ Φð0;0Þ þ
h
n1ðθð1Þd þ ϕð1Þ

g Þ þ n2ðθð2Þd þ ϕð2Þ
g Þ

i
;

ð18Þ

where n1 and n2 are semipositive definite integers repre-
senting the eigenvalues of the number operators a†1a1 and
a†2a2, respectively. In the above, the dynamical part of the

phase is θðiÞd ¼ R
T
0 ωiðτÞdτ. Note that it is the difference of

the BPs of different eigenstates which contributes in the
expectation value of any operator at time t in a state
obtained from any initial state and evolving under an
adiabatic Hamiltonian, where the ground-state contribution

ϕð0;0Þ
B cancels out. This idea also resonates while carrying

out experiments concerning the measurement of BP.
The obtained phase (14) has some interesting character-

istics. First, both kinds of polarizations ϵþ; ϵ× contribute to
BP. Second, it might seem that the phase, containing the
second-order time derivative of the time-dependent GW
amplitude (as γ ∼ χ̇), is negligible. However, in such a
consideration, the interaction part of the Lagrangian L0
would have vanished, which cannot be true. Therefore, this
geometric phase would be consistently observed by tuning
the external frequency Ω1 or Ω2. A characteristic analysis
of estimated BP as a function of oscillator frequency
amplitude shows that the BP monotonically decreases with
the increase of amplitude (see Appendix E).

IV. DISCUSSION

First, we summarize our findings. We have considered a
two-dimensional time-dependent anisotropic harmonic
oscillator detector to probe the passing of GWs. With a

suitable rearrangement of the terms, we can show that such
a system is reminiscent of a generalized harmonic oscillator
along with a boost term in phase space. Thereafter, we have
performed a proper redefinition of the phase-space varia-
bles to eliminate the boost term which facilitates our
subsequent analysis smoothly. At the end, we computed
the BP in the Heisenberg picture and found that both
plus and cross-polarization modes are responsible for the
existence of the phase. In other words, this additional phase
in the detector’s wave function is due to the coupling of the
detector with the GWs, whereas in absence of GWs, there is
only the dynamical phase. It will be worth mentioning here
that there exists BP exhibiting Hamiltonians whose BP may
be removed by a suitable time-dependent canonical trans-
formation [47]. However, in such a case, the BP reappears
in the dynamical part retaining its geometric nature.
In our case, too, the Hamiltonians corresponding to the
Lagrangians L0

j and (1), being connected by a time-
dependent canonical transformation, lead to the same
expression for this additional geometric phase over and
above the trivial dynamical phase. In fact, our approach
does not follow the one used in modeling the Weber
detectors [37,38], but instead, we consider an equivalent
and perhaps more illuminating form of the interaction
in order to compute the BP as has been also recently
considered in [24], and this choice of the system
Hamiltonian has been further motivated by its somewhat
resemblance to that of the problem of a charged particle
moving in two dimensions in an applied magnetic field
acting perpendicular to the plane of motion. But as we just
stated, the choice of the Hamiltonians, which are related
by time-dependent canonical transformations, has no effect
on how BP is expressed because this additional phase
is invariant under both unitary and gauge transforma-
tions [47]. Furthermore, the introduction of an explicitly
broken time-reversal symmetry, achieved through the
inclusion of a dilatation term, plays a pivotal role in the
generation of nonvanishing BPs within the oscillator
detector. The passing gravitational wave possesses a
quadrupole nature, leading to the induction of two-mode
squeezing in the oscillator detector.
In our methodology, BPs are determined by solving the

evolution equations for aiðtÞ in the Heisenberg picture. Our
motivation for this choice primarily stems from the inherent
relationship between the ladder operators of the quantum
system and analogous operators resembling number (N̂)

and phase (θ̂): ai ¼
ffiffiffiffi
N̂

p
eîθ, as elaborated in [48].

