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This paper explores a complete representation of the Vaidya model, a radial flux of radiation in the
eikonal approximation, used for modeling various phenomena in both classical and semiclassical general
relativity and astrophysics. The majority of the applications of the Vaidya model have been formulated
in an incomplete representation. A complete representation is obtained here by direct integration of the
Einstein field equations. We present the methodology to obtain this complete representation, and its utility
in the modeling of general relativistic phenomena.
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I. INTRODUCTION

The Schwarzschild metric [1] has been used to study the
exterior geometry of spherical stellar objects undergoing
gravitational collapse [2,3], where it is assumed that the
radiation emitted by the object is insignificant. However,
during the advanced stages of stellar collapse, these objects
are expected to emit a considerable amount of mass in
the form of radiation; see for example [4]. Therefore, the
exterior of a collapsing stellar object is no longer empty,
and the Schwarzschild vacuum metric is no longer suitable
for its description. The Vaidya metric [5,6] is more suitable
for this situation and has been widely used to classically
study the geometry outside [7] radiating spherical stellar
objects; see for example [11–21]. Thus, one can treat this
dynamical mass distribution with its envelope of radiation
as an isolated system existing in otherwise vacuum,
asymptotically flat spacetime that is described by the
Schwarzschild vacuum metric.
The “self-similar” Vaidya metric has been used to

construct spacetimes that exhibit a visible strong singular-
ity, demonstrating the potential for the failure of the
Penrose “Cosmic censorship hypothesis” [22]. This con-
jecture states that singularities arising from regular initial
conditions do not have any causal influence on spacetime.
If the hypothesis were to fail, it would be a major flaw in
the theory of general relativity and would make it impos-
sible to predict the events in any region of spacetime
containing a singularity, as new information could emerge
in an unpredictable manner. The growth of curvature
along nonspacelike geodesics has been examined (see,
for example, [17,23–38]), and the visible singularity in
self-similar spacetimes has been classified as strong.

Furthermore, Lake and Zannias [39] showed that the
emergence of naked singularities in these spacetimes is
due to the self-similarity assumption, rather than spherical
symmetry.
On the semiclassical level, the Vaidya metric has been

utilized to explore black hole evaporation, possibly due
to Hawking’s radiation [40], (see for example [41–53]).
Furthermore, the Vaidya metric in the double-null coor-
dinates (the mass function must be linear) [54] has been
used to study the quasinormal modes (QNM) as a model
that supposedly will give deeper insights on the gravita-
tional excitations of black holes (see for example [55]).
Despite the fact that the majority of applications were

structured with the Vaidya metric written in the Eddington-
Finkelstein-like (EFL) coordinates, these coordinates
have been known for some time to be incomplete (see
for example [56,57]), leaving the Vaidya manifold not
maximally covered. Thus, to ensure the accuracy of all
applications, it is required to construct a complete set of
coordinates and thoroughly assess the impact of this set of
coordinates. This is the primary objective of this paper. In a
separate manuscript [58], we introduce explicit mass
functions as candidates for three distinct Vaidya models.
Moreover, we assess the completeness of Israel coordinates
in relation to these mass functions.
We organize this paper as follows. In the next section,

we review the EFL coordinates and provide a proof of
incompleteness of this set of coordinates, which is the main
motivation for any subsequent coordinate representation.
In Sec. III, we review the use of Israel coordinates [59] to
write the Vaidya metric [57], and discuss why the deriva-
tion of these coordinates resulted in unsatisfactory results
when attempting to obtain maximal coverings of the Vaidya
manifold. The main results of this paper are outlined in
Sec. IV, in which we introduce an algorithmic method to
obtain Israel coordinates by direct integration of the field
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equations, without relying on any coordinate transforma-
tion. In Sec. V, we present necessary physical restrictions
that must be imposed on the flux of radiation. In Sec. VI,
we provide a general derivation regarding the location of
the apparent horizon in the Vaidya manifold. It is empha-
sized that the location of the apparent horizon is established
before introducing any expressions to the characterizing
functions. In Sec. VII, we demonstrate that our construction
can be used to obtain both EFL and Israel coordinates by
choosing different expressions for the functions that arise
from integrating the field equations; such functions, as well
as the coefficient of the cross term in the general metric that
is presented, shall be referred to as the “characterizing
functions.” In Sec. VIII, we briefly calculate some of the
invariants of the Vaidya metric in Israel coordinates. The
last section highlights the main results of the paper and
discusses the possible extensions of the current work.

