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This study explores the gravitational collapse of a massless scalar field within quadratic gravity treated
as a dimension-four operator effective field theory extension to general relativity. The additional degrees
of freedom associated with the higher derivatives in this theory are removed by an order reduction
approach, where the truncated expansion nature of the theory is exploited. Through simulations, we find
scenarios where solutions remain within the bounds of the effective field theory while displaying
significant deviations from general relativity in the dynamics of curvature invariants during the collapse.
Limitations of the approach taken, the effective field theory approximation, and the appearance of
instabilities are also discussed.
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I. INTRODUCTION

Gravitational wave (GW) astronomy [1,2] has emerged
as an extraordinary tool for probing the nature of gravity via
a channel and regimes that were inaccessible before its
time. By collecting and analyzing gravitational wave data
from current and future detectors, we will be able to test
general relativity (GR) [3] with scrutiny limited only by the
reach and precision of our detectors, as well as the quality
of our predictions. In the search for deviations from GR,
the community has developed many alternative theories of
gravity, for which substantial theoretical efforts have been
placed into modeling and predictions. GW signals pro-
duced in compact binary mergers are arguably the best
source to peer into GR and possible modifications in the
most dynamical and strong regime. There are now several
instances [4–11] where full nonlinear numerical simulations
of compact binary coalescence (and the prediction of their
respective GW emissions) have been achieved in modified
gravity candidate theories. Understanding how modifica-
tions in the underlying theory change predictions is essential
in pushing our searches for such deviations in the data.
Of the proposed theories which could be tested through

the observation of gravitational waves, there is great
interest in those that fall under what is commonly called
effective field theory (EFT) extensions to GR [12–15].
These theories are constructed by adding terms to the
Einstein-Hilbert action formed from powers of curvature
invariants that are adequately suppressed by powers of a
given cutoff scale Λ. The scale Λ is related to the mass
of the heavy fields modifying the theory, which in the
EFT description are integrated out. This method then
describes a perturbative expansion consistent with the
desired symmetries and assumptions, without introducing
new light degrees of freedom. In recent years there have

been several efforts [4,16–19] in the modeling of these
theories, and constraining the relevant parameters, such as
the scale Λ at which modifications are introduced. These
have mainly been focused on theories built using either six-
dimensional or eight-dimensional operators, built from the
contractions of three and four Riemann tensors. These
are the leading and next-to-leading order operators in the
absence of matter.
When matter is present, the leading order curvature

operators in the EFT construction are dimension-four
operators (R2, RabRab, and RabcdRabcd). In this context,
neutron star (NS) binaries become one of the most relevant
scenarios. Modifications to GR may not only affect the
dynamics during the inspiral and merger phases but the
behavior and signatures of the merger remnant could also
be highly altered. Given that these theories are constructed
from powers of curvature invariants, it is natural that the
effects of the modifications grow with the curvature, and
small black holes (BHs) would give rise to the strongest
effects. The merger of binary NSs [20] presents an ideal
scenario for the formation of some of the smallest astro-
physical black holes, with masses of approximately 3M⊙.
The postmerger dynamics of such an object could be one
of the best windows to observe deviations from GR [21].
Exotic formation channels for smaller BHs could result in
scenarios where such BHs interact with NSs in regimes of
large spacetime curvature, where significant corrections
could arise from these types of modifications to GR.1

The theory built from these four-dimensional operators
is commonly called quadratic gravity [23], and there has
been recent work performing fully nonlinear numerical

1See Ref. [22] for a study of a NS being consumed by a much
less massive BH residing inside the star.
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simulations in spherical symmetry and very recently in
the BH binary merger scenario [24,25]. However, these
works have focused on the vacuum scenario, most
specifically in the Ricci-flat case, which, from the
perspective of EFT, solutions and dynamics should be
indistinguishable from GR.
This work explores the dynamics of this dimension-four

operator EFT extension to GR in the presence of matter,
where modifications should arise. For simplicity, the
considered system has spherical symmetry, and we evolve
the collapse of a massless minimally coupled scalar
field into a BH. There are several objectives to this work.
First, we want to present an alternative approach to that
presented in [24,25], as well as incorporate matter into the
system to study gravitational collapse. The second one is
to study how the modifying terms affect the dynamics
of the system. And finally, to determine in what region of
the parameter space the system stays within the EFT
description, simulations are well behaved, and when their
predictions can be trusted.
The paper is structured as follows: In Sec. II, the four-

dimensional operator EFT, its action, and its corresponding
field equations are presented. In Sec. III, the evolution
and constraint equations are presented, and the “order
reduction” procedure is introduced to deal with the higher
derivatives in such equations. Section IV contains detailed
information about the target problem and setup, including
the prescription for initial data, the numerical implementa-
tion, and relevant monitoring quantities. The main results
of the paper are presented in Sec. V. A brief discussion
on the observed results and future outlook can be found
in Sec. VI. The appendices contain additional information
regarding the convergence test and constraint violations
observed in the simulations. The following notation is
adopted: The beginning of the latin alphabet ða; b; c; d;…Þ
will be used to denote full spacetime indices, while the latin
letters ði; j; k; l…Þ will be used to indicate spatial ones.
The ð−;þ;þ;þÞ signature is used, and the speed of light
is set to c ¼ 1.

II. LEADING ORDER EFT, NONVACUUM
EQUATIONS

The leading order terms in an EFT extension to GR,
which introduce no new light degrees of freedom and
satisfy parity symmetry, are the ones built with the
dimension-four operator curvature invariants R2, RabRab,
and RabcdRabcd. Using the fact that the Gauss-Bonnet
invariant is topological in four spacetime dimensions,
one can exclude the Riemann-squared term from the
effective action. The effective action can be written as

Seff ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

a1
Λ2

RabRab þ a2
Λ2

R2 þ � � �
�
;

ð1Þ

where a1 and a2 are dimensionless coefficients and Λ has
units of inverse length and determines the cutoff of the EFT.
Notice that, in the vacuum case, since Rab ¼ 0þOð1=Λ2Þ,
then these terms would be pushed to higher orders of the
perturbative scheme, and six-dimensional operators would
dominate. This work includes matter in the form of a
minimally coupled scalar field, so these terms are the
leading order operators.
Upon variation of this action, the following field equa-

tions are obtained:

Rab −
1

2
gabRþ 1

2
ϵ1RcdRcdgab þ 2ϵ2RabR −

1

2
ϵ2gabR2

− 2ϵ1RcdRacbd þ ðϵ1 − 2ϵ2Þ∇b∇aR − ϵ1∇2Rab

− gab

�
1

2
ϵ1 − 2ϵ2

�
∇c∇cR ¼ 8πTab; ð2Þ

∇aTab ¼ 0; ð3Þ

where ϵ1 ¼ a1=Λ2, ϵ2 ¼ a2=Λ2 (which will occasionally
be called couplings) and Tab is the usual energy-
momentum tensor defined as

Tab ¼ ∇aϕ∇bϕ −
1

2
gab∇cϕ∇cϕ: ð4Þ

For convenience Eq. (2) will expressed as

Rab −
1

2
gabR ¼ 8πTab þMab; ð5Þ

where now Mab encompasses all modifications to the
equations. The Mab tensor contains up to fourth-order
derivatives of the metric. In general, these sorts of mod-
ifications make the task of formulating the problem as well
posed [26,27] a challenging task, if not an impossible one
with the standard techniques.2

III. EVOLUTION EQUATIONS
AND CONSTRAINTS

Before addressing the issues raised at the end of the
previous section, the equations will be first expressed in a
formulation that, in the absence of correcting terms, renders
the problem well posed. To this end, the generalized
harmonic formulation [29–31] that is written in terms
of the usual 3þ 1 variables [32] is adopted. Under this
formulation, the full set of evolution equations and con-
straints are expressed as

2Remarkably, this theory possesses a formulation that allows
us to define a well-posed initial value problem [28]. However, as
we shall describe in the next section, there exists some tension
between such formulation and the EFT framework.
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∂⊥γij ¼ −2αKij; ð6aÞ

∂⊥Kij ¼ α
�
Rð3Þ
ij − 2KikKk

j − π̃Kij

�
−DiDjα − αDðiCjÞ

− καγijCT=2 − 8πGα½Sij − γijðS − ρÞ=2�
− α

�
SMij − γijðSM − ρMÞ=2�; ð6bÞ

∂⊥α ¼ α2π̃ − α2HT; ð6cÞ

∂tβ
i ¼ βjD̄jβ

i þ α2ρi − αDiαþ α2Hi; ð6dÞ

∂⊥π̃ ¼ −αKijKij þDiDiαþ CiDiα − καCT=2

− 4πGαðρþ SÞ − α

2
ðρM þ SMÞ; ð6eÞ

∂⊥ρi ¼ γklD̄kD̄lβ
i þ αDiπ̃ − π̃Diα − 2KijDjα

þ 2αKjkΔΓi
jk þ καCi − 16πGαji − 2αjiM; ð6fÞ

with the constraints,

CT ≡ π̃ þ K; ð7aÞ

Ci ≡ −ρi þ ΔΓi
jkγ

jk; ð7bÞ

H≡ K2 − KijKij þ R − 16πGρ − 2ϵρM; ð7cÞ

Mi ≡DjK
j
i −DiK − 8πGji − ϵjMi ; ð7dÞ

where K ≡ γijKij, Di, and D̄i are the covariant derivatives
for the three-metric γij and the background three-metric γ̄ij,
respectively. The derivative operator ∂⊥ is defined as ∂⊥ ¼
∂t − Lβ, where Lβ is the Lie derivative along the shift

vector βi. Defining ΔΓi
jk ≔ ð3ÞΓi

jk −
ð3ÞΓi

jk, where these are
the Christoffel symbols for the induced metric and back-
ground metric (flat in spherical coordinates), respectively.
Defining alsoHT ≔ Hana, where na is the normal vector to
the spatial hypersurfaces defined by the spacetime foliation.
The new dynamical variables π̃ and ρi are introduced
through equations (6c)–(6d) to make the system (ignoring
the extensions to gravity) first order in time derivatives.
Sij, S, ρ, and ji are the matter variables constructed from
the energy-momentum tensor Tab as Sij ¼ Pa

i P
b
jTab, its

trace S ¼ γijSij, ρ ¼ nanbTab, and ji ¼ −PianbTab. Where
Pia is a projection tensor to the spatial hypersurface. Here
the definitions for SMij , S

M, ρM, and jiM are analogous to the
ones for the matter sources, but instead of using Tab,
we use Mab.
Let us now analyze the structure of the terms introduced

by Mab, which modify Einstein’s equations. These terms
contain up to fourth-order time and spatial derivatives of
metric components. In addition, they contain nonlinear
combinations of derivatives that would make the usual
hyperbolicity analysis [33] inapplicable. Furthermore, the

constraint equations (7c)–(7d) contain time derivatives,
which are not present in the Hamiltonian and momentum
constraints in GR. These sorts of issues are not uncommon
when dealing with modified gravity theories, even in
Horndeski theories, which are second order in derivatives
and incorporate a nonminimally coupled scalar field, suffer
from pathologies that can render the problem of interest ill
posed [34–37]. In those cases, after significant theoretical
efforts, appropriate new gauges were formulated [38,39]
that ameliorate these issues to the point where nonlinear
studies of compact binary mergers are possible [5,6,40,41]
for some regime of small coupling values. In the case of
higher derivative extensions to GR, fully nonlinear evolu-
tion has been performed [4,42] for an eight-dimensional
operator EFT extension through controlling pathological
higher frequencies via a “fixing” method [43–46] leaving
the long wavelength physics unaltered.
Coming back to this paper’s theory of interest works

like [24,25] tackle these issues by rewriting the theory
following the work of Noakes [28], in which the Ricci
scalar and the traceless part of the Ricci tensor can be
elevated to massive spin-0 and spin-2 fields and are evolved
with equations derived directly from the field equations of
the theory. With this prescription, they can verify numerical
stability in the Ricci-flat subsector and confirm that it is
indistinguishable from GR. However, an opposing view to
this method can be formed from the perspective of EFT.
The extra modes that this theory introduces and that this
approach makes explicit have masses that are above the
cutoff scale of the EFT; hence the dynamics of these modes
should be irrelevant in the EFT regime.3 Furthermore,
depending on the signs and values of ϵ1 and ϵ2, these
massive degrees of freedom can become tachyonic, which
would take them outside the regime of applicability of the
EFT. In contrast, this work, taking this intuition from EFT,
will actively remove these extra degrees of freedom by
eliminating the higher order time derivatives in the field
equations via an “order reduction” [48] procedure.4

Proceeding as done in [42] (see Sec. II C of that work
for more details), one can use the evolution and constraint
equations to zeroth order in ϵ1 and ϵ2 to find expressions of
higher order time and spatial derivatives of the metric
components in terms of lower order derivatives.
Schematically,

∂
2g
∂t2

¼ Eðg; ∂ag; ∂2i gÞ þ ϵMðg; ∂ag; ∂2ag; ∂3ag; ∂4agÞ þOðϵ2Þ
ð8Þ

3See Ref. [47] for a similar argument on the massive degrees of
freedom in six-dimensional operators EFT.