Consequently, this approach serves as a natural framework
for exploring additional phase factors beyond the dynami-
cal phase throughout the adiabatic evolution of the system’s
Hamiltonian. In addition, our method simplifies the sys-
tematic identification of the associated classical Hannay
angle [49] (see Appendix E).
Furthermore, it may be noted that as the frequency of the

oscillator detector sets a scale in the system tuning it to a
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range of a few hertz will enable detecting GWs of
considerably lower frequencies, as the adiabatic condition
implies the slower variation of the perturbing gravitational
influence for the existence of the geometric phase. This
suggests that one would be, at least in ideal situations, able
to detect GWs of frequencies less than a few hertz from this
geometric phase shift in the detector’s states. On the other
hand, whether this demonstrated BP leads to an entangle-
ment in the quantum detector’s degrees of freedom, is an
important and intriguing question that we want to address
in the near future [50,51]. This will be a step toward
probing the quantum nature of gravitational waves through
quantum-mechanical detectors.
As a final remark, the emergent nature of GW-induced

BP may be detectable in principle, but we are still far from
providing a quantitative measurement of this phase. The
detectability of this phase may therefore serve as a new
probe of very weak gravitational waves. A theoretical
aspect of detecting the weak GW-induced BP may be
explored in a squeezed state formalism [52], and the
geometric phase may be detectable from the phase differ-
ence in a suitably designed interference experiment.
In fact, a scheme for detecting harmonic oscillator’s BP
through the vibrational degree of freedom of trapped ions
has been laid out in [53], and it may be extended for the
generalized harmonic oscillator model. We are working on
it and hope to return to some of these issues in a future
work soon.
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APPENDIX A: BASIC REVIEW
OF LINEARIZED GRAVITY

Einstein’s theory of general relativity is a great success in
classical general relativity (GR). It can almost accurately
describe all the phenomena at larger mass scales. Now,
the phenomenon of gravitational waves emerges from a
linearized approximation of Einstein’s GR where small

perturbations are considered over the usual Minkowski flat
space-time,

gμν ¼ ημν þ hμν; ðA1Þ

with jhμνj ≪ 1. The Christoffel connection coefficients and
the Riemann curvature tensor in this case then take the
following forms:

Γμ
νσ ¼

1

2
ημρð∂σhνρ þ ∂νhσρ − ∂ρhνσÞ; ðA2Þ

Rμ
ρσν ¼

1

2
ημλð∂σ∂ρhνλ − ∂σ∂λhνρ − ∂ν∂ρhσλ þ ∂ν∂λhσρÞ:

ðA3Þ

On extremizing, the Einstein-Hilbert action for this case

SE−H ¼ 1

16πG

Z
d4x

� ffiffiffiffiffiffi
−g

p
Rþ Lmatter

�
; ðA4Þ

yields the linearized version of Einstein’s equation

□h̄μν ¼ −16πGTμν; h̄μν ¼ hμν −
1

2
ημνh; ðA5Þ

in terms of the trace-reversed perturbation h̄μν. Thus, in
regions outside of the sources, one has

□h̄μν ¼ 0; ðA6Þ

whose solutions are basically the gravitational waves

h̄μν ¼ ReðϵμνeikρxρÞ: ðA7Þ

Here, ϵμν is some complex, symmetric polarization matrix,
and kμ is a real wave-vector. Via the transverse-traceless
(TT) gauge condition h0μ ¼ 0, hμμ ¼ 0 and ∂

ihij ¼ 0, we
can completely fix the polarization matrix as [5,23]

ϵμν ¼

0BBB@
0 0 0 0

0 ϵþ ϵ× 0

0 ϵ× −ϵþ 0

0 0 0 0

1CCCA; ðA8Þ

where ϵþ and ϵ× correspond to plus and cross-polarizations
of the gravitational waves, respectively. Let us consider two
nearby geodesics xμðτÞ and xμðτÞ þ ΔxμðτÞ in the back-
ground (A1). Then, the equation of motion of the separa-
tion vector ΔxμðτÞ is given by [5,23]

D2Δxμ

Dτ2
¼ −Rμ

νρσΔxρ
dxν

dτ
dxσ

dτ
; ðA9Þ
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where D
Dτ is the covariant derivative with respect to the

proper time τ. We now choose the proper detector frame to
set up and study our laboratory detector physics. Using the
definition of Riemann tensor for linearized theory (A3), the
above equation simplifies to [5,23]

d2Δxi

dt2
¼ −Ri

0j0Δxj; ðA10Þ

where the coordinate time t can be approximated to be the
proper time τ up to the first order in perturbations. Also
note that here the indices i and j take values only 1 and 2,
owing to (A8). Further implementing the TT gauge con-
ditions, we can rewrite the above equation as

d2Δxi

dt2
¼ 1

2

d2hij
dt2

Δxj: ðA11Þ

Clearly, the above is a Newtonian description, i.e., non-
relativistic equation of motion. Typically, in the present
paper, this is the physical situation of most interest to us in
order to model the dynamics of a nonrelativistic detector
and to study the consequences of the passing of GWs in the
ambient space-time.