II. THE EFL COORDINATES

The Vaidya metric, in the EFL coordinates, is a spheri-
cally symmetric solution to the Einstein field equations
with the energy momentum tensor approximated in “the
eikonal form” [60,61], which expresses a unidirectional
radial flow of unpolarized radiation,

Tαβ ¼ Φkαkβ ¼
ϵ

4πr2
dmðuÞ
du

kαkβ; ð1Þ

where ϵ ¼ �1 and kα ¼ δuα is tangent to radial inward- or
outward-going null geodesics. The spacetime line element
in the EFL coordinates takes the form

ds2 ¼ −
�
1 −

2mðuÞ
r

�
du2 þ 2ϵdudrþ r2dΩ2

2; ð2Þ

where dΩ2
2 ¼ dθ2 þ sin2 θdϕ2 is the metric of a unit

2-sphere. For ϵ ¼ þ1, the metric expresses inward-directed
radiation (towards smaller values of the radius r) with a
monotonically increasing m as a function of the “advanced
time” coordinate u. If ϵ ¼ −1, the metric is that of outgoing
radiation (towards larger values of the radius r) with m
being monotonically decreasing as a function of the
“retarded time” coordinate u. However, it is conventional,
as stated in [62–64], to assign u as the retarded time and v
as the advanced time. Furthermore, it is worthwhile to note
that the quantity Φ, usually called as the energy density
of the radiation flux, does not have a direct operational
meaning because the tangent null vector kα does not have a
natural normalization. Thus, it is preferable (see also [56])
to consider the following quantity:

ρ ¼ ΦðkαuαÞ2; ð3Þ

which defines the energy density as measured locally by an
observer with a timelike 4-velocity uα.

A. Incompleteness of the EFL coordinates

In this section, we demonstrate why the EFL coor-
dinates ðu; r; θ;ϕÞ do not provide a complete description
of the Vaidya manifold. The incompleteness of these
coordinates is the primary motivation for the search for
new coordinates in which the manifold is complete,
allowing radial null geodesics to continue moving to
infinite values of their affine parameter or be terminated
upon encountering a gravitational singularity. The incom-
pleteness of the coordinates ðu; r; θ;ϕÞ becomes evident
when studying the behavior of the ingoing radial null
geodesics, emanating from the past null infinity I− or
from the past singularity surface r ¼ 0, for the case
ð0 < mð∞Þ < ∞Þ. It was suggested, but not proven
in [57,65], that the geodesics appear to approach the
future event horizon (FEH) surface, r ¼ 2mð∞Þ, as
u → ∞, though they actually reach it for finite values
of their affine parameter; see Fig. 1.
To support these insightful claims, we present a more

articulated proof. We draw attention to the fact that whereas
Fig. 1 is only valid for outgoing radiation, the forthcoming
proof is valid for both ingoing and outgoing radiation.
Let us consider the two branches of radial null curves,
for which ds2 ¼ 0 and θ ¼ ϕ ¼ const. The first branch is
given by u ¼ const (red), and the second branch (blue) is
given by the solution of the following ordinary differential
equation (ODE) [67]:

du
dr

¼ 2ϵr
r − 2mðuÞ : ð4Þ

FIG. 1. The Penrose diagram [66] of the outgoing ðϵ ¼ −1Þ
Vaidya metric; the coordinate u in the EFL coordinates is
indicated on the diagram, with the electromagnetic radiation is
shown by red straight lines and the paths of incoming radial null
geodesic (single photons) are shown by blue jagged lines.
Notably, the apparent horizon and the event horizon do not
coincide in the future, but they must have been the same
hypersurface in the past.
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We assume the following to hold:

0 < mð�∞Þ < ∞: ð5Þ

The question now arises as to whether the affine parameter
λ remains finite as r → 2mð�∞Þ along the second branch.
In order to answer this question we write the second
branch (4) as a system of first-order ODEs:

ṙ ¼ r − 2mðuÞ
λ

; ð6Þ

u̇ ¼ 2ϵr
λ

; ð7Þ

where an overdot indicates d=dλ, so that differentiation of
the previous system with respect to λ produces the geodesic
equations of (2):

