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In previous work we analyzed the linear stability of nonrelativistic #-boson stars with respect to radial
modes and showed that ground state configurations are stable with respect to these modes, whereas excited
states are unstable. In this work we extend the analysis to nonspherical linear mode perturbations. To this
purpose, we expand the wave function in terms of tensor spherical harmonics which allows us to decouple
the perturbation equations into a family of radial problems. By using a combination of analytic and
numerical methods, we show that ground state configurations with # > 1 possess exponentially in time
growing nonradial modes, whereas only oscillating modes are found for # = 0 and # = 1. This leads us to
conjecture that nonrelativistic £-boson stars in their ground state are stable for £ = 1 as well as £ = 0,
while ground state and excited configurations with # > 1 are unstable.
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I. INTRODUCTION

Recent investigation has revealed that the multifield
Einstein-Klein-Gordon system admits a rich spectrum
of static solutions, even in the spherically symmetric
sector [1]. This is due to the fact that when passing from
a single to a multitude of N > 3 scalar fields, the internal
symmetry group U(N) can accommodate nontrivial
representations of the rotation group SO(3), leading to
configurations with nonzero orbital but zero fotal angular
momentum, such that they give rise to a spherically
symmetric spacetime. For the particular case in which
N =27+ 1 (or an integer multiple thereof) the choice of
the irreducible representation with integer spin ¢ leads to
the Z-boson stars discussed in [1-3], see also [4] for an
application in the context of critical collapse. In addition to
the parameter # these configurations are characterized by
the node number n of the wave functions’ radial profile and
a parameter a, controlling their amplitude. Of course, one
might object that a theory with an odd number 22 + 1 of
classical scalar fields is somehow unnatural; however, it
was shown that Z-boson stars (and many of their relatives)
admit a much more natural physical interpretation in the
realm of semiclassical gravity with a single real scalar
(quantum) field [5].

The stability of #-boson stars with respect to linear and
nonlinear spherically symmetric perturbations has been
established in [6,7] for the ground state configurations
(i.e., those with n = 0 nodes) having a, smaller than the
value leading to the maximal mass configuration.
Nonetheless, due to their nonzero orbital angular
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momentum, one cannot expect £-boson stars with £ > 0
to be stable since they could in principle collapse to a new
configuration with zero orbital angular momentum. That
such a collapse is, in fact, energetically allowed has been
shown in our previous work [8] in the nonrelativistic limit.
However, it is clear that such a collapse could only be
induced by a nonspherical metric perturbation since other-
wise the orbital angular momenta of the scalar fields would
be preserved during the time evolution. The stability of
£-boson stars with respect to nonlinear perturbations with-
out symmetries has been studied numerically in [9-11] for
the case £ = 1, and no instabilities have been found during
the time span of the simulations.

Motivated by these thoughts, in this work, we analyze
the stability of Z-boson stars with respect to nonspherical
linear perturbations of the fields. To simplify the analysis,
we restrict ourselves to the nonrelativistic limit in which
these stars are described by stationary solutions of the
multifield Schrodinger-Poisson system [12—14]. The linear
stability property of these Newtonian analogs with respect
to spherical perturbations has been studied in our previous
work [8], where it was shown that the ground state
configurations are stable with respect to radial perturba-
tions, whereas the excited states with n > 0 possess
unstable, exponentially in time growing modes. In this
article we show that the expectation that Z-boson stars are
unstable with respect to nonspherical perturbations even
when n = 0 is correct, at least in the nonrelativistic limit,
when 7 > 2. Interestingly, however, we also find that
nonrelativistic (Z = 1)-boson stars in their ground state
possess only oscillatory modes, and hence they seem to be
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stable, like the standard nonrelativistic boson stars with
¢ =0 [15,16].

We mention in passing that the nonrelativistic approxi-
mation our results are limited to contains one of the most
relevant physical potential applications of the £-boson
stars; namely the modeling of galactic dark matter halo
cores in the context of ultralight scalar field dark matter, see
for instance Refs. [17-24] for recent progress.

The remaining of this work is organized as follows. In
Sec. II we provide a brief review of the N-particle
Schrodinger-Poisson system, the associated energy func-
tional which will play an important role in our stability
analysis, and the stationary solutions describing the non-
relativistic Z-boson stars. Next, in Sec. III we derive the
mode equation describing linear perturbations oscillating in
time with a complex frequency 4, and we show how to
decouple it by expanding the fields in terms of vector
spherical harmonics (for £ = 1) or tensor spherical har-
monics (for Z > 1). This leads to a decoupled family of
radial eigenvalue problems with eigenvalue 4, where each
of these problems is labeled by the value of the total angular
momentum J, its associated magnetic quantum number M
and a parity flag. In Sec. IV we discuss some important
properties of these problems; in particular, we show that
they admit stationary modes with J # 0, and we prove that
no instabilities can arise in the odd-parity sector nor in
the even-parity sector with high enough values of J. Our
numerical results are presented in Sec. V where we
solve the eigenvalue problems using a spectral method
similar to our previous work [8]. Conclusions are drawn in
Sec. VI and technical results are further developed in
Appendices A-F.

II. THE N-PARTICLE SCHRODINGER-POISSON
SYSTEM

Consider a nonrelativistic system of N spinless, indis-
tinguishable and uncorrelated particles of mass y whose
only interaction is through the gravitational potential
U generated by them. Specifically, we consider an ortho-
normal set of wave functions ¢; in the one-particle Hilbert
space L2(R?) such that (¢, ¢y) = &;4. Assuming that there
are N; particles in the state ¢, the wave functions ¢; satisty
the N-particle Schrodinger-Poisson system

”’W - [—Z—A + U, x)](ﬁj(t 7). (la)

U(1,%) = 42Guy Nl (1. 3)2, (1b)
J

where » ;N; =N is the total number of particles. The
evolution described by the Schrodinger-Poisson system is
unitary, i.e., the L? norms of the wave functions ¢; are
preserved. Further, the evolution preserves each scalar

product (¢;,¢;), such that it is sufficient to impose the
condition (¢;,¢) =, at the initial time 7= 0.
Additionally, it can be verified that the functional

n? -
el =5 3N [ 1V (DPas
J
Gu? Jua; (2) P i ()
S 2 ;Nij// [x — ]

is conserved in time, that is £[¢;(1)] is independent of # for
any solution ¢;(#,X) of the system (1) for which
|E[¢p;(1)]| < 0. As in Ref. [8] its second variation will
be very useful to study the stability properties of
£-boson stars.

Before continuing, it is convenient to rewrite the system
in terms of dimensionless quantities as

d3 &y, (2)

% (#.5) = [-A+ U(X)g;(15).  (3a)
AOEF) =D N (E5)P, (3b)

where we used the transformations

r=11/A2,  ¥=d.3/A,

;= Azg%j/ And?, U =2A*02U, (4)
with A an arbitrary positive dimensionless scale factor,
v, = d./t. a characteristic velocity defined in terms of the
characteristic distance and length

h2 h3
dc :=—3, tC :=T' (5)
2Gu 2G2

In order to simplify the notation, in what follows we shall
omit the bars and denote dimensionful quantities with the
superscript phys whenever necessary. Furthermore, we
introduce the following notation

Jmax

DZ )
=1

where j... denotes the maximum number of different
excited states in the configuration, the superscript 7 refers
to the transposed and y; := /N ;¢;. With this we rewrite
the system (3) as follows:

Y= (WI’ "'71//jmax)T’ |‘~P|2 =

0P(1,X)
T

= [-A+ U(t,X)]¥(t,%), (7a)

AU(1,7) = |P(1,7)|?

(7b)
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with the condition

4z
(W wi) = N N;N6ji. (8)

Equivalently, the system (7) can be written as a single
nonlinear equation

i— (6, %) = H¥(1. %), 9)
ot
with the integrodifferential operator
F= —A+ A7 (), (10)

where A~! denotes the inverse operator of A, defined by

e L[ AG)
AW = [ Eok

when acting on an arbitrary function A.

The conserved energy functional (2) in terms of the
dimensionless quantities defined in Eqs. (4), (6) takes the
form EPYS[u] = pv2A3E[u)/x, where

1 -
Elu] = 5/ |Vu(X)|>?d*x — D[n, n], ne=ul?, (12)

with the bilinear functional D[n, n] defined by
1 n(x)n(y)
b, 7] 167:// |x -y ey (13)

For the following, the first and second variations of £
will be useful:

5 = Re(Hu. bu), (14a)

82E = Re(Hu, 8%u) + (6u, Hou) — 2D[6n,6n],  (14b)

with 6n :=2Re(u*6u) and (u,v) denoting the standard

L?%-scalar product between u = (uy,...,u jmax) and
v=(vy,...,v; ), thatis
jIHﬂX jmux
(u,v) =) (uj,v;) = Z/ u;(X)*v;(X)d’x.  (15)
=1 =1

A. The stationary equations
Stationary solutions are characterized by a harmonic
dependency on time, such that
Y(t,X) = e Elyy(X), XTER?, (16)
with y, a column vector where each component is a

complex-valued function and E = diag(E,, E>, ..., E jmx)

is a real diagonal matrix. For Z-boson stars, all E; are equal
to each other. However, other solutions including multi-#
multistate solutions [5] have different Es. (E,y,) are
determined by the nonlinear (multi)eigenvalue problem

Hoxo = Exo. (17)

with

Ho=—A+ A (o). (18)

Taking into account the orthonormality conditions (8),
the first and second variations of the energy functional
(14a), (14b) associated with the background field y yield

2r
56 = Xzj:EjaN', (19a)

2r P
& — XZEjézNj + (6u, [Hy — E]éu) — 2D[6n, 8],
J

(19b)

with 6n := 2Re(y;6u). In particular, if the particle numbers
N ; are held fixed, it follows that y, is a critical point of the
energy functional £ and the second variation is expected to
give information on the stability of the stationary solution.
Note that D[én, én] is positive definite.

