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General relativity (GR) exists in different formulations, which are equivalent in pure gravity. Once matter
is included, however, observable predictions generically depend on the version of GR. In order to quantify
the resulting ambiguity, we employ metric-affine gravity, which encompasses as special cases the metric,
Palatini, Einstein-Cartan, and Weyl formulations. We first discuss the interaction of fermions with torsion
and nonmetricity, also commenting on projective symmetry. With a view toward the Standard Model, we
then construct a generic model of (complex) scalar, fermionic, and gauge fields coupled to GR and derive
an equivalent metric theory, which features numerous new interaction terms. As a first observable
consequence, we point out that a gravitational mechanism for producing dark matter in the form of singlet
fermions can be used to distinguish between metric gravity and other formulations of GR.
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I. INTRODUCTION

Overall goal. General relativity (GR) has been con-
firmed by countless experiments, such as the recent break-
through discovery of gravitational waves [1]. Arguably,
however, this theory is far from being fully understood. An
important question already arises on the classical level:
Which formulation of GR should one use? All options are
fully equivalent in pure gravity, provided that the action is
chosen to be sufficiently simple. In other words, GR cannot
distinguish between its different versions, which puts all of
them on the same footing. Therefore, the formulations of
GR do not represent a modification of gravity. Instead, they
have to be regarded as unavoidable ambiguity of GR.
Once matter is included, the equivalence is broken and

the various versions of GR generically lead to distinct
predictions. On the one hand, this is a very undesirable
feature. In principle, it becomes impossible to make unique
predictions in all theories of matter coupled to GR. One the
other hand, an opportunity arises for using measurements to
derive information about GR: One can constrain the choice
of formulation by observations. In the present paper, we

shall contribute to this goal. Throughout, our approach will
be minimal, i.e., we shall solely consider those ambiguities
that are forced upon us by gravity. Consequently, we only
employ models that are equivalent to metric GR in the
absence of matter.
Different formulations. Gravity is described by means of

the geometry of spacetime, determined by the metric gμν
and the affine connection Γα

μν. In the original version of
GR [2], two constraints were imposed on Γα

μν, namely
metric-compatibility, ∇αgμν¼0, and the absence of torsion,
Γα

μν ¼ Γα
νμ. These two requirements uniquely determine

Γα
μν to be the Levi-Civita connection Γ̊α

βγðgμνÞ, which is a
function of the metric. This is the metric formulation of GR,
where gμν is the only fundamental field and geometry is
Riemannian, i.e., fully determined by the curvature of
spacetime.
It was soon realized that the above assumptions can

be relaxed and that the affine connection and the metric
can constitute independent fundamental variables [3–13].1
Then deviations fromRiemannian geometry arise, encoded in
torsion Tα

βγ ¼ 1
2
ðΓα

βγ − Γα
γβÞ, the nonclosure of infinitesi-

mal parallelograms [7–10], as well as nonmetricity, causing a
change of vector length during parallel transport [3,5,6]. If
only torsion is included in addition to curvature, this leads to
the Einstein-Cartan (EC) formulation of GR [7–13], whereas
a theory that exclusively features nonmetricity on top of
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curvature can be regarded as Weyl formulation of GR.2

Ultimately, including all three geometric properties of
gravity—curvature, torsion, and nonmetricity—corresponds
to a general metric-affine version of GR [37–40]. This
formulation stands out since no assumptions are made on
the nature of the affine connection.3

Remarkably, even though those formulations may look
drastically different, they are fully equivalent for suffi-
ciently simple theories. If for instance no matter is coupled
to GR and gravity is described by the Einstein-Hilbert
action

R
d4x

ffiffiffiffiffiffi−gp
R, where R is the Ricci scalar, then torsion

and/or nonmetricity vanish dynamically and we recover
the Levi-Civita connection Γ̊α

βγ [58,59].4 Because of this
equivalence, the different formulations represent an inher-
ent ambiguity of GR. Various arguments have been put
forward for preferring one formulation over the other. As an
important example, EC gravity can be derived by gauging
the Poincaré group [60–62], which puts gravity on the same
footing as the other forces of the Standard Model (SM).
What speaks in favor of metric-affine gravity is the fact that
it avoids a priori assumptions about the connection and
encompasses the metric, Palatini and EC versions as special
cases. Having said that, there is no irrefutable argument to
single out any of the formulations and we have to regard all
of them as intrinsic part of GR.
Breaking the equivalence. There are two ways to break

the equivalence between the various versions of GR. The
first one already exists in pure gravity and utilizes curva-
ture-squared terms, which generically introduce additional
propagating degrees of freedom that are often plagued by
inconsistencies [63–68]. Even though certain models are
healthy at the linear [69–89] or even full nonlinear level
[90–106], we shall not consider them since the new par-
ticles cause a deviation from the metric version of GR
already in the absence of matter.
The second way to break the equivalence between the

different formulations of GR is through the interaction with
matter. In certain cases, e.g., for fermions, this happens
even when the coupling to gravity is minimal [61,107]. In
other situations, a difference between the various versions of
GR only arises for nonminimal interactions [42,108–123].
These effects of a coupling to geometry can be mapped to an
equivalent theory in themetric formulationwith a specific set

of operators of higher mass dimension in the matter sector.
Thus, the different formulations of GR become distinguish-
able at sufficiently high energies. It is important to note,
however, that no additional dynamical particles emerge from
torsion and nonmetricity, i.e., the only propagating gravita-
tional degree of freedom is still the massless spin 2 graviton.
In EC gravity, the concrete form of higher-dimensional

operators has been worked out in various models
[61,109,112,117–120,124–131]. So far, [131] represents
the most complete study since it includes all fields of
the SM and encompasses as special cases all previously
mentionedworks [61,109,112,117–120,124–130].Moreover,
systematic criteria were proposed in [131] for constructing
an action of matter coupled to GR, with the goal of ensuring
equivalence to the metric formulation in pure gravity while
making as fewassumptions aspossible.Metric-affine scenarios
were studied in [48,111,114,115,121–123,132,133], where
so far an explicit coupling to the whole SM has not been
considered.
Phenomenological implications. In the absence of con-

clusive conceptual arguments to distinguish between the
formulations of GR, it is crucial to derive from them
observables predictions. In this way, one can use measure-
ments to reduce the ambiguity that results from the different
versions of GR. Phenomenological and cosmological
implications of EC (or Palatini) gravity have been analyzed
in [117,119,120,125,126,129,133–168], among others (see
[169] for a recent review focusing on inflation), and a list
of corresponding studies in metric-affine gravity includes
[115,122,123,170–187], where we note that additional
propagating degrees of freedom arise from gravity in some
of the above mentioned works.
Of particular importance for the present paper is a possible

implication of the formulations of GR for dark matter.
Among the proposed candidates, singlet fermions are espe-
cially well motivated since they can—in the form of right-
handed neutrinos—additionally provide an explanation for
the observed neutrino masses. For a long time, however, it
was difficult to implement the production of fermionic dark
matter in the early Universe while obeying observations
constraints [188–193] (see [194] for a review). In [156], it
was demonstrated that EC gravity features a new and natural
mechanism for generating singlet fermions.5 It can produce
the observed abundance of dark matter in a wide range of
fermion masses and moreover leads to a characteristic
momentum distribution of dark matter, which can serve to
probe this proposal. So far, however, it has remained unclear
if a gravitational production of singlet fermions is possible in
other formulations of GR apart from EC gravity.
Present work. In the present paper, we pursue three goals:
(1) We will couple GR to a matter sector that includes a

complex scalar field, fermions and vector gauge

2This is different from gravitational models that exhibit Weyl-
invariance (see e.g., [18–36]).

3Reviews of Einstein-Cartan/metric-affine gravity are provided
in [41–45] and an overview of various versions of GR can be
found in [46–48], where also other options are discussed such as
teleparallel theories, in which curvature is assumed to vanish
[12,13,49–55], as well as purely affine models, where the only
dynamical field is the affine connection [6,11,56,57].

4If—possibly in the presence of matter—the purely gravita-
tional part of a theory only consists of R, we shall use the term
Palatini formulation. Such a situation can be regarded as special
case of the Einstein-Cartan, Weyl or metric-affine versions (see
discussion in [48]).

5Dark matter production from dynamical torsion was dis-
cussed in [151].
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bosons and therefore contains the SM. To this end,
we employ the metric-affine formulation that uni-
fies the parameter space of the metric, Palatini, EC,
and Weyl versions. As in [48], we will derive an
equivalent metric theory. Our result encompasses
the models [48,61,109,112,117–120,122–131] as
special cases. We emphasize that our study will
be classical throughout, apart from very brief com-
ments on quantum effects.

(2) Along the way, we shall discuss the coupling of
fermions to torsion and nonmetricity. Moreover, we
will develop further the criteria of [131] for coupling
matter to GR.

(3) Finally, we will show that a gravitational production
of fermionic dark matter is not only possible in EC
gravity [156], but it also occurs naturally in the
metric-affine (as well as Weyl) formulations. There-
fore, this mechanism can be viewed as a generic
prediction of GR outside the metric version. Also
observable predictions are largely insensitive to the
different formulations of GR, as long as they feature
an independent affine connection.

The paper is organized as follows. After a brief review of
the geometrical aspects of classical gravity, we discuss in
Sec. II the coupling of GR to matter fields, in particular
fermions, and present the refined selection criteria for
coupling matter to gravity. In Sec. III, the most general
action satisfying the selection rules is constructed. We
show that the presence of torsion and nonmetricity leads to
specific geometric-induced interaction terms for the fer-
mion and scalar field whereas no such contributions emerge
for the gauge fields. Finally, we study in Sec. IV the
phenomenology of the new higher-dimensional operators
for fermions and show that the gravitational production of
dark matter proposed in [156] can also be naturally realized
in metric-affine gravity. We conclude in Sec. V, furthermore
giving an outlook to implications for quantum gravity. In
Appendix A, we discuss local Lorentz symmetry as well
as the covariant derivative of fermions and Appendix B
contains details about the selection rules for coupling of
gravity to different matter fields. Appendix C is devoted to
details about the computation of Sec. III and we also show
that results of [48,131] are reproduced in specific limits.
Conventions. Greek letters denote spacetime indices and

Latin letters are reserved for Lorentz indices. Both the
spacetime metric gμν and the Minkowski metric ηαβ have
signature ð−1;þ1;þ1;þ1Þ. Square brackets denote anti-
symmetrization, T ½μν� ≡ 1

2
ðTμν − TνμÞ, and round brackets

indicate symmetrization, TðμνÞ ≡ 1
2
ðTμν þ TνμÞ. For the

gamma matrices we use the convention

fγA; γBg ¼ −2ηAB; γ5 ¼ −iγ0γ1γ2γ3 ¼ iγ0γ1γ2γ3;

ð1:1Þ
and for the Levi-Civita tensor we take:

ϵ0123 ¼ 1 ¼ −ϵ0123: ð1:2Þ
The covariant derivative of a vector Aν is defined as

∇μAν ¼ ∂μAν þ Γν
μαAα; ð1:3Þ

i.e., the summation is done on the last index of the
Christoffel symbol. Finally, we work in natural units
MP ¼ ℏ ¼ c ¼ 1, where MP is the reduced Planck mass.

II. THE GEOMETRY OF GRAVITY

A. Review of curvature, torsion and nonmetricity

We shall give a brief overview of gravitational geometry
and refer the reader to [46,48] for more details. Our starting
point is a differentiable manifold equipped with a metric
gμν and a independent connection Γα

βγ , where the latter
determines the Riemann tensor:

Rρ
σμν ¼ ∂μΓρ

νσ − ∂νΓρ
μσ þ Γρ

μλΓλ
νσ − Γρ

νλΓλ
μσ: ð2:1Þ

Then the curvature of spacetime reads

R ¼ gσνRρ
σρν; ð2:2Þ

corresponding to the rotation of vectors along infinitesimal
closed curves [195–197]. If we were to impose that the
connection is symmetric in the lower indices, Γα

βγ ¼ Γα
γβ,

and metric compatible, ∇̊μgαβ ¼ 0, this would uniquely

lead to the Levi-Civita connection Γ̊α
βγ , which is a function

of the metric:

Γ̊α
βγ ¼

1

2
gαμð∂βgμγ þ ∂γgμβ − ∂μgβγÞ: ð2:3Þ

If assumptions about the connection are dropped, however,
then two additional geometric properties arise in addition to
curvature R. The first one is torsion,

Tα
βγ ≡ Γα

βγ − Γα
γβ; ð2:4Þ

and corresponds to the nonclosure of infinitesimal paral-
lelograms. Second, we have nonmetricity,

Qγαβ ≡∇γgαβ; ð2:5Þ

which leads to the nonconservation of vector norms under
parallel transport.
We can uniquely decompose the full connection Tα

βγ into
the Levi-Civita part Γ̊α

βγ and non-Riemannian contributions:

Γγ
αβ ¼ Γ̊γ

αβðgÞ þ JγαβðQÞ þ Kγ
αβðTÞ; ð2:6Þ

where Kγ
αβðTÞ is the contorsion tensor that depends solely

on torsion, while JγαβðQÞ is the disformation tensor
that is a function of nonmetricity only. The requirement
∇αgμνjJγαβ¼0 ¼ 0 leads to
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Kαβγ ¼
1