4This “order reduction” approach is not to be confused with the
“order reduction” techniques used in [49,50], where order-
reducing refers to replacing some problematic terms and solving
them iteratively/perturbatively.

GRAVITATIONAL COLLAPSE IN QUADRATIC GRAVITY PHYS. REV. D 108, 124066 (2023)

124066-3



represents the evolution system of Eq. (6) written in terms
of the variables g ¼ fγij; α; βg. Here E represents the GR
terms, which depend only up to first-time derivatives and
second spatial derivatives of g.M represents the terms from
the modified theory, which depend on up to fourth-order
spacetime derivatives. Truncating (8) to order Oðϵ0Þ

∂
2g
∂t2

¼ Eðg; ∂ag; ∂2i gÞ þOðϵÞ; ð9Þ

and taking derivatives of it gives expressions to higher than
second-time derivatives of g in terms of lower order
derivatives. This way (9) and its derivatives can be used
to replace f∂2ag; ∂3ag; ∂4agg in M, in favor of M̃, to obtain
redefinitions of (8) that are lower in time derivatives and
valid to OðϵÞ,
∂
2g
∂t2

¼ Eðg; ∂ag; ∂2i gÞ þ ϵM̃ðg; ∂ag; ∂a∂ig; ∂a∂2i g; ∂a∂3i gÞ
þOðϵ2Þ: ð10Þ

This way, expressions for SMij , S
M, ρM, and jiM, let us call

them fSMij , fSM, fρM, and fjiM can be obtained, which no longer
contain higher derivatives in time and that are valid to
Oðϵ1Þ and Oðϵ2Þ. Once all undesired time derivatives are
eliminated, the constraint equations, which now only
contain spatial derivatives, can be used to find expressions
for some (not all) higher spatial derivative derivatives of
the metric components in terms of lower derivatives. In
spherical symmetry, even though not all higher spatial
derivatives expressions are available through an order
reduction of the constraints, this procedure is enough to
eliminate all higher-than-second spatial derivatives of the
metric components. During this procedure, one introduces
higher-order spatial derivatives (up to third) of the scalar
field ϕ. In someway, all of the higher-order time and spatial
derivatives of gravity variables have been traded for third
derivatives of the scalar field. This is seen easily by noticing
that this reduction of order is equivalent to replacing Rab
and R through Tab in all the ϵ proportional terms in (2). One
could proceed as done in [4,42] and control the higher
frequencies via the “fixing” approach. One of the objectives
of this work is to explore under what circumstances the
system is well behaved after performing the order reduction
without attempting to control the higher frequencies.

IV. TARGET PROBLEM AND SETUP

The objective is to study this theory and its equations in
dynamical scenarios where nonlinearities are important.
We want to explore in which regime of the parameter space
one can carry out numerical evolution without instabilities.
If such instabilities do appear, then the objective is to assess
whether this happens within the regime of applicability of
the EFT. To this end, we evolve spacetimes consisting of
an initial in-falling scalar Gaussian profile, ultimately

collapsing into a BH. This work will avoid treating critical
collapse [51], mainly because the EFT is doomed to be
outside of its regime of validity during such a process.
Reducing the problem to spherical symmetry, the line

element for this problem is given by

ds2 ¼ ð−α2 þ grrβ2Þdt2 þ 2βgrrdrdtþ grrdr2

þ r2gTðdθ2 þ sin2 θdφ2Þ; ð11Þ
where α is the lapse function, β is the radial component of
the shift vector, and grr and gT are the radial and angular
components of the spatial metric γij.
The equations that arise from this ansatz contain factors

of r−p, which lead to divergences at the origin r ¼ 0. Using
L’Hopital’s rule, one can carefully redefine the equations
at the origin to avoid these coordinate singularities. This
technique is essential when dealing with the high p
exponents that corrections to GR introduce.

A. Initial data

What determines whether the scalar field collapses into a
BH or bounces back to infinity depends on the properties of
the initial profile of the field. All of this will be encoded
in the initial data prescribed. In this section, we discuss how
we construct initial data consistent with the constraints of
the modified theory.
Starting from the conformal decomposition of the spatial

metric as

γij ¼ ψ4γ̃ij; ð12Þ
where ψ is the conformal factor and γ̃ij being the flat metric
in spherical coordinates. With this choice, the Hamiltonian
constraint takes the form

8∇2
flatψ þ ψ5

�
AijAij −

2

3
K2

�
þ 16πψ5ρþ 2ϵψ5fρM ¼ 0;

ð13Þ
where Aij is the traceless part of the extrinsic curvature

tensor Kij and now the additional term 2ψ5fρM contains the
modifications to GR.
The momentum constraint takes the form

∇jAij −
2

3
∇iK − 8πji − ϵfjiM ¼ 0; ð14Þ

which includes the additional currentlike term−ϵfjiM.We take
the extrinsic curvature to be traceless by setting the ansatz,

Aij ¼

0
BB@

Krr 0 0

0 −r2 Krr
2

0

0 0 −r2 Krr sin2 θ
2

1
CCA: ð15Þ
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The expressions of the Hamiltonian and momentum con-
straint under such ansatz read

∂
2ψ

∂r2
¼ −

2

r
∂ψ

∂r
−

3

16

K2
rr

ψ3
− πψ

�
∂ϕ

∂r

�
2

− πψ5Σ2 −
1

4
ϵψ5fρM;

ð16Þ
∂Krr

∂r
¼−2ψ−1Krr

∂ψ

∂r
−
3

r
Krrþ8πψ4Σ

∂ϕ

∂r
þϵψ8fjrM: ð17Þ

Notice that fρM and fjiM are the order reduced expressions
that we obtained after the order reduction procedure, and
when evaluated under this ansatz possess only up to first
order derivatives of ψ and no derivatives of Krr. In this
form, these equations can be integrated directly to find
solutions once the scalar field initial data is specified and
appropriate boundary conditions set. This technique
was used in [42], as “order-reduced direct integration,”
to successfully construct BH initial data in spacetimes in
the presence of a scalar field for an eight-dimensional
operator EFT of GR.