B. Nonrelativistic Z-boson stars

Particular stationary solutions consist of nonrelativistic
£-boson stars [8,25-27]. Fixing some value # € {0, 1,2, ...},
they are obtained from the ansatz

10(®) =6 (NV(9. 9), (20)

where the function 09 is real valued and where

| 4rx
yf = 7t I(Yf’_f,Yf’_er],...,Yf'f)T, (21)

with Y“” denoting the standard spherical harmonics. Since

V> = 1, it follows that |¥|? = |6\”'|? and Eq. (17) reduces
to Eq. (20) in [8] under the assumption that the matrix E is
equal to E, times the identity matrix. The orthonormality
condition (8) reduces to

o 2+ 1K
/ 069 (r) prear = ZE X DK (22)
0

A

with K = N the equal number of particles in each state. For

convenience in this paper we set the scale factor to
A=N=(2¢+1)K.
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III. THE LINEARIZED SYSTEM

In this section we linearize the system (7) or (9) around a
stationary background solution. In Sec. III A we discuss the
most general case, which is valid for arbitrary stationary
backgrounds, and we derive the equations describing linear
modes. In Sec. III B we show that for the particular case of
purely radial perturbations of Z-boson stars this system
reduces to the one of our previous work. Next, in Sec. [II C
we discuss the mode equations for the (£ = 1)-boson stars
and show that they can be decoupled using spherically
vector harmonics. This construction is then generalized to
boson stars with arbitrary ¢ in Sec. III D.

A. Derivation of the mode equations

In order to linearize Eq. (9) about a stationary solution
Yo, we assume an expansion of ¥ in terms of a small
parameter € > 0 of the form

W(1,%) = e Elyo(X) + ex(1,X) + O(?)].  (23)

Here, y is a column vector in which each component is a
complex-valued function and (E, y,) is a solution to the
problem (17).

Substituting the expansion (23) into Eq. (9) and con-
sidering the first-order terms we arrive at the perturbed
evolution equation

O _ .
io, = (Ho—E)y + 287 (Re{yrbro.  (24)
where yg denotes the transposed conjugate of y.

Following Refs. [8,28] we separate the time and spatial
parts of y using the ansatz

x(t.X) = e"[ARX) + BX)] + e '[A(X) - B(x)].  (25)

where the bar denotes complex conjugation. Here A and B
are complex vector-valued functions depending only on X
and A is a complex number. Note that when 4 = A* is real,
one can assume that A is real and B is purely imaginary.
Introducing Eq. (25) into Eq. (24) one obtains, after
setting the coefficients in front of ¢*’ and e* to zero,

il = (H, - E)B

+ H{AT 5 (A + B) + x5 (A= B)|Mm{ye},  (26a)
i2B = (Fly — E) A
+{A 5 (A+ B) + x5 (A= B)|}Re{xo}.  (26b)

These two equations remain correct for the case in which 4
is real, provided A = Ay, is assumed to be real and B = i3,
is purely imaginary. In this case,

X6(A+B) + x5 (A= B)
= 2(Reyo)" Ag +2(Imy0)" By, (27)
which is real. Note also that when y is real, Eq. (26)
simplifies considerably.

Finally, we recall the orthogonality condition (8), which
yields

A
Crojsxx) + (s xox) = XaikéNkv (28)

with 6N, denoting the first variation of N,. Using the
ansatz (25) and assuming, for simplicity, that y is real, this
implies

(o> Ae) + (Aj xox) =0,

()(O,j’ Bk) - (FjJKO.k) =0.

One can easily verify that these conditions are a conse-
quence of Egs. (26) when 1 # 0.

(29a)

(29b)

B. Example: Radial perturbations
of Newtonian Z-boson stars

For linear perturbations which keep the angular depend-
ency fixed, the relation between (25) and the corresponding
ansatz (25) in [8] is given by

A+B=(A+B)Y, A-B=(A-B)Y, (30)

or, equivalently,

A =ARe(Y,) +iBIm(Yy), (31a)

B = BRe(Y,) +iAIm(),). (31b)
Using the fact that for # > 0 the vector-valued functions
Re(Y,) and Im(),) are linearly independent from each
other, it is not difficult to verify that this ansatz reduces
Eq. (26) to the system (26) in [8].

C. Example: Linear perturbations of (# = 1)-boson stars
using vector spherical harmonics

An alternative representation of £-boson stars which is
more convenient for the perturbation analysis that follows
can be given in terms of tensor spherical harmonics. We
first illustrate this technique for Newtonian #-boson stars
with £ = 1 and discuss the generalization to £ > 1 in the
next subsection. For this, we start by noticing that

A (%

\/g(x —iy)
V(8. 9) =
— 5 & +19)

124065-4



ARE NONRELATIVISTIC GROUND STATE #-BOSON ...

PHYS. REV. D 108, 124065 (2023)

where X = (£, 9.2) == (cos @ sin 9., sin g sin 9, cos 9) and U

is the unitary matrix

—i 0
1
U:=— 0 0 \/§ 33
7 s o (33)
-1 —i

Hence, for 1-boson stars, we may replace ) (9, ¢) in the
right-hand side of Eq. (20) with X. A generic linear
perturbation of such stars can then be described by
expanding the fields .4 and B in terms of vector spherical
harmonics, which are defined by [29]

Y19, ) = XYM (9, ), (34a)

M9, ) = ——— NV YIM(I, ). 34b
(9. 9) T (9. 9) (34b)

- 1 -

&™(9,9) i=——o X A VYM(Y,0), 34c
(8. 9) N ERY (8,¢),  (34c)

where 7 := |X| and J refers to the total angular momentum
number and M to the corresponding magnetic quantum
number. Using the identities dyr =X, and 0;%; =

(8jx — X;&;)/r and observing that o'

I is proportional to

Note that ¥/ and &'
vanish for J = 0.
Expanding

are orthogonal to X and that they

A= Z(A;MY + AL G +A<>c1>’M) (36)

with complex-valued functions A%, A(Jﬁ& and A%}I depend-

ing on r and similarly for B a simple calculation first
reveals that

Z(A+B) + x5 (A= B) = 25" Ay, v/, (37)
JM

from which
A i (A+ B) + 47 (A - B)] = 2ZA (61 A;M) Y™,
(38)
with A7l denoting the inverse of the operator

1d [ ,d\ JJ+1)
B2

the orbital angular momentum operator acting on Y’ it is .
not difficult to verify that Fro_r}n ]Eq.. (11) and the welll-known de.composmon -of
1/|¥ —y| in terms of spherical harmonics one obtains
. JT+1)+2 - 2 JTT 1) = the explicit representation
AFM _ _ ( +2) T 2pm i (2 + )lI_,JM’ (35a)
r r
1 o0
A0 = =55 [T sBRa (@0)
- 2 I+ 1) o JU - ! 2J+1 )y M
AGM _ (/+1) P _ (J+ )lPJM’ (35b) +1Jo
r r
with r_ == min{r, 7} and r. := max{r, 7}.
ADM — J /+1) oM (35¢) Using this, Eqs. (26) yields the following system of
r? ' equations:
|
Ay ~ (0) By 2 1 J(J+1) By
i m | = (H,” —E) m | T2 NE (41a)
Ajm By "A\=vJIU+1) 0 By
| Biu ~ 0 Al 2 1 J(J+1) Ay 0 0 1
A (F - E) m |tz ) +20\" A7 (o} )A;M)< ) (41b)
By Am r J(J+1) 0 AL 0
A2 . p®
m( Qf) = (F” —E)( (’;‘f : (41c)
By Ajm
where 7:((,0) = —A; 4+ A7 (\ag()) ). When J = 0, A%’f) and B%;,z) are void, and the system reduces to the same system as

Eq. (26) in [8] with Z = 1.
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One can simplify the operators on the right-hand side by
diagonalizing the 2 x 2 symmetric matrix

1 —/J(J+1
S (42)
—/JJ+1) 0
with D = diag(—J,J + 1) and the orthogonal matrix

R VI =T+
\/2J—|—l<\/J+1 v ) (#3)

This allows one to rewrite Eqgs. (41a), (41b) as

o HY —E 0
0 Hyp —E

o (A -E 0

M = ~ (0) Ajm
0 HJ+1 -E

25\ J -
204+ 1\ -\ JIJ+1)

x A7! 6§0>aJM),

+

JU+1)
J+1

(44b)

where a;,,:=T"" (A;M,A(J;;)T and By =T"" (B;M’B%EI)T'
When J = 0, the first components of a;,, and f;,, are void
and only the second components of Egs. (44a) and (44b)
should be considered.