2
ðTαβγ þ Tβαγ þ TγαβÞ; ð2:7Þ

and imposing Γγ ½αβ�jKαβγ¼0 ¼ 0 implies

Jαμν ¼
1

2
ðQαμν −Qναμ −QμανÞ: ð2:8Þ

Since torsionandnonmetricity each carry three tensor indices,
it is convenient to split them further into vector- and pure
tensor-parts. For torsion, we obtain [42,115,116]:

the trace vector∶ Tα ¼ gμνTμαν; ð2:9Þ
the pseudo trace axial vector∶ T̂α ¼ ϵαβμνTβμν; ð2:10Þ

the pure tensor part∶ tαβγ that satisfies gμνtμαν ¼ 0

¼ ϵαβμνtβμν: ð2:11Þ
Torsion can be be reconstructed in terms of these irreducible
pieces as:

Tαβγ ¼ −
2

3
gα½βTγ� þ

1

6
ϵαβγνT̂

ν þ tαβγ: ð2:12Þ

Similarly, we can split further nonmetricity into three con-
tributions [42,115]6:

a first vector∶ Qγ ¼ gαβQγαβ; ð2:13Þ
a second vector∶ Q̂γ ¼ gαβQαγβ; ð2:14Þ

the pure tensor part∶ qαβγ that satisfies gαβqγαβ ¼ 0

¼ gαβqαγβ: ð2:15Þ

In terms of the components of Eqs. (2.13)–(2.15), non-
metricity can be decomposed as follows:

Qαβγ ¼
1

18
½gβγð5Qα − 2Q̂αÞ þ 2gαðβð4Q̂γÞ −QγÞÞ� þ qαβγ:

ð2:16Þ
Correspondingly, we can express contorsion and disforma-
tion as:

Kαβγ ¼
1

12
ϵαβγδT̂

δ −
2

3
gβ½αTγ� þ 2t½αjβjγ�; ð2:17Þ

Jαβγ ¼
1

9
gαðβQ̂γÞ þ

1

18
gβγ

�
−5Q̂α þ

7

2
Qα

�

−
5

18
gαðβQγÞ þ 2qαðβγÞ: ð2:18Þ

Those expressions, like all equations involving decomposi-
tion into irreducible components, can be verified using the
companion Mathematica notebook [198].
Moreover, we can split curvature (2.2) as [48]:

R ¼ R̊þ ∇̊αðQα − Q̂α þ 2TαÞ − 2

3
TαðTα þQα − Q̂αÞ

þ 1

24
T̂αT̂α þ

1

2
tαβγtαβγ −

11

72
QαQα þ 1

18
Q̂αQ̂

α

þ 2

9
QαQ̂

α þ 1

4
qαβγðqαβγ − 2qγαβÞ þ tαβγqβαγ: ð2:19Þ

We shall briefly point out that R is invariant under
projective transformations [38,56,199–203]

Γγ
αβ → Γγ

αβ þ δγβAα; ð2:20Þ

where Aα ¼ AαðxÞ is an arbitrary covariant vector field.
The geometric vectors transform as (see [48,204]):

Tα → Tα þ 3Aα; T̂α → T̂α;

Qα → Qα − 8Aα; Q̂α → Q̂α − 2Aα: ð2:21Þ

Thus, generic terms composed of torsion and nonmetricity
are not projectively invariant—only their specific combi-
nation contained in R is.
So far, we have considered the basis induced by the

metric gμν, to which we refer by Greek indices and that
transforms covariantly under diffeomorphisms. Alterna-
tively, one can use a second (internal) basis, that we label
with capital Latin indices and that exhibits covariance
under local Lorentz transformation, while the metric is
fixed to being Minkowski ηAB [196]. We can go from one
basis to the other via tetrads eμA, i.e., Vμ ¼ eμAV

A and
inversely VA ¼ eAμVμ for a vector VA. In particular, we have

ηAB ¼ eμAe
ν
Bgμν ⇔ gμν ¼ eAμeBν ηAB: ð2:22Þ

The form of the covariant derivative is different for the two
bases. While the affine connection Γα

μν acts on spacetime
indices, the spin connection wAB

μ corresponds to the internal
basis:

∇μVν ¼ ∂μVν þ Γν
μνVα; ∇μVA ¼ ∂μVA þ ωμ

A
BV

B:

ð2:23Þ
Compatibility of the covariant derivative in the two bases,
i.e., ∇μVν ¼ eνA∇μVA, implies7

ωμ
A
B ¼ eνAeλBΓν

μλ − eλB∂μeλA: ð2:24Þ
6We remark that this decomposition is not irreducible since

qαβγ can be further decomposed into a fully symmetric part and a
remainder.

7Alternatively, it is also possible to consider two independent
connections [205].
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Correspondingly, the projective transformation (2.20)
acts as

ωμ
A
B → ωμ

A
B þ δABAμ; ð2:25Þ

i.e., only a part symmetric in the Latin indices is generated.
According to Eq. (2.6), we can split the spin connection in
its Riemannian part,

ω̊μ
A
B ¼ eνAeλBΓ̊ν

μλ − eλB∂μeλA; ð2:26Þ

and contributions due to torsion and nonmetricity:

ωμ
A
B ¼ ω̊μ

A
B þ eνAeλBJνμλ þ eνAeλBKν

μλ: ð2:27Þ

The symmetry of contorsion, Kαβγ ¼ K½αjβjγ�, implies that8:

Qγαβ ¼ 0 ⇔ ωμAB ¼ ωμ½AB�: ð2:28Þ

We conclude that the spin connection is antisymmetric in
the Latin indices if and only if nonmetricity vanishes.

B. Coupling to fermions and vector fields

An important reason for introducing the spin connection
wμ

AB is that it is necessary to couple fermions to gravity. As
detailed in Appendix A (see e.g., also [119,120,206]), the
covariant derivative of a spinor field Ψ reads9

DμΨ ¼ ∂μΨþ 1

8
ωμ

ABðγAγB − γBγAÞΨ: ð2:29Þ

Now we can plug in the split (2.27) of the spin connection.
We use γμγνγρ ¼ −gμνγρ − gνργμ þ gμργν þ iϵσμνργσγ5 to
derive from Eqs. (2.17) and (2.18) that

Kαμβγ
μðγαγβ − γβγαÞ ¼ 2Kαμβð−2gαμγβ þ iϵρμαβγργ5Þ

¼ 4γαTα − iγαγ5T̂α; ð2:30Þ

Jαμβγμðγαγβ − γβγαÞ ¼ Jαμβð−gμαγβ þ gμβγαÞ
¼ 2γαðQα − Q̂αÞ: ð2:31Þ

Next we consider a generic kinetic term [117,118] of the
fermionic field and decompose it into its Riemann part and
contributions due to torsion and nonmetricity:

i
2
Ψ̄ð1 − iα − iβγ5ÞγμDμΨþ H:c:

¼ i
2
Ψ̄γμD̊μΨþ i

16
Ψ̄ð1 − iα − iβγ5Þð4γαTα − iγαγ5T̂α

þ 2γαðQα − Q̂αÞÞΨþ H:c:

¼
�
i
2
Ψ̄γμD̊μΨþ H:c:

�
−
1

8
Ψ̄γ5γαΨT̂α

þ 1

4
αð2Tα þQα − Q̂αÞΨ̄γαΨ

þ 1

4
βð2Tα þQα − Q̂αÞΨ̄γ5γαΨ: ð2:32Þ

First, we can discuss a minimal coupling, α ¼ β ¼ 0. In
this case, we reproduce the well-known result that fermions
only couple to the axial part T̂α of torsion [61] and that no
interaction with nonmetricity arises (see [98,208–213]).10
In contrast, we observe that nonzero α and β generically
lead to a coupling of fermions to both torsion vectors Tα

and T̂α as well as to both nonmetricity vectors Qα and Q̂α.
Finally, we shall comment on projective invariance of the

fermionic kinetic term. Since a projective transformation
only generate a part symmetric in the internal indices [see
Eq. (2.25)], it is clear that the covariant derivative (2.29) is
unaffected even in the presence of nonminimal couplings.
This agrees with the result (2.32), where projective invari-
ance can be verified by plugging in the transformations
(2.21). Because of this projective symmetry, nonminimal
couplings of fermions as shown in Eq. (2.32) cannot dis-
tinguish between effects of the parity-even torsion vector Tα

and a certain combination of the nonmetricity vectorsQα and
Q̂α. This can lead to a certain universality with regard to the
different formulation of GR, as exemplified in Sec. IV B.
At this point, we can discuss two approaches for

coupling fermions two gravity.
Option 1: “Gravity first”. The first option is to start from

gravity, as we have also done in our presentation. In this
case, one must begin by making a choice about the
geometry of gravity, i.e., select which of the three features
curvature R, torsion Tα

βγ and nonmetricity Qαβγ are
present. Subsequently, one can decide how gravity couples
to fermions. As is evident from Eq. (2.32) (see also
Appendix A 1), only the interaction with the Riemannian
spin connection ω̊μ is necessary for ensuring gauge
invariance under local Lorentz transformations. In contrast,
there is a freedom concerning the coupling with torsion and
nonmetricity.
Option 2: “Matter first”. An alternative point of view is

to start from matter fields in flat spacetime. In this case, one
can derive GR by gauging the Poincaré group [60–62],
which is significantly more constraining. First, it leads to the

8The implication from the right to the left can be verified by
noticing that imposing JðαjβjγÞ ¼ 0 implies JðαjβjγÞ ¼ − 1

2
Qβαγ ¼ 0.

9Alternatively, one can also attempt to construct a fermionic
covariant derivative without antisymmetrization in the gamma
matrices; in this case, projective invariance is lost and even a
minimal coupling to gravity leads to an interaction with non-
metricity [207].

10Further discussions about the coupling of fermions to the
torsionful teleparallel formulation of GR [12,13,49–53] can be
found in [53,214–223].
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EC formulation, i.e., curvature and torsion arise whereas
nonmetricity does not appear, as evident fromAppendixA 1.
Second, gauging the Poincaré group can only generate a
kinetic term of the form (2.32) and in the simplest case only a
minimal coupling arises, where α ¼ β ¼ 0.
In the following, we shall mainly follow the first

approach, although our result encompass as special case
also the predictions of the second option. It is important to
emphasize that although nonmetricity cannot be regarded
as a consequence of gauging the Poincaré group, its
coupling to fermions is fully consistent.
Vector fields. Finally, we make a brief remark about the

use of covariant derivatives when coupling vector fields
to gravity. First, we consider an Abelian gauge field Ãμ. In
Riemannian geometry, partial and covariant derivatives are
interchangeable since

D̊½μÃν� ¼ ∂½μÃν�; ð2:33Þ

where we used that Γ̊α
½μν�Ãα ¼ 0. However, this changes

once the Christoffel symbol is no longer symmetric in its
lower indices. In this case, using a covariant derivative is
inconsistent since a coupling Tα

μνÃα would break invariance
under gauge transformations Ãν → Ãν þ ∂νϵ. Therefore,
the field strength tensor of an Abelian gauge field in metric-
affine gravity reads (see, e.g., [116,131,224]):

Fμν ¼ 2∂½μÃν�: ð2:34Þ

Analogously, also non-Abelian gauge fields must not
couple directly to Γα

μν.

C. Selection rules

As detailed in the introduction, our goal is to consider
gravitational theories that are as general as possible while
still being equivalent to metric GR in the absence of matter.
In order to achieve this, criteria for constructing an action
of gravity coupled to matter were already devised in [131].
We shall develop further the conditions of [131], where
we employ the derivative counting put forward in [119]. We
propose that the action should obey the following two
conditions:

(I) There should be no operator with more than two
derivatives, where the connection Γγ

αβ counts as one
derivative.

(II) The mass dimension of any operator should not be
greater than 4.

Here we assume that the action is analytic and view it as
polynomial in gravitational and matter fields. Additionally,
we require Lorentz invariance and locality as well as
invariance under all gauge groups in the matter sector.
We shall briefly outline our motivation for choosing the two
criteria listed above—a more detailed discussion can be
found in Appendix B.

We begin by commenting on the derivative counting
contained in condition I.. That the Levi-Civita connection
Γ̊γ

αβ features one derivative is evident from Eq. (2.3). As
discussed in [119], this represents a first reason for also
counting the full connection Γγ

αβ as one derivative. Then
the decomposition (2.6) of the connection implies that also
contorsion Kγ

αβ as well as disformation Jγαβ correspond to
one derivative. In turn, this is equivalent to associating one
derivative to torsion Tγαβ and to nonmetricity Qγαβ.
The purpose of restricting ourselves to two derivatives in

condition I is to ensure that the coupling of gravity andmatter
does not lead to new propagating degrees of freedom in
addition to those already present in the matter sector and the
two polarizations of the massless graviton. Including more
than two derivatives generically causes the presence of
additional propagating degrees of freedom, although there
are exceptions. A particular consequence of criterion II is
that the matter sector is renormalizable. This implies that
nonrenormalizable effects only arise due to gravity, i.e.,
curvature, torsion and nonmetricity. Since GR is not renor-
malizable independently of the chosen formulation, this can
be viewed as a minimal approach to nonrenormalizability.

