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We develop a Monte Carlo simulation method for computing stationary solutions of the general-
relativistic Vlasov equation describing a gas of noncolliding particles. As specific examples, we select
planar or spherically symmetric accretion models on the Schwarzschild background spacetime. In all cases
the gas extends to infinity, which poses an additional difficulty in the Monte Carlo approach. We discuss
models with monoenergetic particles as well as solutions obeying the Maxwell-Jiittner distribution at
infinity. For all models, exact expressions for the particle current density are known or can be computed
analytically. We demonstrate perfect agreement between exact expressions for the particle current density

and the results of our Monte Carlo simulations.
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I. INTRODUCTION

In the general-relativistic kinetic theory of gases,
observable quantities (the particle current density, energy-
momentum tensor, energy density, pressure, etc.) are
computed as suitable integrals over momentum space
[1-9]. With sufficient control of the phase-space structure
(e.g., a good description of the regions in the phase space
available for the motion of gas particles), one can, in many
cases, compute such integrals directly, providing a solution
to the problem at hand (see, e.g., [10-18]). For complex
problems, a good description of the phase-space structure
may not be available, and one has to resort to other
methods. In this work we deal with a simple (but important)
case in which collisions between individual particles of the
gas are neglected. Since a collisionless gas consists of
particles moving along geodesic trajectories, a possible way
would be to construct a Monte Carlo simulation, in which
one would select a sample of geodesic trajectories and then
compute averages over this sample, in order to obtain
desired observables. Although this idea sounds simple, its
actual implementation poses several difficulties related to
the selection of geodesics and the averaging procedure.

Another option is to use the so-called particle-in-cell
method, which has been employed successfully in general-
relativistic simulations of kinetic systems with magnetic
fields [19-22].

In this article we present a technical implementation of a
Monte Carlo approach, designed to work with stationary
solutions. While stationary solutions seem to be natural
and even simple, they require a somewhat counterintui-
tive approach to the averaging process, as will become
clear in the remainder of this paper. In short, instead of
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counting intersections of geodesic trajectories with regions
of spacelike hypersurfaces, we count intersections with
suitable timelike hypersurfaces.

For clarity, we will focus on several easy accretion-type
problems in the Schwarzschild spacetime, for which ana-
lytic solutions are available. Specifically, we will consider
stationary Bondi-type solutions, in which the gas extends to
infinity, where it is assumed to be homogeneous and at
rest [10,11,23]. We will work with planar models, assuming
that the gas is confined to a single plane (similarly to the
accretion model in the Kerr spacetime described in [17]), and
with spherically symmetric configurations. In the simplest
case, we restrict ourselves to monoenergetic particles, but
we also give examples in which the gas obeys the Maxwell-
Jiittner distribution at infinity [24,25].

As a supplement to this paper, we provide sample
Wolfram Mathematica [26] codes performing our simu-
lations. They will be publicly available at [27].

This paper is organized as follows. In Sec. II we
introduce our notation and define the one-particle distri-
bution function. Section III is devoted to planar models, in
which the motion of particles is confined to a common
plane. We start with an elementary model of a planar
uniform distribution of monoenergetic particles in the
Minkowski spacetime. Two planar accretion models for
the Schwarzschild spacetime are given in Sec. III B. In
Sec. III C we discuss Monte Carlo integration in the context
of these two models. This section provides a link between
the two approaches: an analytic one and an approach based
on the actual Monte Carlo simulations. It also gives us an
opportunity to discuss the selection of geodesic parameters
describing the Monte Carlo sample. Section III D introdu-
ces our Monte Carlo simulations. In Sec. IV we focus on
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spherically symmetric stationary accretion models. A short
summary is given in Sec. V.

We will work in standard gravitational units with
¢ =G =1, where c is the speed of light and G denotes
the gravitational constant. We assume the signature of the
metric in the form (—, +, +, +).

II. ONE-PARTICLE DISTRIBUTION FUNCTION

In the framework of the general-relativistic kinetic
theory, the gas is described in terms of a distribution
function defined on a one-particle phase space—a subset of
the tangent or cotangent bundle of the spacetime manifold
(see, e.g., [9] for a recent introduction). In this paper we
adhere to the cotangent bundle formulation, but it is, in fact,
a matter of convention.

Let (M,g) be a spacetime manifold. The cotangent
bundle of M is defined as

T"M = {(x.p):xeM,peTiM}. (1)

The one-particle distribution function is a real function
defined on suitably chosen subsets U CT*M, i.e.,
F:U — [0,4c0). The precise mathematical definition of
JF depends on a convention regarding the choice of U. Let us
consider a gas composed of the same rest-mass particles (such
a gas is sometimes referred to as “simple” [2]). One possibility
is to restrict U to the future mass shell, defined as

s = {(5.p) €T°M: ¢ p,, = =t
pis future-directed}, (2)

where m denotes the rest mass of a particle. This option has
been chosen, e.g., in [9]. Another option is to transfer the
mass-shell restriction to the assumed form of F and to
demand that 7 ~ 6(/—p, p* — m). Inthis paper, we decided
to choose the latter option, mainly to be consistent with
previous works [10,11].

Let S denote a three-dimensional spacelike hypersurface
in M, and let s be a future-directed unit vector normal to S.
We define N[S] as an averaged number of particle
trajectories in U, whose projections on M intersect S. In
other words, N[S] denotes the number of particles in S. It
can be shown that [cf. [9], Eqgs. (94)]

wisi=- [ | Fe o ()i O

where
Pf ={peTiM:¢*p,p, <0, pis future-directed}  (4)

and 7y denotes the volume element on S. The volume
element on P; is given (in local adapted coordinates) by

dvol,(p) = \/—detg"(x)dpodp,dprdps.  (5)

Equation (3) gives rise to the definition of the so-called
particle current density

Ju(x) = [ F(x,p)pudvol,(p). (6)

Py

With this definition one can write A/[S] as

NS] = - ﬂ T s ns. (7)

The geodesic motion can be described by Hamilton’s
equations

dx* _ oH(x,p)

9 8
dr opy (82)
dp, _ 0H(x,p)

Sy S F) b
dr ox* (80)

where p# = dx*/dr, H(x, p) = 3¢ (x*)p,p, = —3m*.In
the absence of collisions between particles, the distribution
function F satisfies the so-called Vlasov equation, which
can be expressed as a requirement that 7 should remain
constant along a geodesic:

AF _OF ds*  OF dp, _0F oH _oF oM
dr  ox* dr  dp, dr  ox* op, O0p,ox*
={H,F} =0. 9)

Here {-, -} denotes the Poisson bracket. Note, in particular,
that a probability function depending on (x, p) via con-
stants of motion [;(x,p), ie, F=FI(x,p),...,
I,(x,p)), where {H,I;} =0, i=1,...,s, would always
satisfy the Vlasov equation. In explicit terms, Eq. (9) can be
written as

oF 1 g’ oF
Ypo— —= ———=0. 10
9Py = 5 Palp o (10)
Using Eq. (9), one can show that the particle current
density satisfies the conservation law V,J# = 0, which
again justifies formula (7). The particle number density can

be defined covariantly as n = /-7 ”._7”. Alternatively,
one can work with the components of J e

III. PARTICLES CONFINED TO A PLANE

We will assume a specific-to-general approach and start
with illustrative cases of the gas confined to a plane.
More specifically, we will begin with a discussion of a
uniform gas of monoenergetic particles restricted to a two-
dimensional plane in the flat Minkowski spacetime. In the
next step, we turn to a planar accretion problem in the
Schwarzschild spacetime.
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A. Flat space case

Consider a uniform gas of monoenergetic noncolliding
particles confined to a two-dimensional plane in the flat
Minkowski spacetime. The gas particles move along
straight lines. The only nonvanishing component of the
particle current density J, can be computed in two
equivalent ways. A straightforward way is to work in
Cartesian coordinates (7, x,y, z). Defining

F(x%, pg) = 8(2)F (1, x,y; pp), (11)

we obtain
Tu(x%) = 8(2)J,(t, x,), (12)

where

T, (t,x,y) :/F(t,x,y;p/s)pﬂdvolx(l?)- (13)

For a uniformly distributed gas of monoenergetic
particles of the same mass m,, we assume

F(x, p) = amod(p.)d(p, + Eo)5(\/ pi—p*— mo)
= ad(p,)d(e — &9)8(m — my), (14)

where p, = —E, E = me, Ey = meg, and a is a proportion-
ality constant. Hence,

J, = am / 5(p.)5(p, + Eo)

X 5(\/ pi—p* - mo)ptdptdpxdpydpz- (15)

Integrating over p, and p, is straightforward, and it gives

Jz=—amOEo/é(\/Eé—pi—pf—mo)dpxdpy~ (16)

Introducing polar momentum coordinates p, = {cosd,
py = {sind, we obtain dp.dp, = {dId{ and

J, = —27wtm0EOAoo5(\/p% _p —mo)gdg. (17)

On the other hand,

o(y/pr==mo) =—so(¢\ /B i), (18)
0 0

and hence
J, = =2ram3E, = —2zamje, (19)

where E() = My&y.