D. Linear perturbation for arbitrary
¢ using tensor spherical harmonics

For the general case we expand the fields in terms of
tensor spherical harmonics Y™, , which are eigenfunctions

of the operators J2, L2, $2,and J . [29]. They are defined by

YJMLf('g? 40) = ZCJMLmLOaYLm(lg’ (p)gfo" (45)

m,o

with C/M,, .. the Clebsch-Gordan coefficients and £°°
denoting an orthonormal basis of spin functions in C**!,
see Appendix A for more details. Note that

1\
Y0, = %2 ;l i > (yreyere, (46)

and for a suitable choice of the basis functions £° and
using Eq. (A15) in Appendix A one obtains

1
Y%, = \/—4—”3}% (47)

However, for the following we shall assume that the
basis spin functions satisfy the relation

£ = (=1)7Ere (48)
for all 0 = -7, ..., ¢, which implies that

YJMLK — (_1)J+M+L+fyj—MLLﬂ’ (49)
and, in particular, that Y% ,, is real valued. For # = 1, for
instance, this basis can be chosen as

LIS £l = _\%(é" +ie,),  (50)

and &' == 2, with ¢, 2,, 2, the usual Cartesian basis of C,

and this yields Y, = —X/+/4x which, up to the normali-
zation factor —1/ Van, agrees with the choice in the
previous subsection.

Due to their completeness, the tensor spherical harmon-
ics can be used to expand the fields .4 and B as follows:

A= ZAJML(F)YJMLK’ (51)

JLM

and similarly for 5. The fact that the background has zero
total angular momentum implies that the different JM
modes decouple in the linearized equations. To derive the
mode equations and exhibit this decoupling, we use the
identity

-1)Y 2L +1
C St dom, gy, (52

YOO xyIM o —
( 474 ) Lt \/I];
which can be deduced from the product formula for the

spherical harmonics, see for instance Eq. (10) in Sec. 5. 6 in
Ref. [29]. One obtains from this

A (5 Ao = ZQJML(r)YJMLfv (53)

JLM

&L /Ly D)L +1)
2J +1

L 7—¢|
/(0 )
x C710a0C" ioso AT (U; VA" ) (r). (54)

The selection rules for the Clebsch-Gordan coefficients
imply that C’°,., is different from zero only if
|J—¢|<L<J+¢ and J+ L+ is even. Therefore,
the only nonvanishing coefficients are Q7!
Ou=1%2, ..., 0,7t Likewise, only the amplitudes
A= A2 At appear in the sum in the
right-hand side of Eq. (54).

Using this observation, Egs. (26) yields for each values
of 7€{0,1,2,...} and |M| < J, the following decoupled

124065-6
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system for the coefficients (Ayy, Byy) = {(Ap",

i/iAJML = ,F[(O) - F BJML, (553)
L

iAB Lt = (ﬂ([” - E)A,ML 1205 (55b)

where H<LO) is defined similarly as in the previous sub-
section, that is

Y=o, + a5 (IoP). (56)

where A; is defined as in Eq. (39) (with J replaced with L).
Furthermore, the system decouples into two subsystems:
the even-parity sector which contains L = |J -7,
|J—¢|+2,..J+¢ and has nontrivial coefficients
Q" given in Eq. (54) and the odd-parity sector with
L=|J-¢|+1,|J-¢]+3,...,J + ¢ — 1 which has van-
ishing QL.
For £ =1 one has

[ J [J+1
C§gl.0,l.0: m Cﬁl,o.l.o:_ m (57)

and the system (55) reduces to the system (44), (41c) in the
previous subsection. Explicit examples of the resulting
perturbation equations for # =0, 1, 2 are shown in
Appendix B. In Appendix C we show that the perturbed
evolution equation (24) similarly decouples into the differ-
ent JM and parity modes. Furthermore, we prove in that
appendix that only purely oscillatory modes with purely
imaginary A can occur in the odd-parity sector.

IV. PROPERTIES OF THE SOLUTIONS
OF THE LINEARIZED SYSTEM

Before numerically solving the linearized system (55), in
this section we discuss some important general properties
of its solutions. For the following, we assume that y, is real
valued.

A. Quadruple symmetry

When y, is real, it is simple to see that a solution
(4, A, B) of the system (26) gives rise to the three
other solutions (/_1,2{, -B), (-ALA.-B), (=1, A, B).
Likewise, any solution (1, A%, B;y") of the system (55)
yields the other three solutions (—4,A;,L, —Byb),
(A, Appt —Byy") and (=2,A;%, Byyt). This means
that the eigenvalues come in pairs (4, —4) if they are real
or purely imaginary, and in quadruples (1,—4,1,—24)
otherwise.

B. Stationary modes

Next, we analyze the presence of stationary modes, that
is, solutions of the system (55) with 4 = 0. In this case,
Eq. (55a) implies that B;,” must be an eigenfunction

of ﬂ(LO) with eigenvalue E. When L = ¢, we know that

By’ = a(fo) satisfies this condition, because of the back-
ground equations (17). A priori it seems possible that E also

lies in the point spectrum of 7:{20) for values of L different
from ¢; however we do not pursue this issue further in this
article. When A =0, Eq. (55b) leads to a homogeneous
equation for A~ In this article, we only consider the
trivial solution A ,,~ = 0, leaving open the problem of the
existence of nontrivial solutions.

Summarizing, for given values of ¢, J€{0,1,...,2¢}
and |M| < J, there is a one-parameter family of zero modes
of the form'

(AJMLvBJML) = 1—‘JM(O’ SJML)’ (58)

with I';;, an arbitrary complex constant and where the

fields S,,,~ are zero except when L = # in which case it is

equal to 05,0). This leads to a multivalue family of stationary

solutions of the linearized equations (24) which is of the
form

20 J

203 =633 [Cm¥™0(9.90) —cc]. (59)

J=0 M=—J

where c.c. denotes complex conjugation. When Z = 0 there
is only one mode which describes a change in amplitude of
the background field, as discussed in [8]. However, when
¢ > 0, there are (2¢ + 1)? of these modes and, except the
one with J = 0, all these modes have an angular depend-
ency which is different from the one of the background
solution. As an example, consider Z-boson stars with
¢ = 1. Then, we have stationary modes with angular
dependency

YIO11 — L [Yl_léll + Yllfl_l],

V2

3
=~ sin 9[cos g2, + singe, |. (60)
T

Note that the zero modes discussed here belong to the even-
parity sector when J is even and to the odd-parity sector
otherwise.

We conjecture that these modes lead to nonspherical
stationary deformations of the #-boson stars.

'Note that in view of the orthogonality property of the
tensor spherical harmonics, the orthogonality conditions (28)
are satisfied.
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C. General properties and connection with the second
variation of the energy functional

Multiplying both sides of Eq. (26a) from the left with B*
and integrating yields

iM(B, A) = (B, (Hy — E)B), (61)

where (-, -) refers to the L?-scalar product defined in (15).
Likewise, multiplying both sides of Eq. (26b) from the left
with A* and integrating gives

iA(A,B) = (A, (Fly — E)A) + 2(x§ A, A" [ A)),
= §2E[Ag] + 62E[A)], (62)

where Ay and A; refer to the real and imaginary parts of A,
respectively, and 6*E[Ag| denotes to the second variation
(19b) evaluated at u = Ay with fixed particle numbers N ;.

Similar to the analysis in our previous work [8], several
interesting features can be inferred from Egs. (61), (62). For
this, we first note that the right-hand sides of these
equations are real, which implies that

—2|(A.B)eR. (63)

Hence, either 42 is real or A is orthogonal to 3. Taking into
account the quadruple symmetry, we may consider the
following cases:

(i) A=0: These are the zero modes
previously.

(i) Ag > 0 and A; = 0: In this case we can assume that
A = Ay is real and B = iBB; is purely imaginary.
Eliminating i2A on the left-hand side of Eq. (62)
using Eq. (26a), one finds

discussed

—(By. (Ho — E)B;) = 6*E[Ag]. (64)

Below, we will use this identity to eliminate the
possibility of having unstable modes with arbitrary
high values of J.

(iii)) Az = 0 and 4; > O: In this case one can choose both
A and B to be real, and one obtains instead of
Eq. (64),

(BR’ (7:{0 - E)BR) = 525[«“13]- (65)

(iv) Ag > 0 and 4; > 0: In this case (A, B) =0 and it
follows from Eq. (62) that y is a saddle point of &,
provided that E[Ag] # 0.

In terms of the decomposition (51) into tensor spherical
harmonics, the scalar product (A, B) reads

(A.B) = ZKAJM’ Bim)even + (Asns: Bir)oaal:  (66)

IM

with
I+t
(Assr:Bist)evenoaa = Z /AJML(r)BJML(r)rzdr

L=|J-¢|
J4+¢—Levenodd 0

(67)

denoting the corresponding products for the JM modes in
the even and odd parity sectors. A similar decomposition
can be performed for the previous equations in this
subsection; for instance Eq. (62) yields

M(AJM’ BJM)even = 525]M,even [-AJM} ) (68)

where 6%E 1 even[Asy] 18 computed in Appendix D. In the
next section, we shall use Eq. (68) to check numerically that
lﬂ(AJM, BJM)even is real.