III. STANDARD MODEL COUPLED
TO METRIC-AFFINE GRAVITY

A. The theory

Having set up our selection rules, we can now write down
the most general Lagrangian. In the gravity sector we
consider the generic metric-affine formulation of GR, where
curvature, torsion and nonmetricity area priori present. Then
we wish to couple it to all types of matter present in the SM:
scalar, fermion and vector fields. For now the only restriction
that we impose is selection rule I), limiting the number of
derivatives. Then the most general action following the
criteria listed above can be decomposed in three parts:

S ¼ Smetric þ Ssources þ Squadratic; ð3:1Þ

with

Smetric ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Ω2R̊ − VðΦ;Ψ; FμνÞ

− K̃1gαβD̊αΦD̊βΦ⋆ þ iK̃2

2
ðΨ̄γμD̊μΨ − D̊μΨγμΨÞ

−
1

4
K̃3gμαgνβFμνFαβ

�
; ð3:2Þ

Ssources ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−Jα1T̂α − Jα2Tα − Jα3Q̂α − Jα4Qα�;

ð3:3Þ

and
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Squadratic ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½B1QαQαþB2Q̂αQ̂
αþB3QαQ̂

α

þB4qαβγqαβγ þB5qαβγqβαγ þC1TαTαþC2T̂αT̂
α

þC3TαT̂
αþC4tαβγtαβγ þD1ϵαβγδtαβλtγδλ

þD2ϵαβγδqαβλqγδλþD3ϵαβγδqαβλtγδλþE1TαQα

þE2T̂αQαþE3TαQ̂
αþE4T̂αQ̂

αþE5tαβγqβαγ�:
ð3:4Þ

Here Smetric gathers all term that are torsion- and nonme-
tricity-free and therefore would also exist in the metric
formulation of GR. All sources for torsion and nonmetricity
are in Ssources, and terms that are quadratic in torsion and/or
nonmetricity are collected in Squadratic. Finally, let us empha-
size that the theory considered here is purely classical.
Note that in the second line of Eq. (3.2), D̊α denotes the

Riemannian covariant derivative, which contains couplings
to gauge fields. In the case of fermions, D̊μΨ, as defined in
Eq. (2.29), moreover includes the Riemannian spin con-
nection ω̊μ

A
B (see Eq. (2.26). In contrast, the field strength

tensor Fαβ, which is defined in Eq. (2.34), only contains
partial derivatives. To simplify notations we did not
indicate the dependency of the functions in front of the
term, except for the potential VðΦ;ψ ; FμνÞ. At this point,
without applying selection rule II, all of these functions
may depend on the complex scalar field Φ and on the
fermion ψ , but not on the field strength Fμν. This is due to
the fact that we consider an action with no more than two
derivatives, following selection rule I.

B. Equivalent metric theory

As the equations of motions are algebraic, solutions can
be explicitly found. Since there are no source terms for the
pure tensor parts tαβγ and qαβγ in Eq. (3.3) (see discussion in
Appendix B 2), they have to vanish:

tαβγ ¼ qαβγ ¼ 0: ð3:5Þ
Once we find the solutions for Tα, T̂α, Qα, and Q̂α, we can
plug them back into the action (3.3) and (3.4) to obtain
an equivalent action. The details of these computations,

such as solutions of equation of motion and conformal
transformation of the metric and fermionic field, can
be found in Appendix C. Picking up all pieces, the final
Lagrangian reads:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R̊ −

VðΦ;Ψ; FμνÞ
Ω4

−
3

Ω2
gαβD̊αΩD̊βΩ

−
K̃1

Ω2
gαβD̊αΦD̊βΦ⋆ þ iK̃2

2Ω3
ðΨ̄γμD̊μΨ − D̊μΨγμΨÞ

−
1

4
K̃3gμαgνβFμνFαβ þ

1

Ω2

X4
i≤j¼1

LijJαi Jj;α

�
: ð3:6Þ

In this form, we have integrated out torsion and non-
metricity, the effects of which are completely mapped to
the sum of ten source-squared terms, weighted by the Lij

coefficients shown in Appendix C 1 [Eq. (C13)]. Via a
conformal transformation of the metric, we also went to the
Einstein frame where gravity is minimally coupled to
matter. This resulted in a modification of the potential
term, of the scalar and fermionic kinetic terms and the
apparition of new geometry induced interaction terms.
Although the discussion of our paper is classical, we

remark that integrating out torsion Tαβγ and nonmetricity
Qαβγ is also possible on the quantum level. The reason
is that our initial action (3.1) only contains terms that are
at most quadratic in Tαβγ and Qαβγ . Therefore, the path
integrals with respect to Tαβγ and Qαβγ are Gaussian and
can be carried out exactly by plugging the result of the
classical equations of motion back into the action (see
e.g., [225] and discussion in [152]). The only caveat is that
the quantum theory can feature additional contributions
arising from the measure of the path integral (which cannot
even be defined unless a measure is specified for the initial
action (3.1)—see [226] for details about the path integral
measure in different formulations of gravity).
We are now in a good position to impose the selection

rule II. By limiting the mass dimension of interactions
between matter and gravity to 4, this criterion restricts
heavily the form the couplings can take11:

K̃i ¼ ki0; Ω2ðφÞ ¼ f0 þ ξφ2; DiðφÞ ¼ di0 þ di1φ2; i ¼ 1; 2; 3;

Jαj ¼ aðφÞj D̊αφ2 þ aðΦÞ
j Sα þ aVj V

α þ aAj A
α; CjðφÞ ¼ cj0 þ cj1φ2; j ¼ 1; 2; 3; 4;

BkðφÞ ¼ bk0 þ bk1φ2; EkðφÞ ¼ ek0 þ ek1φ2; k ¼ 1; 2; 3; 4; 5: ð3:7Þ

where we also took into account the discrete symmetry φ → −φ and defined the currents12:

11Evidently, the restriction to mass dimension 4 only applies in the initial Jordan frame, not the Einstein frame where matter is
minimally coupled to gravity. This is the essence of our approach, in which only specific higher dimension operators are generated due
to the deviation from Riemannian geometry.

12Cf. Eqs. (B9)–(B11) in Appendix B 2 [see also Eq. (B17)].
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Sα ¼
i
2
ðΦ⋆D̊αΦ − ðD̊αΦÞ⋆ΦÞ; ð3:8Þ

Vα ¼ JðVÞα ¼ Ψ̄γαΨ; ð3:9Þ

Aα ¼ JðAÞα ¼ Ψ̄γ5γαΨ; ð3:10Þ

Moreover, φ corresponds to the real part of the complex
scalar field Φ:

φ ¼
ffiffiffi
2

p
jΦj: ð3:11Þ

Let us discuss briefly the form of the terms above:
(i) The kinetic terms are already of mass dimension 4,

hence K̃iðhÞ can only be a dimensionless constant.
Note that we can set the constant ki0 ¼ 1 without
loss of generality by a redefinition of the scalar,
fermionic and vector field.

(ii) The scalar curvature R can only be coupled to φ2

because R carries mass dimension 2, and the only
scalar of mass dimension 2 one can construct is φ2.
For example, terms involving two spinor fields are
discarded because they have mass dimension 3. One
can also set f0 ¼ 1 by a general field redefinition.

(iii) All the quadratic couplings B’s, C’s,D’s and E’s can
accommodate both a constant and a φ2-term.

(iv) The 4-vector currents are comprised of four possible
terms (see also Eq. (B17) in Appendix B 2).

(v) In terms of the parameters used in Eq. (2.32), we
would obtain [131]13

aV1 ¼ 0; aA1 ¼ 1

8
; aV2 ¼ −

α

2
; aA2 ¼ −

β

2
;

aV3 ¼ α

4
; aA3 ¼ β

4
; aV4 ¼ −

α

4
; aA4 ¼ −

β

4
:

ð3:12Þ

Let us now substitute all the other expressions in the
action. By plugging in Eq. (3.7) into the expressions for
the Lij coefficients given in Eq. (C13) and performing an
additional conformal transformation of the fermion field,
we obtain the full equivalent theory (see Eqs. (C18)–(C27)
in Appendix C 2):

LAA ¼ Ω2

P
3
n¼0 P

ðAAÞ
n φ2n

D
AμAμ; ð3:13Þ

LVV ¼ Ω2

P
3
n¼0 P

ðVVÞ
n φ2n

D
VμVμ; ð3:14Þ

Lφφ ¼ Ω−2
P

3
n¼0 P

ðφφÞ
n φ2n

D
D̊μφ2D̊μφ

2; ; ð3:15Þ

LΦΦ ¼ Ω−2
P

3
n¼0 P

ðΦΦÞ
n φ2n

D
SμSμ; ; ð3:16Þ

LAV ¼ 2Ω2

P
3
n¼0 P

ðAVÞ
n φ2n

D
AμVμ; ð3:17Þ

LAφ ¼ 2

P
3
n¼0 P

ðAφÞ
n φ2n

D
AμD̊

μφ2; ð3:18Þ

LAΦ ¼ 2

P
3
n¼0 P

ðAΦÞ
n φ2n

D
AμSμ; ð3:19Þ

LVφ ¼ 2

P
3
n¼0 P

ðVφÞ
n φ2n

D
VμD̊

μφ2; ð3:20Þ

LVΦ ¼ 2

P
3
n¼0 P

ðVΦÞ
n φ2n

D
VμSμ; ð3:21Þ

LφΦ ¼ 2Ω−2
P

3
n¼0 P

ðφΦÞ
n φ2n

D
SμD̊

μφ2; ð3:22Þ

with

D ¼
X4
m¼0

Omφ
2m: ð3:23Þ

All terms have the same form, namely a fraction of poly-
nomials of φ. The numerator is a polynomial of order 6
while thedenominator is the same for all expressions and is of
order 8. The coefficients Pn are identical up to the subscript
ðAAÞ, ðVVÞ etc. The difference simply amounts to the ai’s
coefficients displayed in Eqs. (C18)–(C27). So overall, there
are 5 independent polynomials in the common denominator
and 4 in each numerator. The exact form of the polynomials
can be found using the companion Mathematica notebook
[198]. Then the final action can be expressed as:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R̊−

VðΦ;Ω3=2Ψ;FμνÞ
ð1þξφ2Þ −

3ξ2

4ð1þξφ2Þ2g
αβD̊αφ

2D̊βφ
2−

1

1þξφ2
gαβD̊αΦD̊βΦ⋆

þ i
2
ðΨ̄γμD̊μΨ−D̊μΨγμΨÞ−

1

4
gμαgνβFμνFαβþLAAþLVVþLφφþLΦΦþLAVþLAφþLVφþLVΦþLφΦ

�
: ð3:24Þ

13The sign of aA1 differs as compared to [131]. (This can be absorbed by altering the convention (1.2) of the Levi-Civita tensor.) As a
result, some terms in the equivalent metric theory derived in [130] change sign.
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It encompasses the results of [131,48] as special cases, as
we discuss in Appendix C 3.
Let us now analyze the numbers of parameters in the

action for each field of the Standard Model in the presence
of torsion and nonmetricity. Looking at each part of the
action, we can make the following comments:

(i) The quadratic action Squadratic defined in Eq. (3.4)
only couples to the real scalar field. Indeed, after
imposing selection rule II, all the functions Ai, Bi,
Ci, Di, Ei can only depend on the scalar field Φ, see
Eq. (3.7). Since there are two parameters in each of
the function and Eq. (3.4) contains 17 quadratic
terms, 34 parameters arise.

(ii) The action Ssources defined in Eq. (3.3) features
sources for the complex scalar field as well as for
the fermion. As can be seen in the definition (3.8) of
currents, there are 2 currents for the complex scalar
field—one for the real part and one for the complex
part—and 2 currents for the fermion—one for the
vector part and one for the axial part. Each of these
currents exist in four copies, corresponding to the
four irreducible vector representations of torsion and
nonmetricity.

(iii) Finally, we can discuss the metric action Smetric
defined in Eq. (3.2). In this part of the action, we do
not consider the kinetic term as an independent
coupling because we can always canonicalize them
by a field redefinition. By the same token, we do not
consider the Planck mass in this parameter counting,
because it is dimensionful whereas all other cou-
plings to torsion and nonmetricity can be chosen to
be dimensionless. Therefore, the only term that
results in an independent parameter is the non-
minimal coupling of the scalar curvature to the
scalar field.

Therefore, we see that each fields does not contribute
equally to the parameter counting in the presence of torsion
and nonmetricity. For example, a complex scalar field
comes with 17þ 1þ 8 ¼ 26 independent parameter while
a fermionic field comes with 8 coupling to torsion and
nonmetricity. A gauge vector field does not couple inde-
pendently to torsion or nonmetricity, given our selection
rules. The contributions are summarized in Tables I and II,
where we also included the parameter counting for the
Standard Model. We assumed for simplicity that fermions
couple universally to gravity (see also [156]). Since there is
one complex scalar field, the Higgs boson, adding all
contribution together gives 34þ 16þ 1 ¼ 51. Since there
is always the possibility of a global rescaling of the
fractions shown in Eqs. (3.13)–(3.22), we have to subtract
one coupling constant so the total number of independent
parameters is 50.