1. Scalar field

The initial scalar field is prescribed such that it is initially
mostly in-falling towards the origin; this can be achieved by
having a field of the form

ϕðt; rÞ ¼ ΦðuÞ
r

; ð18Þ

where u≡ rþ t and

ΦðuÞ ¼ Au2 exp

�
−
ðu − rcÞ2

σ2

�
; ð19Þ

where A; rc, and σ are the amplitude, center, and width of
the pulse, respectively. Under this choice, the initial values
of scalar field variables are given by

ϕ0 ≡ ϕðt ¼ 0; rÞ ¼ Ar exp

�
−
ðr − rcÞ2

σ2

�
; ð20Þ

Σðt ¼ 0; rÞ ¼ ϕ0

α

�
β

�
1

r
−
2ðr− rcÞ

σ2

�
−
�
2

r
−
2ðr− rcÞ

σ2

��
;

ð21Þ

where Σ is defined as

Σðt; rÞ ¼ 1

α

�
β
∂ϕ

∂r
−
∂ϕ

∂t

�
: ð22Þ

2. Boundary conditions

To construct the initial data, boundary conditions for the
fields must be prescribed. Regularity at the origin imposes

Ωðr ¼ 0Þ≡ ∂rψðr ¼ 0Þ ¼ 0. For convenience, we can set
Krr ¼ 0 at the origin. To determine the remaining condition
on the ψ field we impose that the exterior boundary
conditions should have the following form:

ψ jrout ¼ 1þ M
2rout

; ð23Þ

∂ψ

∂r

����
rout

¼ −
M
2r2out

; ð24Þ

where rout is the exterior grid boundary and M is the
Arnowitt-Deser-Misner (ADM) mass (which will depend
on the scalar field initial configuration). A way to achieve
this is to perform a shooting procedure on the value of
ψðr ¼ 0Þ such that the integrated solution on the outer
boundary satisfies

ψ jrout ¼ 1 − rout
∂ψ

∂r

����
rout

; ð25Þ

we achieve this by implementing a Newton-Raphson
method.
We impose that the initial values of gauge variables

satisfy

αðt ¼ 0Þ ¼ 1; ð26Þ

βðt ¼ 0Þ ¼ 0; ð27Þ

π̃ðt ¼ 0Þ ¼ 0; ð28Þ

ρiðt ¼ 0Þ ¼ −2ψ−5Ω; ð29Þ

where the last two are required to initially satisfy the
constraints (7a)–(7b).

B. Numerical implementation

The following numerical scheme is implemented to
evolve the system presented in Sec. III. Time is integrated
through a fourth-order Runge-Kutta with a Courant–
Friedrichs–Lewy (CFL) coefficient such that dt ¼ 0.25dx,
where dt is the time step and dx denotes the uniform spatial
grid spacing. Spatial derivatives are discretized via finite
differences operators, which are sixth-order accurate in the
interior and third order in the boundaries. Kreiss-Oliger
dissipation is implemented with operators that are eighth-
order accurate in the interior and fourth-order in the
boundary. When no BH is present in the simulation, the
grid extends from ri ¼ 0 to rout ¼ 200. During the evolu-
tion, the appearance of an apparent horizon is monitored;
if one appears, then the code will excise a portion
(including r ¼ 0) of the domain contained inside this
apparent horizon. A damped harmonic gauge [52–54] is
adopted, which sets the gauge source vector to satisfy
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Ha ¼ zðlog ð ffiffiffiffiffiffi
grr

p
gTα−1Þna − gabβbα−1Þ. We take a fixed

value of z ¼ 0.5.

C. Monitoring quantities

As previously mentioned, an EFT description of a
system involves a truncated expansion of a tower of
curvature operators, and control over this expansion is
lost if the curvature becomes too large. Determining
whether the system remains within the regime of appli-
cability of the EFT throughout evolution is a necessary
condition5 to guarantee that the observed behavior is
representative of the true physics of the underlying theory
in the low energy regime.
A reasonable indicator of whether the system is within

the regime of applicability of the EFT is to compare if terms
that are higher order in the perturbation scheme remain
subdominant to lower order ones [55,56]. For example
one expects that jRj > jϵ1RabRabj þ jϵ2R2j. Using the
fact that Rab ¼ 8πðTab − 1=2TgabÞ þOðϵ1; ϵ2Þ (ignoring
higher order terms in ϵ1 and ϵ2), the inequality can be
expressed as

ER ≡ 8πðjϵ1j þ jϵ2jÞjð−Σ2grr þ ð∂rϕÞ2Þjg−1rr < 1: ð30Þ

Another indicator that can be used to discern whether
the theory remains in the EFT regime of applicability is
through some curvature invariant that is nonvanishing for
vacuum spacetimes, for instance, the Kretschmann scalar
C≡ RabcdRabcd. Using this invariant, a natural threshold
for the regime of applicability of the EFT is given by
Λ−2C > Λ−6C2, which can be easily rewritten as

EC ≡ CΛ−4 ≈ C maxðϵ21; ϵ22Þ < 1: ð31Þ

During evolution, these two quantities will be monitored
to get an idea whether the system is in the validity regime of
the EFT, close to leaving it or outside of it.6