D. Real eigenvalues

In contrast to spherically symmetric perturbations
(J = 0) discussed in our previous work [8], in the next
section we will see that nonzero real eigenvalues are
possible when J > 0. Recall that in this case, the ansatz
(25) reduces to y(t,%) = e*[Ag(X) + iB;(X)], such that
one needs to make sure that A and B; are not both zero for
the corresponding mode to be physically relevant.
However, due to the linearity of the system (26), it is clear
that this can always be achieved by multiplying A and B
with a phase factor if necessary, such that it is sufficient to
check the standard eigenvector condition that .4 and B are
not both zero.

E. Nonexistence of unstable modes
for sufficiently large values of J

Finally, in this section we prove that for modes with large
enough values of the total angular momentum J, the second
variation of the energy functional given by Eq. (19b) is
positive definite. As we show below, this implies through
Eq. (64) that there cannot exist unstable modes with large J.
This reduces the stability problem to the analysis of a finite
number of J.

The proof is based on the following estimate which is
proven in Appendix E:

€ 2 3 (Vou. Vou) + (6. [Uy — EJou) ~ C, |3/ 13
(69)

where f is a positive function of  which will be determined
shortly, C; > 0 a positive constant depending on f, and
Uy == A7 (|yo]?) is the gravitational potential of the back-
ground configuration. To show that 6*£ is positive definite
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for large enough J we expand ou in terms of the tensor
spherical harmonics:

su="> hy*(

JLM

Yif (8, ), (70)

with coefficients h,,” depending on r. Substituting this in
the right-hand side of Eq. (69) and discarding the quadratic
terms in the derivatives of &~ yields

525>Z{/ 1 ag( |2[L(L2+1)_

JLM

Cl r2
f(r)z} @

+ [ g )PLO —Ewdr}. (1)

Consider first the integral on the second line, whose
integrand contains the function g¢(r):= [Uy(r) — E]r°.
Since U, is regular at the center, one has g(0) = 0, whereas
g(r) is positive for large enough r since E is negative.
Together with the fact that U, is continuous, this implies
that g(r) > C, for all r > 0, for some (negative) constant
C,. Next, choose f(r):=+1+ r?, which implies that
r?/f(r)* <1 for all r>0. Using these properties, the
estimate (71) yields

L+1
525>J%:w/ | pad™ (r |2[7( 2+ )¢, +6)|ar. (72)
Therefore, 6°€ is positive definite if ;)" vanishes

identically for all L with L(L+1)/2—-C,+ C, <0.
In particular, it follows that 6*& JM.even 1S positive definite
for J large enough, such that L :=|J—7| satisfies
L(L+1)>2(C;—C,).

Finally, we prove that this property implies the absence of
unstable modes for large enough values of J. We
do this by contradiction. Consider first case (iv) for which
Ag,A; >0 and (A, B) = 0. In this case, Eq. (62) and the
positivity of 5°€ would imply that Ax = A, = 0, which also
implies that B = 0 according to Eq. (26). The other case in
which an instability could appear is case (ii). Here, a contra-
diction arises by observing that the right-hand side of Eq. (64)
is positive definite, whereas the left-hand side is negative
definite for large enough values of J, as can be shown using
arguments similar to the ones following Eq. (71).

V. NUMERICAL RESULTS

In Sec. IIl we derived the mode equations for the
nonrelativistic #-boson stars. We first considered radial
perturbations and then extended the methodology to the
nonradial case for # = 1 [system (41) or equivalently (44)].
In Sec. III D we generalized the method to arbitrary values
of £ [see system (55) and Appendix B for some examples].
In Appendix C and the previous section, some general

properties of the linearized system were established. In
particular, it was proven that unstable modes cannot arise in
the odd-parity sector nor in the even-parity sector with high
values of J, thus reducing the problem to a finite number of
decoupled systems. For this reason, we will focus on the
even-parity sector for what follows.

We start in the next subsection with a short description of
our numerical implementation and subsequently, we dis-
cuss our main results regarding the eigenvalues of (55).

A. Implementation

Our methodology is similar to the one implemented
in our previous paper [8]. The background profiles are
computed by solving the nonlinear eigenvalue problem (17)
with the ansatz (20). Introducing the shifted potential
uO(r) = E— A7Y (|6 "), Eq. (17) is reduced to the
system (41) in Ref. [8]. Since the main goal of this article
consists in the study of the linearized system (55), we refer
the reader to Ref. [8] for a detailed analysis of the
construction of the background configurations. In the
following, we assume that we have already computed

the numerical background profiles aiﬂo)(r), u®(r).
Introducing the change of variables A,yL = a;,"/r,
By = byt /r in (55) one obtains

b " — Uett" byt = —idagy*, (73a)

"

a JML - UeffLaJML - 2QJML = —i/leML’ (73b)

where a prime denotes differentiation with respect to r,
Uee(r) = L(L +1)/7* — u9 (r) is an effective potential,
and the function ¢,,," is defined by

J+7 7
2L+ 1)(2L' 4+ 1
C]JML(r) = Ub(ﬂo)(r) \/( i ) JOLMO
57 2J +1
d2 (J + 1) ) /
S CJOL’MO (dr2 2 |:6f aJML } (r),

(74)

with the operator (”l—2 - M)‘l = rA7l(
inverse of the operator rA; (r~!) with homogeneous Dirichlet
conditions at » = 0 and r = o0. Note that the system (73), like
the system (55), is independent of the total magnetic quantum
number M, and hence we do not need to specify it.

To solve the system (73) we need two boundary
conditions for each equation. To determine these, one
can study (heuristically) the dominant terms of the per-
turbed system near the origin and infinity. Using the fact
thatJ =0,1,2,...and L = |J = ¢|,|J = ¢| +2,....J + £,

and that the background solution behaves as a(fo)(r) ~7,
one finds that the dominant terms at the center stem from

the centrifugal terms L(L + 1)/r? in the effective potential.

r~1) denoting the
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Consequently, the regular solution at the center behaves as
(amp®, byp®) ~ (rEH1 Lt (see Appendix F for further
details). This leads to the following boundary conditions
for all # > 0 at the origin:

ap™(r=10) =0,

by (r=0)=0. (75a)

In the asymptotic region o(fo) decays exponentially and
u%(r) - E. Demanding that the fields (ayy", by")
decay at infinity, one requires that

limaJML(r) = 0,

r—0o0

0
<D2 — Uy = 23,74 (D* - V,)7'Z,

where here O represents the ¢;(N —1) x ¢;(N—1) zero
matrix, with N the number of Chebyshev points distributed
as x; = cos (jm/N),j=0,1,...,N. The constant c; is
defined as c; :=J + 1 for J < £ and as c¢; :== £ + 1 when
J > ¢, and it corresponds to the number of possible values
of L with nontrivial coefficients Q)" for a given tuple
(¢,J). D>, U, 2, and V, are c;(N—1)xc,;(N-1)
matrices whose diagonal contain c; blocks of smaller
(N—=1) x (N = 1) matrices,

D? = diag (D’@,, B2,.... @é), (77a)

Uy = diag Ucff‘J_ﬂ’Ueff‘J_sz’---vUeffH_f)’ (77b)
(77¢)

V). (77d)

The matrix block D corresponds to the discrete repre-
sentation of the second derivative operator with imple-
mented Dirichlet conditions. For details of its construction

we refer the reader to Refs. [8,30]. The blocks Z,(/,O), V, and
U.i* are diagonal and are constructed as

Z(KO) = diag <G(fo) (x1), 65,0) (x2), s o(fm (xN_l)),

. AA+1) AA+1 A(A+1
VA :dlag( ( 2 ), ( 2 )9'.-, ( b )>5
X7 X3 AN-1

U = V| — diag (’/‘(0)(361)’ u®(xy), ..., ”(0)(XN—1))7

where the subscript A in V4 can take the labels J and L.
The matrix Z,; is nondiagonal, has dimension
c;(N=1) x c;(N—=1), and is obtained from

In order to solve numerically the system (73) using the
previous Dirichlet boundary conditions we proceed as

follows. First, we computed the background profiles

6,(/00), u©) and represent these, as well as the perturbed fields

at. by, in terms of Chebyshev polynomials. The
different operators, e.g., derivative and its inverse are
discretized using a standard spectral method (see, e.g.,
Ref. [30]), which leads to a finite-dimensional eigenvalue
problem. For details of the numerical discretization pro-
cedure, we refer the reader to Sec. IVA in our previous
paper Ref. [8].

The discrete version of the system (73) can be written as

D* = Uz \ ((@m A
=—il , (76)
0 b b
M M
L=|J~¢| L=|J~¢| L=|J~¢|
ZJL’:\J—zf’| ZJL’:\J—f|+z Zip—iie
L=|J-¢|+2  L=|[J-¢|+2 L=|J—¢]+2
ZJL’:|J—f\ ZJL’:\J—K’HZ R/ T
Loy = :
L=J+¢ L=J+¢ L=J+¢
ZJL’:\J—zf’| ZJL’:\J—K’HZ Zip=rie
(78)

where the blocks Z§L, are diagonals matrices of constant
coefficients

VEL+1)(2L" +1)

ZL
2J+1

o= C”10/0C” Lioso X 1L, (79)

with I the identity matrix of dimension (N —1) x (N —1).
The vector

<aJM> B (alhﬁl()ﬁ), o d (), a2 (xy),

b
I Ll D T calt (xny),
BP0 (xy), s DY ), B2 (),
o B2 ), ,W(xN_l))T,

corresponds to the discrete representation of the eigenfields
(A" Biu")".