IV. IMPLICATIONS FOR PRODUCTION OF
FERMIONIC DARK MATTER

A. Review of Einstein-Cartan portal to dark matter

As reviewed in the introduction, the choice of formu-
lation of GR can have important implications for dark
matter. We shall discuss this in the scenario of [156], where
a fermion ΨN , which is a singlet under all gauge groups
of the SM, is added to the field contents of the SM.
The observation of neutrino masses provides a strong
motivation for considering such a scenario since a mixing
of singlet fermions with active neutrinos can generate
masses for the latter via the well-known seesaw mechanism
[227–232] (see [194] for a review). For the present
discussion, however, it is inessential if ΨN couples directly
to SM-neutrinos, provided the mixing is small enough
to obey observational constraints, e.g., due to bounds on

TABLE I. Summary of the number of independent couplings in metric affine theory for different particle content.

Squadratic Ssources Smetric Total

Pure gravity 17 0 0 17
Complex scalar field 17 8 1 26
Fermionic field 0 8 0 8
Gauge vector field 0 0 0 0
Standard model 17þ 17 ¼ 34 8þ 8 ¼ 16 1 34þ 16þ 1 ¼ 51

TABLE II. Summary of the number of independent couplings in metric affine theory for different particle content,
after taking into account that tαβγ ¼ qαβγ ¼ 0.

Squadratic Ssources Smetric Total

Pure gravity 10 0 0 10
Complex scalar field 10 8 1 19
Fermionic field 0 8 0 8
Gauge vector field 0 0 0 0
Standard model 10þ 10 ¼ 20 8þ 8 ¼ 16 1 20þ 16þ 1 ¼ 37
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x-rays signals from radiatively decaying dark matter [194].
In the metric formulation of GR, production mechanisms
arising from a mixing of ΨN with active neutrinos have
been proposed [188,189]. Here the difficulty consists in
producing a sufficient abundance of dark matter while at
the same time satisfying the upper bounds on the strength
of mixing coming from x-ray constraints. Whereas this is
not possible for the so-called nonresonant production [188],
a resonant production [189] can be implemented [190].
However, this requires a fine-tuning of parameters [191–193]
and constrains the mass of ΨN is a narrow range [194].
In [156], a gravitational generation of ΨN was studied in

the EC formulation of GR. This mechanism was dubbed
Einstein-Cartan portal to dark matter and its starting point
are nonminimal fermionic kinetic terms for bothΨN and the
fermions of the SM [see Eq. (2.32)]:

i
2
Ψ̄ð1 − iα − iβγ5ÞγμDμΨþ H:c; ð4:1Þ

where we assume that the coupling to gravity is universal,
i.e., identical for all fermions. After solving for torsion, the
resulting equivalentmetric theory features new four-fermion
interactions [130] [cf. Eqs. (3.13), (3.14), and (3.17)]

LAA ≃
3β2 − 3

16
AμAμ; ð4:2Þ

LVV ≃
3α2

16
VμVμ; ð4:3Þ

LAV ≃
3αβ

8
AμVμ: ð4:4Þ

Since the current Vμ and Aμ contain sums over all fermion
species, processes arise in which two fermions of the SM
annihilate and produce two ΨN-particles. This leads to the
abundance ΩN of ΨN [156]:

ΩN

ΩDM
≃ 3.6 × 10−2Cf

�
MN

10 keV

��
Tprod

MP

�
3

; ð4:5Þ

whereΩDM is the observed abundance of dark matter,MN is
the mass ofΨN and Tprod represents the highest temperature
at whichΨN are produced, such as the reheating temperature
of a hot big bang. Moreover, the factor Cf is sensitive to
whether ΨN is Dirac or Majorana:

CD ¼ 9

4
f45ð1þ α2 − β2Þ2 þ 21ð1 − ðαþ βÞ2Þ2

þ 24ð1 − ðα − βÞ2Þ2g; ð4:6Þ

CM ¼ 9

4
f24ð1þ α2 − β2Þ2 þ 21ð1 − ðαþ βÞ2Þ2g; ð4:7Þ

corresponding to the former and latter case, respectively. It is
evident from Eq. (4.5) that depending on the values of the

nonminimal couplings α and β, the observed abundance of
darkmatter can be generated in awide range ofmasses, from
MN ∼ 1 keV to MN ∼ 108 GeV, and without a fine-tuning
of parameters.
Four comments are in order regarding this Einstein-

Cartan portal to dark matter.
(i) The equivalent metric theory considered in [156]

also contains scalar-fermion interactions of the
form shown in Eqs. (3.18) and (3.20). This leads
to a second channel for producing ΨN , namely from
the annihilation of two Higgs particles. For certain
parameter choices, this process can lead to a higher
abundance of ΨN than the one due to four-fermion
interaction displayed in Eq. (4.5) [156]. In the fol-
lowing, we shall focus on the generation of ΨN from
fermion annihilation.

(ii) If a connection to neutrinos is made, the mixing of
ΨN with active neutrinos has to be sufficiently small
due to x-ray constraints discussed above as well as
the requirement that dark matter should be approx-
imately stable on cosmological timescales [156,233].
As a result, the contribution of MN to the mass
splitting of active neutrinos is negligible and two
other sterile neutrinos are required to generate the
observedmass differences. This canbe achieved in the
framework of the νMSM, which extends the particle
content of the SM by three right-handed neutrinos
[234,235] (see [236] for a review).Oneof them,which
can be identified withΨN , acts a dark matter whereas
the mass splittings arise from the other two right-
handed neutrinos. Moreover, the latter can generate
the observed baryon asymmetry in our Universe
via leptogenesis [237,238] (see [236,239–242] for
reviews and recent developments). Because of the
small mixing ofΨN , a prediction of the νMSM is that
the lightest active neutrino is practically massless
[234,235]. This statement still holds in the whole
range of MN that arises from the Einstein-Cartan
portal to dark matter [156].

(iii) The lower bound on MN around 1 keV arises since
hot dark matter is incompatible with observed small
scales in the power spectrum, as e.g., inferred from
Lyman-α measurements (see [194]). In contrast, a
value of MN around a few keV, corresponding to
warm dark matter, has interesting observational
consequences. First, the produced ΨN-particles have
a characteristic momentum distribution, which may
serve to confirm or exclude this proposal of pro-
ducing dark matter due to the effects of gravity
[156]. Secondly, the non-negligible momenta that
arise in this scenario may fit Lyman-α data better
than pure cold dark matter [243,244].

(iv) The Einstein-Cartan portal to dark matter is inde-
pendent of a possible phase of inflation since only a
sufficiently high temperature Tprod is required in
the early Universe. However, it is interesting to
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consider this gravitational production of fermions
after a period of inflation driven by the Higgs field
[245]. This proposal of Higgs inflation is highly
sensitive to the choice of formulation of GR
[122,129,136,155,205]. We shall consider the Pala-
tini version [136] since it has favorable properties
with regard to quantum corrections [246] (see dis-
cussions in [247–249]). In this scenario, choosing
universal energy scales in the scalar and fermionic
sector leads to α ∼ β ∼

ffiffiffi
ξ

p
, where ξ ≈ 107 [156].

Then the observed abundance of dark matter is
produced for MN around a few keV, which leads
to the observationally interesting case of warm dark
matter discussed above.

B. Portal to dark matter in metric-affine
and Weyl gravity

Nowwe shall study a gravitational production of fermions
in the metric-affine formulation of GR.We consider the case
in which the scalar field φ has a negligible expectation value.
This is true even ifwe identifyφwith theHiggs field and take
into account scenarios of Higgs inflation, as long as inflation
has ended and reheating has been completed. When we only
keep the leading terms in small φ, the new interaction terms
induced by the effect of classical torsion and nonmetricity
[see Eqs. (3.13), (3.14), (3.17) (3.18), and (3.20)], reduce to:

LAA≃
PðAAÞ
0

O0

AμAμ; LVV≃
PðVVÞ
0

O0

VμVμ; LAV≃2
PðAVÞ
0

O0

AμVμ;

ð4:8Þ

LAφ ≃ 2
PðAφÞ
0

O0

AμDμφ2; LVφ ≃ 2
PðAφÞ
0

O0

AμDμφ2: ð4:9Þ

All expressions for the polynomials in the numerator and
denominator can be found using [198] and are also displayed
in Appendix C 4.
First, we shall consider the limit of EC gravity. In the

absence of nonmetricity, the previous interaction terms
reduce to:

LAA ≃
c10ðaA1 Þ2 þ c20ðaA2 Þ2 − c30aA1a

A
2

c230 − 4c10c20
AμAμ; ð4:10Þ

LVV ≃
c10ðaV1 Þ2 þ c20ðaV2 Þ2 − c30aV1 a

V
2

c230 − 4c10c20
VμVμ; ð4:11Þ

LAV ≃
2c10aA1a

V
1 þ 2c20aA2a

V
2 − c30ðaA2aV1 þ aA1a

V
2 Þ

c230 − 4c10c20
AμVμ:

ð4:12Þ

If we specialize momentarily to the nonminimal fermionic
kinetic terms shown in Eq. (2.32), then Eq. (3.12) fixes aV1 ,
aA1 , a

V
2 , and aA2 in terms of α and β. Moreover, a purely

gravitational action that only consists of the term 1
2
R leads

to c10 ¼ − 1
3
, c20 ¼ 1

48
and c30 ¼ 0, as is evident from

Eq. (2.19). Plugging these choices back into Eqs. (4.10)–
(4.12), we reproduce the result of [130] as displayed in
Eqs. (4.2)–(4.4).
Now we shall go beyond this specific choice of param-

eters. First, already in EC gravity the coupling of fermions
to gravity generically features more than the two param-
eters α and β. Namely, there are four a priori independent
coupling constants even in the absence of nonmetricity
[see Eq. (3.7)]. This makes the three coefficients of the
AμAμ-, VμVμ- and AμVμ-interactions, which are shown in
Eqs. (4.10)–(4.12), independent. While a quantitative
analysis of such a situation remains to be performed, it
is clear that the qualitative features of the Einstein-Cartan
portal to dark matter remain unchanged even for three
independent four-fermion interactions.
Next, we can discuss other formulations of GR. As noted

in [48], EC gravity, which features curvature and torsion,
and Weyl gravity, in which curvature and nonmetricity are
present, are equivalent for analogous choices of source
terms. As a result, the gravitational production of fermionic
dark matter can equally well be implemented in the Weyl
formulation. Only a small difference arises when instead
of coupling fermionic currents to irreducible representa-
tions of torsion and nonmetricity, one employs a non-
minimal kinetic term (4.1) since in this case the coupling
of T̂ to fermions has no counterpart in Weyl gravity [see
Eq. (2.32)]. Instead of Eqs. (4.2)–(4.4), one gets

LAA ≃
b10ðaA3 Þ2 þ b20ðaA4 Þ2 − b30aA3a

A
4

b230 − 4b10b20
AμAμ ¼ 3β2

16
AμAμ;

ð4:13Þ

LVV ≃
b10ðaV3 Þ2 þ b20ðaV4 Þ2 − b30aV3 a

V
4

b230 − 4b10b20
VμVμ ¼ 3α2

16
VμVμ;

ð4:14Þ

LAV ≃
2b10aA3a

V
4 þ 2b20aA3a

V
4 − b30ðaA4aV3 þ aA3a

V
4 Þ

b230 − 4b10b20
AμVμ

¼ 3αβ

8
AμVμ: ð4:15Þ

For sufficiently large α and β, these operators have the
same effect as their counterparts (4.2)–(4.4) in EC gravity.
Once independent couplings of fermions to torsion and/or
nonmetricity are included, corresponding to Eq. (3.7), EC
and Weyl gravity—and hence their respective portals to
fermionic dark matter—are fully equivalent.
Finally, we go to metric-affine gravity, which encom-

passes both the EC and Weyl formulations as special cases.
For the same choice of action as in [156], we can exploit the
fact that R and the covariant derivative of fermions are
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projectively invariant to set the combination Qα − Q̂α to
zero. This removes the coupling of fermions to nonme-
tricity [see Eq. (2.32)] and so we recover the result of the
EC formulation as shown in Eqs. (4.2)–(4.4). Thus, these
interactions can equivalently be viewed as predictions of
metric-affine gravity, where no assumption is required
about the vanishing of nonmetricity. If instead we allow
for more general choices of coupling constants, the
four-fermion interactions in EC gravity, as displayed in
Eqs. (4.10)–(4.12), will also be indistinguishable from
those in metric-affine gravity shown in (4.8): Dark matter
is produced from the three possible four-fermion inter-
actions, mediated by AμAμ-, VμVμ- and AμVμ-terms,
which come with three a priori independent coefficients.
Nevertheless, some quantitative features may be different
as compared to the situation investigated in [156], both due
to the independence of the four-fermion interactions and
the importance of the scalar-fermion channel mentioned
above. We leave a detailed investigation of these questions
for the future.
We have demonstrated that the gravitational portal to

dark matter proposed in [156] is not specific to the EC
formulation of GR. It also exists in Weyl and metric-affine
gravity with qualitatively the same features: A production
of fermionic dark matter can be implemented in a wide
range of masses and without a fine-tuning of parameters.
Moreover, a characteristic primordial momentum distribu-
tion arises which can be used to probe this mechanism
in the case of warm dark matter. In summary, one can
regard a gravitational portal to fermionic dark matter as
a generic feature of GR. In other words, the absence of
this mechanism in metric gravity appears as a peculiarity
specific to this formulation of GR.

