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It was recently found that, in certain flavors of scalar-Gauss-Bonnet gravity, linearly stable bald black
holes can coexist with stable scalarized solutions. The transition between both can be ignited by a large
nonlinear perturbation, thus the process was dubbed nonlinear scalarization, and it happens with a jump
that leads to interesting astrophysical implications. Generalizing these results to the case of nonzero scalar
field potential is important because a massive self-interacting scalar field can have interesting theoretical
and observational consequences, e.g., reconcile scalar-Gauss-Bonnet gravity with binary pulsar obser-
vation, stabilize black hole solutions, etc. That is why, in the present paper, we address this open problem.
We pay special attention to the influence of a scalar field mass and self-interaction on the existence of
scalarized phases and the presence of a jump between stable bald and hairy black holes. Our results show
that both the addition of a mass and positive self-interaction of the scalar field result in suppression or
quenching of the overall scalarization phenomena. A negative scalar field self-interaction results in an
increase of the scalarization. The presence and the size of the jump, though, are not so sensitive to the scalar
field potential.
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I. INTRODUCTION

According to the Kerr hypothesis, the astrophysical black
holes that we observe in the Universe are described by the
famous Kerr metric in general relativity (GR). Thus, they are
characterized solely by their mass and spin. A strong argu-
ment in support of this conjecture is not only the validity of
Einstein’s theory of gravity in various observations but also
the proof of a number of uniqueness theorems for electro-
vacuum [1–6] (see also [2] for a review). According to them,
a Kerr black hole is also a solution in a number of modified
theories of gravity. There are different ways to go outside of
the validity of these theorems [7] (see, e.g., [8–15]). One of
the interesting and well-motivated ones is to consider black
holes in an effective field theory involving higher curvature
invariants such as the quantum gravity motivated scalar-
Gauss-Bonnet (sGB) theory [16–19]. Because of the pres-
ence of a scalar field coupled to the Gauss-Bonnet invariant,
hairy black holes can exist in this case.
As it turns out, there are different ways to ignite the

scalar field in sGB gravity depending on the properties of
the scalar field coupling function. The most common case
is the shift-symmetric sGB or Einstein-dilaton-Gauss-
Bonnet theory where a scalar field is always present around

the black holes [16,17,20–22]. A second interesting option is
the case of spontaneous scalarization [23–25] when the GR
black hole is always a solution of the sGB field equations, but
it becomes linearly unstable below a certain black hole (BH)
mass giving rise to a stable scalarized solution.1 In that case, a
number of observational constraints can be elegantly circum-
vented in sGB gravity because it practically coincides with
GR in the weak field regime. Below we will call this case
“normal scalarization.” It is interesting that another type of
scalarization can also exist when the Schwarzschild black
hole is always a linearly stable solution within sGB theory,
but stable scalarized black holes can exist as well [36] (for a
similar phenomenon in Einstein-Maxwell-scalar gravity see
[37,38]). Approximate rotating nonlinearly scalarized black
holes were also constructed [39,40]. Such scalarized black
hole phases are thermodynamically preferred over a
Schwarzschild black hole for a large range of the parameter
space and the scalar field around them can be ignited only
through a large nonlinear perturbation of a Schwarzschild
black hole. Thus, we will call this phenomenon “nonlinear
scalarization.” A mixture between the normal scalarization
and the nonlinear one can also exist. In that case, the
Schwarzschild black hole is unstable below a certain mass
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1Similar studies were performed for electrically charged BHs
[26,27], spinning BHs [28–32], spinning and charged BHs
[33,34], and with a vector field instead of a scalar field [35].
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but still, in a certain region of the parameter space, both the
bald and the hairy linearly stable solutions can exist. In the
presence of nonlinearly scalarized phases, a jump between
the two stable (nonscalarized and scalarized) black hole
branches can happen that has very intriguing astrophysical
implications [41]. Interestingly, a similar phenomenoncan be
observed for neutron stars as well [42].
The above-mentioned studies in sGB gravity consider

the simpler case of a zero scalar field potential. Non-
vanishing scalar field mass or self-interaction can also
have very interesting effects. For example, it can suppress
the scalar dipole emission acting as an effective screening
mechanism [43] and reconciling the theory, e.g., with the
binary pulsar observations [44]. On a theory level, a self-
interaction term can stabilize otherwise unstable black
hole solutions [45–47]. Compact objects in sGB gravity
with nonzero scalar field mass were considered also in
[48–52]. Nonzero potential in the context of nonlinear
scalarization was not considered until now. Such a study
is particularly interesting since in some cases the non-
linear scalarized phases are detached from the bald
Schwarzschild solution. It is important to investigate
the existence of hairy black holes in that case and to
check whether the presence of a jump between the
different phases, with the related astrophysical manifes-
tations, still survives for a strong enough scalar field mass
or self-interaction. This is exactly the focus of the present
paper.
Throughout the paper, 4πG ¼ 1 ¼ 4πϵ0. The signature