We solve the discrete eigenvalue problem (76) using the
SciPy library [31] for N := 37, /4 Chebyshev points where
ry +=200(n + 1) for the nth excited state of the back-
ground solution represents the physical radius of the outer
boundary of our numerical domain. Our code is publicly
available in [32].
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7 [de/N]
0 20 40 60 80 100
0.11 : : : :
Ground state X [N?/t.] X [N?/t.]
0.09 — =1
Components Components
J Real Imaginary J Real Imaginary
'S 0.061
N 0 1.05201 x 107° 0 0.11368481
0,031 0 0 0.06385090 4 0 0.16030883
‘ 0 0.14328038 0 0.18097544
0.00 1 0 0.00086601 0 0.15468802
’ 1 0 0.05499307 5 0 0.18203923
0 0.08194250 0 0.19756177
0.2
. 0 2.11418 x 107° 0 0.18105790
= o 9 0 0.09613376 6 0 0.19765391
= 0 0.10590972 0 0.20832581
T el 0  0.05557199 0  0.19756669
0 0.13196275 0 0.20833027
phys _ 3,02 3 7
05 B2 = —0.487 [N°p ] 0  0.15373565 0 0.21570444
FIG. 1. The left panel shows the background profiles’ wave function 6;0) and gravitational potential UZ(/,O) for the (£ = 1)-boson star
whose bosons lie in the ground state n = 0 and have an energy Eﬁh:yf = —0.487[N3uv?]. The right panel shows a table with the first three

eigenvalue pairs (4, —4) corresponding to perturbations with total angular momentum numbers J = 1,2, ...,7 of the configuration
shown in the left panel. We found only purely oscillatory modes. Here ¢, refers to the constant N2 /+/4xd> appearing in Eq. (4), where ¢,

and v, are also defined.

B. Ground state in nonrelativistic (£ =1)-boson stars

We first proceed to study the linear stability of the
ground state corresponding to a nonrelativistic (£ = 1)-

boson star. This configuration is characterized by a radial

(0)

scalar field profile ¢, without nodes (n = 0), whose

gravitational potential U(lo) = A5 l(|a§0)|2) is monotoni-

cally increasing to zero as can be seen in Fig. 1. It follows
from Eq. (25) that linear stability requires that the real part
of each eigenvalue 4 of the system (76) with £ = 1 is zero.
To compute these eigenvalues we used the methodology
described in the previous subsection and apply a similar
methodology to the equivalent system (41) in order to
check the validity of our results.

In our previous work [8] we conjectured that under radial
perturbations (J = 0) these configurations are stable and
correspond to a local minimum of the conserved energy
functional £ when restricted to purely radial perturbations.
Our new results are in agreement with this conjecture and
indicate that they are also stable under linear nonspherical
perturbations with J = 1,2, ..., 10. That is, we found only
purely oscillatory modes with strictly imaginary eigenval-
ues that come in pairs (4, —1) as was discussed in Sec. IVA.

The table in the right panel of Fig. 1 presents the three
lowest positive frequencies A for the first seven J values.
Notice that for even J = 0, 2 values the first eigenvalue
corresponds to the stationary mode with A, :=4=0
discussed in Sec. IV B. Numerically we can identify these

eigenvalues because although they are not zero to machine
precision, they are several orders smaller in magnitude than
the remaining eigenvalues. For example, for / = 0 and ¢ =
1 the ratio with the first non-stationary eigenvalue is
|As:/A] ~ 1073, Their eigenfunctions fulfill the relation
Eq. (58). In the case of odd values for J, the stationary
modes belong to the odd-parity sector which we do not
study numerically because it only contributes to oscillatory
modes.”

Finally, we observe from the table that (when excluding
the stationary modes) the slowest oscillating nonspherical
modes with the largest period have total angular momen-
tum J = 1.

C. Ground states in other Z-boson stars

Next, we generalize the above study to configurations
with £ =0,2,3,...,6 and nonradial linear perturbations
with J =1,...,10. This extends our previous results
presented in Ref. [8], where it was demonstrated that these
configurations are stable under radial perturbations J = 0.
As a check of our results, we computed the respective
eigenfunctions A, B, for every type of eigenvalues A
found: real, purely imaginary, complex with nonzero real

’In our previous work [8], in Tables III and V we did not
present the stationary eigenvalues because in this case J = 0 and
the zero eigenvalues correspond to infinitesimal rotations in the
phase of the unperturbed wave function, as discussed above.
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7 [d./N]
0 20 40 60 80 100
0.11 L L . L
Ground states £=0, A\ [N?/t.] =2, \[N?/t.] =3, X\[N?/t.]
0-091 — (=0 Components Components Components
— (=2 J|Real Imaginary ‘ Real Imaginary ‘ Real Imaginary
S 0061 — (=3
= 0 4321x107° |0 8.766 x 107 | 0 1.637 x 10~
e 0l0 003412558 |0 0.06408695 | 0 0.05903587
0.03 1 0  0.06030198 |0 0.16575905 | 0 0.16827468
0  0.00049999 |0 0.00111802 |0 0.00132286
0.001 110 0.05555078 |0 0.05842642 |0 0.05925506
0  0.06676208 |0 0.07777395 |0 0.06609698
—0.41 0 0.05285868 | 4.32 x 1077 2.63 x 1071 | 7.99 x 1077 1.37 x 10~ **
w 9[0 0.06564270 |0.00644373 —5.11 x 107'3] 0.00907756 2.1 x 107 '?
= 0  0.07136165 |0 0.10237935 |0 0.09954769
-  —0s] B = —0.163 [N3u0?]
S B o 6rm (NS 0  0.06571493 |0 0.05550210 | 0.00363560 0.05313153
= = 0677 [N'el] |l 0.07135829 |0 0.06147704 |0 0.05910000
1] B = —0.799 [N3p?] 0  0.07442765 |0 0.07000546 | 0.00085739  0.05953874

FIG. 2. The left panel shows the background profiles’ wave function (75,0)

and gravitational potential U ,(fo) forthe # = 0, 2, 3 boson stars

whose bosons lie in the ground state n = 0 with an energy E2"”} = —0.163, —0.677, —0.799[N3uv?2], respectively. The right panel shows

a table with the first three lowest eigenvalues of the perturbations with / =0, 1, ..

., 3 of the configuration shown in the left panel. We

found only purely oscillatory modes for £ = 0, while the remaining configurations have unstable modes, as can be appreciated from the

table. Here ¢, refers to the constant N?/\/4xd? appearing in Eq. (4).

and imaginary parts, and we validated that these satisfy the
properties discussed in Sec. IV. In particular, we verified the
quadruple symmetry and the fact that iA(Ayy, Byy)
is real.

Similar to the £ = 1 case, we show in Fig. 2 the three
lowest positive eigenvalues for the configurations # = 0, 2,
3 with / =0, 1, 2, 3. As can be appreciated, similar to
configurations with ¢ =1, (£ = 0)-boson stars only
exhibit purely oscillation modes and a stationary solution
for J = 0. In contrast, for # =2 and 3 we found a real
eigenvalue in the sector with total angular momentum
J = 2. (Strictly speaking, this eigenvalue has a nonzero
small imaginary part; however a convergence study reveals
that by increasing the number N of Chebyshev points the
imaginary part converges to zero.)

Figure 3 shows the components of the eigenfunctions A;,,
(left panel) and B;,, (right panel) corresponding to even-
parity modes with J = 2 and areal eigenvalue, corresponding
to the solutions discussed in Secs. IVC and IVD. In
particular, we found that .A4;,, is purely imaginary, 13,,, real,
and interestingly, the numerical results indicate that the L =

¢ = 2 component of B;,," seems to be proportional to the

background solution, that is, B> ~ oéo).

Returning to the table in the right panel of Fig. 2, we
observe that for £ =J =3, complex eigenvalues with
nonvanishing real and imaginary parts appear. In fact,
we found that this type of eigenvalue is also present in

even

configurations with 2 < # < 9 (see the left panel in Fig. 4).
The corresponding modes grow exponentially in time
implying that the underlying background solution is lin-
early unstable. This leads us to conjecture that nonrelativ-
istic Z-boson stars with # >3 possess at least one
exponentially in time growing mode characterized by a
complex eigenvalue A with 1; # 0.

Summarizing, for ground state configurations of the
Z-boson stars we verified that the eigenvalues of the
linearized system (55) satisfy the properties discussed in
Sec. IV. Furthermore, we found that they possess the
following features:

(i) Configurations with # = 0, 1 only present oscillat-
ing modes whose largest periods correspond to the
smallest J values.

A family of stationary modes of the form Eq. (58)
exist for a given set of values 7, J€{0,1,...,2¢}
and |M| < J. For £ =2,4,...,2n with neN and
J #0, they have an angular dependency that is
different from the background solution; hence they
are expected to give rise to stationary nonspherical
deformation in the nonlinear case.