V. CONCLUSION

Our current understanding of fundamental physics rests
on two pillars, namely the Standard Model (SM) of particle
physics and general relativity (GR) as the description
of gravity. Far-reaching puzzles arise when the two are
combined. Already at the classical level, a question has
remained unanswered about which formulation of GR one
should employ. Since all of them are fully equivalent in
pure gravity, they have to be regarded as equivalent
incarnations of one and the same theory and thus represent
an inherent ambiguity of GR. Once GR couples to matter
such as in the SM, the various versions of GR are no longer
equivalent and generically lead to distinct observables
predictions. Thus, it is important to explore how concrete
effects depend on the formulation of GR.
To this end, we have employed metric-affine gravity.

This formulation of GR is special for two reasons. First, no
assumptions are required about the geometry of gravity.
Instead, curvature, torsion and nonmetricity are deter-
mined dynamically through the principle of stationary
action. Second, this version of GR encompasses the metric,

Palatini, EC, and Weyl formulations as special cases and so
the results obtained in metric-affine gravity can be carried
over automatically to these other incarnations of GR.
In a first step, we discussed the coupling of gravity

to different matter fields. (Complex) scalar fields and
fermions generically interact with both torsion and non-
metricity, sourcing these two geometric features. In con-
trast, there is no independent coupling for vector fields
because of their gauge symmetry. Subsequently, we refined
the criteria of [131] for constructing an action of matter
interacting with GR. The goal of such selection rules is to
avoid assumptions as far as possible while still ensuring
equivalence to the metric formulation of GR in the absence
of matter. In particular, they preserve the property that the
only propagating degree of freedom is the massless spin 2
graviton. Correspondingly, our criteria that we developed in
Sec. II C aim at capturing the minimal ambiguity that is
inevitably contained in GR.
Using these selection rules, we subsequently constructed

in Eqs. (3.2)–(3.4) a model for coupling (complex) scalar
fields, fermions and gauge bosons to metric-affine gravity.
In this way, we extended our study [48], in which we only
considered a real scalar field, to encompass all fields of
the SM. Subsequently, we brought our theory to an equi-
valent form in the metric formulation of GR, which leads
to new geometry-induced interaction terms stemming
from the underlying presence of torsion and nonmetricity.
Together with the corresponding Mathematica code [198],
this lays the groundwork for investigating phenomenologi-
cal implications.
As a first example, we discussed a new mechanism for

producing fermionic dark matter candidates, which was
first discovered in the EC formulation [156]. We showed
that this gravitational portal to dark matter is not unique to
EC gravity but also exists in the Weyl and metric-affine
versions of GR with very similar predictions. This univer-
sality partly arises as consequence of projective invariance
of a nonminimal coupling of fermions to gravity. Therefore,
observational signatures of this gravitational dark matter
production, such as a characteristic primordial momentum
distribution, can serve to distinguish metric gravity from
other formulations of GR. Evidently, further approaches are
needed to constrain and ultimately determine the formu-
lation of GR that is realized in Nature.
Arguably, a precise understanding of classical GR and

the ambiguity resulting from its equivalent formulations
represents a necessary prerequisite for tackling some of the
open issues of quantum gravity. Indeed, parts of the param-
eter space of our model can lead to an inflationary generation
of primordial inhomogeneities [48,122,129,136,155,245]
(see also [205]). Moreover, our theory is capable of
addressing—via a nonperturbative gravitational effect—
the long-standing question of why theHiggs vacuum expect-
ation value is so much smaller than the Planck scale [152].
Our findings may have implications for further unresolved
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problems related to quantum gravity, such as infrared
phenomena [250–252], issues of topology [253–255], a
possible running of Newton’s constant [256–258] and the
potential breakdown of the classical metric description
[259–261].
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APPENDIX A: DETAILS ABOUT LOCAL
LORENTZ SYMMETRY

1. Covariant derivative of fermions

We shall review the construction of the covariant
derivative of a fermion in gravity. Our starting point is
the spin connection ωμ

AB as introduced in Eq. (2.23) via the
derivative of a vector VA:

∇μVA ¼ ∂μVA þ ωμ
A
BV

B: ðA1Þ

In the noncoordinate basis, one is free to perform a Lorentz
transformation as it preserves the form of the metric:
ηA0B0 ¼ ΛA

A0ΛB
B0ηAB. Importantly, the Lorentz transformation

can be different at every point, making it local. Since a local
Lorentz transformation ΛA0

A ðxÞ acts as VA0 ¼ ΛA0
AðxÞVA,

requiring covariance of ∇μVA implies [196]

ωμ
A0
B0 ¼ ΛA0

AΛB
B0ωμ

A
B − ΛC

B0∂μΛA0
C; ðA2Þ

where we drop the x dependence in the Lorentz trans-
formation in the following. Crucially, we observe that the
inhomogeneous part of the transformation is antisymmetric
in the internal indices. This holds true even if ωμ

ðABÞ ≠ 0,
i.e., if nonmetricity is present. Moreover, we note that ωμ

AB

transforms homogeneously under diffeomorphisms. Now
we consider an infinitesimal transformation,

ΛA
B ¼ δAB þ ωA

B; ðA3Þ

where ωBA ¼ −ωAB are the generators of the Lorentz
group. Then Eq. (A2) yields

δωμAB ¼ ωA
CωμCB þ ωB

CωμAC − ∂μωAB: ðA4Þ

A generic element Λ of the Lorentz group can be
represented as [262]:

Λ ¼ e−
i
2
ωABJAB ; ðA5Þ

and the generators JABR determine the transformation of a
representation ϕi:

δϕi ¼ −
i
2
ωABðJABR Þijϕj: ðA6Þ

For example, for a four-vector we have [262]:

ðJμνvectorÞρσ ¼ iðημρδνσ − ηνρδμσÞ; ðA7Þ

whereas a Dirac spinor corresponds to:

ðJABspinorÞρσ ¼
i
4
ðγAγB − γBγAÞρσ; ðA8Þ

with the gamma matrices γA as defined in Eq. (1.1). Note
that the factor of i

4
is the right convention to ensure that the

generators satisfy the Lorentz algebra:

½Jκλ; Jμν� ¼ −igλμJκν þ igκνJμλ þ igλνJκμ − igκμJνλ: ðA9Þ

For a spacetime-dependent ωABðxÞ, the partial derivative of
a Dirac spinor therefore transforms as

∂μψ
0 ¼ ∂μðΛψðxÞÞ

¼Λ
�
∂μψðxÞþ

1

8
∂μωABðγAγB − γBγAÞψðxÞ

�
: ðA10Þ

Therefore, covariance is lost for ∂μωAB ≠ 0. We can use the
spin connection ωμ

AB to restore covariance by defining

Dμψ ¼ ∂μψ þ 1

8
ωμ

ABðγAγB − γBγAÞψ : ðA11Þ

Indeed, it follows from Eq. (A4) that an infinitesimal local
Lorentz transformation yields

δðDμψ − ∂μψÞ0 ¼ −
1

8
∂μωABðγAγB − γBγAÞψðxÞ; ðA12Þ

which precisely cancels the inhomogeneous contribution
of Eq. (A10).

2. Field strength in Einstein-Cartan gravity

In the argument presented above, we have used the form
(2.23) as an input and then demonstrated covariance. As is
well-known, one can also proceed in the other direction and
derive gravity from gauging the Poincaré group [60–62]. In
this case, the tetrad and spin connection emerge as gauge
fields associated to translations and the Lorentz group,
respectively. As a result, one obtains the EC formulation of
GR, which only features curvature and torsion emerge so
that the spin connection is anti-symmetric, ωμ

AB ¼ ωμ
½AB�.

Focusing on Lorentz transformations, we can draw a direct
parallel with other gauge theories: When a symmetry
becomes local, derivative terms are generically no longer
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covariant. One needs to introduce a gauge field, the
variation of which is the derivative of the parameters of
the gauge group. In Table III, we show an overview of
different Abelian and non-Abelian gauge groups to high-
light their similarities.
Evidently, the gauge field itself is not gauge invariant,

only the field strength is. For Abelian gauge theories, like
Uð1Þ, the field strength is Fμν ¼ 2∂½μAν� while for non-
Abelian gauge theories like SUð3Þ we have Gi

μν ¼
2∂½μAi

ν� þ fiabAa
μAb

ν , where fiab are the structure constants

of SUð3Þ [263]. Likewise, for the Lorentz group, the field
strength (which corresponds to the Riemann tensor), is
defined as

RAB
μν ¼ 2∂½μωAB

ν� þ i
2
fABCDEFωCD

½μ ωEF
ν� : ðA13Þ

The factor of i
2
comes from the convention chosen for

the element of the Lorentz group in (A5), and fABCDEF are
the structure constants of the Lorentz group. They can be
read off from the commutation relation of the Lorentz
generators [262]:

½JAB; JCD� ¼ fABCDEFJEF; ðA14Þ

and are given by:

fABCDEF ¼ −2iðη½BjCηA�EηFD − η½BjDηA�EηCFÞ: ðA15Þ

Plugging (A15) in (A13), we evaluate the formula for the
Riemann tensor (see also [131]):

RAB
μν ¼ 2∂½μωAB

ν� þ 2ωBF
½μ wA

ν�F; ðA16Þ

where we used the antisymmetry of ωμ
AB. For EC gravity,

we can now reproduce Eq. (2.1), namely the Riemann
tensor with four Greek indices using the relationship (2.24)
between the spin connection and affine connection:

Rαβ
μν ¼ eαAe

β
BR

AB
μν ¼ eαAe

β
Bð2∂½μωAB

ν� þ 2ω½μBFwν�AFÞ
¼ 2∂½μΓα

ν�β þ 2Γα½μjλΓλ
ν�β: ðA17Þ

Finally, let us comment on the symmetry properties of
the Riemann tensor. In the EC formulation, it is evident

from Eq. (A17) that ωμ
AB ¼ ωμ

½AB� implies that the
Riemann tensor is antisymmetric in the first two indices.
We compare this to the situation in other version of GR
in Table IV.

APPENDIX B: DISCUSSION OF CRITERIA
FOR COUPLING GRAVITY TO MATTER

1. Equivalence in pure gravity

We shall discuss in more detail the selection rules for
coupling gravity to matter as proposed in section II C. First,
we consider the situation in the absence of matter. In this
case, the action can only feature two kinds of fields. On
the one hand, we have the metric gμν, which has mass
dimension 0 and contains no derivative. On the other hand,
we have the connection Γγ

αβ or components thereof, such
as torsion and nonmetricity. All these fields have mass
dimension 1 and by the derivative counting introduced
above, all of them correspond to one derivative. This
implies that in pure gravity, the number of derivatives is
equal to the mass dimension so that condition I implies
condition II. Thus, we only need to consider the former.
Since Riemannian curvature R̊ is quadratic in the con-

nection Γ̊γ
αβ [see Eq. (2.1)], criterion I amounts to restricting

ourselves to terms linear in curvature and quadratic in torsion
and nonmetricity. Consequently, the most general theory of
pure gravity that obeys criterion 1 is of the form [48]

L ∼ R̊þ cTTTμTμ þ cTQTμQμ þ cQQQμQμ þ…; ðB1Þ

where cTT , cTQ, and cQQ are arbitrary real parameters and
Tμ and Qμ are defined in Eqs. (2.9) and (2.13). Only an
exemplary selection of possible contributions due to torsion
and nonmetricity is displayed in Eq. (B1) and the dots
represent further terms that are quadratic in torsion and
nonmetricity and that can be formed using the six tensorsTμ,
T̂μ, tαβγ , Qμ, Q̂μ, qαβγ . Each of these contributions comes
with an a priori unknown coefficient. Moreover, we left out
in Eq. (B1) contributions of the form ∇̊μTμ since they
correspond to full derivatives.
One can wonder why we included in Eq. (B1) only the

Riemann part R̊ of the full curvature R. As is evident from
Eq. (B1), the difference of R and R̊ consists of terms that
are already present in action. Therefore, replacing R̊ by R
can be absorbed by a shift of the coefficients cTT , cTQ, etc.

TABLE IV. Existence of symmetry properties of Riemann
tensor for different formulations of GR.

Metric Einstein-Cartan Metric-affine

Rab½cd� ✓ ✓ ✓

R½ab�cd ✓ ✓ X
RðabÞðcdÞ ✓ X X

TABLE III. Comparison of different gauge groups and their
corresponding gauge fields and field strengths.