̈r ¼ −
4ϵm0ðuÞr

λ2
; ð8Þ

ü ¼ −
4ϵmðuÞ

λ2
; ð9Þ

where use has been made of both (6) and (7). Now let us
assume that λ → �∞ as r → 2mð�∞Þ; then, by virtue
of (7) and (9) we obtain

lim
λ→�∞

u̇ ¼ lim
λ→�∞

ü ¼ 0; ð10Þ

which is not possible as this changes the second geodesic
branch into the first [69]. Therefore, our assumption is
wrong, and we conclude that λ along the second branch
remains finite as r → 2mð�∞Þ. If we write this value of λ
as λ0, we obtain

lim
λ→λ0

ṙ ¼ 0; ð11Þ

and

lim
λ→λ0

u̇ ¼ 4ϵmð�∞Þ
λ0

: ð12Þ

Evidently, the last equation remains finite because the mass
function mð�∞Þ is assumed finite from the beginning. By
virtue of (11), we conclude that the region ðr < 2mð�∞ÞÞ
is inaccessible in the EFL coordinates. Therefore, an
extension is necessary.

III. ISRAEL COORDINATES

In order to overcome the “incompleteness problem” of
the EFL coordinates, Israel [57] introduced what he
described as the analytic completion of the Vaidya

manifold (2). In Israel coordinates ðu; w; θ;ϕÞ, the
Vaidya line element reads

ds2 ¼
�

w2

2mðuÞrðu; wÞ þ
4m0ðuÞ
UðuÞ

�
du2

þ 2dudwþ rðu; wÞ2dΩ2
2; ð13Þ

where UðuÞ ¼ R
u
0

du
4mðuÞ, rðu; wÞ ¼ UðuÞwþ 2mðuÞ, and

the function mðuÞ is always positive. Notice that (13)
suffers a true singularity at rðu; wÞ ¼ 0 [see (55)] and at
u ¼ 0, if m0ðuÞ does not vanish there, as explained below.
To avoid any possible confusion about what is to be said,
let us label the EFL retarded coordinate, u, as t. This
then shows that (13) is reduced to the outgoing Vaidya
metric, (2) with u ¼ t and ϵ ¼ −1, by the transformation

tðuÞ ¼ −
Z

u

0

du
UðuÞ ; ð14Þ

regular for (u > 0, t < ∞). Apart from the cumbersome
nature of Israel coordinates, the Vaidya metric in Israel
coordinates (13) does not adequately represent both the
internal and external fields as long as the mass function
mðuÞ is only defined for u ≥ 0. Since u ¼ 0 corresponds to
t ¼ þ∞ðtðuÞ ∝ − logUðuÞÞ, it is impossible to extend the
line element to the range (u < 0) via a coordinate trans-
formation, as it would require knowledge of the mass
function mðt > ∞Þ, i.e., beyond FEH. Hence, we believe
that the “maximal” extension of the Vaidya manifold, as
given by the line element (13), is imprecise. It is worth
noting that there was an attempt [65] to extend the Vaidya
metric in terms of Israel coordinates. However, this
approach faced the same problem as the original Israel
extension of relying on coordinate transformations and the
necessity of knowing the mass function mðuÞ beyond the
FEH in advance. It is also worthy of notice that although
Israel coordinates have obvious advantages over the EFL
coordinates, the Vaidya metric in Israel coordinates has
not gained enough attention. To our knowledge, the metric
has only been used once (see [11]) to study the complete
gravitational collapse of a radiating shell of matter. Prior to
the attempt given in [11], all the work done to investigate
the gravitational collapse in the presence of radiation was
not complete. That is, the gravitational collapse was not
followed beyond the event horizon because the Vaidya
manifold in the EFL coordinates only describes the external
field around a collapsing radiating object.

IV. GENERAL COORDINATE CONSTRUCTION

Consider the following general spherically symmetric
metric expressed in the coordinates ðu; w; θ;ϕÞ [70]:

ds2 ¼ fðu; wÞdu2 þ 2hðu; wÞdudwþ rðu; wÞ2dΩ2
2; ð15Þ
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where rðu; wÞ measures the area of the 2-sphere
u ¼ w ¼ const. The energy momentum tensor is once
more taken to be of the eikonal form,

Tαβ ¼ Φkαkβ; ð16Þ

where kα ¼ δαw is a radial null vector and the quantity
ΦðkαuαÞ2 is the energy flux, measured by an observer with
tangent uα. Straightforward calculations [71] show that the
only nonzero component of the Einstein tensor is Gww,
from which Φ can be directly obtained. If we take radial
null trajectories with four-tangent kα to be radial null
geodesics affinely parametrized by w, i.e.,

kβ∇βkα ¼ 0; ð17Þ

this yields

∂hðu; wÞ=∂w ¼ 0: ð18Þ

Thus, the function hðu; wÞ reduces to a function of only u,
hðu; wÞ≡ hðuÞ. While we will limit ourselves to the choice
hðuÞ ¼ �1, we will keep the function as is for potential
future use.