The second calculation is based on spherical coordinates.
While these may seem to be a bad choice for the problem
with an explicit translational symmetry, this calculation
provides an illustration of some aspects related to the
selection of samples of geodesics in the Monte Carlo
simulations discussed in this paper. We define

1 1
m = pi=p; =3Py~ aaag Py (208)
E=-p, (20b)
12 = pé + Sin2 gpgﬁ (20C)
I.=p, (20d)

and assume a convention in which [ > 0. Quantities m, E, [,
and /, are constants of motion. A straightforward calcu-
lation gives

AH(m2,E, 12,1 [
M:iM/Ez—mz——z P——=_ (21)
O(Ps»PrsPo>Py) r sin~ 6

Treating m, E, [, and [, as new momentum coordinates, one
obtains

2
mldmdEdldl, = \| E* — m* — —
\/ ,

2

l
X 12 - sin—zzedptdprdpﬁdp(p' (22)

Keeping the pair of coordinates (/,1,) is troublesome in
making the restriction to the equatorial plane. A convenient
solution is to change (/,1,) — (l,0), where

l
;-
Thus, py=0 corresponds to o = +x/2. We have

dl, = \/I> = I!de. Moreover, at the equatorial plane
0 = /2, we find

12
mldmdEdlde = \| E* — m* — ﬁdptdprdpedpgn (24)

and hence the volume element dvol,(p) can be written as

(23)

sinoc =

E
dvol, (p) = mldmdEdldo ' (25)

2 Ez_mz_%2

Similarly,

5(pz):§{5<6—g> +5<0+g)]. (26)

This gives
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“”zora(m — mo)8(E — Ey)

x [5(0—%) +5<o+g>} (27)

_damgE, /lmax dl
r 0 2 2 2’
\ EG—mg—

where [, = r\/E} — m3. The additional factor 2 appear-
ing in the above formula comes from the fact that a given
set of values E, m, and [ corresponds to two possible values
of the radial momentum p, = +|p,| [cf. Eq. (20a)]. Let us
introduce the following dimensionless quantities:

F(x,p) =

and

J, =

(28)

[ = Mmoﬂ, r = Mé, EO = myé&p, (29)
where M denotes a reference mass parameter. The expres-

sion for J, can be written as

j'lﬂi’l)(
4 3
J = - amye / di (30)

/2 2’
5 0 80—1—57

where A, = /€5 — 1. The integral in Eq. (30) reads

Amax
di b7
/ m =5 (31)
Note that it can also be expressed as
Amax
7\/% [ di = ”75 (32)
Thus, we finally obtain
J, = =2mamje, (33)

which coincides with Eq. (19). We will return to Egs. (30)—
(32) in Sec. I D, discussing the selection of geodesic
parameters. For future use, note that

ng = 2namje, (34)

can be interpreted as a particle surface density of the gas.

B. Planar accretion onto a Schwarzschild black hole

As one of our test models, we consider planar stationary
accretion in the Schwarzschild spacetime. It is an

equivalent of the Bondi (or Michel)-type stationary accre-
tion of the collisionless gas occurring in the Schwarzschild
spacetime (see Refs. [10,11,23]) restricted to a plane.
Within the plane, the gas extends to infinity, and it is
assumed to be asymptotically “at rest.” A model of this type
for the Kerr spacetime has been analyzed in [17]. In
contrast to the Kerr case, the planar accretion model in
the Schwarzschild spacetime is relatively simple and can
serve as a pedagogical example in our discussion.

We work in standard Schwarzschild coordinates
(1,7,0, ). The Schwarzschild metric has the well-known

form
2M 2MN\ !
== (12 (1-20) g
r r
+ r2d0* + r? sin? Odg?. (35)

All our calculations can also be repeated using suitably
chosen horizon-penetrating Eddington-Finkelstein-type
coordinates, yielding essentially the same results. We use
the simplest Schwarzschild form of the metric to avoid
unnecessary complications.

The geodesic motion is integrable. There exist four
independent constants of motion, which, for simplicity,
we denote as

m* = —¢"“p,p,, (36a)
E=-p, (36b)
P = p+—spl. (36c)

sin- @
L. =p, (36d)

using the symbols which have already been introduced in
the flat Minkowski case. As before, we assume [ > 0 and
define dimensionless quantities &, €, 4, and A4.:
r=M¢ E=me, [.=Mmk, [=Mmli, (37)
where, this time, M refers explicitly to the Schwarzschild
mass. We will also use the momentum-space coordinate ¢
(23), defined using dimensionless quantities by sine = 4, /A.
The phase-space region available for the motion
can be controlled with almost the same expressions as
those used in the spherically symmetric model [10]. In what
follows, we will summarize the most important formulas;
details of the derivation can be found in [10]. The contra-
variant radial component of the momentum vector reads

pr=Emy/e* = U, (&), (38)

where
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wo-(Y0d) o

denotes the dimensionless effective radial potential.

The region available for the radial motion is character-
ized by the condition £ — U,(&) > 0. Since U, () — 1, as
& — oo, unbound orbits are characterized by the energy
e > 1. The orbits with the angular momentum A < 4.(¢),
where

d(ep=— 2 (40)

2
36
i1
(\/952—8 )

plunge into the black hole—we refer to these orbits as
absorbed ones. Unbound orbits with 4 > 1.(¢) are scattered
off the centrifugal barrier. The maximum value of the
angular momentum for a scattered unbound orbit reaching
radius & reads

ﬂmax(‘g’ 5) =¢ -1, (41)

while the minimum allowed energy can be written as

0 <3
Eunin (&) \/( —%) (1 +§+3) 3<e<4  (42)
I £>4.

1. Monoenergetic particles

For a planar accretion model with monoenergetic
particles, we assume a one-particle distribution function
of the form

F(x, p)

amod(/—pup* — my)d(p, + E)d(p.)
ad(m —mg)d(e — &)d(p-)
= %fﬂé<m — m0)5(8 - 80)

X [6(6 —7/2) + 6(c + /2)]. (43)

One may readily verify that the above choice satisfies the
Vlasov equation (9).