Local Lie
group

Local
parameter

Gauge
field

Variation
of Gauge field

U(1) e Aμ δAμ ¼ ∂μe
SU(3) gi i ¼ 1;…; 8 Ai

μ δAi
μ ¼ ∂μgi

Lorentz ωAB ωμ
AB δωμ

AB ¼ ∂μω
AB
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(see [131] for more details). Conversely, we note that the
theory (B1) has the same structure as the full Ricci scalar R,
with the only difference that specific coefficients are
replaced by arbitrary ones.14 Finally, we remark that one
can construct another contribution linear in curvature,
namely the so-called Holst term [108,109,112,113]:

ϵμνρσRμνρσ ¼
1

3
T̂αðQα − Q̂α þ 2TαÞ − ∇̊αT̂

α

þ 1

2
ϵβγδλtαδλtαβγ þ ϵαγδλqαβγtβδλ; ðB2Þ

which is parity-odd. In analogy to Eq. (2.19), we separated
contributions due to torsion and nonmetricity. There is no
Riemannian part, ϵμνρσR̊μνρσ ¼ 0, because of the sym-
metries of R̊μ

νρσ . Therefore, including the Holst term in
the action would only lead to a shift of some of the
coefficients.
From the Lagrangian (B1) we can determine torsion and

nonmetricity by their equations of motions. Since they only
appear quadratically, the solution is given by

Tγαβ ¼ Qγαβ ¼ 0; ðB3Þ

i.e., torsion and nonmetricity vanish dynamically. Hence,
theories of the form (B1) are equivalent to the metric
formulation of GR. This shows that the restriction to two
derivatives in criterion I ensures equivalence to metric GR
in the absence of matter.
Once we include more than two derivatives, the equiv-

alence to GR in the metric formulation is generically lost. If
for example we allow for four derivatives, we can among
others include terms that are quadratic in the Ricci scalar R̊
or the Ricci tensor R̊μν. As is well-known, such contribu-
tions generically lead to additional propagating degrees of
freedom [63–68].15 Hence, they break the equivalence
to metric GR already in the absence of matter. We must
mention, however, that one can construct specific theories
that do not obey our restriction to two derivatives but
nevertheless do not feature any additional propagating
degrees of freedom apart from a massless graviton [131].
Thus, criterion I is sufficient for ensuring equivalence to the
metric formulation of GR but not necessary.

2. Effect of matter

Next, we discuss the effects of including matter. To begin
with, we shall only consider a real scalar field φ. This
situation was already discussed in our previous paper [48],
to which we refer the reader for more details. The most

general polynomial Lagrangian that obeys criteria I and II is
of the form [48]16:

L ∼ R̊þ ξh2R̊þ ðcTT þ c̃TTφ2ÞTμTμ

þ ðcTQ þ c̃TQφ2ÞTμQμ þ ðcQQ þ c̃QQφ
2ÞQμQμ

þ ξTJ
ðφÞ
μ Tμ þ ξQJ

ðφÞ
μ Qμ þ � � � þ Lm; ðB4Þ

where the matter Lagrangian Lm is only a function of φ
and ξ, ξT , cTT , c̃TT , etc. are arbitrary real coefficients.
Moreover, we defined

JðφÞμ ¼ ∂μφ
2: ðB5Þ

As before, the dots represent further analogous terms in
which Tμ and/or Qμ are replaced by some of the other
tensors shown in Eqs. (2.9)–(2.11) as well as (2.13)–(2.15).
Each of these additional contributions comes with an
a priori undetermined coupling constant.
In Eq. (B4), we have assumed as in [48] that φ obeys a

discrete symmetry φ → −φ. This condition is not essential
and we impose it because the Higgs field of the SM (in
unitary gauge) exhibits this property. Apart from the
discrete symmetry, however, φ represents at this point an
arbitrary scalar field, not necessarily connected to the Higgs
boson. Once matter is present, condition II matters. Without
it, we could have included in addition to quadratic terms
higher powers of φ. Moreover, we remark that the non-
minimal coupling to the Levi-Civita Ricci scalar, φ2R̊,
already exists in the metric formulation of GR. Loosely
speaking, one could therefore say that Eq. (B4) consists of
all terms that are on the same footing as this nonminimal
coupling to R̊.
The crucial novelty in Eq. (B4) as compared to the case

of pure gravity displayed in Eq. (B1) is the presence
of terms linear in torsion or nonmetricity, which couple
to JðφÞμ . These contributions act as source terms in the
equations of motion and hence it follows that torsion and
nonmetricity no longer vanish. Schematically, we get

Tμ ∼ ξTJ
ðφÞ
μ ; Qμ ∼ ξQJ

ðφÞ
μ ; ðB6Þ

where again we restricted ourselves to exemplary contri-
butions. We see that Tμ and Qμ indeed feature one
derivative, and so our derivative counting introduced in
condition I is self-consistent.
Plugging the solutions (B6) back into our initial theory

(B4), we arrive at a Lagrangian of the form:

L ∼ R̊þ ξφ2R̊þ fðφ2ÞJðφÞμ JðφÞμ þ Lm: ðB7Þ14More precisely, the model (B1) contains all contributions
quadratic in torsion and nonmetricity whereas R only features the
subset of terms that are parity-even.

15There are exceptions to this rules—see [88,264–282] for
studies of corresponding models.

16The precise form of the action is displayed in Eqs. (3.1)
till (3.4).
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Here fðφÞ contains no derivatives, only depends on φ2

and is determined by the various coupling constant that
appear in Eq. (B4). Since solely the Levi-Civita connection
appears in Eq. (B7), we have derived an equivalent
representation of our theory in the metric formulation of
GR, in which the effects of torsion and nonmetricity are
replaced by a specific set of operators in the matter sector
with mass dimension greater than four. It follows from
conditions I and II that these new terms feature at most two
derivatives, and hence they do not lead to any additional
propagating degrees of freedom. Condition II is essential
for the predictiveness of our approach. Without it, we
could have included from the beginning arbitrary higher-
dimensional operators in Lm and the specific subset of

terms that are contained in fðφ2ÞJðφÞμ JðφÞμ that arise due to
torsion and nonmetricity would not bring any new infor-
mation. In other words, requirement II demands that
nonrenormalizable operators can only arise from coupling
to gravity. Of course, such a point of view can be motivated
by the fact that GR is nonrenormalizable from the outset.
Needless to say, imposing conditions I and II amounts to an
assumption and its viability remains to be determined.
Arguably, the best way for doing so is to derive observable
predictions and to compare them to measurements.
Scalar field. We have seen that a real scalar field φ can

couple to terms that are quadratic in torsion or nonmetricity.

Moreover, the term JðφÞμ as displayed in Eq. (B5) interacts
linearly with any of the four vectors Tμ, T̂μ,Qμ, and Q̂μ and
hence sources torsion and nonmetricity. Going beyond a
real scalar field, we shall next discuss which other terms
can source torsion or nonmetricity, where we largely follow
[131]. First, we consider a complex scalar field Φ. If no
other conditions are imposed, we can decompose it into
two real scalar fields Φ1 and Φ2 as Φ ¼ 1=

ffiffiffi
2

p ðΦ1 þ iΦ2Þ.
Then what we discussed above separately applies to Φ1

and Φ2.
More interesting is the case in which Φ is charged under

a local Uð1Þ-symmetry, as is e.g., the case for the Higgs
doublet in the SM. Then its absolute value,

jΦj2 ¼ 1

2
φ2; ðB8Þ

allows for the same couplings as a real scalar field. On top
of that, a second term can act as a source, namely the
gauge-invariant current

JðΦÞ
μ ¼ i

2
ðΦ⋆D̊μΦ − ðD̊μΦÞ⋆ΦÞ: ðB9Þ

Here D̊μ ¼ ∂μ − ieÃμ is the gauge-covariant derivative,
where e is the gauge coupling and Ãμ represents the gauge

field. Just like JðφÞμ , the current JðΦÞ
μ has mass dimension 3

and features one derivative. Hence it can also couple
linearly to the four vectors Tμ, T̂μ, Qμ, and Q̂μ.

Fermion field. Next, we consider a fermion field Ψ. Our
discussion both applies to the case in which Ψ is part of the
SM and to fermions that are singlets under the gauge
groups of the SM. Since we need to form bilinears, which
by themselves already have mass dimension 3, it is clear
that fermions cannot couple to terms quadratic in torsion or
nonmetricity. However, we can form two source terms from
the vector and axial currents:

JðVÞμ ¼ Ψ̄γμΨ; ðB10Þ

JðAÞμ ¼ Ψ̄γ5γμΨ; ðB11Þ

where γμ and γ5 correspond to gamma matrices. Just like

the contributions discussed before, JðVÞμ and JðAÞμ carry one
spacetime index and have mass dimension 3. Therefore,
requirements I and II imply that the interaction of the
fermionic currents with torsion or nonmetricity is fully

analogous to the case of a scalar field, i.e., JðVÞμ and JðAÞμ can
couple linearly to any of the four vectors Tμ, T̂μ, Qμ, and
Q̂μ. However, a difference to the scalar sources exists since

JðVÞμ and JðAÞμ do not contain a derivative. Correspondingly,
the interaction of fermions with torsion and nonmetricity
leads to contributions of the form

Tμ ∼ Ψ̄γμΨþ…; Qμ ∼ Ψ̄γμΨþ…; ðB12Þ

which do not contain a derivative. In this sense, associating
a derivative to torsion and nonmetricity represents an
assumptionwhen it is exclusively sourced by fermions [119].
At first sight, a second category of terms seems to exist

for coupling fermions to torsion or nonmetricity. Namely,
we can use the pure tensor parts tμνρ and qμνρ to construct
the following terms:

Ψ̄γμγνγρΨtμνρ; Ψ̄γμγνγρΨqμνρ: ðB13Þ

However, using the property of the Dirac algebra, we
have that γμγνγρ ¼ −gμνγρ − gνργμ þ gμργν þ iϵσμνργσγ5

and hence the two terms displayed in Eq. (B13) can be
recast as (see also [131]17):

Ψ̄γμγνγρΨtμνρ ¼−2Ψ̄γαΨtμμαþ iΨ̄γαγ5Ψϵαμνρtμνρ; ðB14Þ

Ψ̄γμγνγρΨqμνρ ¼ −Ψ̄γαΨqαμμ: ðB15Þ

It is now clear that these terms vanish due to the properties
of the pure tensor parts shown in Eqs. (2.11) and (2.15).
Therefore, we do not need to include them.
Gauge field. Finally, we discuss the effects of gauge

fields, where we momentarily specialize to the case of

17Note that there are sign differences as compared to [131]; see
Eq. (3.12) and footnote 13 further below.
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Uð1Þ. The coupling to the current (B9) already leads to an
interaction with the gauge field that is contained in the
gauge covariant derivative. Due to the requirement of gauge
invariance, the only other building block from which we
can try to construct a coupling term is the field strength
tensor Fμν [see Eq. (2.34)]. Since it already contains a
derivative, it follows from condition I that it can only
interact with a linear power of torsion or nonmetricity.
However, there is no torsion or nonmetricity term with two
spacetime indices. The same conclusion applies to gauge
groups beyond Uð1Þ, with the only difference that in this
case an additional obstruction appears since the field
strength tensor also carries an index of the gauge group.
Thus, our requirements for constructing an action of matter
coupled to metric-affine gravity do not allow for an
independent coupling of gravity to gauge fields.
Summary. In summary, terms that are quadratic in torsion

or nonmetricity can only couple to a real scalar field φ
(or equivalently the absolute value of a complex scalar
field) via

C ¼ φ2: ðB16Þ

There are four contributions (B5), (B9)–(B11) for coupling
matter linearly to torsion or nonmetricity. The former two
arise for scalar fields, where the second one only exists in
the complex case, and the latter two are due to fermions.
Thus, a source term generically reads

Jμ ¼ aðφÞJðφÞμ þ aðΦÞJðΦÞ
μ þ aVJðVÞμ þ aAJðAÞμ : ðB17Þ

Here aðφÞ, aðΦÞ, aV , and aA are a priori undetermined
coupling constants. There is no independent coupling
between a gauge field and torsion or nonmetricity.
Moreover, no source term exists for the pure tensor parts
tαβγ and qαβγ .

18 For Jμ given in Eq. (B17), we can solve for
torsion and nonmetricity and plug the result back into the
action. In full analogy to Eq. (B7), this leads to

L ∼ R̊þ ξφ2R̊þ fðφ2ÞJμJμ þ Lm: ðB18Þ

As before, fðφ2Þ, which is sensitive to all coupling con-
stants related to torsion and nonmetricity, only depends on
φ2 and contains no derivatives. It follows from Eq. (B17)
that the contribution proportional to JμJμ generically
contains ten different types of quadratic interactions among
the different sources terms.

3. Relationship to previous works

In a very similar setting as ours, criteria for constructing
an action of gravity coupled to matter were already

proposed in [131]. In order to compare them to our
requirements, we shall first repeat the conditions of [131]:
(1) In the purely gravitational part of the action, only

operators of mass dimension not greater than 2
should appear.

(2) The matter Lagrangian action should only feature
renormalizable operators in the flat limit, i.e., for
gμν ¼ ημν and Γα

μλ ¼ 0.
(3) Gravity and matter should only interact via operators

of mass dimension not greater than 4.
In the following, Arabic numerals shall refer to the criteria
of [131] whereas Roman ones belong to our requirements
listed in Sec. II C.
On the one hand, our conditions I and II imply 1 to 3:

Since in pure gravity the number of derivatives and the
mass dimension of an operator coincide, requirement 1
follows from I. As in the absence of gravity nonrenorma-
lizability only arises from operators of mass dimension
greater than 4, criterion II implies 2. Finally, it is evident
that 3 also follows from II.
On the other hand, our conditions I and II are slightly

stronger than 1 to 3. In order to see this, we shall con-
sider a Uð1Þ-gauge field with field-strength tensor Fμν [see
Eq. (2.34)] and couple it to the pure tensor part tαμν of
torsion with a term

Lt ¼ D̊αFμνtαμν; ðB19Þ

where D̊α is only covariant with respect to gravity. Since
this contribution contains three derivatives, it is incompat-
ible with our requirement I. In contrast, it is admissible
according to the criteria 1 to 3 of [131]. In the presence of
the term (B19), tαμν no longer vanishes but receives a
contribution of the form

tαμν ∼ D̊αFμν þ
2

3
gα½μD̊

σFν�σ; ðB20Þ

wherewe took into account that tαμν only couples to the pure

tensor part of D̊αFμν.
19After plugging the solution for torsion

back into the action, a contribution with four derivatives of
the form D̊αFμνD̊

αFμν will arise, among others. The term
(B19) is not the only contribution with more than two
derivatives thatwould be permissible according to conditions
1 to 3. Other examples includeTμAμFμν aswell as D̊αF̃μνtαμν

with F̃μν¼ ϵμνρσFρσ (see [88]).
Thus, conditions 1 to 3 would allow from some terms

with more than two derivatives but only when an Abelian
gauge field is involved. It is not clear why gauge fields
should play a special role with regard to derivative counting.