Configurations with # > 1 have in the even-parity
sector with J =2 a real eigenvalue, for which
all components of 3;;, (A;,) are real (purely imagi-
nary), and the component B,,,” is proportional to 09 .
These modes are exponentially growing in time.

(i)

(iii)
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Components of the eigenfields (Ayy, Byy) corresponding to the even-parity modes with J = 2 of the configurations with

¢ =2 and n = 0. The profiles Aé;,o'z“‘ (left panels) and Bé;,o’z"‘ (right panels) are associated with real eigenvalues. In both cases, the
main plots show the real parts, whereas the inset the imaginary ones. Note that the component B%3,* is proportional to the background

solution a§0> (rescaled by a factor ¢, and shown with dark circles in the figure on the right panel), B;), is real and A, is purely

imaginary.
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n=>0
- 10
. /= mm /=3
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FIG. 4. The relation between the total angular momentum J and the number of time-growing modes, i.e., eigenvalues with positive real
parts Az > 0. As a consequence of the symmetries discussed in Sec. IVA we have one (two) growing mode (modes) for every real
(complex) eigenvalue with Ag # 0. The cases having real A are pointed out in the figures, e.g., for n = 0,7 =2, 3 and J = 2 one has
A€ R. Note that for large values of J there are only oscillating modes. The left/right panel corresponds to configurations in the ground/
first-excited states.
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(iv) Configurations with # > 3 have at least one unstable
mode that grows exponentially in time and is
characterized by a complex eigenvalue with non-
vanishing real and imaginary parts.

(v) Perturbations with large total angular momentum J
have only purely oscillatory modes. As can be seen
from the left panel of Fig. 4, the real parts of the
eigenvalues A vanish above a certain value of J,
leaving only oscillatory modes. This result is com-
patible with the analytical results of Sec. IV E, where
the absence of unstable modes for high enough
values of J was proven. Therefore, the lowest J
modes are the ones that determine the linear stability
of the nonrelativistic £-boson stars.

D. Excited states in nonrelativistic # boson stars

Finally, to close this section, we discuss briefly the mode
stability of excited #-boson stars, i.e., background con-
figurations with n > 0 nodes.

In our previous article [8] we conjectured that these
configurations are linearly unstable—with exponentially in
time growing modes—under radial perturbations J = 0.
The findings in this section allow us to strengthen this
conjecture: in addition to the unstable modes reported in
our previous work, here we found unstable nonspherical
modes characterized by purely real or complex eigenvalues.
Furthermore, we found nonspherical stationary and purely
oscillatory modes. Our results support the conclusion that
excited states of nonrelativistic Z-boson stars are unstable.

Similar to the ground state configurations, under per-
turbations with large total angular momentum excited
configurations only have oscillatory modes. In the right
panel of Fig. 4 we show the number of eigenvalues with
nonzero real parts as a function of J. Notice that in contrast
to the ground state configurations, the real eigenvalues are
not limited to the J =2 sector; however they are con-
strained to even values of J.

VI. CONCLUSIONS

The main result of this paper is the discovery that
nonrelativistic #Z-boson stars with angular momenta
¢ > 1, when slightly perturbed from their equilibrium
state, are subject to unstable nonradial modes. This
includes, in particular, the ground state configurations
which had previously been shown to be linearly stable
with respect to radial perturbations [8]. We reached this
conclusion by decoupling the linearized N-particle
Schrodinger-Poisson system into a family of radial eigen-
value problems obtained by expanding the linearized wave
function in terms of tensor spherical harmonics. While only
purely oscillatory modes were found for ground state
configurations with £ = 0 and Z = 1, we found exponen-
tially in time growing modes for ground state and excited
configurations with £ = 2,3, ...,9. These unstable modes

have total angular momentum numbers J lying between 1
and a finite limit depending on ¢, and hence they give rise
to a nonspherical gravitational potential. This leads us to
the conjecture that all Z-boson stars with £ > 1 are unstable
with respect to nonspherical linearized perturbations.

Although the configurations with £ =2,3,...,9 have
been found to be unstable, they could still be relevant if they
decayed in a very slow fashion (for example, with a
timescale larger than the age of the Universe). For
this reason, it is important to quantify their lifetimes
which we define by fy, := 1/, with A; the real part of
the eigenvalue associated with the fastest growing mode.
Focusing on the ground state configurations with £ = 2, 3, it
turns out that the fastest growing modes are the ones
associated with purely real eigenvalues with a total angular
momentum J = 2. Their respective lifetimes are f; ~
1/0.0064437t,/N? and t; ~ 1/0.0090776¢./N?, where
the timescale 7, is defined in Eq. (5) and N refers to the
total particle number. Accordingly, #;. scales like 1/(N?u?)
where u is the rest mass of the particles. For the sake of
illustration, let us compute the lifetime for two typical
astrophysical objects: a dwarf planet with mass of the order
of 10'% kg and radius R ~ 200 km and a dark matter galactic
halo with mass of the order of 10'* solar masses and radius
R ~ 1 Kpc. For both # = 2 and £ = 3, these objects can be
mimicked by nonrelativistic ground state Z-boson stars with
N~ 10° and N~ 10°" bosons of mass u~ 10~ and
u= 10722 eV/c?, respectively [8]. The resulting lifetimes
are of the order of 3 hr for the dwarf planet analog and of
10% yr for the galactic halo model, much smaller than the
typical lifetimes associated with these objects.

In addition to the unstable modes, our analysis also
revealed the existence of nonspherical stationary solutions
of the linearized system for each ¢ > 0 configuration. As
stated previously, these modes indicate the bifurcation of
new branches of nonspherical stationary deformations of
the Z-boson stars, and it should be interesting to establish
their existence and analyze their properties.

The methodology developed in this article for analyzing
the linearized system should also be applicable to more
general boson star configurations, including multistate
[33,34] and multi-#Z multistate configurations [5] in their
nonrelativistic limit. For instance, it would be interesting to
analyze whether a ground state £ = 2-boson star can be
stabilized by adding an # = 0 field to it.

We expect the nonradial instabilities found in this article
to carry over to the fully relativistic Z-boson stars [1]
with 2 > 1.
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APPENDIX A: TENSOR SPHERICAL
HARMONICS

In this appendix we recall the definition of the tensor
spherical harmonics (TSH) and briefly review a few basic
known facts about them which are relevant for this article.
A more extended discussion and additional properties can
be found in Ref. [29].

TSH describe the angular distribution and polarization
of spin § particles with total angular momentum J,
total magnetic quantum number M, and orbital angular
momentum L. To define them, consider the class V :=
L%(R3,C?5*1) of wave functions W:R? — C?>5*! which
are Lebesgue square integrable. The rotation group SO(3)
induces a unitary representation U(R):V — V defined by

(UR)P)(¥) = D®)(R)¥(R™'X), XeR3 (Al)
for ¥ €V and R € SO(3), where DI)(R):C?+! — C25+1
is a unitary representation of SO(3) on C>*!
The corresponding representation of the Lie algebra leads

to the total angular momentum operator J (i.e., the
generators associated with rotations along the coordinate
axes divided by i)

e
b

J=L+S5, (A2)

= - —1 .
with L := —iX A V the orbital angular momentum operator

and S the spin operator. Since the components of Land S
commute with each other, one can check that the following
operators commute among themselves: J2 T - L2 $2. The
TSH are particular wave functions Y’™, ¢ €V which are
eigenfunctions of these operators. They are constructed
from the standard (scalar) spherical harmonics Y. (which
are eigenfunctions of the operators > and I:Z) and basis
spin functions £5° (which are eigenfunctions of $? and S'Z)
in accordance with the addition of angular momenta in
quantum mechanics:

Y 5(8.9) = CIM 5, YE"(9,9)E5. (A3)

Here, C’M, . denote the Clebsch-Gordan coefficients and
J, S are nonnegative integer or half-integer numbers. Given
a pair (J,S), the admissible values for L and M are

L=|J-S,|[J-S]+1,....J+S and M=-J,....J.
The basis spin functions &5 satisfy the conditions

§2850 = §(S+1)&5%,  §.8° =68, o=-5,....8,

(A4)

and since S’Z is self-adjoint, they form an orthonormal basis
of C25*! after suitable normalization.