The volume element in momentum space reads, in terms
of coordinates m, &, A, and o,

3
A
dvol, (p) =

dmdedldo. (44)
&\e = U,(¢)

The components of the particle surface current density J,
can now be expressed as a sum of two parts: a part
corresponding to absorbed orbits and a part corresponding
to scattered onmes, i.e., J, = J,(,abs) + J,(fcm. According
to the characterization given in the previous subsection,
one has

- L(e) Ac(9)
| 2am} di 2amy a
Jgabs)(f) _ % / ded(e — gg)e / == £0O(gp — 1) ’ (452)
¢ | Ve =T ¢ &5 — Ui(§)
4 3 (s8] )“lnax(‘g*é) d/’{
J(SCaI) (5) _ agn() / d£5(£ — 80)8 5 U (é)
&2 —
Smin(é) ﬂ[(g) !
4 3 Amax(‘g()’é) dj’
amy
= - £00(€9 — €min(£)) N (45b)
¢ e VU
c(€o

where ® denotes the Heaviside step function. The addi-

tional factor 2 in the expression for J*™ is due to equal

contributions of ingoing and outgoing trajectories. The
radial component reads

3
2amy

¢

TH(E) = Ty (8) = =200y — 1), (e0).  (46)

The radial component J” is directly related with the rest-
mass accretion rate, which we define as (see Ref. [17])

M = —2zMmyéJ". (47)

For the monoenergetic planar model the rest-mass accretion
rate reads

124057-5
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M = dzaMmi®(ey — 1)A.(gp). (48)

As a general remark, applying to all models in this paper,
let us note that in physical applications the proportionality
constant a appearing in the expression for the distribution
function is rather hard to control. For planar models, it can
be expressed in terms of the asymptotic particle number
surface density n,, which for the gas of monoenergetic
particles is given by Eq. (34). This allows us to write
Eq. (48) as

M = 2Mmyn,0(gy — 1) =<

(49)

For spherical models one can express the proportionality
constant a in terms of the asymptotic particle number
density [10,11]. Since in this work we focus mainly on the
Monte Carlo simulations, we will keep the proportionality
constant a for clarity in the resulting formulas.

2. Maxwell-Jiittner distribution

Assuming, instead of monoenergetic particles, that at
infinity the gas obeys a Maxwell-Jiittner distribution
restricted to a plane [24,25], we set

F(x,p) = aé‘(\/T,,p" - mo) exp <m£0 pz> 8(p-)

- nZi5<m o) exp (—fe)

X [6(6 —n/2) + 6(c + 7/2)], (50)

where # = my/(kgT), kg denotes the Boltzmann constant,
and T is the asymptotic temperature of the gas.

A calculation similar to that for the planar accretion of
monoenergetic particles yields

]Sabg _ 2am0 / 3 / /1
(51a)
4 3 o Amax (€,) di

Jgscat) _ _ anmy _ ,

=" / cope) / 20,0

€min (&) e(€)

(51b)
7 - 37d (~pe)a(e). (51¢)

" eexp(—pe c

¢ 1

With a slight abuse of terminology, we will refer
to the model described in this subsection as the planar

Maxwell-Jiittner model, keeping in mind that the Maxwell-
Jiittner distribution is only assumed asymptotically.

C. Monte Carlo integration

Our first approach is to apply a Monte Carlo integration to
Eq. (45) or (51) (for a general introduction to Monte Carlo
methods see, for instance, [28]). This procedure can be
viewed as an intermediate step between analytic solutions
given in previous subsections and our final aim to construct
actual Monte Carlo simulations. We will also use it as an
illustration of the problems related to the selection of the
sample of geodesics. Consider an integral

= é F(x)dx. (52)

Let X;€Q,i=1,...N denote N samples chosen from the
distribution p(x). The Monte Carlo estimator of I reads

LN f(X)
N2 p(x) 53)

For a uniform distribution, one has p(x) = 1/V, where
V = vol(Q) is the volume of Q, and thus

(1) = 5> F(X). (54

Consider now an integral of the form

I'= [ f(x)g(x)dx, (55)
[

where g(x) is a weight. For p(x) = cg(x), where ¢ is a
proportionality constant, one obtains

Zf Zf (56)

Since the probability density function p(x) integrates to

unity, we obtain
-1
c= {/ g(x)dx] . (57)
Q

i

Thus,

=y [ foma] Do

These two options yield two different approaches to
solving our problem. For monoenergetic accretion, we
would rather use a uniform-distribution integration. This
can be done as follows. Let &, be the outer radius of the
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region of interest, and let 4; € [0, Anax (€0, &o)] denote
uniformly selected random angular momenta. Note that
the configuration is assumed to extend to infinity. Selecting
a finite £, allows us to focus our attention on the region
2 < ¢ <&, and to limit the range of the angular momen-
tum." Angular momenta 4; can be divided into two
classes, with the corresponding sets of indices: I, =
{lo < /Ii < /16(50)}’ Iscat = {l’?'c < j'i < /lmax(e(h 50)}’
with Ny = #1,6, Necar = #lcar» Where #I denotes the
number of elements in set /. Monte Carlo estimators of

J 5abs> and J 55“‘0 in the monoenergetic planar model can be

written as

_ 2amiA. (&)
Nabs§
€0
X Z - - =, (59a)
e - (1-)(1+5)

(scat)y _ 4am8 [lmax(‘gO’ 50) B j'C (SO)]
e Necal
8()@(5 - gmin (ﬂi’ 80))

5

. A
e - (191 + )

(59b)

where &.;.(1,€) denotes the pericenter radius—the
largest zero of the polynomial &[e? — U,(&)]. Sample
results obtained in this way are shown in Fig. 1, assuming
gy = 1.3 and &, = 20. Monte Carlo data are plotted with
dots. Solid and dashed lines represent exact solutions. We
plot the graphs of —J,/(am}) and Yy (am3). We omit
the calculation of the Monte Carlo estimator for J” since it
is almost trivial.

The planar Maxwell-Jiittner accretion model can serve as
an illustration for the second scheme. Selecting geodesic
parameters from the Maxwell-Jiittner distribution can be
done using von Neumann’s rejection method [29]. As
before, let us focus on the region 2 < & < &,. We start by
introducing a cutoff e, for the allowed energy e.
Subsequently, we select, assuming uniform distributions,
&€ [19 Scutoff]’ A € [09 /lmax (Scutoff’ 50)]’ and an auxiliary
variable y; €[0, 1]. The values of ¢; and 4; are added to
the set of selected parameters, if y; < exp(—pe;)/ exp(—p)
and A; < Anax (€1, &), and rejected otherwise. This pro-
cedure is iterated until a sufficient number of pairs (¢;, 4;) is
selected. As before, parameters (g;,4;) are divided into
those corresponding to absorbed trajectories [1; < A.(g;)]
and scattered ones [4; > A.(g;)]. We denote, also as before,
Naps = #laps, Ncar = #lsear- -~

Monte Carlo estimators of J'*
computed as

and J5 are

'Accretion from a region of a finite radius is an interesting
problem on its own [15].

8F , : ' :
y -.-_.-'--5-#.-&;-—-,-"-.a.~a~...-._,~.-.-,:.,.é
. OSOREVY 4k 1
i .,.;."—‘-a'é.-‘"'-"-"'*" ’ ;
6 4
gﬁg °f — (abs) 3 1
< =5 (am ) :
% N T —Ji/ (am3) ]
3 L
2 L
1 L
’ 10 15 20
3
FIG. 1. Components of the particle surface density current J,

for the monoenergetic planar model with gy, = 1.3, &, = 20.
Exact solutions [Egs. (45)] are plotted with solid and dashed
lines. Dots (blue and green) represent sample results obtained by
the Monte Carlo integration [Egs. (59)]. There are 10° angular
momentum samples: N, = 31814, N, = 68186.

<](abs)> __ 26"/”lgvabs
' Nabsé:
x il —.  (60a)
€T Je - (1-2(1+ 1)
<J(scat)> _ _ 4am(3)vscat
' Nscaté
€i®(§ - émin(’ii’ 8i)> (60]3)
€ Je - (1-9(1+5)
where
Vs = / ot exp(—pe)A.(e)de, (61a)
1

Vscat = \/]80“0“ exp(_ﬂe)[ﬂmax (8’ 50) - lc (8)}d€. (61b)

An example of the components J Sabs) and J, obtained in this

way for f = 1, ey = 10, and &y = 20 is shown in Fig. 2.
In Fig. 2 and in what follows, to assure a fair comparison,
both analytic solutions and Monte Carlo estimators are
computed assuming the same cutoff value e, for the
maximal energy.