A. Solving the Einstein field equations

First [72], we benefit from the vanishing of the Guu

component to obtain

∂
2

∂w2
rðu; wÞ ¼ 0: ð19Þ

This leads, by integration, for a general expression [74],
to rðu; wÞ

rðu; wÞ ¼ f1ðuÞwþ f2ðuÞ: ð20Þ

In what follows all the functions fnðuÞ are assumed
suitably smooth [76]. Second, by solvingGθθ ¼ 0, with the
aid of (20), we obtain

rðu; wÞ ∂
2

∂w2
fðu; wÞ þ 2f1ðuÞ

∂

∂w
fðu; wÞ

− 4hðuÞ d
du

f1ðuÞ ¼ 0: ð21Þ

Integrating (21) yields

fðu; wÞ ¼ 2f01ðuÞhðuÞf2ðuÞ2 − f1ðuÞf3ðuÞ
f1ðuÞ2rðu; wÞ

þ 2f01ðuÞhðuÞw
f1ðuÞ

þ f4ðuÞ; ð22Þ

where ð0Þ denotes ordinary differentiation with respect to
the coordinate u. By solving Guw ¼ 0, we find that f4ðuÞ is
given by

f4ðuÞ ¼
hðuÞð2f1ðuÞf02ðuÞ − hðuÞÞ

f1ðuÞ2
; ð23Þ

where use has been made of (20) and (22). By virtue
of (20), (22), and (23) the only nonzero component of the
Einstein tensor can be given as

Gww¼ 1

χðuÞð2hðuÞ
2f2ðuÞ2f001ðuÞþ4hðuÞ2f2ðuÞf01ðuÞf02ðuÞ

−hðuÞf3ðuÞf01ðuÞ−2hðuÞf2ðuÞ2h0ðuÞf01ðuÞ
−hðuÞf1ðuÞf03ðuÞþ2f1ðuÞf3ðuÞh0ðuÞÞ; ð24Þ

where χðu; wÞ ¼ hðuÞ4f1ðuÞrðu; wÞ2. The Gww is conven-
iently expressed in the following way. First define the
Hernandez-Misner mass [77]:

m≡ rðu; wÞ3
2

Rθϕ
θϕ; ð25Þ

where R is the Riemann tensor. By calculating Rθϕ
θϕ for

(15) and making the necessary simplifications, (25) can be
given in terms of the characterizing functions fnðuÞ as

m ¼ mðuÞ ¼ 2hðuÞf2ðuÞ2f01ðuÞ − f1ðuÞf3ðuÞ
2hðuÞ2 ; ð26Þ

where the mass function must always remain positive
valued over its domain. As a result, Gww can be expressed
in a more succinct form,

Gww ¼ 2m0ðuÞ
hðuÞf1ðuÞrðu; wÞ2

¼ 8πΦ: ð27Þ

Similarly, a more convenient expression of the function
fðu; wÞ can be obtained with the aid of (20), (22), (23),
and (26),

fðu; wÞ ¼ AðuÞrðu; wÞ2 þ BðuÞrðu; wÞ þ CðuÞ
f1ðuÞ2rðu; wÞ

; ð28Þ

where

AðuÞ ¼ 2hðuÞf01ðuÞ; ð29Þ

BðuÞ ¼ 2hðuÞf1ðuÞf02ðuÞ − 2hðuÞf2ðuÞf01ðuÞ − hðuÞ2;
ð30Þ

CðuÞ ¼ 2hðuÞ2mðuÞ: ð31Þ
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V. PHYSICAL RESTRICTIONS ON THE CHOICE
OF THE CHARACTERIZING FUNCTIONS

The first restriction that we impose, using (26), is given
by the following inequality:

2hðuÞf2ðuÞ2f01ðuÞ > f1ðuÞf3ðuÞ: ð32Þ

This is necessary to ensure that the mass function, mðuÞ, is
always positive. The second restriction is that the measured
radiation flux is a positive quantity,