of the spacetime is ð−;þ;þ;þÞ. In this work, one is solely
interested in spherical symmetry and the metric matter
functions are only radially dependent. For notation sim-
plicity, after being first introduced, the functions’ radial
dependence is omitted, e.g., XðrÞ≡ X, and X0 ≡ dX=dr,
and we consider the notation X;ϕ ≡ dX=dϕ for the deriva-
tive with respect to the scalar field.
The paper is organized as follows. In Sec. II we introduce

the model’s action as well as the metric ansatz and self-
interaction potential that allows us to obtain the field
equations in Sec. II B. The coupling function between
the scalar field and the Gauss-Bonnet term is introduced in
Sec. II A. The proper boundary conditions are imposed in
Sec. II B, letting us obtain a set of illustrative results of
nonlinear scalarization and simultaneous linear and non-
linear scalarization, Sec. III. Results are shown for a
massive scalar field, Sec. III A, and in the presence of a
quartic self-interaction, Sec. III B. We end the manuscript
with the conclusion of our results in Sec. IV.

II. FRAMEWORK

The action in scalar-Gauss-Bonnet (GB) gravity with a
scalar field minimally coupled to the Gauss-Bonnet invari-
ant and a nonvanishing potential UðϕÞ is defined by the
action

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−2∇μϕ∇μϕþλ2fðϕÞR2

GB−UðϕÞ
�
;

ð1Þ

where R is the Ricci scalar with respect to the spacetime
metric gμν, and the real scalar field ϕ is nonminimally
coupled to the Gauss-Bonnet invariant R2

GB through a
dimensionless coupling function fðϕÞ; λ is the so-called
Gauss-Bonnet coupling constant that has dimensions of
length. The Gauss-Bonnet invariant comes as

R2
GB ¼ R2 − 4RμνRμν þ RμναβRμναβ: ð2Þ

The system’s field equations are given by the Einstein-
Klein-Gordon system with the Gauss-Bonnet term

Rμν−
1

2
gμνRþΓμν¼ 2∇μϕ∇νϕ−gμν∇αϕ∇αϕ−

gμν
2
UðϕÞ;

ð3Þ

∇α∇αϕ ¼ 1

4

dUðϕÞ
dϕ

−
λ2

4

dfðϕÞ
dϕ

R2
GB: ð4Þ

The tensor Γμν that modifies the left-hand side of the
Einstein equations is defined as

Γμν ¼ Rð∇μψν þ∇νψμÞ − 4∇αψα

�
Rμν −

1

2
Rgμν

�

þ 4Rμν∇αψν þ 4Rνα∇αψμ − 4gμνRαβ∇αψβ

þ 4Rβ
μαν∇αψβ; ð5Þ

with

ψμ ¼ λ2
dfðϕÞ
dϕ

∇μϕ: ð6Þ

For the line element, let us consider a standard metric
ansatz that is compatible with a static spherically symmetric
spacetime and contains two unknown functions,

ds2¼−σ2ðrÞNðrÞdt2þ dr2

NðrÞþr2ðdθ2þsin2θdφ2Þ;

with NðrÞ¼1−
2mðrÞ

r
; ð7Þ

where mðrÞ is the Misner-Sharp mass function [53] and
σðrÞ is an unknown metric function.2 The scalar field
possesses the same symmetry as the spacetime and hence
is solely radially dependent, i.e., ϕðt; r; θ;φÞ≡ ϕðrÞ.