18See [283] for a proposal to source the pure tensor parts from
a field with spin 3=2.

19Correspondingly, tαμν as shown in Eq. (B20) fulfills
gανtαμν ¼ 0 and ϵαβμνtαμν ¼ 0, in accordance with its definition
(2.11).
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Moreover, criteria 1 to 3 would run counter to our guideline
of finding an action that is as general as possible while
excluding terms with more than two derivatives. Finally, the
term (B19) was not included in the action of EC gravity
coupled to matter constructed in [131], even though it
conforms to the requirements 1 to 3 used there. Rather,
employing our criteria I and II in the EC formulation of GR
would lead to the theory considered in [131].20 Concerning
our previous paper [48], in which we studied the theory of a
scalar field coupled to metric-affine gravity, we remark that
our criteria and the conditions of [131] lead to identical

results. Thus, the model of [48] can be derived equally well
from our newly proposed requirements or the ones of [131].

APPENDIX C: DETAILS ON COMPUTATIONS
OF THE EQUIVALENT METRIC THEORY

1. Solving for torsion and nonmetricity

Varying the action with respect to the six tensors Tα, T̂α,
tαβγ , Qγ , Q̂γ , and qαβγ , we obtain six equations of motions.
For the action given in Eq. (3.1), they are

2C2T̂
α þ C3Tα þ E2Qα þ E4Q̂

α ¼ Jα1;

2C1Tα þ C3T̂
α þ E1Qα þ E3Q̂

α ¼ Jα2;

2B2Q̂
α þ B3Qα þ E3Tα þ E4T̂

α ¼ Jα3;

2B1Qα þ B3Q̂
α þ E1Tα þ E2T̂

α ¼ Jα4;

2B4qαβγ þ 2B5qðβαÞγ þ 2D2ϵαλδðβqλδγÞ þD3ϵαλδðβtλδγÞ − E5tðβγÞα ¼ 0;

2C4tαβγ þ 2D1ϵαλδ½βtλδγ� þD3ϵαλδ½βqλδγ� þ E5q½βγ�α ¼ 0: ðC1Þ

For the vector parts Tα, T̂α, Qα, and Q̂α, the solutions are

Tα ¼ 1

Z

X4
i¼1

JαiX i; T̂α ¼ 1

Z

X4
i¼1

Jαi Yi; Qα ¼ 1

Z

X4
i¼1

Jαi Vi; Q̂α ¼ 1

Z

X4
i¼1

JαiWi: ðC2Þ

The common denominator reads

Z ¼ 4B1ðB2ð−4C1C2 þ C2
3Þ þ C1E2

4 þ C2E2
3 − C3E3E4Þ

þ 4B2C1E2
2 þ 4B2C2E2

1 − 4B2C3E1E2 þ B2
3ð4C1C2 − C2

3Þ
þ B3ð−4C1E2E4 − 4C2E1E3 þ 2C3E1E4 þ 2C3E2E3Þ
− E2

1E
2
4 þ 2E1E2E3E4 − E2

2E
2
3; ðC3Þ

and the numerators are

X 1 ¼ 4B1B2C3 − 2B1E3E4 − 2B2E1E2 − B2
3C3 þ B3E1E4 þ B3E2E3;

X 2 ¼ −8B1B2C2 þ 2B1E2
4 þ 2B2E2

2 þ 2B2
3C2 − 2B3E2E4;

X 3 ¼ 4B1C2E3 − 2B1C3E4 − 2B3C2E1 þ B3C3E2 þ E1E2E4 − E2
2E3;

X 4 ¼ 4B2C2E1 − 2B2C3E2 − 2B3C2E3 þ B3C3E4 − E1E2
4 þ E2E3E4; ðC4Þ

Y1 ¼ −8B1B2C1 þ 2B1E2
3 þ 2B2E2

1 þ 2B2
3C1 − 2B3E1E3;

Y2 ¼ 4B1B2C3 − 2B1E3E4 − 2B2E1E2 − B2
3C3 þ B3E2E3 þ B3E1E4;

Y3 ¼ 4B1C1E4 − 2B1C3E3 − 2B3C1E2 þ B3C3E1 − E2
1E4 þ E1E2E3;

Y4 ¼ 4B2C1E2 − 2B2C3E1 − 2B3C1E4 þ B3C3E3 þ E1E3E4 − E2E2
3; ðC5Þ

20Needless to say, this fact was part of our motivation for proposing conditions I and II. We thank Georgios Karananas and Misha
Shaposhnikov for discussions about this point.
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V1 ¼ 4B2C1E2 − 2B2C3E1 − 2B3C1E4 þ B3C3E3 þ E1E3E4 − E2E2
3;

V2 ¼ 4B2C2E1 − 2B2C3E2 − 2B3C2E3 þ B3C3E4 − E1E2
4 þ E2E3E4;

V3 ¼ 4B3C1C2 − B3C2
3 − 2C1E2E4 − 2C2E1E3 þ C3E1E4 þ C3E2E3;

V4 ¼ −8B2C1C2 þ 2B2C2
3 þ 2C1E2

4 þ 2C2E2
3 − 2C3E3E4; ðC6Þ

W1 ¼ 4B1C1E4 − 2B1C3E3 − 2B3C1E2 þ B3C3E1 − E2
1E4 þ E1E2E3;

W2 ¼ 4B1C2E3 − 2B1C3E4 − 2B3C2E1 þ B3C3E2 þ E1E2E4 − E2
2E3;

W3 ¼ −8B1C1C2 þ 2B1C2
3 þ 2C1E2

2 þ 2C2E2
1 − 2C3E1E2;

W4 ¼ 4B3C1C2 − B3C2
3 − 2C1E2E4 − 2C2E1E3 þ C3E1E4 þ C3E2E3: ðC7Þ

Plugging back the solutions for torsion and nonmetricity into the action (3.1), we see that the source part (3.3) simplifies to:

Ssources ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

Z

X4
i¼1

½−Jα1JiαYi − Jα2JiαX i − Jα3JiαWi − Jα4JiαVi�; ðC8Þ

while the quadratic contribution (3.4) becomes

Squadratic ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

Z2

X4
i;j¼1

Jαi Jjα½B1ViVj þ B2WiWj þ B3ViWj

þ C1X iX j þ C2YiYj þ C3X iYj þ E1X iVj þ E2YiVj þ E3X iWj þ E4YiWj�: ðC9Þ

Now we have integrated out torsion and nonmetricity, but
the matter sector is still nonminimally coupled to gravity
through the term Ω2R̊ in Smetric given [see Eq. (3.2)]. To
simplify the analysis, we go to the Einstein frame
where gravity is minimally coupled to the matter sector.
We achieve this by doing a conformal transformation of
the metric:

gαβ → Ω−2gαβ; gαβ → Ω2gαβ; eAμ → Ω−1eAμ ;

eμA → Ω1eμA;
ffiffiffiffiffiffi
−g

p
→ Ω−4 ffiffiffiffiffiffi

−g
p

;

gαβR̊αβ → Ω2½gαβR̊αβ þ 6gαβð∇̊α∇̊β lnðΩÞ
− ∇̊α lnðΩÞ∇̊β lnðΩÞÞ�. ðC10Þ

Torsion is not affected since it is completely independent of
the metric. Note that technically, nonmetricity transforms
nonhomogeneously under this conformal transformation, but
at this point this is irrelevant sincewehave integrated out both
torsion and nonmetricity from the action. One can see from
Eq. (C10) that the scalar curvature R̊ transforms inhomoge-
neously due to the nontrivial dependence of the Levi-Civita
connection Γ̊γ

αβ on the metric gμν. This leads to a modifi-
cation of the kinetic terms of the matter sector, depending on
the functionΩ. After applying criterion II, we shall see thatΩ
can only be a function of the norm φ of the complex scalar
field Φ. Therefore only the kinetic term of the complex
scalar field will receive contribution from the inhomo-
geneous part of the transformation of the scalar curvature.

After performing the conformal transformation (C10), the
metric action becomes:

Smetric ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R̊−

VðΦ;Ψ;FμνÞ
Ω4

−
3

Ω2
gαβD̊αΩD̊βΩ

−
K̃1

Ω2
gαβD̊αΦD̊βΦ⋆þ iK̃2

2Ω3
ðΨ̄γμD̊μΨ− D̊μΨγμΨÞ

−
1

4
K̃3gμαgνβFμνFαβ

�
: ðC11Þ

We recall that the gamma matrices come with a tetrad
γμ ¼ eμAγA, so this is why the kinetic term for the fermionic
field in Eq. (C11) gets shifted by a factor ofΩ−3, whereas the
kinetic term for the complex scalar field is only shifted by
Ω−2.We note that the kinetic term for thevector field does not
change. On the other hand, the sources and quadratic part of
the action are simply multiplied by a factor of Ω−2, coming
from the combination of the determinant of the metric and a
hidden metric tensor there to contract indices.
Finally, we can write suggestively the sum of these two

actions as:

Ssources þ Squadratic ¼
Z

d4x
ffiffiffiffiffiffi−gp
Ω2

½ðJα1Þ2L11 þ ðJα2Þ2L22

þ ðJα3Þ2L33 þ ðJα4Þ2L44 þ Jα1J2αL12

þ Jα1J3αL13 þ Jα1J4αL14 þ Jα2J3αL23

þ Jα2J4αL24 þ Jα3J4αL34�; ðC12Þ
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where the Lij are coefficients that depend only on the other parameters.21 We can express them compactly as:

L11 ¼ −
Y1

Z
þQ11

Z2
; L22 ¼ −

X2

Z
þQ22

Z2
; L33 ¼ −

W3

Z
þQ33

Z2
; L44 ¼ −

V4

Z
þQ44

Z2
;

L12 ¼ −
Y2 þ X1

Z
þ 2Q12

Z2
; L13 ¼ −

Y3 þW1

Z
þ 2Q13

Z2
; L14 ¼ −

Y4 þ V1

Z
þ 2Q14

Z2
;

L23 ¼ −
W2 þ X 3

Z
þ 2Q23

Z2
; L24 ¼ −

V2 þ X4

Z
þ 2Q24

Z2
; L34 ¼ −

W4 þ V3

Z
þ 2Q34

Z2
; ðC13Þ

where the coefficients Qij are given by:

Qij ¼ B1ViVj þ B2WiWj þ B3VðiWjÞ þ C1X iX j þ C2YiYj

þ C3X ðiYjÞ þ E1X ðiVjÞ þ E2YðiVjÞ þ E3X ðiWjÞ þ E4YðiWjÞ: ðC14Þ

As a result, we obtain Eq. (3.6) shown in the main part.

2. Explicit interaction terms

Next we perform a field redefinition of the fermionic
field Ψ to canonically normalize its kinetic term:

Ψ → Ω3=2Ψ: ðC15Þ
After this second conformal transformation of the fer-
mionic field and also taking into account Eq. (3.7), the
action reads:

Smetric ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R̊−

VðΦ;Ω3=2Ψ;FμνÞ
ð1þ ξφ2Þ

−
3ξ2

4ð1þ ξφ2Þ2 g
αβD̊αφ

2D̊βφ
2

−
1

1þ ξφ2
gαβD̊αΦD̊βΦ⋆þ i

2
ðΨ̄γμD̊μΨ− D̊μΨγμΨÞ

−
1

4
gμαgνβFμνFαβ

�
: ðC16Þ

Clearly the potential term V may change after this second
transformation and the fermionic currents defined in
Eqs. (3.9) and (3.10) will also be shifted to:

Vα → Ω2Vα; Aα → Ω2Aα: ðC17Þ
Substituting the 4-current Jαi given by Eq. (3.7) into
Eq. (C12), we arrive at interactions of the form V − V,
V − A, V − S, etc which can be written compactly as:

LAA ¼ Ω2

�X4
i≤j

LijaAi a
A
j

�
AμAμ; ðC18Þ

LVV ¼ Ω2

�X4
i≤j

LijaVi a
V
j

�
VμVμ; ðC19Þ

Lφφ ¼ Ω−2
�X4

i≤j
Lija

ðφÞ
i aðφÞj

�
D̊μφ2D̊μφ

2; ðC20Þ

LΦΦ ¼ Ω−2
�X4

i≤j
Lija

ðΦÞ
i aðΦÞ

j

�
SμSμ; ðC21Þ

LAV ¼ 2Ω2

�X4
i≤j

LijaAðia
V
jÞ

�
AμVμ; ðC22Þ

LAφ ¼ 2

�X4
i≤j

LijaAðia
ðφÞ
jÞ

�
AμD̊

μφ2; ðC23Þ

LAΦ ¼ 2

�X4
i≤j

LijaAðia
ðΦÞ
jÞ

�
AμSμ; ðC24Þ

LVφ ¼ 2

�X4
i≤j

LijaVðia
ðφÞ
jÞ

�
VμD̊

μφ2; ðC25Þ

LVΦ ¼ 2

�X4
i≤j

LijaVðia
ðΦÞ
jÞ

�
VμSμ; ðC26Þ

LφΦ ¼ 2Ω−2
�X4

i≤j
Lija

ðΦÞ
ði aðφÞjÞ

�
SμD̊

μφ2: ðC27Þ

Notice that all the buildings blocks we need are the Lij

coefficients, which we have derived previously. The sum on
i; j consists generally of 10 terms, because the whole
expression is symmetric in i; j. All types of interactions are
spawn, and the form of equations is identical up to that
point. The only difference comes from the power of the Ω
factors. Indeed, because of the conformal transformation of
the metric and of the fermion field, each term acquires a
different power of Ω depending on the presence of

21More explicitly, Lij solely depends on the remaining
coefficients of interest, i.e., B1, B2, B3, C1, C2, C3, E1, E2,
E3, and E4.
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fermionic current. From Eqs. (C18)–(C27), we can derive
Eqs. (3.13)–(3.22) in the main part.