ΦðkαuαÞ2 > 0: ð33Þ

Substituting (27) in (33) and simplifying, we obtain

m0ðuÞ
hðuÞf1ðuÞ

> 0; ð34Þ

which dictates that the signs of m0ðuÞ and hðuÞf1ðuÞ have
to be identical. As our attention is confined to classical
matter fields (radiation), a minimum requirement is that this
matter distribution must satisfy the weak energy condition
(WEC). This requirement implies, with the aid of (27), the
following stipulations on the different forms of radiation,
summarized in Table I.
Table I clearly illustrates that both ingoing and outgoing

radiation can be obtained without changing the sign of
the function hðuÞ. However, as will be seen shortly, the

direction of radiation in the EFL coordinates is dictated by
the sign of the function hðuÞ.

VI. THE APPARENT HORIZON AND THE
EVENT HORIZON

We begin this section by providing a general derivation
to the location of the apparent horizon of (15). To this end,
let us examine the congruence of radial null trajectories
characterized by the four-tangent lα,

lα ¼ δαu −
fðu; wÞ
2hðuÞ δαw: ð35Þ

However, it does not satisfy the geodesic equation in the
affine-parameter form. This is evident from the equations
lα∇αlu ¼ κlu and lα∇αlw ¼ κlw, where κ ¼ κðu; wÞ and
it is called the inaffinity. The geodesics equations are

lα∇αlu ¼
�
2 d
du hðuÞ − ∂

∂w fðu; wÞ
2hðuÞ

�
ð1Þ ¼ κlu; ð36Þ

and

lα∇αlw ¼
�
2 d
du hðuÞ − ∂

∂w fðu; wÞ
2hðuÞ

��
−
fðu; wÞ
2hðuÞ

�
¼ κlw;

ð37Þ

with the inaffinity κ given by

κ ¼ 2 d
du hðuÞ − ∂

∂w fðu; wÞ
2hðuÞ : ð38Þ

The associated expansion scalar ΘðlÞ of this nonaffinely
parametrized congruence of radial null geodesics (see
[62,78] for the definition of the expansion in this case)
is given by

ΘðlÞ ¼ ∇αlα − κ;

¼ −
rðu; wÞ ∂

∂w fðu; wÞ − 2rðu; wÞ d
du hðuÞ

2hðuÞrðu; wÞ −
2fðu; wÞ ∂

∂w rðu; wÞ − 4hðuÞ ∂

∂u rðu; wÞ
2hðuÞrðu; wÞ − κ;

¼ −
1

hðuÞrðu; wÞ
�
fðu; wÞ ∂

∂w
rðu; wÞ − 2hðuÞ ∂

∂u
rðu; wÞ

�
: ð39Þ

The apparent horizon is characterized byΘðlÞ ¼ 0, and thus
by virtue of (39) we obtain the following condition:

2hðuÞ ∂rðu; wÞ
∂u

¼ fðu; wÞ ∂rðu; wÞ
∂w

: ð40Þ

We substitute (20) in (40), which yields

2hðuÞðf01ðuÞwþ f02ðuÞÞ ¼ fðu; wÞf1ðuÞ: ð41Þ

With the aid of (28) the previous equation takes the form

0¼2f01ðuÞrðu;wÞ2þ2hðuÞmðuÞ
−ð2wf1ðuÞf01ðuÞþ2f2ðuÞf01ðuÞþhðuÞÞrðu;wÞ: ð42Þ

TABLE I. Stipulations on the functions hðuÞ and f1ðuÞ.
Direction m0ðuÞ hðuÞ f1ðuÞ
Outgoing radiation m0ðuÞ < 0 hðuÞ < 0 f1ðuÞ > 0

hðuÞ > 0 f1ðuÞ < 0

Ingoing radiation m0ðuÞ > 0 hðuÞ > 0 f1ðuÞ > 0
hðuÞ < 0 f1ðuÞ < 0
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We can use (20) once more to reduce the last equation to

−hðuÞðrðu; wÞ − 2mðuÞÞ ¼ 0; ð43Þ

which immediately gives the sought-after result:

rðu; wÞ ¼ 2mðuÞ: ð44Þ

It is thus established that the apparent horizon is located
at r ¼ 2mðuÞ. We also note that the previous result is
established before making any choices for the character-
izing functions, fnðuÞ. Determining the location of the
event horizon in the Vaidya metric is not as straightforward
as locating the apparent horizon. In fact, the entire future
history of the metric, as specified by the functions fðu; wÞ
and hðuÞ, must be predetermined in order to identify the
null generators of the event horizon [62]. However, we may
generically define the future (past) event horizon as a causal
boundary for the timelike geodesics terminating at future
(past) timelike infinity, iþði−Þ [79].