2Note that δ ¼ logðσ ffiffiffiffi
N

p Þ is the redshift function.
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The latter is under a self-interaction potential containing a
mass and a quartic self-interaction term3

UðϕÞ ¼ μ2ϕ2 þ βϕ4: ð8Þ

A. Coupling function

In this work, we would like to study the impact of a mass
or a quartic self-interaction term on the nonlinear scalari-
zation studied in [36]. For that purpose, one should design
the coupling function fðϕÞ properly. The first requirement
is that the GR black holes should also be solutions within
sGB gravity. After examining the field equations (3) and
(4), one can easily conclude that this can be secured by the
requirement

df
dϕ

����
ϕ¼0

¼ 0: ð9Þ

The second derivative of fðϕÞ, on the other hand, controls
the type of scalarization, i.e., whether it is normal scala-
rization, a nonlinear one, or a mixture of both. In the first

and the third case, we should have d2f
dϕ2 jϕ¼0 > 0 (for a

Schwarzschild solution), making the GR black holes
linearly stable only if they are massive enough. The pure
nonlinear scalarization occurs in the absence of tachyonic
instabilities when the Schwarzschild solution is always
linearly stable against linear scalar perturbations, i.e.,

for d2f
dϕ2 jϕ¼0 ¼ 0.

The condition for nonlinear scalarization is easily sat-
isfied if the leading-order term in the expansion of fðϕÞ is
at least cubic in ϕ. In this work, we focus on Z2 symmetry
theories and thus we will employ the following function:

f1ðϕÞ ¼
1 − ekϕ

4

4k
: ð10Þ

We have chosen an exponential form of the coupling
function instead of a polynomial because it often leads
to better numerical behavior—scalarized solutions exist for
a larger range of the parameter space—and at least one of
the branches is linearly stable.
In addition, we are also interested in models that contain

simultaneously linear and nonlinear instability, which we
will define as “mixed” models. For this reason, let us
consider the additional exponential coupling

f2ðϕÞ ¼
1 − e−bðϕ2þkϕ4Þ

2b
: ð11Þ

As one can see, it satisfies the condition for normal

scalarization d2f
dϕ2 jϕ¼0 > 0 that leads to destabilization of

small-mass Schwarzschild black holes. The parameter b is
set to b ¼ 6, however, further values of b are possible and
known to originate similar results (see [54] for a deeper
discussion). The quartic term in ϕ, though, allows for the
coexistence of linearly stable bald GR and scalarized
phases in a certain region of the parameter space, similar
to pure nonlinear scalarization.

B. Field equations

Assuming static spherically symmetric spacetime and
scalar field configuration, the field equations reduce to two
first-order (for m and σ) and one second-order (for ϕ)
coupled ordinary differential equations,

m0 ¼ 1

4ðr3 − 4λ2rðr − 3mÞϕ0f;ϕÞ
�
16λ2rmðr − 2mÞϕ00f;ϕ þ 2ϕ0ð8λ2rmðr − 2mÞϕ0f;ϕ

− 8λ2rmf;ϕ þ 24λ2m2f;ϕ − 2r4mϕ0 þ r5ϕ0Þ − r5U

�
; ð12Þ

σ0 ¼ σ

r2 − 4λ2ðr − 3mÞϕ0f;ϕ

�
ϕ02ð4λ2mf;ϕ þ r3Þ þ 4λ2mϕ00f;ϕ

�
; ð13Þ

ϕ00 ¼ −
1

4r5ðr − 2mÞσ
�
r2
�
4rσ0ðr3ϕ0 − 4λ2m0f;ϕÞ þ σð16λ2m02f;ϕ − 8r3ðm0 − 1Þϕ0Þ

�

þ r4U;ϕ − 8rm

�
2λ2rf;ϕðrσ00 − ð5m0 þ 1Þσ0Þ þ σð2λ2f;ϕð4m0 − rm00Þ þ r3ϕ0Þ þ r4σ0ϕ0

�

þ 16λ2m2f;ϕðrð2rσ00 − 5σ0Þ þ 3σÞ
	
: ð14Þ

3As one will see ahead (Sec. III), the scalar field amplitude is always smaller than unity (having the maximum at the horizon),
resulting in a decreased impact of higher-order polynomial terms to the potential.
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To solve the set of three ordinary differential equations, one
must impose proper boundary conditions. At infinity,
asymptotical flatness is guaranteed by imposing

ϕ∼
Qs

r
e−rμ; σ∼1−

Q2
s

2r2
; m∼M−

Q2
s

2r
ð1þ2λ2U;ϕf;ϕÞ;

ð15Þ
where Qs is the scalar charge. While at the horizon, the
functions can be approximated by a polynomial series
expansion in ðr − rHÞ,

m≈
rH
2
þ
�
1

2
−

rHð2þ r2HUÞ
4ðrHþ2ϕ1λ

2f;ϕÞ
�
ðr−rHÞþOððr− rHÞ2Þ;

σ≈σ0þσ0ϕ
2
1

r2Hþ2λ2f;ϕ
rHþ2ϕ1λ

2f;ϕ
ðr− rHÞþOððr− rHÞ2Þ;