In both cases we have introduced small adjustments in
the Monte Carlo integration procedure, which make it
similar to the actual Monte Carlo simulations discussed in
the remainder of this paper. In particular, instead of limiting
the selection of geodesic parameters used to compute
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T T T T T T T T T T T

_-.n--:«‘.-.--'\~ "-"-.n-“—

" _M___‘"_;._ __.-_J-.---.‘- w “

‘\ = 1
~-

4 . 7S -

FIG. 2. Same as in Fig. 1 but for the Maxwell-Jiittner planar
accretion model with g =1, e o = 10, and &, = 20. Exact
solutions [Eqgs. (51a) and (51b)] are plotted with solid and dashed
lines. Blue and green dots show results of the Monte Carlo
integration [Eqgs. (60)]. The total number of randomly selected
triples (g, 4;,y;) is 2x 10° which gives N, = 10462,
Nyear = 27268.

(J ESCm) with 4., (€, £), we use an equivalent restriction on
Enin—the pericenter radius.

D. Monte Carlo simulations of stationary
planar problems

1. Averages

We construct our Monte Carlo simulations of stationary
flows by selecting a set of geodesic trajectories and
counting their intersections with suitably chosen surfaces,
assuming appropriate weights.

As introductory examples, consider planar problems
described in Sec. III. We aim at a Monte Carlo simulation
that would allow us to compute the components of,
say, J,. This poses several problems. The first one is
related to the choice of a convenient parametrization of
geodesics. The second is to select geodesics assuming
the correct probability distribution expressed in terms of
geodesic parameters. Finally, one has to design a method
of computing suitable averages over momenta. We will
start the discussion with this last problem.

The essence of our Monte Carlo simulations is an
approximation of a continuous system by a discrete one,
given by the distribution function

N
Fotp)= [ D 890 =, ()
i=1

x 8@ (p, — pi) (7)) dx, (62)

where N denotes the number of particles with trajectories
described by coordinates x’(l.)(r) and momenta p,(,’)(r)

[cf. [5], p- 14, Eq. (A6)]. Our convention regarding the
parameter 7 is that of Eq. (8), and hence Eq. (62) differs by
the factor 1/m with respect to the formula in [5]. The
particle current density 7, corresponding to this distribu-
tion can be computed as

/}"(x p)p
- / ;5<4>(x“—xﬁ)(f))

x pi(v)

—detg"’f( )dpy...dps

— det ¢ (x)dx. (63)

The above expression is compatible with Eq. (7), which
can be seen as follows. Let S denote a hypersurface of
constant time, and let the spacetime metric g in the vicinity
of S be expressed in the standard 3 + 1 form

g = (—a*+ p,f)dr* + 2p,dtdx' + y;;dx'dx!,  (64)

where «a is the lapse, ' are the components of the
shift vector, and y denotes the metric induced on S.

Then,
— _/ jﬂsl‘ns
s
N
- dry W =X (7
/S ns / ; ( (l)( )

— det géK(x)pl(/i)(T)Sv' (65)

Here, s, = (—-,0,0,0), and 55 = ,/dety;;d*x. Thus,
N
[S] = A d3x/d125<4) (¢ = x{; (7)) () (7)

_ XN: / drs(t — z<,-)(1))ddt<f"> =N, (66)

where we have used the fact that |/—detg,, = a,/dety;;.

We will estimate the value of 7, at a point x, by selecting
a (small) hypersurface region X (a cell), such that x € ¥, and
computing

fZ an (67)

(Tu) = Tons
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For planar models, we might be interested in the surface
density value

g = L0 (68
f sz
as well.

Perhaps the most natural method would be to select a
region within a hypersurface of constant time, discretize
this region into cells, and average over trajectories passing
through a given cell. The trouble with this approach is that
it is not well suited to searching for stationary solutions.
Instead, we can select a timelike hypersurface foliated by
the orbits of a stationary Killing field and count the
intersections of the geodesics with such a surface, assuming
additional weights, which we derive below.

For a planar, stationary accretion flow in the
Schwarzschild spacetime, we take a segment

S:{<r’97(p):rlSrsr%e:ﬂ/zv(p:(p()} (69)

and a surface

2= {(t,r,e,(p)ltl Stﬁtz,rl S rS ry,

0=r/2.9 =g} (70)
Let @, (x})) denote the orbit of the timelike Killing vector
field & = (1,0,0,0), passing through x{ at 7 =0, i.e.,
@ (xh) = xi. Then, = can be expressed as the image

L= q)[tl,tz](S)' (71)

For the planar model we have

N
= / ; 8(6 — 7/2)8) (x* — x¢, (7))

x pi(z)1/ - det g% (x)dx., (72)
where
83 (x* = xf;, () = 8(1 = 13 (2))(r = r5 (7))
x &(@o — (P(i)(T))- (73)

Since, at the equatorial plane 6(0 —z/2) = ré(z) and
Jy = 6(2)J,, we obtain

J,(x) = /Zré x = (7))

x pi (2)1/ — det g (x)d, (74)
where +/—det g (x) = (r*sin@)~' = 1/r>. The volume
element induced on X reads ny = dtdr. A direct calcu-
lation gives

/mz—/ dt/ dr/dfz(s xt—x (z )P;(fi(f)
/ dfzé((po_ ' ()((TT)) ’ 75)

where in the last sum we only take into account trajectories
that intersect X. The integral with respect to 7 can be
computed by writing

S —00(@) = A =B - (gg)

dr lt=1; |

where ;) (zx) = @o. The above sum runs over all inter-
sections of the ith trajectory with . Note that

| =

do; i
—() = ng((p) =

(1)
. 77
dr ; Py ( )

—~1

i)
Thus, we finally obtain

Nim (l)
Pu )
Jns = , 78
[ s > (78)

where N;, is the number of all intersections of trajectories
with the surface X (see Fig. 3). The particle current surface
density can now be approximated as

) = . =i
o =t)(n-r)< Ly
1 e P;(ti)fu)

:Mm(tz_tl)(éz_él); T (79)

For stationary problems, the result should be independent
of the choice of 7, and 7, in a sense that the number of
trajectories that intersect X should be proportional to the
length #, — t; if the latter is sufficiently large. In practice,
we omit the factor 7, — #; and normalize the results by the
number of trajectories taken into account. Moreover,
instead of considering full orbits in the four-dimensional
spacetime, it is sufficient to work with projections of
trajectories onto surfaces of constant time f.

2. Selecting trajectories

The setup described above brings us immediately to the
problem of selecting the appropriate distribution of geo-
desics. Let us start the discussion with a homogeneous
distribution of a gas within a plane in the Minkowski
spacetime, introduced in Sec. III A. In principle, we are
interested in an infinite distribution, but for practical
reasons, a Monte Carlo simulation has to be restricted to
a compact region in space, say, a disk of a dimensionless
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radius &,. The problem we are facing turns out to
be a variation of the classic Bertrand problem (or
Bertrand paradox), known from the theory of geometrical
probability [30]. Bertrand’s problem is usually formulated
as follows. On a fixed circle, one randomly selects a chord.
What is the probability that the length of this chord is
larger than the side of an equilateral triangle inscribed in
this circle? It is then shown that different methods of
selecting the chord “at random” lead to different answers
(different probabilities). One of the methods of selecting
chords is to demand that they belong to straight lines
uniformly distributed in a plane. Such a distribution has
been studied, e.g., by Kendall and Moran in [31]. In terms
of Cartesian coordinates (x,y), straight lines can be para-
metrized by

ux + vy +1=0. (80)
It can be shown that the probability distribution
F(u, v)dudv = (u* + v*)2dudv (81)

is invariant under the group of Euclidean symmetries on the
plane—rotations and translations [31]. The trouble with
parameters u and v is that they are not well suited to a
description of chords within a given circle. Instead, a better
description can be provided by parametrizing the chords
(or, equivalently, straight lines in the plane) by polar
coordinates (p,9) of the point on the chord with the
smallest distance to the center of the circle. In terms of
(p,9), one has

(u® + 1) 2dudv = dpd?, (82)
and given that dudv = pdpdd, we obtain

F(p.9)=p~". (83)

In the context of Bertrand’s paradox, this distribution was
already proposed by Poincaré in 1912 [32].