VII. SPECIFIC COORDINATE
REPRESENTATIONS OF THE VAIDYA METRIC

In this section, we demonstrate that we can obtain
various coordinate representations of the Vaidya metric
by selecting different expressions for the characterizing
functions, hðuÞ and fnðuÞ. Additionally, we emphasize that
the meaning of the coordinate u is dependent on the choice
of the characterizing functions, and thus the coordinate u in
the EFL coordinates has a different interpretation from that
in Israel coordinates.

A. The Vaidya metric in the EFL coordinates

Let us choose the characterizing functions such that
hðuÞ ¼ �1, f1ðuÞ ¼ 1, and f2ðuÞ ¼ 0; then, we obtain
w ¼ r with the help of (20). Furthermore, we get f3ðuÞ ¼
−2mðuÞ from (26). Substituting these values in (28) yields

fðu; rÞ ¼ −rþ 2mðuÞ
r

; ð45Þ

and thus the metric (15) becomes

ds2 ¼ −
�
1 −

2mðuÞ
r

�
du2 � 2dudrþ r2dΩ2

2; ð46Þ

withGww ¼ � 2m0ðuÞ
r2 . It is clear that, with the help of Table I,

we can obtain hðuÞ ¼ −1 for the outgoing radiation version
of the Vaidya metric, where the coordinate u is a retarded
time. Similarly, selecting hðuÞ ¼ þ1 yields the ingoing
radiation version of the Vaidya metric, with u as an
advanced time.

B. The Vaidya metric in Israel coordinates

In this section, we explore how by introducing different
choices to the functions fnðuÞ, we obtain Israel coordi-
nates. Let us consider the following choices: f1ðuÞ¼UðuÞ,
f2ðuÞ ¼ 2MðuÞ, and f3ðuÞ ¼ 0. It follows from (26) that
for MðuÞ ¼ mðuÞ (which is a choice),

U0ðuÞ ¼ hðuÞ
4mðuÞ : ð47Þ

Thus, with the aid of the first fundamental theorem of
calculus we write

UðuÞ ¼
Z

u

0

hðxÞ
4mðxÞ dx: ð48Þ

However, since our choices for the function hðuÞ will be
confined to either þ1 or −1, we set hðuÞ ¼ h ¼ �1.
Consequently, the expression (48) takes the form

UðuÞ ¼ h
Z

u

0

1

4mðxÞ dx: ð49Þ

It follows that the spacetime line element (15) can be
written as

ds2 ¼
�

w2

2mðuÞrþ
4hm0ðuÞ
UðuÞ

�
du2 þ 2hdudwþ r2dΩ2

2;

ð50Þ

where r is no longer a coordinate; it is now a function

r ¼ rðu; wÞ ¼ UðuÞwþ 2mðuÞ andGww¼ 2hm0ðuÞ
UðuÞrðu;wÞ2. Here,

u is a null coordinate and (50) describes both outgoing and
ingoing radiation. It is interesting to note that the presence
of h is not necessary for (50), as demonstrated in [70],
particularly when m0ðuÞ ¼ 0. It is noteworthy that, in
accordance with (44), the apparent horizon is now located
at w ¼ 0. There is some ambiguity regarding the sign of u
which appears in the definition of the function UðuÞ (49);
for example, in [57], u is always positive, whereas in [65]
u can be either positive or negative. We shall resolve this
ambiguity and demonstrate when u can be negative or
positive. To this end, recall that