Using these properties and those of the scalar spherical
harmonics, it is not difficult to verify that

JPYM o= J(J+1)YM (A5)

JYM, o= MYM, (A6)
L2y™M g = L(L + 1)y, (A7)
S2yM ¢ = S(S+ 1)Y/M . (A8)

Furthermore, it follows that the collection of TSHs with the
same S and all possible J, L, M constitutes a complete
orthonormal set in the space of Lebesgue square-integrable
functions S* — C>5*! on the two-sphere S?. The ortho-
normality condition is

/SZ[YJMLS(& (p)]*YJMLS(&v (P)dQ = 077 0mmOLL - (A9)

When S = 7 is an integer, one can choose the representa-
tion DS)(R) to be described by real-valued matrices, which

implies that Sis purely imaginary. Hence, S‘Z.fs" = —S‘Zfﬁ,
which implies that the basis spin functions can be chosen
such that they satisfy

Eo=(=1)E°, o=,

—C+1,...¢.  (A10)

Together with the corresponding relation yom =

(=1)my?=™ for the scalar spherical harmonics and the
identity

CJMmeU — (_1)L+f+lcl—M

L—mf—o> (Al 1)
for the Clebsch-Gordan coefficients one obtains the useful
relation

YJML/ — (_1)J+M+L+fyj—MLf’ (A12)

between the TSH and its complex conjugate.
As an example, consider S = ¢ = 1, in which case one

can choose D(R) = R such that
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010
-1 00
000

§2=2 (A13)

100 |

010], 8=
1

001

In this case the basis spin functions can be chosen as

5” == (éx + iéy)’ 510 = e, (A14)

1
V2
and &1 = —¢£11,

Finally, we summarize some useful expressions for the
Clebsch-Gordan coefficients which are used throughout

this article. First, when J =10, one has the simple
expression

_l)f—m

C%,, o = (75,,1 o AlS

tnto =i, (A15)
For /=7 =1 and M = 0 one has

Clolmo =0 Clol 1 = Cwm 1 :L- (A16)

B V2

APPENDIX B: EXPLICIT FORM OF THE
PERTURBATION EQUATIONS FOR
NONRELATIVISTIC #-BOSON STARS WITH
£=0,1,2

This appendix presents special cases of the linearized
problem (55) in a more explicit way for the particular cases
¢ =0, 1, 2. Recall that this system is given by

iAA " = (’H(L‘” - E> B, (Bla)

izB " = (ﬂ(LO) - E)AJML +20,4",  (Blb)

where the fields (A%, Bjy") are labeled by the numbers
(JML) such that J =0,1,2,..., [M| <J and |J-¢| <

L < J + ¢ and the operator ﬂ(LO) was defined in Eq. (56).
The function QX (r) is defined as [see Eq. (54)]

&L /L + )2l +1)
2J +1

O (r) = o2 (r)

L'=[I~¢|

X CJOL(MOCJOL’OKOA;1(0;0>AJML/)(r)’ (B2)
where the Clebsch-Gordan coefficients C’°;,,, can be
computed using the explicit formula (32) in Sec. 8.5.2
of Ref. [29] and where A]‘ was defined in Eq. (40).

1. Radial perturbations

For the particular value J = 0, we have that L = ¢ and
the system (B1) reduces to the system (26) in Ref. [8]:

l.A.A()Of = (7:[(;)) - E) Boof, (B3a)
iABy! = (’H;‘” - E)Aoof +260 851 (6% A7), (B3b)
where we used the identity C% 0,0 = (=1)7/v26 + 1

obtained from Eq. (A15).

2. Nonrelativistic (Z =0)-boson star

In this case we have J =0, 1,2, ...,
Using the fact that C’° 45, = 1 the system (B1) reduces to

l.j.AJMJ = (7’:{30) - E) B_]MJ, (B4a)

iAB,y, = (7%3“) —E) Apd +260 071 (60 A,,,7).  (Bdb)
which provides the relevant equations describing non-
spherical linearized perturbations of the standard non-

relativistic boson stars.

3. Nonrelativistic (Z =1)-boson star

In this situation we have two possible cases depending
on the value of J. In the first case, when J < 7, 1.e.,J =0,
one must have L = 1 corresponding to the system (B3)
with £ = 1. The other case represents perturbations with
J > ¢ which have Le{J —1,J,J + 1}. Using that

J 1010 = (B5a)

J+l 010 — V

and C’%,5,, = 0, we arrive at the system (44) with a;,, =
(A~ Ay and By = (Byy' ™", By’ ™))" and the

system (41c) replacing (A S,&B%) with (A7, Byy?).

(B5b)

4. Nonrelativistic (£ =2)-boson star
Similar to the previous case, there are two possibilities:
J<?,ie,Je{0,1},and J > £. For J = 0, we have that
L =2 corresponding to the system (B3) with £ = 2. The
value J = 1 implies that L € {1, 2,3} and the perturbations
are determined by the system

, HO—E 0
idayy = < (0) Bims (B6a)
0 Hy' —E
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o (FHY-E 0
My = ~ (0) XM
0 Hy' —E

(0)
20, ( 2 —\/6) )
+ — AT oy agy), B6b
5 _\/6 3 1 ( 2 lM) ( )
, o FHV-E
iy =1 . ©) YiMm> (Béc)
‘Hy’ — E

2

where  ayy = (AIMI’A1M3)T’ Pim = (BlMlvBlM3)T,
yiv = (A2 Biy?)T, and M = -1, 0, 1.

Finally, the linear perturbations with J>7, i.e.,
Je{2,3,...}, Le{J-2,...,J+2} are described by
the system

HO-E 0 0
iAdyy = 0 7:(30) -E 0 BJM, (B7a)
0 o HY,-E
#2-E 0 0
iAoy = 0 HY - E 0 &
0 o HY,-E
2(0) jljz/j3 _\71 \72
O
+2Jil -J NAWEYNE: -J3
J> -J3 NEVEYNE
x A7 (a§0>am), (B7b)
7,(0)
e 0 Hys —E\
lﬁY%M = < A (0> y‘:]tM’ (B7C)
st~ E
where now
any = (A2 A AT, (B8a)
Biwt = (B2 Byy” . By )7, (B8b)
]7;N:M = (AJMJ:H, BJMH:I)T’ (BSC)
and
322 -1)
= N B9
Ji \/2(2J+1)(2J+3) (BSa)
3 J2=1)(J+2)(2] = 1)
= , B9b
72 2(2J+1)\/ 2J +3 (B9b)

j3’

J+1 \/3](1 FQ@I-1) g

T27+3 2027 + 1)

APPENDIX C: DECOUPLING THE PERTURBED
EVOLUTION EQUATION

In this appendix we show that the evolution equation (24)
for the linearized field y can be decoupled by expanding y
in terms of tensor spherical harmonics. Writing

7o= VAo ()Y (9, ). (Cla)
X = ZXJML(I’ Y™ (8. 9). (Clb)
M
Eq. (24) yields
& Xt (1r) = (A = EVX o (0.0) 4 et (1), (C2)
where
Ly 00 S~ VRLADEL +1)

au"(t.r) = o, (r)L/_z:J_ﬂ 21

X CP1020C" Lioro AT (U,(fo) (rZn* (1, 7‘)) ,

(C3)

and where we have defined  Z,,(t,r) =

X" (t.7) + (=1)MX ;0" (1.7).

The properties of the Clebsch-Gordan coefficients dis-
cussed below Eq. (54) imply that this system further
decouples into two subsystems:

(1) The even-parity sector which contains the values
L=|J-¢|,|J—-¢|+2,...J + ¢ and has nontrivial
coefficients g ,~.

(2) The odd-parity sector which has L = |J —¢| + 1,
|J = #|+3,....,d + ¢ — 1, for which ¢,,," vanishes.

An important consequence of these observations is that in
the odd-parity sector the right-hand side of Eq. (C2) is
characterized by the self-adjoint operators H LO — E imply-
ing a unitary evolution. Consequently, one can have only
oscillatory modes in the odd-parity sector, and unstable
modes can only arise in the even-parity sector.

APPENDIX D: PROPERTIES OF THE SECOND
VARIATION OF THE ENERGY FUNCTIONAL

In this appendix we show two important properties
which are satisfied by the second variation 6*&[6u] of
the conserved energy functional £. The first one is that
when Su(X) is replaced with a solution y(z,X) of the
linearized equations, 6°&[y] is independent of time. This
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property is indeed expected to hold since it should be
inherited from the full nonlinear functional £, which is
preserved under the time evolution. The second property
consists in the fact that 5> can be written as a sum over the
contributions from each JM mode, when performing the
decomposition into tensor spherical harmonics. Of course,
this can also be anticipated from the fact that the back-
ground is invariant with respect to the total angular
momentum operator.

Evaluating the second variation of the energy functional
5*E given by (19b) at y, we get

(z.[Ho— Ely) — on=2Re{yly}.

Substituting the ansatz (25) for y we obtain

P&y = 2DIén,én|,

2E]y) = FIA.Ble* + GlA.Ble* ' + K[A.Ble¥*',  (DI)
where the functionals F, G, K are defined by
FIAB| = (m, [Py — EJ(A + B))

+ 205 A AT (g A)). (D2a)
G[A, B) = (A + B, [Fy - E] (m))

+2000A. A (g A)), (D2b)
K[A,B] = (A + B, [Fly— E|(A+ B))

+ (A— B, [Fy — E](A - B)>

4 (;(5,4, A A) (D2c)

Using the fact that H, — E is a self-adjoint operator, it easy
to prove F[A,B] = G[A,B]. On the other hand, using
Egs. (26) we also get

F[A.B)=iA(A=B,A+B)+2(B.A~' (4] A)yo).  (D3a)
G[AB|=ix*(A+B,A=B)-2(B,A" (yJ A)yy), (D3b)
K[A, B] = 4iARe(A, B). (D3c)

We see from this that F[A, B] = —G[A, B], which implies
that F = G = 0. Therefore, we obtain
5 Ely] = 4ire*'Re(A, B). (D4)
Let us analyze the implications of this result for the same
cases (i)—(iv) as in Sec. IV C:
(i) A =0: In this case the second variation of the
energy functional is zero and hence trivially time
independent.