APPENDIX B: UNITARY EQUIVALENT
HAMILTONIAN (3)

In the TT gauge, the relative motion of two freely falling
particles on the gravitational wavefront (propagating along
the z direction) can be described in terms of the system
Hamiltonian as

Ĥ0 ¼
X
i

p̂2
i

2m
þ
X
j;k

�
Γj
0k

2
ðx̂kp̂j þ p̂jx̂kÞ

�
; ðB1Þ

where i, j ¼ 1, 2 and the gravitational waves interaction
coupling term Γj

0k is a suð2Þ Lie algebra valued field:

Γj
0k ¼ 2χ̇ðtÞðϵ×σ1jk þ ϵþσ3jkÞ: ðB2Þ

Accordingly, the system Hamiltonian (B1) may be rewrit-
ten as

Ĥ0 ¼
X
j

bepj
2

2m
þ Γ̃1

01

2
ð b̃x1 ˆ̃p1þ ˆ̃p1

ˆ̃x1Þ þ
Γ̃2
02

2
ð ˆ̃x2 ˆ̃p2þ ˆ̃p2

ˆ̃x2Þ;

ðB3Þ

after by applying a unitary [suð2Þ], albeit time-independent,
transformations:

exi ¼ Uijxj; epi ¼ Uijpj;

Γj
0k → Γ̃j

0k ¼ ðUΓU†Þj0k ¼ 2χ̇ðtÞϵ̃þσ3jk: ðB4Þ

In the above, U ¼ e−i
θσ2
2 , and ϵ̃þ ¼ ϵþ cos θ þ ϵ× sin θ,

with θ ¼ tan−1ðϵ×ϵþÞ.

APPENDIX C: DERIVATION
OF THE EXPRESSION (14)

Now, using the WKB-like ansatz (12) in (11), one finds
that the time-dependent function ρðtÞ satisfies

ρ̈þ ðuþ ivÞρ ¼ 0; ðC1Þ

where u ¼ ω2
1 and v ¼ ðω̇1 − η1ω1Þ. In the WKB method,

we write the solution as

ρðtÞ ¼ c1ffiffiffiffi
Ξ

p ðtÞ e
R

t

0
ðiΞðτÞ−ζðτÞÞdτ þ c2ffiffiffiffi

Ξ
p ðtÞ e

R
t

0
ð−iΞðτÞþζðτÞÞdτ;

ðC2Þ

where we essentially have

ΞðtÞ þ iζðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ ivÞ

p
; ðC3Þ

and c1 and c2 are arbitrary coefficients that can be used to
find the general solution of the above differential equation.
In our case, it is important to highlight that when we take
into account the adiabatic changes in both u and v we reach
the following result:

ΞðtÞ ≈ ffiffiffi
u

p ¼ ω1; ζðtÞ ≈
ffiffiffiffiffiffi
v2

4u

r
¼ ω̇1

2ω1

−
η1
2
: ðC4Þ

We now consider the initial condition that the solution
must satisfy: ρ1ðt ¼ 0Þ ¼ a1ðt ¼ 0Þ. Notably, only the
phase factor of the second term with the coefficient c2
in the solution (C2) contributes to the dynamical phase of
a1 with the correct sign. This will become evident as we
calculate a1ðTÞ. Consequently, we set c1 ¼ 0 in (C2), and
this boils down to

ρðtÞ ¼ c2ffiffiffiffi
Ξ

p ðtÞ e
R

t

0
ð−iΞðτÞþζðτÞÞdτ: ðC5Þ

At this stage, by using the initial condition, we can express
the arbitrary coefficient c2 as

c2 ¼
ffiffiffiffi
Ξ

p
ðt ¼ 0Þa1ðt ¼ 0Þ: ðC6Þ

Then, we arrive at the following solution for ρðtÞ:

ρðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Ξð0Þ
ΞðtÞ

s
a1ðt ¼ 0Þe

R
t

0
ð−iω1þ ω̇1

2ω1
−η1

2
Þdτ: ðC7Þ

Now, the periodicity of the parameters implies that
ffiffiffiffiffiffiffiffiffi
ξð0Þp ¼ffiffiffiffiffiffiffiffiffi

ξðTÞp
. Therefore, by applying (12) and considering the
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cyclic evolution of the system in the parameter space, we can
effectively neglect the term involving only the exact deriv-
atives. This allows us to separate the corresponding dynami-
cal and geometric phase shifts as

a1ðTÞ ¼ a1ð0Þe−i
R

T

0
dτðω1ðτÞ− γ̇ðτÞ

ω1ðτÞÞ: ðC8Þ

Similarly, it can be shown that the time evolution equation of
a2 is identical to the one for a1, except that γ is replaced by
−γ. So, we get

a2ðTÞ ¼ a2ð0Þe−i
R

T

0
dτðω2ðτÞþ γ̇ðτÞ

ω1ðτÞÞ: ðC9Þ

Looking at the second phase factor in the expressions of
both the annihilation (corresponding creation) operators a1
in (C8), the additional phase factor obtained by leading
behavior for adiabatic transport around a closed loop C in
time T can be identified with the Berry phase or geometric
phase (more precisely, the geometric phase shift) in the
Heisenberg picture.

APPENDIX D: SCHRÖDINGER PICTURE
FOR BERRY PHASE

As previously stated, the transition from the Heisenberg
picture to the Schrödinger picture allows us to express our

findings in a more conventional manner in terms of the
phase acquired by the state vector (as shown, for instance,
in [54]). In this section, we illustrate how our approach,
relying on ladder operators, aids in the computation of the
Berry phase within the framework of the Schrödinger
picture.
Let us start by considering the instantaneous eigenstates

of our system Hamiltonian as

jn1; n2; ti ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n1!n2!
p ðða†1ðtÞÞn1 j0; ti1Þ ⊗ ðða†2ðtÞÞn2 j0; ti2Þ:

ðD1Þ

Following Berry’s original work [7], during the adiabatic
evolution of the system’s Hamiltonian in the Schrödinger
picture, the time evolution of the instantaneous eigenvec-
tors is described by

jn1; n2; t ¼ 0i → jΨn1;n2ðTÞi
¼ e−

i
ℏ

R
T

0
dtEn1 ;n2

ðtÞeiϕ
ðn1 ;n2Þ
B jn1; n2;Ti; ðD2Þ

with En1;n2 ¼ ðn1 þ 1
2
Þℏω1 þ ðn2 þ 1

2
Þℏω2 and

ϕðn1;n2Þ
B ¼

Z
T

0

dthn1; n2; tj½ið∂tÞ1 ⊗ I2 þ I1 ⊗ ið∂tÞ2�jn1; n2; ti ¼
Z

T

0

dt

�
hn1; tji

∂

∂t
jn1; ti1 þ hn2; tji

∂

∂t
jn2; ti2

�
: ðD3Þ

Consequently, the integrand’s first term can be rewritten as

hn1; tji
∂

∂t
jn1; ti ¼ hn1 − 1; tji ∂

∂t
jn1 − 1; ti þ iffiffiffi

n
p hn1; tj

∂a†1
∂t

jn1 − 1; ti; ðD4Þ

where we have used the following facts: aiðtÞjniii ¼ ffiffiffiffi
ni

p jni − 1i and a†i ðtÞjniii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p jni þ 1i.
Now, on using Eq. (8), we easily arrive at

∂a†1
∂t

¼ Ȧ1

A1

a†1 − η1ða†1 − a1Þ; ðD5Þ

where η1 ¼ −i Ċ1

2mω1
with C1 ¼ 2mðγ − i ω1

2
Þ. Here, the bar quantities signify the complex conjugate of the respective terms.