The way the equations have been rewritten after the order
reduction is now somewhat more familiar to the equations
we might encounter in GR, where metric components
appear at most as second derivatives, and these second
derivatives appear linearly in the equations. The system’s
characteristic speeds are usually evaluated to study hyper-
bolicity and, consequently, the well posedness of an initial
value problem. However, the presence of the third-order
derivative of the scalar field in the gravitational equations
prevents us from carrying out this analysis. One can,

however, attempt to get some insight out of that procedure
by computing the characteristic speeds by considering
solely the gravitational sector (6c)–(6f) and considering
the ϕ field as a source.7 The characteristic matrix of that
system is diagonalizable and possesses the following
eigenvalues (characteristic speeds):

λ1� ¼ β � αffiffiffiffiffiffi
grr

p ; ð32aÞ

λ2� ¼ β � α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πð2ϵ1 − 4ϵ2Þð∂rϕÞ2 þ grr

p
grr

; ð32bÞ

λ3�¼β�α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πð4ϵ1−8ϵ2ÞðΣ2grr−ð∂rϕÞ2Þþgrr

p
grr

: ð32cÞ

Notice how all velocities in (32) reduce to what one
obtains in GR when ϕ ¼ 0, when ϵ1 ¼ ϵ2 ¼ 0 or when
ϵ1 ¼ 2ϵ2. While the two first conditions imply that the
theory reduces to GR, for the last one ϵ1 ¼ 2ϵ2, the
equations are still different from GR. When neither of
those conditions is met, these speeds are modified from
the GR ones and are real only under certain conditions.
The radicand on λ2�,

χ2 ≡ 8πð2ϵ1 − 4ϵ2Þð∂rϕÞ2 þ grr; ð33Þ

can become negative if ϵ1 − 2ϵ2 < 0 and grr < −8πð2ϵ1 −
4ϵ2Þð∂rϕÞ2, which is possible if the scalar field gradients
are large enough. Furthermore, regardless of the sign of
ðϵ1 − 2ϵ2Þ the radicand of λ3�,

χ3 ≡ 8πð4ϵ1 − 8ϵ2ÞðΣ2grr − ð∂rϕÞ2Þ þ grr; ð34Þ

can become negative, the factor ðΣ2grr − ð∂rϕÞ2Þ does
not have definite sign, and for large enough Σ or ∂rϕ then
χ3 < 0 is a possibility.
This (simplified) analysis tells us that the system could

undergo a character transition [35] during evolution ren-
dering the problem ill posed. The appearance of this
transition could depend on the initial data prescribed;
for example, a collapsing field would evolve to have very
large gradients and trigger this transition, while a different
configuration could avoid it. In this work, we will explore
the evolution of a collapsing scalar field for different values
of the coupling parameters and try to identify if such a
transition happens, whether it triggers instabilities, and
whether it occurs inside of the regime of applicability of
the EFT.

5Even if the theory is at all times within the EFT’s regime of
validity, undesired issues such as secular effects [49,50] could
emerge and spoil the physics.

6There are, of course, many other quantities one could check,
for example, checking that the six-dimensional operators should
be subdominant to the four-dimensional ones, for example,
RabRabΛ−2 > Ref

abR
abcdRcdefΛ−4.

7Note that ϕ evolves with □ϕ ¼ 0, so in a very local sense, its
evolution should be well posed.
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V. RESULTS

We turn our attention now to the evolution of the in-
falling self-gravitating scalar field with different choices of
the coupling parameters fϵ1; ϵ2g. Whether the incoming
pulse collapses into a BH or bounces back to infinity will
depend mostly on the choice of its initial parameters,
amplitude A, width, σ, and position rc. To study the
collapse case, these three parameters will be fixed to
A ¼ 0.0023, σ ¼ 1, and rc ¼ 10. For these values in the
initial scalar profile, the ADM mass of the system is
MADM ¼ 1.024 when ϵ1 ¼ ϵ2 ¼ 0. The relevant length
scales in the modified theory (jϵ1j1=2 ≈ jϵ2j1=2 ≈ Λ−1)
should be then compared to the mass of the system. For
reference, when these couplings are large jϵ1j ¼ jϵ2j ¼ 0.1
the difference in MADM is at the subpercent level. Even
though this work focuses on the collapsing scenario, the
noncollapsing scenario was also studied. The evolution of
that scenario in the regime of couplings explored is well
behaved up to jϵj ≈ 10−1. Above such couplings, the
system leaves the regime of applicability of the EFT.
The evolution of the collapse scenario is more interesting,
as we shall see in this section.
The main objective of these simulations is to explore

how the evolution is altered as we modify the coupling
parameters fϵ1; ϵ2g, such as the behavior of the apparent
horizon and curvature invariants. When couplings are
turned off, and GR is evolved, the initial pulse propagates
toward the origin until a BH forms. It quickly accretes the
scalar field and settles to its final configuration. The final
mass of the formed BH is of MBH ≈ 1.022, indicating that
only a very small portion of the scalar field is not accreted
by the BH. To study how this same scenario would evolve
when couplings are nonvanishing, an array of simulations
is run with pairs of ϵ1 and ϵ2 taking values from f0; ϵ̃n�g,
with ϵ̃n� ¼ �ϵ02

n for n ¼ 0; 1; 2; ...11, with ϵ0 ¼ 10−4.
Figure 1 displays whether the evolution for a pair of

values fϵ1; ϵ2g is stable and collapses into a BH (green
dots) or if it develops instabilities and crashes (red crosses).
This figure shows that there are a lot of points in the
parameter space which develop instabilities, mostly when
at least one of the couplings is large, especially for large
and positive ϵ1 and large and negative ϵ2.
To better understand what is happening, we will first

focus on simulations with either ϵ1 ¼ 0 or ϵ2 ¼ 0 to study
those terms individually. In Fig. 2, we plot the maximum
value of the Kretschmann scalar C in space and time for this
subset of the parameter space. Here dots represent simu-
lations that were stable during the evolution and collapsed
into BHs, while the crosses represent simulations that
crashed. This figure shows how, relative to GR, a positive
(negative) value of ϵ1ðϵ2Þ tends to amplify the maximum
value of C achieved during the evolution. Similarly (for
small enough) negative (positive) values of ϵ1ðϵ2Þ induce a
suppression on the maximum value of C. The magnitude of
these amplifications or suppression grows as the scalar

pulse approaches the origin, and corrections to GR become
stronger. In Fig. 3, we plot several snapshots of the C radial
profile close to the collapse to a BH. Notice however in
Fig. 2 how for ϵ1 ⪅ −10−2 the behavior of C drastically
changes to amplification as opposed to suppression.
An indicator that the evolution for ϵ1 ⪅ −10−2 is

pathological and not physical is its convergence, which
we display in Fig. 13. This figure shows how convergence
falls rapidly as the scalar field approaches the origin in

FIG. 1. Parameter space of simulations for the collapse sce-
nario. In green dots are simulations that are stable and collapse
into a BH, and in red crosses are simulations that develop
instabilities and crash.