While in the original formulation of Bertrand’s paradox
choosing a solution may be a matter of preference,
Poincaré’s solution happens to be well suited to our
problem at hand, as the restriction to a given circle is only
technical—we are, in fact, interested in a description of a
gas of particles with trajectories distributed uniformly in a
plane. For monoenergetic particles of energy &, the para-
metrization in terms of the coordinate p is equivalent to the
one with the total angular momentum 4, as 4 and

M2
p=ME= 1 (84)
g5 —1

are linearly related. Let us now return to the angular
momentum distribution appearing in Egs. (30) and (32).

T2

R

1

FIG. 3. Illustration of intersections of the ith trajectory with the
surface X, as defined in Eq. (70). In this example, the number of
intersections N;,, = 3 [see Eq. (78)].

Using Eq. (84), we can express J, given by Egs. (30)
and (32) as

amie, [Mé 2n
J =-=2 / d / d9. 85
t ME ), P A ( )

To conclude, in a Monte Carlo simulation of uniformly
distributed monoenergetic particles confined to a plane in
flat Minkowski spacetime, we would select trajectories
distributed uniformly in 4. An example of such a distribu-
tion of straight lines in a plane is shown in Fig. 4. Since the
total angular momentum 4 is a constant of motion and our
models of accretion in Schwarzschild spacetime assume a
uniform planar asymptotic distribution of particles, a uni-
form distribution of 1 has to be assumed for these models
as well.

3. Implementation for the planar accretion problem

Unbound trajectories confined to a plane in the
Schwarzschild spacetime can be parametrized by the energy
&, angular momentum A, the location of the intersection of
the orbit with the circle of the given radius &, (outer
boundary of the simulation region), and the sign ¢; dis-
tinguishing between the clockwise or anticlockwise direc-
tion of motion. If A =|A,| (the motion occurs in the
equatorial plane), we set €; = sgni,. We compute trajecto-
ries using a formalism based on the Biermann-Weierstrass
theorem introduced in [33]. Its main ingredient is a universal
formula for a radius in terms of the so-called true anomaly
angle y (the polar angle in the orbital plane). It reads

124057-10



MONTE CARLO METHODS FOR STATIONARY SOLUTIONS OF ...

PHYS. REV. D 108, 124057 (2023)

e/ f(&)e' (w) +

+3 ' 0)lpw) = 551" (80)] + 23 £ (&0) " (é0)
&) =&+ - e I I (86)
2[p(w) = 35.f" (o)) —@f(éo) /(&)
|

where ¢ z x
¢k:/ g <t (93)

J1 = k2 2 2

F(8) = a8 + 40,8 + 60,8 + 4azé.  (87) o V! =

d For unbound absorbed orbits, an explicitly real formula
an for X(&) is different. Let y, denote a real zero of
2 ) the polynomial 4y* — g,y — g3 = 4(y —y1) (V" + py + q),
aoz‘e/l; : 4a1:/1—2, 6a,=—1, 4a;=2. (88) where p? —4g < 0 and thus y?> + py + g > 0. We define

The Weierstrass g function has to be computed with the
following Weierstrass invariants:

1 1

= — — — 8
92 12 12 ’ ( 93)
11 2-1
o , 89b
BTS2 a2 (89b)

ie., p(y)=py;g,93), and the same applies to the
derivative ¢'(y). Here, the sign ¢, = 1 corresponds to
the radial direction of motion at the initial location &.
Taking ingoing trajectories at &,, we set €, = —1.

As another element, we need formulas for the allowed
range R,, of the true anomaly y. It is computed differently
for absorbed and scattered orbits. We define the following

function:
_ [ a¢
X@L 5 (90)

For generic unbound scattered orbits, X(£) can be
expressed as

L _ 1L

1 - Y2t
X(¢) = F | arccos u,k
Y3 =W Y2 =W
. + L
— F'| arccos u,k , (91)
Y2 =01

where y;, y,, and y; denote the roots of the polynomial
4y> = goy — g, satisfying y; <y, < y3,

Y2—2

K=
y3—21

(92)

and F(¢, k) is the Legendre elliptic integral defined by

1 =1/y}+py1 +q and

k2:%<1—y1+ﬂ7p/2>. (94)

The expression for X (&) reads

L1
1 |- —nztaE—N
X(é) ==—— |F| 2arctan | ———=———k
7 — 15 = V1
— F| 2arctan { | —2—~k | |. (95)

The calculation of the allowed range of y is now quite
simple. For unbound scattered orbits, one has

= 2[X(&peri) — X (&) (96)

where . denotes the pericenter radius. For unbound
absorbed orbits, we set

Rl// = X(Z) - X(fO)’ (97)

since & = 2 corresponds to the black hole horizon.

Note that the range R, of the angle y can be larger
than 2z, in which case the orbit circles around the black
hole. Thus, the last “technical” element in our description
is a simple function that gives the number of intersections
of a given geodesic trajectory with a radius of constant
polar angle ¢. To define such a function, one only needs
to know the range R, the polar coordinate ¢ correspond-
ing to the initial radius &,, the sign ¢;, and the polar
coordinate of the radius ¢ for which one counts the
intersections with the given geodesic. This idea is illus-
trated in Fig. 5. In this case a sample absorbed geodesic
is depicted with a blue line. Radial segments which are
intersected twice are marked with solid gray lines. Radial
segments with three intersections are marked with dashed
lines. A sample Wolfram Mathematica [26] code for such
a function is as follows (here, phi = ¢, phi0 = ¢,

range = Rv,, dir =¢)):
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NumberOfIntersections [phi , phi0 , range , dir ] := If[dir ==1,

If [phi > phio,

If [Mod[range, 2 Pi] > phi—phi0, Quotient [range, 2 Pi] +1, Quotient [range, 2 Pi]],
If [Mod[range + phi0, 2 Pi] > phi, Quotient [range + phi0O, 2 Pi],

Quotient [range + phiO, 2 Pi]1-111,
If [phi < phio,

If [Mod[range, 2 Pi] > phi0—phi, Quotient [range, 2 Pi] +1, Quotient [range, 2 Pi]],
If [Mod[phiO—range, 2 Pi] < phi, Quotient [range—phiO, 2 Pi] +1,

Quotient [range—phi0, 2 Pi]]]

Given all these elements, we select trajectories with a
given energy &y and uniformly distributed values of
0o €10,27), 2€0, Anax(€0,&p)], and the sign e; = +1.
For clarity, these parameters can be divided into two
classes: those corresponding to absorbed trajectories with
A < A.(¢) and those corresponding to scattered orbits with
A > A.(e). A plot of such trajectories, projected at a
hypersurface of constant time, is given in Fig. 6.

According to Eq. (79), the components of J, can be
computed by counting the number of intersections per
length interval at a given radius (¢ = const), with appro-
priate weights. Such intersections are illustrated in Fig. 7.
Let the set of indices I, (£}, &) number the intersections of
absorbed trajectories in the segment &; < & < &, of aradius
of constant ¢. Note that a given trajectory can contribute
more than once to the set of intersections /,(&, & )—this
can happen for spiraling orbits, similar to the one shown in
Fig. 5. An analogous set of indices referring to scattered
orbits will be denoted by I (&, &, ). The Monte Carlo

20

10

-10

-20
-20 -10 0 10 20

FIG. 4. Randomly distributed straight lines on a plane. There
are 500 lines in this picture, selected according to Eq. (82) or (83).

estimators of components Jgabs) and JES““) at (&= (& +
£)/2,¢) can be computed as

Yy — dmamii. (&) €& (i) (98a)
t - ’
Nabs(‘§2 - él ) ie[abs(f] ,52) (l)
<J(scat)> __ 4ﬂam8 [/?'max (809 50) — e (80)]
! Nscat(é:Z _51)
x £S) (98b)

i€ Iscal(§1 ~§2) l(l)

where N, and Ny, denote the number of absorbed and
scattered orbits, respectively. The estimator for J” can be
computed as

15 T — T T

10+

-15 :
-15 -10 -5 0 5 10 15

FIG. 5. Illustration of the function controlling the number of
intersections of a geodesic and a radial segment of constant ¢. A
spiraling geodesic is plotted with the blue line. It corresponds to
e = 1.1 and A = 4.7244. Radial segments of constant ¢ which are
intersected twice are depicted with solid lines. A dashed line is
used for rays intersected three times. The orange circle corre-
sponds to the black hole horizon.
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20

10

y/M
o

-10

FIG. 6. Randomly distributed monoenergetic (¢, = 1.3) geo-
desics on a plane. Angular momenta are uniformly distributed
within 4 € [0, A (€0, &)], Where & = 20. Absorbed orbits are
depicted in blue. Scattered orbits are plotted in green. There are
500 orbits in this plot.