Then, Eq. (D4) becomes

hn1; tji
∂

∂t
jn1; ti1 ¼ hn1 − 1; tji ∂

∂t
jn1 − 1; ti1 − iη̄1 þ i

Ȧ1

A1

¼ h0; tji ∂
∂t
j0; ti1 þ n1

˙̄C1

2mω1

þ i
Ȧ1

A1

: ðD6Þ

Similarly, it can be shown that

hn2; tji
∂

∂t
jn2; ti2 ¼ h0; tji ∂

∂t
j0; ti2 þ n2

˙̄C2

2mω2

þ i
Ȧ2

A2

: ðD7Þ

Substituting Eqs. (D6) and (D7) in Eq. (D3), we arrive at
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ϕn1;n2
B ¼ ϕð0;0Þ

B þ n1ϕ
ð1Þ
g þ n2ϕ

ð2Þ
g ; ðD8Þ

with ϕð0;0Þ
B ¼ R

T
0 dth0; 0; tji ∂

∂t j0; 0; ti and

ϕð1Þ
g ¼

Z
T

0

dt
γ̇ðtÞ
ω1ðtÞ

; ϕð2Þ
g ¼ −

Z
T

0

dt
γ̇ðtÞ
ω2ðtÞ

: ðD9Þ

It is important to note that Eq. (D8) does not provide any

additional information about ϕð0;0Þ
B , as the choice of relative

phases remains arbitrary. To simplify our analysis, we
adopt a convenient phase choice that ensures the vanishing

of ϕð0;0Þ
B as γ becomes a constant and introduces a “zero-

point” contribution [55] to Eq. (D8) as

h0; 0; tji ∂
∂t
j0; 0; ti ¼ γ̇ðtÞ

2ω1ðtÞ
−

γ̇ðtÞ
2ω2ðtÞ

: ðD10Þ

With this choice, we finally arrive at a concise expression of
Berry’s phase:

ϕðn1;n2Þ
B ¼

�
n1 þ

1

2

�
ϕð1Þ
g þ

�
n2 þ

1

2

�
ϕð2Þ
g : ðD11Þ

Furthermore, the above phase factor is of purely quantum
origin and is a phase over and above the dynamical phase
and the classical counterpart of the Berry phase [49] simply
read off as

ϕH ¼ −
�
∂

∂n1
þ ∂

∂n2

�
ϕðn1;n2Þ
B ¼ −ðϕ1

g þ ϕ2
gÞ; ðD12Þ

which was originally established by Berry [7]. As a result, it
is worth noting that our geometric phase factor in the
Schrödinger picture (D9) coincides exactly to the additional
phase shift established beyond the dynamic phase while
adiabatically transporting the ladder operators of our
system Hamiltonian.

APPENDIX E: ESTIMATION OF BP WITH
RESPECT TO FREQUENCY OF OSCILLATOR

We choose two slightly anisotropic time-dependent
frequencies to demonstrate the exact expression of the
low-frequency gravitational-wave-induced Berry phase and
its variations with detector frequency amplitude. For that,
we take the following structures of Ω1ðtÞ and Ω2ðtÞ:

Ω2
1ðtÞ ¼ ðω0 þ Ω0 cosðωgtÞÞ2 þ ν20sin

2ðωgtÞ;
Ω2

2ðtÞ ¼ ð1þ δÞΩ2
1 − δν20sin

2ðωgtÞ ðE1Þ

with the choice of anisotropic parameter as jδj ≪ 1. Also
take ω0 > Ω0 so that we maintain the positivity of ω1ðtÞ
and ω2ðtÞ for all time t. Notably, ωg characterizes the
angular frequency of low-frequency gravitational waves,

represented as ωg ¼ 2πνg. Furthermore, we regard Ω0, ω0

and ν0 as time-independent and adjustable parameters.
Additionally, we introduce the gravitational wave inter-
action coupling parameter, denoted as γ ¼ ωgχ0ϵ̃þ sinðωgtÞ.
The above choices guarantee the synchronization of the time
periods of the detector’s frequency parameters with the low-
frequency gravitational wave’s frequency. Such a choice is
very important, which we discussed below Eq. (4).
Furthermore, it should be highlighted that the Berry

phases ϕð1Þ
g and ϕð2Þ

g [given in Eqs. (14) and (15)], will be of
the same order of magnitude because of the small
anisotropy in the instantaneous frequencies that correspond
to each mode for each of the respective arms. Practically,
while undergoing adiabatic transport along a closed circuit
in parameter space, it is crucial for the integrand of the
phase factors, along with the dynamical phases described in
(14) and (15), to remain finite and real at each moment
throughout this time period to ensure the validity of the
adiabatic theorem. For the convenience of computation of
the integral, Eqs. (14) and (15) can be first rewritten as