ϕ≈ϕ0þϕ1ðr− rHÞþOððr− rHÞ2Þ; ð16Þ

where

ϕ1 ¼ −
1

4λ2f;ϕ½Uðr4H − 4λ4f2;ϕÞ þ r2Hðλ2f;ϕU;ϕ þ 2Þ�
�
ðr5H − 12λ4rHf2;ϕÞU þ 2λ2r3Hf;ϕU;ϕ − 2λ4r3HU

2f2;ϕ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2HU þ 2Þ2 þ ð−12λ6r2Hf3;ϕU;ϕ þ 4λ8Uf4;ϕðr2HU þ 12Þ − 8λ4r2Hf

2
;ϕðr2HU þ 3Þ þ r6HÞ

q
þ 2r3H

�
:

The last equation for ϕ1 involves a square root and thus
regular black hole solutions exist only when the term under
the root is positive.

C. Identities and physical quantities of interest

When the instability settles, an additional class of
solutions besides the vacuum ones emerges. These are
the scalarized solutions that we are interested in. In addition
to the Arnowitt-Deser-Misner (ADM) mass M, these
solutions are also characterized by the so-called “scalar
charge” Qs, which, however, is not associated with a
conservation law but comes from the radial decay behavior
of the scalar field. There are also a number of relevant
horizon quantities: the Hawking temperature TH, the
horizon area AH, and the entropy SH. The black hole’s
entropy has a correction to the Bekenstein-Hawking
entropy given by the Wald approach [55] and can be seen
as a sum of two terms: SH ¼ SEH þ SsGB,

SEH ¼ 1

32π

Z
r¼rH

dΩ2

ffiffiffiffiffiffi
−g

p ðgμρgνσ − gμσgνρÞ ¼ AH

4
;

SGB ¼ λ2

2

Z
r¼rH

dΩ2

ffiffiffiffiffiffi
−g

p
fðϕÞRð2Þ ¼ 4πλ2fðϕ0Þ; ð17Þ

where Rð2Þ is the Ricci scalar for the induced horizon metric
h.4 The solutions satisfy a Smarr law

M ¼ 2THSH þMs; ð18Þ

where Ms is the contribution of the scalar field

Ms ¼
1

2

Z
d3g

ffiffiffiffiffiffi
−g

p ð∂aϕÞ2: ð19Þ

Also, the solutions satisfy the first law of black hole
thermodynamics

dM ¼ THdSH; ð20Þ

in which there is no contribution from the scalar field.5

At last, the solutions obey the so-called virial identity
[59–62]

Z
∞

rH

dr

�
rð3r − 2rHÞUσ þ 2ϕ0

�
8

r4
λ2mf;ϕðσ½3ðr − rHÞmþ rð3r − 2rHÞm0�

þσ0r½rð−2rþ rHÞ þmð6r − 4rHÞ�Þ − ðrðr − 2rHÞ þ 2rHmÞσϕ0
�	

¼ 0: ð21Þ

4A detailed computation of the sGB contribution can be see in [56].
5While, in general, the first law of thermodynamics should contain an additional term associated with the scalar field [57], variation of

ϕðr → ∞Þ while keeping the scalar charge fixed is equivalent to adding a new contribution to the total energy of the system and the first
law is satisfied without the need of including an additional charge contribution (see [58]).
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Observe that the model’s equations are invariant under the
transformation

r → αr; λ → αλ; ð22Þ

with r the radial coordinate and α > 0 an arbitrary positive
constant. Following standard terminology, let us define the
reduced quantities

aH ≡ AH

16πM2
and tH ≡ 8πTHM; ð23Þ

which will be considered in what follows. In addition,
observe that, since λ contains dimensions of length, all the
other quantities can be scaled accordingly, namely,

M
λ
;

rH
λ
;

SH
λ2

; μλ; βλ2: ð24Þ

III. NUMERICAL RESULTS

The field equations (12)–(14) together with the boundary
conditions at infinity (15) and at the horizon (16), pre-
viously obtained, form a Dirichlet boundary problem. They
are solved using an in-house developed, parallelized,
adaptive step size, 6(5)th-order explicit Runge-Kutta inte-
gration method with the boundary conditions being
imposed through a secant strategy to the initial scalar field
amplitude ϕ0 and metric function σ0.
In all solutions, it was guaranteed a maximum local error

of 10−15 during integration, while the boundary conditions
were imposed with a tolerance of 10−8. The physical
accuracy was computed through the virial identity (21)
and the Smarr relation (18), both required to contain a
relative difference no larger than 10−6 and 10−3, respectively.
Belowwe present solutions for various values of the scalar

particle’s mass (Sec. III A) and both positive and negative
values of the quartic self-interacting term (Sec. III B).