U0ðuÞ ¼ h
4mðuÞ ; ð51Þ

which means that the sign of U0ðuÞ is solely determined by
the sign of h. Also, with the aid of the WEC (34), and (49),
we have

m0ðuÞ
hUðuÞ ¼

m0ðuÞR
u
0

dx
4mðxÞ

> 0; ð52Þ
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where in the last equation we have taken h2 ¼ 1. Hence, for
m0ðuÞ > 0 the integral must be positive (u in the integral
must be positive) and for m0ðuÞ < 0 the integral has to be
negative (u in the integral must be negative). Consequently,
we have seen that the sign of u in the integral is not always
positive like in [57], and the dichotomy in the function
UðuÞ based on the sign of u is explained in a more
articulated way. We have summarized all the choices we
have considered thus far in Table II. Finally, we introduce a
restriction on the w coordinate corresponding to the surface
rðu; wÞ ¼ 0, the physical singularity; see below. Since
rðu; wÞ ¼ UðuÞwþ 2mðuÞ, for rðu; wÞ ¼ 0 we obtain

w ¼ −
2mðuÞ
UðuÞ ≡ w0ðuÞ; ð53Þ

and so w0 > 0 for UðuÞ < 0 and w0 < 0 for UðuÞ > 0. It
turns out that this is exactly the case when we study the
radial null geodesics in the proposed maximal extensions of
the Vaidya metric [58].

VIII. INVARIANTS

Up to syzygies [80], we find that the only nondifferential
nonvanishing invariant of (15) is the first Weyl invariant,

w1R≡ 1

8
CαβγδCαβγδ

¼ 3

2hðuÞ4rðu; wÞ6 ðf1ðuÞf3ðuÞ − 2hðuÞf1ðuÞ0f2ðuÞ2Þ;

ð54Þ

which reduces to the following expression in Israel
coordinates:

w1R≡ 1

8
CαβγδCαβγδ ¼ 6mðuÞ2

rðu; wÞ6 ; ð55Þ

where Cαβγδ is the Weyl tensor. However, as (27) makes
clear, it would be informative to have invariant information

for m0ðuÞ. This is obtained by way of the Bach tensor [81];
see also [82]. First define

Aαβδ ¼ ∇γCαγβδ; ð56Þ

where∇γ denotes contravariant derivative. The Bach tensor
is given by

Bαβ ¼ ∇δAαβδ þ
RγδCαγβδ

2
: ð57Þ

Since the Bach tensor is trace-free, the first Bach
invariant is

B≡ BαβBαβ: ð58Þ

In the present case we find, with the aid of (27), that

B ¼
�
4UðuÞm0ðuÞ
rðu; wÞ4

�
2

: ð59Þ

Nevertheless, the preceding result does not provide the
desired invariant definition of m0ðuÞ due to its dependence
on the functions rðu; wÞ and UðuÞ.

IX. SUMMARY AND DISCUSSION

We have examined the construction of Israel coordinates
for the Vaidya metric and have simplified the problem to
finding appropriate expressions for the characterizing
functions that arise from integrating the field equations.
This construction is systematic and does not necessitate
any coordinate transformation, which provides us with the
chance to spot potential extensions of the Vaidya manifold
by introducing distinct expressions for the characterizing
functions, fnðuÞ. Nonetheless, the main focus of this paper
is to reconstruct Israel coordinates for the Vaidya metric.
By utilizing the WEC, we have understood the role of the
function hðuÞ in the Vaidya metric. Although the sign of the
hðuÞ is paramount in determining the direction of radiation
in the EFL coordinates, we have demonstrated that this is

TABLE II. A summary of the different choices of the characterizing functions that appear in our construction
alongside with the resulting metrics.

h f1ðuÞ f2ðuÞ f3ðuÞ Resulting metric

−1 þ1 0 −2mðuÞ Outgoing Vaidya (EFL)
þ1 þ1 0 −2mðuÞ Ingoing Vaidya (EFL)
þ1 UðuÞ ¼ R

u<0
0

dx
4mðxÞ ¼

R
u>0
0

−dx
4mðxÞ 2mðuÞ 0 Outgoing Israel

−1 UðuÞ ¼ R
u<0
0

−dx
4mðxÞ ¼

R
u>0
0

dx
4mðxÞ 2mðuÞ 0 Outgoing Israel

þ1 UðuÞ ¼ R
u>0
0

dx
4mðxÞ ¼

R
u<0
0

−dx
4mðxÞ 2mðuÞ 0 Ingoing Israel

−1 UðuÞ ¼ R
u>0
0

−dx
4mðxÞ ¼

R
u>0
0

−dx
4mðxÞ 2mðuÞ 0 Ingoing Israel
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not the case for Israel coordinates. That is, both ingoing
and outgoing radiation can be achieved with h ¼ þ1 or
h ¼ −1. However, the impact of changing the sign of the
function hðuÞ will be further investigated when we discuss
the completeness of Israel coordinates in [58].
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