_4mamgl. (&)

Nabs(é:Z - gl)

S
X Z %\/83 = U, E@m)-

i€ Ls(£1.62)

() =

(99)

We discretize the radial direction according to &; < & < &,
J=1... Ne—1, with § =2 and {y, = &, (the radius of
the outer boundary). Thus, strictly speaking, the values &; and
&, appearing in all our formulas should be replaced by
& =&, & — &y We will, however, keep the notation
with &; and &, referring to cell boundaries, as it is probably
more transparent. A comparison of results obtained according
to Egs. (98) and (99) with exact expressions for J, and J" is
shown in Figs. 8 and 9.

Apart from the number of trajectories, the resolution of
the method is controlled by the number of radii of constant
¢ and the size £, — &; of radial segments [&;, ;.. In the
example shown in Figs. 8 and 9, there are 120 radii of
constant ¢, distributed within the full angle, and 100
equidistant radial segments [£;,&;,] in the range 2 < £ <
&y = 20 at each radius ¢ = const. The values of (J,) can be
computed separately for each radius of constant ¢; in our
examples we additionally average the results over all radii
of constant ¢.

In a similar fashion one can compute Monte Carlo
estimators of the particle current density in the case
with the Maxwell-Jiittner asymptotic distribution. It is

20

.o

e e e ot £ =]

y/M

il

xx:f \
l\.{.\

T
o 2

i _,..

Loy cmeee e semsem o=

20
x/M
FIG. 7. Intersection points of orbits plotted in Fig. 6 and radii of
constant ¢.
8F - : , =
° e . o 5 searelly Seetotegm etets® 0y
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e
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QEE o —_— (abs) 3
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<4t
=
[
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2F
1F
5 10 15 20
3
FIG. 8. Time components of the particle surface density current

J, for the planar accretion model with monoenergetic particles. In
this case &y = 1.3 and &, = 20. Exact solutions [Egs. (45)] are
plotted with solid and dashed lines. Blue and green points depict
results of a Monte Carlo simulation [Egs. (98)]. There are 5 x 10*
orbits: 15,953 absorbed trajectories and 34,047 scattered ones.

convenient to select trajectories directly from the
Maxwell-Jiittner distribution. Again, von Neumann’s rejec-
tion method can be used. We repeat the procedure described
in Sec. IIC; however, this time four parameters
(€, 4, @o.i, €4, y;) are selected in each iteration step, and
uniform distributions are assumed for ¢, ;€ [0,27),
and ¢;; = 1.
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T T T

FIG.9. Radial component of the particle surface density current
J" for the model illustrated in Fig. 8 (planar model with
monoenergetic particles; ¢y = 1.3 and &, = 20). The exact
solution [Eq. (46)] is plotted with the solid line. Blue and green
dots show results of a Monte Carlo simulation [Eq. (99)]. The
sample of geodesic orbits is the same as in Fig. 8. There are
5x 10* orbits: 15,953 absorbed trajectories and 34,047
scattered ones.

Monte Carlo estimators of the particle current surface
density in the asymptotically Maxwell-Jiittner model can
be written as

ihe 4 3V . )% (i

(Js)y — _ A Vabs 8()5(), (100a)
Nabs(é:Z - 61) i€ Ls(£1.62) /1@

sy AmamiVn 050 (1000)

Nscat(§2 - 51) i€l (1.6) /‘L(l)

where Vs and V., are given by Eqgs. (61). The estimator
for J” can be computed as

) = — 4710tm(3)VabS
Nabs (52 - 51)
0]

8%[) - Uﬁ([) (5(1)) (101)

i€ Iabs<§l ’§2> l(l)

A comparison of these estimators and exact solutions given
by Egs. (51) is shown in Figs. 10 and 11.

IV. SPHERICALLY SYMMETRIC SOLUTIONS

A. Spherically symmetric solutions
in the Schwarzschild background

We now turn to spherically symmetric solutions. The
calculations given in this section are similar to those for
planar systems, and thus we will mostly only summarize

5 T T T

o
LIRSS P -_',_‘L'.-—.;-r"'.‘ Log’e? oume™
0200 Saguitaa o o e e e - .
e

00 _%ey’ve

4+ X 4

—Ji/ (amg)

FIG. 10. Time components of the particle surface density
current J, for the planar Maxwell-Jiittner model. In this case
P =1, equorr = 10, and &y = 20. Exact solutions [Egs. (51a) and
(51b)] are plotted with solid and dashed lines. Blue and green
dots show results of a Monte Carlo simulation [Egs. (100)]. There
are 2 x 10° sets (e, 4;, o, €5, vi), giving 10,356 absorbed and
27,056 scattered orbits.

the results. Spherically symmetric models describing sta-
tionary accretion of collisionless gas in the Schwarzschild
spacetime were derived in [10,11], in particular, assuming
the Maxwell-Jiittner distribution at infinity. In the following

—J"/ (amy)

FIG. 11. Radial component of the particle surface density
current J, for the planar accretion model with a Maxwell-Jiittner
asymptotic distribution. In this case f = 1, &, = 20, &yt = 10.
The exact solution [Eq. (51c)] is plotted with a solid line. Blue
dots show results of a Monte Carlo simulation [Eq. (101)]. The
sample of geodesic orbits is the same as in Fig. 10. There are
2 x 10° sets (e;,4;, @0 €10, ¥i)s giving 10,356 absorbed and
27,056 scattered orbits.

124057-14



MONTE CARLO METHODS FOR STATIONARY SOLUTIONS OF ...

PHYS. REV. D 108, 124057 (2023)

two subsections we give expressions for the particle current
density in the spherically symmetric stationary accretion
model with monoenergetic particles and recall expressions
derived already in [10,11] for the spherical Maxwell-
Jiittner model.

1. Monoenergetic particles

For the gas of monoenergetic particles, the one-particle
distribution function reads, in our standard setup,

F(x.p) = amo5(x/—p,4p" - mo)é(p, + Eo)
= ad(y/= P = o )8le — &),

where, as before, we only take into account future pointing
momenta. The momentum-space volume element can be
written as

(102)

32
dvol, (p) = —— e dedmdidy.  (103)
&Ve = U,(8)
where the variable y is defined as
Py = Mmlcosy, Py =Mmisin@siny  (104)

(see Ref. [10]).

Taking into account the regions in the phase space
available for the motion of absorbed and scattered particles,
one can write time components of the particle current
density as

(abs) 2ramge Ao(eo) 1dA
J E=———F"-0(g -1 S S
R N S ]
(105a)
scal 477(11’1’146‘
T = =500y ~ ()
/,lmax(f'O’é) ldﬂ,
X T (105b)
Aso) ez — U, (&)

The integrals with respect to momenta can be easily
computed, yielding

(abs) 2y _ _27[05171380 O — 1 22(g9)
T @) 7 ol )SAL.(807§) + s0(e0.8)”
(106a)
scat 4 4
JS%@=—J%?QW%—%MW
ﬂ'rznax (80’ 5) - )“c (80)2 (]06b)

55, (€0:&) + 55, (€0.6)

where

s;(e,8) =1/ = U,(&). (107)
Similarly, for 7", we find
4 2 (€9)
T7() = =2 g, 1)/ “
¢ 0

4

am
= —?06(80 — 1)2c(&). (108)

2. Asymptotic Maxwell-Jiittner distribution

Assuming the gas obeying the Maxwell-Jiittner distri-
bution asymptotically, we find the one-particle distribution
function in the form

F(x,p) = a5<\/—pﬂp" - m0> exp <%k"pﬂ>
= aé(\/w - m0> exp (—pe).