3. Known limits

Finally, we shall show that our result (3.24) reproduces
the previous findings of [131,48] in specific limits.
Reproducing [48]: In [48], the only matter field present is

a real scalar field. Therefore to reproduce previous results
we need to set the kinetic terms for the fermion and the
vector field to zero in Eq. (3.6). We also take the limit

where aðΦÞ
j , aAj , and aVj vanish in Eq. (3.7). Consequently,

only Lφφ as displayed in Eq. (3.15) will be left:

Lφφ ¼ Ω−2
P

3
n¼0 P

ðφφÞ
n φ2n

D
D̊μφ2D̊μφ

2: ðC28Þ

The action will be much simpler and given by:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
R̊−

1

2
KðφÞgαβ∂αφ∂βφ−

VðφÞ
Ω4

�
: ðC29Þ

Gathering together all contributions to the kinetic term of
the scalar field, we obtain an expression for the modified
kinetic term:

KðφÞ ¼ 1

1þ ξφ2

�
1þ 6φ2ξ2

1þ ξh2
− 8φ2

P
3
n¼0 P

ðφφÞ
n φ2nP

4
m¼0Omφ

2m

�
;

ðC30Þ
which exactly reproduces Eq. (3.16) of [48] if we relabel
φ → h and absorb the factor of 8 into the polyno-

mials PðφφÞ
n .

Reproducing [131]: In [131], all matter fields are present.
However, the EC formulation of GR is employed, i.e.,
nonmetricity is assumed to be absent. Therefore, we need
to set Jα3 , J

α
4 , all Bi’s and E0

is coefficients to zero. This
simplifies greatly the form of the solution for torsion:

Tμ ¼ −C3J
μ
1 þ 2C2J

μ
2

Z
; T̂μ ¼ −C3J

μ
2 þ 2C1J

μ
1

Z
; ðC31Þ

with the common denominator:

Z ¼ 4C1C2 − C2
3: ðC32Þ

Only L11, L12 and L22 will contribute:

Ssources þ Squadratic ¼
Z

d4x
ffiffiffiffiffiffi−gp
Ω2

½ðJα1Þ2L11 þ ðJα2Þ2L22

þ Jα1J2αL12�; ðC33Þ

with the Lij being much simpler:

L11 ¼ −
C1

4C1C2 − C2
3

; L12 ¼
C3

4C1C2 − C2
3

;

L22 ¼ −
C2

4C1C2 − C2
3

: ðC34Þ

The corresponding torsion-induced interactions are

LAA ¼ Ω2
C1ðaA1 Þ2 þ C2ðaA2 Þ2 − C3aA1a

A
2

C2
3 − 4C1C2

AμAμ ðC35Þ

LVV ¼ Ω2
C1ðaV1 Þ2 þ C2ðaV2 Þ2 − C3aV1 a

V
2

C2
3 − 4C1C2

VμVμ; ðC36Þ

Lφφ ¼Ω−2C1ðaðφÞ1 Þ2þC2ðaðφÞ2 Þ2−C3a
ðφÞ
1 aðφÞ2

C2
3 − 4C1C2

D̊μφ2D̊μφ
2;

ðC37Þ

LΦΦ ¼ Ω−2 C1ðaðΦÞ
1 Þ2 þ C2ðaðΦÞ

2 Þ2 − C3a
ðΦÞ
1 aðΦÞ

2

C2
3 − 4C1C2

SμSμ;

ðC38Þ

LAV ¼Ω2
2C1aA1a

V
1 þ 2C2aA2a

V
2 −C3ðaA2aV1 þaA1a

V
2 Þ

C2
3 − 4C1C2

AμVμ;

ðC39Þ

LAφ ¼ 2C1aA1a
ðφÞ
1 þ 2C2aA2a

ðφÞ
2 − C3ðaA2aðφÞ1 þ aA1a

ðφÞ
2 Þ

C2
3 − 4C1C2

× AμD̊
μφ2; ðC40Þ

LAΦ¼
2C1aA1a

ðΦÞ
1 þ2C2aA2a

ðΦÞ
2 −C3ðaA2aðΦÞ

1 þaA1a
ðΦÞ
2 Þ

C2
3−4C1C2

AμSμ;

ðC41Þ

LVφ ¼ 2C1aV1 a
ðφÞ
1 þ 2C2aV2 a

ðφÞ
2 − C3ðaV2 aðφÞ1 þ aV1 a

ðφÞ
2 Þ

C2
3 − 4C1C2

× VμD̊
μφ2; ðC42Þ

LVΦ ¼ 2C1aV1 a
ðΦÞ
1 þ 2C2aV2 a

ðΦÞ
2 − C3ðaV2 aðΦÞ

1 þ aV1 a
ðΦÞ
2 Þ

C2
3 − 4C1C2

× VμSμ; ðC43Þ

LφΦ ¼ Ω−2 2C1a
ðφÞ
1 aðΦÞ

1 þ 2C2a
ðφÞ
2 aðΦÞ

2 − C3ðaðφÞ2 aðΦÞ
1 þ aðφÞ1 aðΦÞ

2 Þ
C2
3 − 4C1C2

SμD̊
μφ2: ðC44Þ
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This exactly reproduces the main results of [131],
Eqs. (52)–(61), where we show in Table V the correspon-
dence between the different notations.

4. Portal to dark matter in metric-affine gravity

The polynomials in Eqs. (4.8) and (4.9) are given as
follows. The common denominator reads

O0 ¼ 4b30c20e10e30 − 2b30c30e20e30 − 2b30c30e10e40 þ 4b30c10e20e40 − 4b20c20e210 − 4b20c10e220

− 4b10c20e230 − 4b10c10e240 þ 4b20c30e10e20 þ 4b10c30e30e40 þ b230c
2
30 − 4b230c10c20

− 4b10b20c230 þ 16b10b20c10c20 þ e220e
2
30 þ e210e

2
40 − 2e10e20e30e40; ðC45Þ

and the polynomials in the numerators all have the same form:

Pð∘ •Þ
0 ¼ að∘1 a

•Þ
1 ðb230c10 − 4b10b20c10 − b30e10e30 þ b20e210 þ b10e230Þ

þ að∘2 a
•Þ
2 ðb230c20 − 4b10b20c20 − b30e20e40 þ b20e220 þ b10e240Þ

þ að∘3 a
•Þ
3 ðb10c230 − 4b10c10c20 − c30e10e20 þ c20e210 þ c10e220Þ

þ að∘4 a
•Þ
4 ðb20c230 − 4b20c10c20 − c30e30e40 þ c20e230 þ c10e240Þ

þ að∘1 a
•Þ
2 ð−b230c30 þ 4b10b20c30 þ b30e20e30 þ b30e10e40 − 2b20e10e20 − 2b10e30e40Þ

þ að∘3 a
•Þ
4 ð−b30c230 þ 4b30c10c20 þ c30e20e30 þ c30e10e40 − 2c20e10e30 − 2c10e20e40Þ

þ að∘1 a
•Þ
3 ðb30c30e10 − 2b30c10e20 − 2b10c30e30 þ 4b10c10e40 − e40e210 þ e20e30e10Þ

þ að∘1 a
•Þ
4 ðb30c30e30 − 2b20c30e10 þ 4b20c10e20 − 2b30c10e40 − e20e230 þ e10e40e30Þ

þ að∘2 a
•Þ
3 ðb30c30e20 − 2b30c20e10 þ 4b10c20e30 − 2b10c30e40 − e30e220 þ e10e40e20Þ

þ að∘2 a
•Þ
4 ðb30c30e40 þ 4b20c20e10 − 2b20c30e20 − 2b30c20e30 − e10e240 þ e20e30e40Þ; ðC46Þ

where ∘ and • can take the value V, A, φ.
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[47] J. Beltrán Jiménez, L. Heisenberg, and T. S. Koivisto, The
geometrical trinity of gravity, Universe 5, 173 (2019).

[48] C. Rigouzzo and S. Zell, Coupling metric-affine gravity
to a Higgs-like scalar field, Phys. Rev. D 106, 024015
(2022).

[49] C. Møller, Conservation law and absolute parallelism in
general relativity, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1,
1 (1961).

[50] C. Pellegrini and J. Plebanski, Tetrad fields and gravita-
tional fields, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 2, 1
(1963).

COUPLING METRIC-AFFINE GRAVITY TO THE STANDARD … PHYS. REV. D 108, 124067 (2023)

124067-23

https://arXiv.org/abs/physics/0503046
https://arXiv.org/abs/physics/0503046
https://doi.org/10.1007/BF00756060
https://doi.org/10.1007/BF00756060
https://doi.org/10.1088/1475-7516/2013/07/002
https://doi.org/10.1088/1475-7516/2013/12/006
https://doi.org/10.1088/1475-7516/2013/12/006
https://doi.org/10.1016/j.physletb.2016.04.001
https://doi.org/10.1140/epjc/s10052-018-6289-8
https://doi.org/10.1088/1475-7516/2019/01/022
https://doi.org/10.1103/PhysRevD.99.115007
https://doi.org/10.1103/PhysRevD.99.124018
https://doi.org/10.1103/PhysRevD.100.123516
https://doi.org/10.1103/PhysRevD.100.123516
https://doi.org/10.1103/PhysRevD.104.024034
https://doi.org/10.1103/PhysRevD.102.084040
https://doi.org/10.1103/PhysRevD.102.084040
https://doi.org/10.1016/j.physletb.2020.135716
https://doi.org/10.1016/j.physletb.2020.135716
https://doi.org/10.1103/PhysRevD.104.124014
https://doi.org/10.1088/1475-7516/2022/10/057
https://doi.org/10.1088/1361-6382/ac82a2
https://doi.org/10.1088/1361-6382/ac82a2
https://doi.org/10.1103/PhysRevD.108.035045
https://arXiv.org/abs/2208.10872
https://arXiv.org/abs/2208.10872
https://doi.org/10.1088/1361-6382/acd100
https://doi.org/10.1007/JHEP05(2023)206
https://doi.org/10.1007/JHEP05(2023)206
https://arXiv.org/abs/2302.14093
https://arXiv.org/abs/2302.14093
https://doi.org/10.1515/zna-1976-0602
https://doi.org/10.1515/zna-1976-0724
https://doi.org/10.1016/0370-2693(76)90393-2
https://doi.org/10.1016/0370-2693(76)90393-2
https://doi.org/10.1016/0370-2693(77)90347-1
https://doi.org/10.1016/0370-2693(77)90347-1
https://doi.org/10.1016/0370-1573(94)00111-F
https://inspirehep.net/literature/613140
https://inspirehep.net/literature/613140
https://inspirehep.net/literature/613140
https://doi.org/10.1142/S0219887818400054
https://doi.org/10.1142/S0219887818400054
https://doi.org/10.1016/j.physrep.2018.11.006
https://doi.org/10.3390/universe5070173
https://doi.org/10.1103/PhysRevD.106.024015
https://doi.org/10.1103/PhysRevD.106.024015


[51] K. Hayashi and T. Nakano, Extended translation invariance
and associated gauge fields, Prog. Theor. Phys. 38, 491
(1967).

[52] Y. M. Cho, Einstein Lagrangian as the translational Yang-
Mills Lagrangian, Phys. Rev. D 14, 2521 (1976).

[53] K. Hayashi and T. Shirafuji, New general relativity, Phys.
Rev. D 19, 3524 (1979); 24, 3312(A) (1982).

[54] J. M. Nester and H.-J. Yo, Symmetric teleparallel general
relativity, Chin. J. Phys. 113, 37 (1999), https://inspirehep
.net/literature/476449.
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metries gauge perspective and cosmological ramifications,
Ph.D. thesis, Ecole Polytechnique, Lausanne, 2016,
10.5075/epfl-thesis-7173.

[75] Y. N. Obukhov, Gravitational waves in Poincaré gauge
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