FIG. 2. Maximum value of C across space and time for
simulations in the collapse scenario for either ϵ1 ≠ 0 or
ϵ2 ≠ 0. Dots indicate simulations that collapsed into BHs and
remained stable; crosses indicate simulations that crashed. The
red shaded region indicates values of C that lie outside of the
regime of applicability of the EFT in accordance with (31). Values
of C > 108 have been labeled as 108 for convenience.
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cases with ϵ1 < 0 especially losing all convergence for
cases with ϵ1 ⪅ −10−2. Furthermore, one can see that the
constraints in this regime of the couplings, as shown in
Fig. 14, show violations above the one percent level, which
indicates one should question the validity of the results.
Figure 2 also shows in the red shaded region the

values of the Kretschmann scalar C that would violate
the EFT limit for each value of ϵ in accordance with (31).
Interestingly a small negative value of ϵ1 shows a sup-
pression of C, which in principle, helps to avoid the
restricted region. However, as ϵ1 becomes more negative
at some point, an instability is triggered, generating an
amplification of C, clearly driving the system outside of the
EFT regime of applicability. Here it is important to stress
the order of these events. If an instability was generated
once the system was already outside the EFT regime,
this means that physics drove the system there and not
pathologies. Suppose the system naturally explores higher
curvatures and numerical instabilities appear after leaving
the regime in which the EFT approach is valid. In that case,
we need not worry about these simulations crashing and
acknowledge the inadequacy of the EFT prescription to
describe these scenarios. This seems to be the case for
positive (negative) values of ϵ1 (ϵ2), which induce an
amplification on C which drives the system outside of
the valid EFT regime for jϵj⪆10−3 and crash. In contrast,
positive values of ϵ2 which induce suppression of Cmanage
to stay within the regime of applicability of the EFT
and stable up to values of ϵ2 ⪅ 5 × 10−2, beyond this
values some instabilities are triggered, the system leaves the
regime of applicability of the EFT and crashes. Both large
negative values of ϵ1 and large positive values of ϵ2 seem to
be developing instabilities when they are within the regime
of applicability of the EFT. Perhaps for these regimes,
controlling the higher frequencies via a “fixing” approach
as in [4,42] could result in the resolution of the instabilities,
but this is outside the scope of this work.
Similar behavior is observed on the maximum value of

the Ricci scalar R, which we show in Fig. 4, where we

also include the EFT of applicability exclusion region
in shaded red as indicated by the relation ER < 1, see
Eq. (30). Interestingly, all of the simulations that crashed
for ϵ2 < 0 do so within the allowed EFT regime dictated
by (30); however, they are outside of the valid regime
according to (31).
Another quantity that we can inspect is the radicand χ3,

see Eq. (34), of the eigenvalue λ3�, which, as we stated
before, if it becomes negative could be related to a character
transition and the breakdown of the initial value problem.
Figure 5 shows the spatial minimum value of χ3 as a
function of time for simulations ϵ1 < 0 or ϵ2 > 0, which are
the cases in which χ3 decreases towards 0 and negative
values. As Fig. 5 shows for small (large) enough values
of ϵ1 (ϵ2) χ3 can become negative. As mentioned, very
negative values of ϵ1 trigger instabilities, losing conver-
gence and leaving the EFT’s applicability regime.

FIG. 3. Snapshots of radial profiles of C at different times close to the collapse into a BH for different values of ϵ1 and ϵ2.

FIG. 4. Maximum value of the Ricci scalar R across space and
time for simulations in the collapse scenario for either ϵ1 ≠ 0 or
ϵ2 ≠ 0. Dots indicate simulations that collapsed into BHs and
remained stable; crosses indicate simulations that crashed. The
red shaded region indicates values of R that lie outside of the
regime of applicability of the EFT in accordance with (30).
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Similar issues are present for large positive values of ϵ2
where also χ3 < 0. However, such issues manifest before
the χ3 < 0 threshold is violated. This suggests that this
violation might not be the root cause of the instabilities but
rather serve as a reliable indicator of their presence. This is
not unexpected since this condition was built from an
incomplete characteristic analysis in which the scalar field
was considered a source, ignoring the presence of the
higher derivatives of the field in the gravitational equations.
A noticeable effect that can be appreciated in Fig. 5 is

that simulations that develop negative values of χ3 also
form an apparent horizon sooner than the χ3 > 0 or GR
cases. Figure 6 shows the areal radius rA of the formed
horizons as a function of time for different values of the
couplings. The behavior for the GR case is as expected;
around t ≈ 8.3, an apparent horizon is found, and the areal
radius quickly grows until all the scalar profile has been
accreted and then relaxes to its final state. This is the same
behavior that some of the curves in the plot, for example,
for ϵ1 ¼ −0.0032, ϵ1 ¼ 0.0064, with the only difference
that these curves follow slightly above and below the
GR curve, respectively. In contrast, for the ϵ1 ¼ −0.0256,
ϵ1 ¼ −0.0512, ϵ2 ¼ 0.0256 cases, also shown in Fig. 6,
the systems experience premature collapses to smaller
BHs, after that rA undergoes a brief growth, and then a
substantial decrease before a new larger horizon (roughly
the same size of the GR horizon) is formed. At this stage,
we can see how the rA grows above the GR curve before
decreasing8 to join it as the final BH relaxes. Figure 6 also
shows in dotted lines (ϵ1 ¼ 0.0128 and ϵ2 ¼ −0.0064) a

couple of simulations that crashed, these also display the
premature appearance of a small horizon before crashing.
It is important to note that all of the simulations that show
this type of exotic horizon behavior evolve away from the
regime of applicability of the EFT defined by (31). The
late-time behavior of all simulations, as shown in the plot,
is similar; the final BH in all cases is essentially the same.
This is not unexpected; once the scalar field has been
accreted by the BH and the spacetime is essentially
vacuum, Eq. (2) reduces to Einstein’s equation and can
be evolved for very long times.
Having studied the ϵ1 and ϵ2 cases individually, we can

outline a few observations:
(1) Positive (negative) values of ϵ1 (ϵ2) strongly amplify

the maximum value of curvature invariants such as C
and R in contrast to GR. Their simulations are well
behaved as long as the system stays within the regime
of applicability of the EFT stipulated by (30)–(31),
beyond that regime simulations tend to crash.