(109)

This gives the following expressions for 7, and J".

e 2ram? < o .
T () = - O/dee—/’&‘g/ P
£ ’ £-U,(6)
dmam? ,
= ﬂazmo dee Pee Ae(e) , (110a)
5 1 s/‘{p (87 é) + So (8,§>
(scat) 4ram} & Aoma (£,8) ,
jt (é:) = - 52 / dge—ﬂeg / dﬂin(é)
& —
&nin('}:) ﬁc(é‘ y)
4 5 ) i
e / deo-tep tmun (€. = Ae()?
< s, (e.8) +s,  (&.8)
gmin(é)
(110b)
2 4% o
J (&) =- ﬂazmo/dge-ﬁe/ 1A
: 0
mamy ° » )
G A (110¢)
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B. Monte Carlo simulations of spherically
symmetric solutions

Similarly to the planar case, one can perform both
Monte Carlo integration and the actual Monte Carlo
simulation of stationary spherically symmetric accretion
flows. Since Monte Carlo integration is essentially straight-
forward and does not require any new elements, we will
omit this part.

We now take

S={(r0,0):ri <r<r,0,<0<60,,0=¢y} (111)
and the surface
2={(t,r,0,0):t, <t <t),r; <r<rs,
0, <0<65,0 =g} (112)
and compute the estimators
(T = fzfj’l‘gz. (113)

The calculation is analogous to the previous one, performed
for the planar case. The expression for the particle current
density reads

(i
Tu(x) = /Za X7 = ))fSI(n)edr. (114)

The volume element on X can be written as ns = rdtdrd6.
Thus,

/2712 :%(fz =) (ra=r)(0, = 0,)(r1 +15), (115)

and

"" i) sin @
/J,,nz j; ; P00 - (116)
i=1

The values /. and [ are related: |/,| = [ cos:, where : denotes
the inclination of the orbit with respect to the equatorial
plane of the coordinate system. Thus,

(i),
‘"‘p sin @

/J,mz Pu Ty S

)COSl()

This gives the Monte Carlo estimator of 7 u in the form

(117)

ml (

1 sin 6;)
J
(Tu) = (ty —1;1)(ra — 1) (0, — 6)) Zl ) Cos ;)
B 1
M>m(ty —1,)(& — &) (0, — 6;)
Nig (1) o
int sin@;
Pu SYG) (118)
=1 A cos )
where we have assumed that r, — r; < 1, and, conse-

quently, 1 (r; + rp) » r(i)-

The easiest way of simulating spherically symmetric
flows in the Schwarzschild background uses the fact that
each trajectory is in fact a planar one. Thus, one can still
select parameters of trajectories in a single plane. In this
case, one can ignore the factors depending on 6 and the
inclination angle, and write

(T ) ! L (119)
o -n)(& - &)= Ay

The key difference with respect to the planar case is
related to the selection of geodesics. While in the planar
case we select geodesics from the distribution o d4,
the three-dimensional case requires a distribution o AdA.
To see this, one can return to a classic discussion of a
uniform random distribution of straight lines in the three-
dimensional flat space given by Kendall and Moran in [31].
They parametrize straight lines in R® by

x=az+p, (120a)

y=bz+gq, (120b)

where (x,y,z) denote Cartesian coordinates. The appro-
priate probability measure, invariant with respect to
Euclidean rotations and translations, is given by

(1 + a* + b*)"2dadbdpdq (121)

[cf. Eq. (3.50), p. 74 in [31] ]. The plane perpendicular to
the line given by Egs. (120) and passing through the origin
of the coordinate system is described by

ax+by+z=0. (122)

The unit vector normal to this plane has the coordinates

(a,b,1)
Ny, Ny, Ny) = —F————s .
( X y Z) ] + a2 + b2
Let us fix the parameters a and b. The intersection of

the line (120) with the plane (122) is specified by the
parameters p and q. The area element at the plane (122)

(123)
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defined by such intersection points and obtained by varying
the parameters p and ¢ is given by

dS = (1 + a® + b*)2dpdq (124)

(note an error in [31] in this formula). Let dQ denote the

solid angle element around the normal vector n’, obtained

by varying a and b. Kendall and Moran show that

(1+ a® + b*)2dadbdpdq = dSdQ.  (125)

Let 6 be a distance from the center of the coordinate
system to the intersection point. It is given by

2\ ,2 2\ 2
5:\/(1+b)p 2al;pq—|;(1—|—a)q. (126)
1+a”+b
Fix the parameters a and b. Let ¢ denote an angle between
the intersection of the plane (122) and the plane z = 0 and
the line joining the origin of the coordinate system and the
intersection point. We have

cosp = 127
¢ SVa* + b? (127)
One can show that
(5, ) 1
=4 . 128
a(p.q) V1 +a* + b2 (128)
Thus,
dS = 6dode, (129)

as expected [(6,¢) are standard polar coordinates in the
plane (122)]. Again, the total angular momentum A asso-
ciated with a given line is directly proportional to its
distance 6 from the center of the coordinate system. This
justifies our claim that

(1 + a® + b*)"%2dadbdpdq « AdJ. (130)
Assuming the notation from the previous section, we

write Monte Carlo estimators for the monoenergetic model
in the following form:

<j§abs)> _ Zli\jzamgic(gO)z f_() , (1313)
abs(gz - 61) ielabs('flv'fz) (l)
<j(scat)> _ 27[20””3 [ﬁmax(‘go’ 50)2 - /16 (80>2]
p =

Nscat(§2 - 5])

x ;—0 (131b)
i€ ]scat(él »62) (l>

T T T T T T T T T T T

4
0

T/ (am

FIG. 12. Time components of the particle current density 7, for
the monoenergetic spherically symmetric model with &, = 1.3
and &, = 20. Exact solutions [Eqgs. (106)] are plotted with solid
and dashed lines. Blue and green dots show results of a
Monte Carlo simulation [Egs. (131)]. We use von Neumann’s
rejection method to select appropriate distribution of the total
angular momentum. There are 5 x 10* von Neumann iteration
steps giving 2477 absorbed and 22,273 scattered trajectories.

The estimator for 7" can be computed as

22 ami.(ey)? € — Ui, (&)

(J) =
Nabs(é:z - 51) i€ 1s(&1.8r) l(l)

(132)

Here, as in the planar case, we have adapted our normali-
zation to analytic formulas (106) and (108). A comparison
of these estimators with the exact solutions is given in
Figs. 12 and 13.

In a similar fashion one can compute Monte Carlo
estimators of the particle current density in the case with
the Maxwell-Jiittner asymptotic distribution. As in the
planar case, parameters of the trajectories can be selected
from the Maxwell-Jiittner distribution, using von
Neumann'’s rejection method. Once again, we repeat the
procedure described in Sec. III C. The only difference is
that this time both angular momenta 4 and the energies ¢ are
selected from nonuniform distributions. This requires
introducing two separate auxiliary parameters (y; and z;,

say). Monte Carlo estimators of Sabs) and J 5““") can be
computed as

42 amiV &
_ T amo abs ﬁ’ (1333)

(abs)
(J7) =
Nabs(éZ - ‘51) i€ 1p(&1.62) A(i)
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T T T

o)
0

~J"/ (am,

FIG. 13. Radial component of the particle current density
J" for the monoenergetic spherically symmetric model with
ey = 1.3 and &, = 20. The exact solution [Eq. (108)] is plotted
with the solid line. Blue dots show results of a Monte Carlo
simulation [Eq. (132)]. The sample of geodesic orbits is the same
as in Fig. 12. There are 2477 absorbed trajectories.