A. Massive scalar field

Let us start our analysis with the massive scalar field
case; the effect of self-interaction will be left for the
following subsection. For this, and following the work
done in [36,63–65], we have considered five exemplary
branches as follows:

Nonlinear∶ f1ðϕÞ ¼
1− ekϕ

4

4k
with k ¼ f25; 50; 1000g;

ð25Þ

Mixed∶ f2ðϕÞ ¼
1 − e−bðϕ2þkϕ4Þ

2b
with k ¼ f4; 32g and b ¼ 6: ð26Þ

These correspond to the three possible kinds of solutions
shown in [36] for the case of fully nonlinear scalarization
and two examples of mixed scalarization. The case with
standard scalarization (k ¼ 0) was already extensively
studied in the literature [23,26,27,33,36,54] including the
case of a massive scalar field [47,49,63,66]; hence we will
solely focus on the new solutions with nonlinear and mixed
scalarization.
Let us start by observing the scalar field amplitude at the

horizon ϕ0 (see Fig. 1). The top and the middle rows
represent the three distinct structures of solution branches
in the case of pure nonlinear scalarization. Namely, for
large values of κ (e.g., κ ¼ 1000 in the middle row) two
branches of solutions exist—an upper potentially stable one
that merges at some maximum mass with a lower unstable
branch. For intermediate κ (e.g., κ ¼ 50 in the top-right
panel), the unstable lower branch starts deforming and it
never reaches the M ¼ 0 limit. For even smaller κ like in
the top-left panel, the two branches of solutions form a
closed loop. The Schwarzschild solution is always linearly
stable in these cases. A general observation is that the upper
part of the scalarized solution branches (having larger ϕ0

for a fixed mass) are also potentially stable, while the lower
scalarized branches are always unstable [67].
The mixed scalarization in the bottom panels of Fig. 1 is

simpler. The branches of solutions start at a bifurcation
point of the Schwarzschild ϕ0 ¼ 0 solutions (the point of
origin of the scalarized branches on the x axes) followed by
an increase of their mass and scalar field until a maximum
mass is reached. After that, the mass starts decreasing
toward theM ¼ 0 limit. The part of the branch between the
bifurcation point and the maximum mass is always unsta-
ble, while the rest of the sequence is formed by stable black
holes [67]. The Schwarzschild solution, on the other hand,
is stable only for masses larger than the bifurcation point.
For a more detailed discussion on the structure of solution
branches as well as their stability, we refer the reader to
[36,67] (a similar behavior also occurs in Einstein-
Maxwell-scalar models [37,38]).
As one can conclude from the figures and the dis-

cussion above, in all of the considered cases there is a
jump between the stable scalarized black hole branches
and the Schwarzschild one that can have interesting
astrophysical implications [41]. One of our tasks will
be to investigate the effect of scalar field potential on the
presence and size of this jump.
After discussing in detail the general structure of

branches let us turn now to the effects of scalar field mass
and self-interaction. Observes that, independent of the
branch or kind of scalarization, the presence of a mass
term results in a quench of the scalarization phenomena:
larger μλ leads to a smaller ϕ0 vsM=λ parameter range for
which a given k model solution exists (the domain of the
existence shrinks). As an example, the k ¼ 25 nonlinear
solution’s domain of existence reduces to a point and stops
existing for μλ ≈ 0.058 (see also Figs. 2 and 3). Whereas for
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the k ¼ 32 mixed scalarization there is a simultaneous
decrease of the domain of existence width and a shift of
the normal scalarization bifurcation, which point to higher
values of λ for the sameADMmassM. Both cases are a clear
signature of the quenching of the scalarization phenomena.
In the case of mixed scalarization (bottom panels of