(ii) Ag > 0 and 4; = 0. In this case Eq. (62) implies that
iA(A,B)€R such that Re(A,B) =0. Again, it
follows that 8*E[y] = 0.

(iii)) A =0 and 4; > 0. Choosing A and B real, one
obtains

E[y) = —41,(A, B), (D5)
which is again independent of 7 and should be
compared with Eq. (62).

(iv) 4g >0 and A; > 0. Recall that in this case
(A, B) = 0, which implies §*£[y] = 0.

Summarizing, we conclude that the second variation of the

energy functional is indeed time independent for any

solution y(z, X) of the form (25) of the linearized equations.

Furthermore, 6>E[y] = 0 except for case (iii) corresponding

to the purely oscillatory modes.

Next, we compute the mode decomposition of the
expression

S E[AR]+E[A]] = (A, (Ho— E)A)+2(rd A A~ [y A])

appearing on the right-hand side of Eq. (62). We focus on

the even-parity sector since, as shown in Appendix C, there

are no instabilities in the odd-parity sector. Using Eqs. (40),

(53), (54) one obtains

625[~AR] 625 -AI Z(S SJM even[AJM] (D6)
M
with
525!M,even[AJM}
J+E o .
=S / (Ao (1) (= E) A ()P
,f:‘-zzi'm 0
[e4] r - - -
2]+1 JilaJM Yeayy (F)r*idrdr, (D7)
where

2L+ 1
ay(r) = a(fo)(r)z \/ 1 CLocoAsn* (r).  (D8)
L

This shows that the second variation of the energy func-
tional can indeed be decomposed in the JM modes.

APPENDIX E: KEY ESTIMATE FOR THE
SECOND VARIATION OF THE ENERGY
FUNCTIONAL

In this appendix we prove the estimate (69) used in
Sec. IV E to rule out the existence of unstable modes with
high angular momenta. For this, recall that the second
variation of the functional £ is given by
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82E = (u, [Hy — E|6u) —2D[6n,6n],  (E1)

where the bilinear functional D is defined in Eq. (13) and
dn = 2Rey;6u. First, from the definition of 7{, and using
integration by parts we get
(8u, [Hy — Elou) = (Véu, Véu) + (6u, [Uy — E]éu), (E2)
which shows that this term is well defined for any
sue H'(R3,C**1) lying in the Hilbert space of functions
Su:R? — C**! such that Su and Véu are quadratically
Lebesgue integrable. Sobolev’s inequality [35] implies that
the components of du are in L”(R?,C) for any 2 < p < 6.
Since the same properties hold true for y, it follows that
on€Li(R3 R) for any 1 < g < 3.

Next, we use Young’s convolution inequality [36] to
estimate D[6n, 6n]. In order to do this we write it as follows

Disn,on] = / Sn(x)(w + 5n)(x)dx,  (E3)

T
where * refers to the convolution operation and
w(x):=1/|x|. Next, decompose w = w;+w, where
wi(x)=1/]x| for 0<|x| <R and w(x)=0 for

|x| > R with R > 0 a free parameter that we will choose

later. The functions w; and w, have p norms || - [, given by

1 81\ 3
=—, c=|—+] -
R \3

Therefore, Young’s convolution inequality implies that

(E4)

Iwillso=coR, w2l

&l 1
(coRlonll; +llonll, ). (ES)
T

D[én, én] <

Using the Cauchy-Schwarz inequality, the norm ||6n||; can
be estimated as follows:

lon], =2 / R[JM]

()
<2/|f X)xo(X

where f is an arbitrary positive function such that fy,
and Su/f are square integrable. In a similar way, one
obtains

Px

Su(X)) s
f()

&*x < 2|\ fxoll2l16u/ 1.

(E6)

18n[l5 < 2[lxollslloulls < 2Cilxolle/ (Vou, Véu), — (ET)
where we have used Sobolev’s inequality [35] in the last
step with a corresponding positive constant C; > 0. Using

these estimates in the inequality (ES) yields

D[6u, su] <

CoR/ (Vou, Véu)||su/ f|, +

(ES)

with positive constants C, and C; depending on f.
Combining this result with Eq. (E2) and the well-known
inequality 2ab < a* + b we obtain the following estimate
for the second variation of &:

525 > (51/!, (U 0

— E)ou) + (1 — C,R)(Véu, Véu)

<C2R +—) 16/ 1. (E9)

Fixing R in such a way that C,R = 1/2 and defining
C, == C,R + 2C5 /R finally implies the desired estimate
PE >~ (V&u Véu) +

(6u, [Uy — E]6u) — Cy||6u/f]3.

APPENDIX F: FIRST-ORDER FORM OF THE
PERTURBATION EQUATIONS, REGULARITY
AT THE CENTER, AND VALIDATION OF THE

NUMERICAL CODE

In this final appendix, we rewrite the perturbation
equation (73) as a first-order system of ordinary differential
equations with a regular singular point at » = 0. This allows
us to prove that the perturbation equations possess sol-
utions satisfying the desired regularity properties near the
center. Furthermore, by performing an independent Runge-
Kutta integration of it, we use this system to validate the
numerical results obtained in Sec. V. We assume that the
pair JM has been fixed, and to alleviate the notation, we
shall omit the corresponding subscripts. Hence, in the
following, we write (a®, b') instead of (a L, by t) etc.

The first-order system is obtained from Eq. (73) by
introducing the following fields:

XL = rL-lal, YL = pL=1pt, (F1)
and
_ & JUJ+1\1 o
7L = 2p0- (d# e ) oat],  (F2)
as well as
Ele=dxt/dr, nti=dYt/dr, (Li=dZt/dr. (F3)
This yields the system
d
EXL = gL, (F4a)
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&L /RL+ 1)L + 1)

d
iy —— (F4b) OL = p/-L ()
d ¢
r My 2J+1
d x C?0, 0,0C”"° 100 ZE . F5
d_ZL gt (Fac) Lo20C" " L0c0 (Fs)
,
Note that it is possible to reduce the number of equations by
replacing the fields Z' with the single field
d . 2L+1) 0 oL avL 4 oL
== EL—yOXL — iyt + O, (F4d)
r r J+C 7
- V2L + 1 ,
=y 2JijlcfoyofozL , (F6)
d 2(L+1 L'=|J-¢
—nt=- (L + )nb —ulOyt —iaxt, (Fde) =
dr r
and similarly for £,
d L= 2(J+1) L+ 2k 0';0) X, (F4f) Since a(fm ~ 1’ near the center and L varies between
dr r IJ—¢| and J + ¢ the two terms rt~/6!” and +/~Lo\"
appearing in the right-hand sides of Egs. (F4f) and (F5) are
where regular at r = 0, and hence it follows that the first-order
{=2n=0J=2 :"' ~, Runge-Kutta (dashed lines) !
Ar = 0.00644373 N2 /¢, / \ Spectral (solid lines) i
0.10 H T \\‘ ,:'
S 0.05- S
NE // ’QE ,/'I
< e Q I
g 0.00 £ S N =
Dj — N\ ,' Q’j \ ,f/‘ — i
=N / \x,_//’ \E‘ Ill
—0.05 icﬁ ‘T______:\ \\\ ——= L=0 i Elﬁ ::\
é \\\‘ \\“ ___ L — 2 é \‘\‘
_0.10 T T \‘ T T T T !
(=3n=0J=2] .
Ap =799 x 1077 N?/t,! : |
0.10 1 [ ! /
III QE II
g ,I <C \\ '_—1|
<. 0.051 ;oz \ g
~ / — \ ~
@i ,/’ ’qﬁ i
< / Q A
g 0.00 =z ) ==
oat ", ~ N
—0.05 - —- L=1 ]
== L= A
—0.10 . - : : : .
0 10 20 30 40 0 10 20 30 40
r[de/N] r[de/N]

FIG. 5. Comparison of the linearized modes (A, B,)) obtained from the spectral (solid lines) and Runge-Kutta (dashed lines)
methods for the background configuration with £ = 2, 3 and n = 0 and two real eigenvalues corresponding to the row J = 2 in the table

in the right panel of Fig. 2.
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linear system (F4) has a regular singular point at r = 0 [37].
In particular, given any real values for x£, y* and z* there
exists a unique solution of (F4) such that

XE(0) = x£,

ZH0) =5, (F7a)

£4(0) = #"(0) = £*(0) = 0. (F7b)
Next, we numerically integrate the first-order system (F4)
from the origin outwards using the same adaptive Runge-
Kutta integration method as the one employed to obtain the
background fields (a(fo), u®). The boundary values x*, y-
and 7l are read off from the respective eigenfields (a’, b%)

associated with the eigenvalue A computed from the
spectral method. Figure 5 shows a comparison between
the results from the Runge-Kutta integration (dashed lines)
and the ones from the spectral method (solid lines) for the
modes with J = 2 corresponding to the eigenvalues 1 =
—0.00644373 —5.11i x 10™!3 and 7.99 x 1077 + 1.37i x
10~* associated with the ground state configurations with
¢ = 2, 3 (see the table in the right panel of Fig. 2). We see
from this figure that the Runge-Kutta solutions correctly
reproduce the relevant parts of the spectral profiles up to
some given radius after which they start diverging due to
their sensitive dependency on the boundary values (i.e., x*,
yb and zF) and on the value of A.
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