ϕð1Þ
g ¼

Z
t¼2π

ωg

t¼0

ω2
g ϵ̃þχ0cosðωgtÞ

ω0þΩ0cosðωgtÞ
dt; ϕð2Þ

g ¼−
1ffiffiffiffiffiffiffiffiffiffi
1þδ

p ϕð1Þ
g ;

ðE2Þ

and then (14) can be again recast in-terms of unimodular
complex parameter zðtÞ ¼ eiωgt as

ϕð1Þ
g ¼ −iωgχ0ϵ̃þ

Ω0

I
jzj¼1

dz
ðz2 þ 1Þ

zðz2 þ 2azþ 1Þ ; a ¼ ω0

Ω0

;

ðE3Þ

where we see that the above integral reduces to a simple
loop integral over the unit circle in the complex plane. Note
that here we have taken ν0 ¼ 2ωgχ0ϵ̃þ for simplicity.
In this context, we would like to mention that this

alternative complex reparametrization of our “parent” time-
dependent parameter space spanned by γ and Ωi (occurring

in ϕðiÞ
g ; i ¼ 1, 2) has enabled us to obtain this above

simplified form. In fact, the simple identity

ðz2þ1Þ
zðz2þ2azþ1Þ¼

1

z
þ affiffiffiffiffiffiffiffiffiffiffiffi

a2−1
p

�
1

z−z−
−

1

z−zþ

�
ðE4Þ

helps us to identify the three simple poles in the inte-
grand (E3) as

z ¼ 0; z ¼ z� ¼ −a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 1

p
; ðE5Þ

out of which only z ¼ 0 and z ¼ zþ lie within the unit
circle, whereas z ¼ z− lies outside for a > 1. This follows
trivially from the fact that zþja¼1 ¼ −1, and dzþ

da ¼
−1þ affiffiffiffiffiffiffiffi

a2−1
p > 0, ∀ a > 1. We can therefore disregard
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z− completely to compute the above integral (E3) in a
straightforward manner to obtain the Berry phase

ϕð1Þ
g ¼ 2πωgχ0ϵ̃þ

Ω0

�
1 −

1ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
�
: ðE6Þ

Here, we have introduced ϵ ¼ 1
a2, fulfilling the condition

0 < ϵ < 1.
In this context, we can mention that this integral (E3) can

also be computed alternatively by using the poles of the
integrand at z− and z ¼ ∞ (equivalently at w ¼ 0 for
w ¼ 1

z), which are also enclosed by the above unit circle if
the function is represented on the compactified Riemann
sphere—albeit in the opposite orientation. It is important to
highlight that, although the system can never acquire the
specific parameter values (z0 and z�), these values can
still have an impact on the contour integral due to the
nonholomorphic nature of the integrand (E3) at these
simple poles within the contour (jzj ¼ 1).
Finally, it may be noted that all the closed contours C in

the above-mentioned parent parameter space, associated
with the parameters (Ω1; γ), can take different sizes/shapes
depending upon the free parameters Ω0 and ω0 and also on
ωg. Interestingly, however, all such closed contours get
mapped to the same unit circle: jzj ¼ 1 in the complex z
plane. With this, the phase integral (E3) gets determined
almost uniquely up to an overall constant determined by the
ratio of the angular frequency of the external gravitational

wave (ωg) and that of the constant parameter Ω0 occurring
in (E6): ωg

Ω0
. Any deformation in contour C will result in

shifting the poles zþ (with a > 1) in the unit circle (jzj ¼ 1)
and will change the value of phase integral (E6). Moreover,
the graphical representation of the BP, shown in Fig. 1,
suggests that the nonzero finite magnitude of the Berry
phase is induced by GWs, which is crucial, given that the
detector frequency range is in the ultra-low-frequency
(Ω0 ∼ 10−17 rad= sec) range [56].
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