Fig. 1), the scalar field mass also shortens the domain of
existence of the unstable scalarized branch (from the
bifurcation point to the maximum mass). This effectively
shrinks the area where stable scalarized branches coexist
with linearly stable Schwarzschild branch holes. The
“height” of the jump between the two, though, is affected
much less by the nonzero μ.
Concerning the horizon radii, Fig. 2, a similar behavior

can be observed: the possible solution’s parameter region
shrinks. In particular, there is a decrease of the maximum
horizon radii with the increase of the particle’s mass. The
same behavior can be seen for the entropy, see the
Appendix.
At last, observe the closed loop domain of existence of

k ¼ 25, Fig. 1 (top left). The increase of the λμ term causes

the loop to shrink to a point and disappear. This behavior
occurs for all the closed loop domains of existence, with the
transition happening at somewhat larger κ for larger λμ. In
particular, the minimum value k for μλ ¼ 0 occurs at
k ≈ 22.1; while for k ¼ 25 the scalarized branches dis-
appear for scalar field masses above μλ ≈ 0.058. We have
investigated this problem in detail (see Fig. 3). In the left
panel, the points indicate the limiting value of the param-
eters for which we could find scalarized solutions. Black
holes with nontrivial scalar hair exist only below this curve.
Thus, in the case of nonlinear scalarization, hairy black

hole solutions seem to exist for arbitrary large k, while the
minimum k is μλ dependent. A detailed investigation of our
result hints toward the conclusion that the open branchlike
scalarized solutions (see k ¼ 50 in Fig. 1) continuously
transform into a closed looplike solution (see k ¼ 25 in
Fig. 1) as one increases μλ.6 However, the latter was not
possible to prove due to numerical difficulties. In addition,

FIG. 1. Scalar field amplitude at the horizon ϕ0 as a function of the scaled ADMmassM=λ for several values of the scaled scalar field
particle’s mass μλ and for five different cases of the scalarized GB black holes: nonlinear with coupling function (25) and k ¼ 25 (top
left), k ¼ 50 (top right) and k ¼ 1000 (middle); and mixed coupling function (26) with b ¼ 6 and k ¼ 4 (bottom left) and k ¼ 32
(bottom right).

6A similar transition probably exists when reducing k.

ALEXANDRE M. POMBO and DANIELA D. DONEVA PHYS. REV. D 108, 124068 (2023)

124068-6



FIG. 2. Black hole’s scaled horizon radii rH=λ as a function of the scaled ADM massM=λ for several values of the scaled scalar field
particle’s mass μλ and five different cases of the scalarized GB black holes: nonlinear with coupling function (25) and k ¼ 25 (top left),
k ¼ 50 (top right) and k ¼ 1000 (middle); and mixed coupling function (26) with b ¼ 6 and k ¼ 4 (bottom left) and
k ¼ 32 (bottom right).

FIG. 3. The maximum scaled scalar field particle’s mass μλ, for which nonlinearly scalarized sGB black holes [with coupling function
(25)] still exist, as a function of (left) the coupling constant k and (right) scaled ADM mass M=λ. Alternatively, one can interpret the
results as the minimum value of the nonlinearly scalarized k (or M=λ) able to support nonlinear scalarization for a given scalar field
particle’s mass μλ. Each plot point corresponds to the configuration at which the closed loop of scalarized black hole branches tends to a
point (see, e.g., k ¼ 25 in Fig. 1 top left).
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Fig. 3 (right panel), shows the dependency of the limiting
solution’s λμ with the BH’s mass. A higher particle’s mass
requires a higher coupling constant λ for the same M. A
massive scalar field is less prone to scalarize and hence
requires a higher coupling constant to counterbalance the
quenching by the mass term.

B. Massless self-interacting scalar field

To solely isolate the impact of the self-interaction,
consider the case of a massless, quartic self-interacting
scalar field for two examples: the nonlinear scalarization
f1ðϕÞ with k ¼ 1000 and the mixed scalarization f2ðϕÞ
with k ¼ 32. While in the case of the mass term, only
positive values are possible, the self-interaction can be
either positive or negative, with a positive/negative β in
Eq. (8) decreasing/increasing the domain of existence for
which scalarized solutions exist—see Fig. 4 for both
nonlinear (left panel) and mixed (right panel) scalarization.
We have to note that, from an equation point of view,
adding a self-interaction is very similar to adding a quartic
term in the coupling, a fact that has already been noticed in
the case of standard spontaneous scalarization [46]. The
reason is that, on the right-hand side of the scalar field
Klein-Gordon equation (14), enter both the coupling
function (f;ϕ) and potential (U;ϕ) derivates.