(2) Negative (positive) values of ϵ1ðϵ2Þ strongly sup-
press the maximum value of curvature invariants
such as C and R in contrast to GR. Even though the
suppression of these curvature invariants would help
keep the system within the regime of applicability
of the EFT, for large enough values of the coupling
(especially for ϵ1), the solutions lose convergence,
and the suppression becomes an amplification,
driving the system outside of the EFT regime.

(3) When the couplings are sufficiently small and within
the regime of the EFT, the behavior of the BH
formed is very similar to that of the BH formed in
the GR case. Once the horizon is formed, the high
curvature regions are hidden past the horizon,
making modifications extremely small.

(4) When the couplings are large enough, the BH
formation becomes more exotic. Premature smaller

FIG. 5. Minimum value of χ3 (the radicand of the eigenvalue
λ3�) as a function of time for simulations in the collapse case for
different values of ϵ1 and ϵ2. Once an apparent horizon is found,
the minimum is computed outside the horizon, hiding negative
values inside; this explains the sharp transitions.

FIG. 6. Areal radius rA of the apparent horizon as a function
of time for different values of ϵ1 and ϵ2. The dashed curves
correspond to simulations that crashed after the appearance of the
apparent horizon.

8The decrease of the BH’s areal radius, and hence, decrease
of its area is related to violations of the null convergence
condition [57,58], similar behavior was observed in [42].
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BHs can form before a horizon similar to the one
formed in the GR case appears. In addition, these
smaller BHs can shrink in size during their short
existence. Note, however, that the simulations in
these regimes are always outside of the regime of
applicability of the EFT, and hence the relevance of
these results should be questioned.

With these observations, the interpretation of results
where both ϵ1 and ϵ2 are nonzero is more direct. With our
definitions of ϵ1 ¼ a1Λ−2 and ϵ2 ¼ a2Λ−2, Λ has dimen-
sion of inverse length and both a1 and a2 are dimensionless.
For the most part, when one of the couplings is large, and

the other small, the behavior of the system is closer to the
behavior of the large coupling, as we observed in the ϵ1 ≠ 0
or ϵ2 ≠ 0. More interesting behavior is observed when ϵ1
and ϵ2 are of the same order. For example, in the case where
both ϵ1 and ϵ2 are positive, there is a competition between
suppression and amplification induced in the curvature
invariants, sometimes allowing the system to evolve with
larger values of these couplings (in comparison to the
individual cases) and stay within the regime of applicability
of the EFT. This is the case for simulations with ϵ1 ≈ 2ϵ2 as
it can be seen in Fig. 7 were a snapshot of the radial profile
for C is plotted in such configurations. In the case where the
signs of the couplings are opposite, the effects of their terms

FIG. 7. Snapshot of radial profile of C at t ¼ 8.11 for
simulations with pairs of values of ϵ1 and ϵ2. Notice how
the simulation with ϵ1 ¼ 0.0128 and ϵ2 ¼ 0.064 does not
achieve the large values of C that the simulation with only
ϵ1 ¼ 0.0128 does.

FIG. 8. Minimum value of χ2 over time and space for the
collapse scenario with A ¼ 0.0023. Dark blue marks represent
simulations where the minimum value of χ2 was at some point
smaller than 0, making the eigenvalue complex, potentially
indicating loss of well posedness. Here crosses indicate that
the simulation crashed.

FIG. 9. Minimumvalue of χ3 over time and space for the collapse
scenario with A ¼ 0.0023. Dark blue dots represent simulations
where the minimum value of χ3 was at some point smaller than 0,
making the eigenvalue complex, potentially indicating loss of well
posedness. Here crosses indicate that the simulation crashed.

FIG. 10. Maximum value of ER over time and space for the
collapse scenario with A ¼ 0.0023. Dark red dots correspond to
simulations where the EFT regime of applicability condition
ER < 1 was violated at some point. Here crosses indicate that the
simulation crashed.
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tend to push in the same direction and consequently
sometimes take the system outside of the valid regime or
trigger instabilities at smaller values of the coupling in
comparison to the individual ϵ1 or ϵ2 cases.
We will not spend a lot of time going through different

cases when both couplings are nonvanishing; however,
informative plots are provided showing the different control
quantities discussed for the ϵ1 and ϵ2 individual cases.
Figure 8 shows the spacetime minimum value of the
radicand χ2 of the eigenvalue λ2�. In contrast to the
previously observed for the χ3 quantity, when χ2 becomes
negative, the couplings are already large enough to take
the system outside the EFT regime. Figure 9 shows the
minimum spacetime value of χ3 for each simulation.

The interpretation of this plot follows directly from
what was observed for the individual coupling cases.
As mentioned before we can see that when ϵ1 ≈ ϵ2
simulations that would have χ3 < 0 if only ϵ2 was turned
on, or crash if only ϵ1 was on, now suffer none of those
issues. Similar behavior is observed for the rest of the
relevant quantities. Figure 10 displays the maximum value
of ER, on it dark red dots correspond to points where the
ER > 1 EFT condition was violated. Figure 11 shows the
maximum of EC over time and space; the dark red dots
represent points at which the EFT condition was violated.
Finally, Fig. 12 shows the maximum spacetime value of C.