, 4 2 4"‘/ &
<J£scat)> __ Tmamgy Vgca % (133b)

Nscat<§2 - 51) 1€ Iy (&1.62) ()

The estimator for J” reads

ArlamiV g%i) e
T =5 s 7 3
Nabs(§2_§1>i€13bs(fl752) ©
Here,
R 1 (ot 2
Vabs - E eXp(_ﬂé')/lc (8) d8, (1358')
1

Vscat :E/g“““’“ CXp(—ﬂE‘) [’Imax(&é())z _iC(E)Z]d& (135b)
1

A comparison of Monte Carlo estimators defined in this
way and exact solutions is given in Figs. 14 and 15.

Of course, one can also adhere to the original prescrip-
tion given by Eq. (118) and distribute selected trajectories
among randomly oriented orbital planes. This requires
some technical elements in the calculation but does not
change the overall results. The idea is to count (with
appropriate weights) intersections of trajectories with
meridian half-planes of a fixed spherical coordinate system.
As before, we separately count intersections falling in the
radial regions §; <& <&y, j=1,...,N: — I, with §; =
2 and £y, = &, but we also discretize with respect to ¢ and

30 Tl ]
Rt ol

e '?-.1"..‘.'-..'-1.:'-:',:0..‘.,u¢ 20y 0 vw ]

_ o T Pogees ey

E 20t ]
=
R

B jt(abs) / (amé)
10+ A
----- =i/ (am;)
| =
: 10 15 20

FIG. 14. Time components of the particle current density 7, for
the Maxwell-Jiittner spherically symmetric model with g =1,
Ecuoff = 10, and &; = 20. Exact solutions [Egs. (110a) and
(110b)] are plotted with solid and dashed lines. Blue and green
dots show results of a Monte Carlo simulation [Egs. (133)]. There
are 6 x 10% sets (e, ;. @o,. €1, vi»2i), giving 963 absorbed
trajectories and 12,804 scattered trajectories in this simulation.

~J"/ (amg)

FIG. 15. Radial component of the particle current density J"
for the Maxwell-Jiittner spherically symmetric model with § = 1,
Ecuoff = 10, and &, = 20. The exact solution [Eq. (110c)] is
plotted with the solid line. Blue dots show results of a
Monte Carlo simulation [Egs. (134)]. The sample of geodesic
orbits is the same as in Fig. 14. There are 6 x 10° sets
(€1 Ay @ois €, V- 2i), giving 963 absorbed trajectories and
12,804 scattered trajectories in this simulation.

separately count intersections occurring in different regions
9k <0< 9k+17 k= 1, ...,Ng -1, 61 =0and HN(; =r. As
before, for clarity, we keep the notation with &, &,, 6;, and
0, referring to cell boundaries.
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The Monte Carlo estimators are then computed as

oS .
(abs) 871'(1’/”()‘/abs e(i) Sin 6(’)
(7 20 S (136a)
' Nabs(gz - 51)(92 - 61) ielabs(;»/let‘)lﬁz) '1(!') COS L)
<j(scat)> _ 87‘[&"’13 ‘A/SCEII Z &) Si—n 9(0 (136b)
t = )
Nscat(‘fZ - 51)(02 a 01) i € Lca (£1.62:01.05) /1([) oS Ki)
5 .
41y e — U, (5(:‘)) sind;)
(T7) = — 27 Vs S , (136¢)

where Iabs(gl ’ 52; 91 s 62) and Iscat(‘:l ’ ‘:2; 91 s 92) collect
indices corresponding to intersections of absorbed and
scattered trajectories falling in the regions & <¢;) <&
and 61 S 9(,) S 02.

The orientation of the orbital plane can be controlled
by specifying coordinates of the normal vector. Choosing
to work with Cartesian coordinates facilitates the selec-
tion procedure—again, von Neumann’s rejection method
can be used to select normal vectors distributed uniformly
in a unit sphere. Taking into account different possible
orientations of the orbits would be important for nonspheri-
cally symmetric solutions. Examples of such solutions,
representing models of a Schwarzschild black hole

20

20

FIG. 16. Intersections of trajectories with a grid of meridional
half-planes. Blue and green dots correspond to absorbed and
scattered orbits, respectively. There are 79 absorbed orbits and
1077 scattered ones.

Navs(&2 = €1)(0: = 1) ielabs(;,éz;olﬂz)

A(i) €OS 1(;)

|

moving through the medium, are provided in [13,14].
For spherically symmetric solutions, one can average the
results not only over different values of ¢, but also over
cells [0, 6,).

For completeness, Fig. 16 shows an example of
intersections of orbits selected according to the Maxwell-
Jittner distribution with a grid of meridional half-
planes. Sample results of a Monte Carlo simulation
with a fixed coordinate system and randomly distri-
buted orbital planes of individual trajectories are shown
in Fig. 17.

40
sop [
= s - e . .
g Tetet ot ..é""'"*f-.’.."":'-}.‘q et e s e
< 20
T
—— 7 (o)
1oy e i/ (am})
of : - :
5 10 15 20

FIG. 17. Time components of the particle current density 7, for
the Maxwell-Jiittner spherically symmetric model with =1,
Eauoff = 10, and &; = 20. Exact solutions [Eqgs. (110a) and
(110b)] are plotted with solid and dashed lines. Blue and green
dots show results of a Monte Carlo simulation in which orbital
planes of individual trajectories are distributed randomly, and we
count intersections of orbits with segments of meridional half-
planes of a fixed coordinate system (as shown in Fig. 16). We use
von Neumann’s rejection method, selecting geodesic parameters
and the vector normal to the equatorial plane in a single iteration
step. There are 107 iteration steps, giving 828 absorbed and
10,979 scattered trajectories.
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V. SUMMARY

We have developed Monte Carlo techniques for solving
the general-relativistic Vlasov equation. We focused on
stationary accretion-type solutions on the Schwarzschild
background, but with appropriate adjustments, our methods
should also work in other cases, including stationary
configurations of the collisionless gas in Kerr spacetime,
as well as time-dependent solutions of initial value prob-
lems. (A possible future implementation valid for Kerr
spacetime should, in particular, recover results of the planar
model [17] as a test.)

The emphasis on stationary solutions sets our formu-
lation in contrast to particle-in-cell methods, designed to
solve initial value problems and allowing for an efficient
coupling of (plasma) particles with electromagnetic fields
(see, e.g., [19,34]). Nonspherically symmetric numerical
stationary solutions of Einstein-VIlasov equations were
obtained already in pioneering works [35,36] and more
recently in [37]. Numerical methods used in these papers
are focused on FEinstein equations; the kinetic part is
treated with relatively simple Ansdtze for the distribution
function, and it is restricted to bound orbits. In this paper
we were concerned with the kinetic part only, aiming at
constructing a possibly versatile framework. Our averag-
ing method for computing observable quantities, such as
the particle current density or the energy-momentum
tensor, is general [although one might need to adapt the
hypersurface X in Eqgs. (67) and (68) to the problem at

hand]. An appropriate selection of the sample of geodesics
can be treated as a separate issue. We have provided
examples corresponding to a homogeneous asymptotic
distribution of particles, characteristic of Bondi-type
accretion problems.

Our discussion emphasized the difference between
planar models (in which the motion of particles is confined
to a common plane) and nonplanar ones. It is especially
tricky (or subtle) for spherically symmetric spacetimes (like
the Schwarzschild spacetime), in which each of the geo-
desics belongs to a single plane.

In all examples, we have concentrated on computing the
particle current density, but other observable quantities can
be obtained in a similar fashion. A simple Monte Carlo
simulation yielding the rest-mass accretion rate in the
low-temperature limit of the Bondi-Hoyle-Lyttleton-type
models described in [13,14] was reported in [16].

Aside from a purely technical aspect of the proposed
Monte Carlo method, we hope that the cases investigated
in this paper offer insight into the geometric structure
of the general-relativistic kinetic theory and its statistical
interpretation.
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