From the analysis of the domain of existence, Fig. 4, two
behaviors are evident. First, the quartic self-interaction has a
smaller impact on the overall scalarization than the mass
term. This is a natural consequence of the fact that the scalar
field maximum value occurs at the horizon ϕ0 and is always
less than unity (see Figs. 1 and 4), i.e., maxðϕðrÞÞ ¼ ϕ0 < 1.
Thus, the effect of the quartic (and higher-order) self-
interaction is weaker when compared with the mass term.
Second, the self-interaction λ2β has less influence on the

nonlinear scalarization (k ¼ 1000, left panel) than on the
mixed scalarization (k ¼ 32, right panel).7 Whereas for
the nonlinear scalarizationwithk ¼ 1000, λ2β ¼ 10.0 barely
alters the domain of existence; for the mixed scalarization
with k ¼ 32, even a relatively weak self-interaction like
λ2β ¼ 0.1 is enough to visibly change it (see also Fig. 5 for
the change of the horizon radii). This is a result of the fact
that, for pure nonlinear scalarization, hairy black holes are
typically present for stronger coupling λ between the scalar
field and the Gauss-Bonnet invariant (thus smaller M=λ)
compared to the mixed scalarization. In other words, for
the same mass, the tachyonic instability in the mixed
coupling allows scalarization to occur for weaker couplings

FIG. 4. Scalar field amplitude at the horizon ϕ0 as a function of the scaled ADMmassM=λ for several values of the scaled scalar field
quartic self-interaction λ2β and two different cases of the scalarized sGB black holes: a nonlinear with coupling function (25) and
k ¼ 1000 (left) and a mixed coupling function (26) with b ¼ 6 and k ¼ 32 (right).

FIG. 5. Black hole’s scaled horizon radii rH=λ as a function of the scaled ADM massM=λ for several values of the scaled scalar field
particle’s quartic self-interaction λ2β and two different cases of the scalarized sGB black holes: a nonlinear with coupling function (25)
and k ¼ 1000 (left) and a mixed coupling function (26) with b ¼ 6 and k ¼ 32 (right).

7Observe that the same is true also for the mass term, Fig. 1,
but up to a smaller extent.

ALEXANDRE M. POMBO and DANIELA D. DONEVA PHYS. REV. D 108, 124068 (2023)

124068-8



(largerM=λ) than the nonlinear scalarization, making it more
sensitive to additional interactions.
Notice, though, that similar to the massive scalar field

term, the presence and the height of the jump between the
last stable scalarized solution and the bald GR black holes
do not change.
At last, we have verified numerically that, in the case of

the mixed scalarization, the bifurcation point from the
vacuum solutions does not change with the introduction of
the self-interaction. The reason behind this is that the
bifurcation point is solely dependent on the linear terms in
the f;ϕ that enters in the right-hand side of the Klein-
Gordon equation (14).

IV. CONCLUSION

In this work, we studied the nonlinear black hole
scalarization phenomena due to the presence of a massive
or self-interacting scalar field nonminimally coupled to the
Gauss-Bonnet invariant. We considered both pure non-
linear scalarization when a Schwarzschild black hole is
linearly stable but stable hairy black holes can also be
present, as well as mixed linear and nonlinear scalarization
when a Schwarzschild black hole is unstable below a
certain mass but a region of the parameter space still exists
where linearly stable bald and hairy black holes can coexist.
For the pure nonlinear scalarization, we focused on three

values of the constant k that define the coupling function
between the scalar field and the Gauss-Bonnet term. These
three cases cover all the interesting possibilities for the
domain of existence of nonlinearly scalarized solutions. In
the mixed case, the solution structure is much simpler and
two branches with different k were examined. We have
observed indications of a suppression of the scalarization
phenomena by a mass/positive self-interaction term, which
is independent of the scalarization type. In particular, the
domain of existence shrinks and moves to higher values of
the coupling between the scalar field and the Gauss-Bonnet
invariant.
In fact, the mass term is able to cancel the scalarization in

the nonlinear case. For a relatively small k, the nonlinear
scalarization’s domain of existence forms a closed loop that
shrinks with the increase of the scalar field particle’s mass
until it becomes a point and vanishes. In the mixed
scalarization, on the other hand, there is a shift of the
bifurcation point (the point where the Schwarzschild
solution becomes unstable, giving rise to hairy black holes)
to higher values of the coupling constant, however, without
ever disappearing.
The magnitude of the effect associated with the mass/

self-interaction terms is also different for both scalarization
types. The reason is that the tachyonic instability in the
mixed coupling makes the black hole more susceptible to
scalarization. As a result, the latter requires a weaker
coupling of the scalar field to the Gauss-Bonnet invariant
to ignite the scalar hair development, when compared to

nonlinear scalarization. This makes the mixed scalarized
black holes more susceptible to the influence of the self-
interaction potential.
What makes the nonlinear and mixed scalarized black

holes particularly interesting is the presence of a jump
between the last stable scalarized solution and the bald GR.
Thus, a transition between the two can have interesting
astrophysical implications. Our results indicate that, even
though the existence domain changes sometimes signifi-
cantly for a massive/self-interacting scalar field, the height
of the jump between the two black hole phases is much less
sensitive, and at least for the considered value of the
parameters, it is only very weakly affected.
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APPENDIX: THERMODYNAMIC PROPERTIES