VI. DISCUSSION

This study investigates the phenomenon of gravitational
collapse in spherical symmetry within the framework of a
dimension-four EFT extension to GR, commonly known as
quadratic gravity. Within the EFT perspective, the solutions
derived from this theory are expected to differ from those of
GR only in the presence of matter, with the dimension-four
operators representing leading-order corrections to GR
within an EFT expansion.
In this particular research, instead of treating the addi-

tional degrees of freedom associated with higher derivatives
as massive spin-0 and spin-2 modes, as done in previous
studies such as [24,25] under Ricci-flat (vacuum) scenarios,
an “order reduction” technique [48] is employed to eliminate
these degrees of freedom. Through numerical simulations,
this work is able to dynamically form BHs from the collapse
of a scalar field. In addition, we identify a parameter space
regime where the system is well behaved and remains within
the applicable range of the EFT. However, strong deviations
in the dynamics of curvature invariants during the collapse
are observed within this regime. These deviations could be
particularly relevant in astrophysical scenarios like the
merger of a pair of neutron stars, where the altered system
dynamics could have discernible effects on the emission
of gravitational radiation. The study of neutron stars for
individual and binary cases in this EFT extension to GR will
be explored in future work.
Additionally, instances were found where simulations,

initially showing good behavior, venture into high-
curvature regimes that exceed the limits of the EFT
approximation. In such cases, it becomes necessary to
acknowledge the inadequacy of the chosen approach in
describing the system dynamics within those specific
scenarios. The specific value of the couplings ϵ1 and ϵ2
(consequently the value Λ) at which this will be the case is
entirely dependent on the characteristics and relevant
scales in the system.9 Furthermore, specific regimes were

FIG. 11. Maximum value of EC over time and space for the
collapse scenario with A ¼ 0.0023. Dark red dots correspond to
simulations where the EFT regime of applicability condition
EC < 1 was violated at some point. Here crosses indicate that the
simulation crashed.

FIG. 12. Maximum value of C over time and space for the
collapse scenario with A ¼ 0.0023. Values of C > 106 have been
labeled as 106 for convenience. Here crosses indicate that the
simulation crashed.

9For instance, allowing the scalar pulse to have a larger width,
while adjusting the amplitude to keep the ADM mass fixed,
allows us to carry out stable simulations that stay within the limits
of the EFT for larger values of ϵ1 and ϵ2.
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identified where the system exhibits instabilities before
the validity of the EFT description ceases. In these cases,
alternative approaches such as “fixing the equations” may
be implemented to mitigate the emergence of instabilities
and control higher frequencies. This treatment will be
explored in the single neutron star and neutron star binary
scenarios in future work.
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APPENDIX A: CONVERGENCE

To check the convergence of the solutions, the base
uniform grid spacing dx ¼ 0.04 is adopted, and the
convergence factor is computed as

Q≡ ln

� jjudx − udx=2jj2
jjudx=2 − udx=4jj2

�
; ðA1Þ

here, udx, udx=2, and udx=4 stand for any field evolved with
resolutions dx, dx=2, and dx=4, respectively. In Fig. 13 we
plot the convergence factorQ for theKrr variable in the BH
collapse scenario: A ¼ 0.0023, σ ¼ 1, rc ¼ 10, z ¼ 0.5,
κ ¼ 2. For practical reasons, we only plot the convergence
until an apparent horizon has been detected. The conver-
gence factor behaves similarly to the other dynamical

variables. The black curve in Fig. 13 shows the conver-
gence factor for the GR case and shows how the con-
vergence is ≈4 at the beginning of the simulation and close
to the collapseQ quickly climbs to values between 5 and 6.
This is consistent with the fourth-order accuracy of the
Runge-Kutta time integrator and the sixth-order accuracy
of finite difference derivative operators. This seems to be
similar for essentially all the ϵ2 ≠ 0 simulations. The result
changes drastically for the ϵ1 ≠ 0 simulations, where we
can see the convergence factor does drop to lower values as
the system is close to collapse. Some of these simulations
retain acceptable convergence factors, for example, the
cases with ϵ1 ¼ 10−3, ϵ1 ¼ 5 × 10−3, and ϵ1 ¼ −10−3 drop
to convergence factors of values Q ≈ 4, Q ≈ 3, and Q ≈ 2,
respectively. However, when the magnitude of ϵ1 increases,
we can see how all convergence is quickly lost. This
coincides mainly with the regime we have identified of
simulations leaving the regime of applicability of the EFT.

APPENDIX B: CONSTRAINTS

Monitoring that the constraints (7a), (7b), (7c), and (7d)
remain under control is important to attest to the quality of
the performed simulations. In Fig. 14 we plot the valuer of
the l2-norm of Hamiltonian constraint (7b) for different
values ϵ1 and ϵ2. Here we have normalized by the l2-norm
of the most relevant terms that define it to get a relative
notion of the violation of constraints. The other constraints
display similar behavior, so we omit to show them. The
black curve shows our reference GR simulation using
the same parameters used in the convergence test for the
dx ¼ 0.02 grid spacing. The GR case Hamiltonian viola-
tion remains extremely small during the evolution, rising as
expected close to the collapse time but never rising above a
relative error of 10−8. For convenience, we only plot the
constraint violations until an apparent horizon is formed;

FIG. 13. Convergence factor Q for the Krr variable as a
function of time close the time of collapse for different values
of ϵ1 and ϵ2.

FIG. 14. l2-norm of the Hamiltonian constraint as a function
of time for simulations with different values of ϵ1 and ϵ2. The
horizontal dashed line highlights the 1% error.
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after this apparent horizon forms and excision is applied,
the constraint violations naturally become smaller.
The situation changes once either of the couplings is

nonvanishing; the constraint violations remain below the
10−8 relative error for most of the simulation but then
quickly rise as the scalar field profile approaches the center
of coordinates. For most cases, the constraint violation
remains below the 1% level throughout the simulation.
However, there are cases in which violations are within
a worrying 1% and 10% like for ϵ2 ¼ −10−3 and
ϵ1 ¼ −2.5 × 10−2, and cases were the violations > 10%

and greater than 1000% error, for ϵ1 ¼ 5 × 103 and
ϵ2 ¼ −2.5 × 103. These larger constraint violations are
no surprise; manipulations in the constraint equations were
performed that assume that the modifying terms remain
corrective (i.e., within the applicable regime of the EFT),
and these corrections become greater as the pulse collapses.
The cases where constraint violations are large enough to
be unable to trust simulations anymore also belong in the
parameter regime that has shown either through loose or
convergence or by leaving the EFT regime that these
solutions cannot be trusted.
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