Consider now in more detail the scalarized black hole’s
thermodynamics. Both nonlinear and mixed scalarization
endow black hole solutions that are thermodynamically
preferable to the corresponding vacuum GR solution (see
Fig. 6 and [23,54]). Such is, however, not a generic feature.
Let us start with the nonlinear scalarization (see Fig. 6

top and middle and Fig. 7 left). In the latter, for small
enough values of k ∼ 25, all the obtained solutions are
entropically preferable when compared with vacuum GR.
Increasing k leads to a decrease in the entropy until an
entropically unfavorable branch emerges. The addition of
the mass/self-interaction term keeps the stable/unstable
branch structure for high enough values of k unchanged,
reducing only the region of the parameter space for which
each solution exists.
In the case of mixed scalarization (see Fig. 6 bottom), for

small k (bottom left), the solutions contain a first entropi-
cally unfavorable branch (close to the bifurcation point
from vacuum GR) and become entropically preferable at a
second branch after the maximum of the mass. On the other
hand, for high enough k (bottom right), only the very high
value λ solutions (small mass M) have an entropy higher
than a comparable GR solution. The addition of the
nonlinear coupling decreases the mixed scalarization
entropy making them unfavorable.
As in the case of nonlinear scalarization, the entropy

structure for a given mixed scalarization k is somewhat
insensitive to the presence of the mass/self-interaction term.
For a given k, the mixed scalarization entropy structure
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remains the same as one adds a mass/self-interaction term
and no significant change in the point at which the solutions
with high k becomes thermodynamically unfavorable.
Let us now study the normalized horizon temperature

8πTHM of both nonlinear and mixed scalarization in the

presence of a massive, Fig. 8, or self-interacting, Fig. 9,
scalar field.
For small values of the nonlinear scalarization parameter

k, the horizon temperature is, in general, higher than the
Schwarzschild one (see Fig. 8 top). The minimum value

FIG. 6. Black hole’s scaled entropy SH=λ2 as a function of the scaled ADM mass M=λ for several values of the scaled scalar field
particle’s mass μλ and five different cases of the scalarized GB black holes: nonlinear with coupling function (25) and k ¼ 25 (top left),
k ¼ 50 (top right) and k ¼ 1000 (middle) and mixed coupling function (26) with b ¼ 6 and k ¼ 4 (bottom left) and
k ¼ 32 (bottom right).

FIG. 7. Black hole’s scaled entropy SH=λ2 as a function of the scaled ADM mass M=λ for several values of the scaled scalar field
particle’s quartic self-interaction λ2β and two different cases of the scalarized sGB black holes: a nonlinear with coupling function (25)
and k ¼ 1000 (left) and a mixed coupling function (26) with b ¼ 6 and k ¼ 32 (right).
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decreases as one increases the scalar field particle’s mass
(or positive self-interaction).
Nonlinearly scalarized black holes with high k (middle)

or mixed scalarization (bottom) have a region with lower
temperature than the Schwarzschild black hole. The latter’s

width expands with the increase of the mass/positive self-
interaction (the opposite occurs for the negative self-
interaction, see Fig. 9). The minimum temperature in these
regions also decreases with the increase of the mass/
positive self-interaction without ever reaching zero.

FIG. 8. Black hole’s normalized horizon temperature 8πTHM as a function of the scaled ADM mass M=λ for several values of the
scaled scalar field particle’s mass μλ and five different cases of the scalarized GB black holes: nonlinear with coupling function (25) and
k ¼ 25 (top left), k ¼ 50 (top right) and k ¼ 1000 (middle) and mixed coupling function (26) with b ¼ 6 and k ¼ 4 (bottom left) and
k ¼ 32 (bottom right).

FIG. 9. Black hole’s normalized horizon temperature 8πTHM as a function of the scaled ADM mass M=λ for several values of the
scaled scalar field particle’s quartic self-interaction λ2β and two different cases of the scalarized sGB black holes: a nonlinear with
coupling function (25) and k ¼ 1000 (left) and a mixed coupling function (26) with b ¼ 6 and k ¼ 32 (right).
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