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We develop a Monte Carlo simulation method for computing stationary solutions of the general-
relativistic Vlasov equation describing a gas of noncolliding particles. As specific examples, we select
planar or spherically symmetric accretion models on the Schwarzschild background spacetime. In all cases
the gas extends to infinity, which poses an additional difficulty in the Monte Carlo approach. We discuss
models with monoenergetic particles as well as solutions obeying the Maxwell-Jüttner distribution at
infinity. For all models, exact expressions for the particle current density are known or can be computed
analytically. We demonstrate perfect agreement between exact expressions for the particle current density
and the results of our Monte Carlo simulations.
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I. INTRODUCTION

In the general-relativistic kinetic theory of gases,
observable quantities (the particle current density, energy-
momentum tensor, energy density, pressure, etc.) are
computed as suitable integrals over momentum space
[1–9]. With sufficient control of the phase-space structure
(e.g., a good description of the regions in the phase space
available for the motion of gas particles), one can, in many
cases, compute such integrals directly, providing a solution
to the problem at hand (see, e.g., [10–18]). For complex
problems, a good description of the phase-space structure
may not be available, and one has to resort to other
methods. In this work we deal with a simple (but important)
case in which collisions between individual particles of the
gas are neglected. Since a collisionless gas consists of
particles moving along geodesic trajectories, a possible way
would be to construct a Monte Carlo simulation, in which
one would select a sample of geodesic trajectories and then
compute averages over this sample, in order to obtain
desired observables. Although this idea sounds simple, its
actual implementation poses several difficulties related to
the selection of geodesics and the averaging procedure.
Another option is to use the so-called particle-in-cell

method, which has been employed successfully in general-
relativistic simulations of kinetic systems with magnetic
fields [19–22].
In this article we present a technical implementation of a

Monte Carlo approach, designed to work with stationary
solutions. While stationary solutions seem to be natural
and even simple, they require a somewhat counterintui-
tive approach to the averaging process, as will become
clear in the remainder of this paper. In short, instead of

counting intersections of geodesic trajectories with regions
of spacelike hypersurfaces, we count intersections with
suitable timelike hypersurfaces.
For clarity, we will focus on several easy accretion-type

problems in the Schwarzschild spacetime, for which ana-
lytic solutions are available. Specifically, we will consider
stationary Bondi-type solutions, in which the gas extends to
infinity, where it is assumed to be homogeneous and at
rest [10,11,23]. Wewill work with planar models, assuming
that the gas is confined to a single plane (similarly to the
accretionmodel in theKerr spacetimedescribed in [17]), and
with spherically symmetric configurations. In the simplest
case, we restrict ourselves to monoenergetic particles, but
we also give examples in which the gas obeys the Maxwell-
Jüttner distribution at infinity [24,25].
As a supplement to this paper, we provide sample

Wolfram Mathematica [26] codes performing our simu-
lations. They will be publicly available at [27].
This paper is organized as follows. In Sec. II we

introduce our notation and define the one-particle distri-
bution function. Section III is devoted to planar models, in
which the motion of particles is confined to a common
plane. We start with an elementary model of a planar
uniform distribution of monoenergetic particles in the
Minkowski spacetime. Two planar accretion models for
the Schwarzschild spacetime are given in Sec. III B. In
Sec. III C we discuss Monte Carlo integration in the context
of these two models. This section provides a link between
the two approaches: an analytic one and an approach based
on the actual Monte Carlo simulations. It also gives us an
opportunity to discuss the selection of geodesic parameters
describing the Monte Carlo sample. Section III D introdu-
ces our Monte Carlo simulations. In Sec. IV we focus on
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spherically symmetric stationary accretion models. A short
summary is given in Sec. V.
We will work in standard gravitational units with

c ¼ G ¼ 1, where c is the speed of light and G denotes
the gravitational constant. We assume the signature of the
metric in the form ð−;þ;þ;þÞ.

II. ONE-PARTICLE DISTRIBUTION FUNCTION

In the framework of the general-relativistic kinetic
theory, the gas is described in terms of a distribution
function defined on a one-particle phase space—a subset of
the tangent or cotangent bundle of the spacetime manifold
(see, e.g., [9] for a recent introduction). In this paper we
adhere to the cotangent bundle formulation, but it is, in fact,
a matter of convention.
Let ðM; gÞ be a spacetime manifold. The cotangent

bundle of M is defined as

T�M ¼ fðx; pÞ∶x∈M;p∈T�
xMg: ð1Þ

The one-particle distribution function is a real function
defined on suitably chosen subsets U ⊆ T�M, i.e.,
F∶U → ½0;þ∞Þ. The precise mathematical definition of
F depends on a convention regarding the choice ofU. Let us
consider a gas composed of the same rest-mass particles (such
a gas is sometimes referred to as “simple” [2]).Onepossibility
is to restrict U to the future mass shell, defined as

Γþ
m ¼ fðx; pÞ∈T�M∶gμνpμpν ¼ −m2;

p is future-directedg; ð2Þ

where m denotes the rest mass of a particle. This option has
been chosen, e.g., in [9]. Another option is to transfer the
mass-shell restriction to the assumed form of F and to
demand thatF ∼ δð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−pμpμ
p

−mÞ. In this paper,wedecided
to choose the latter option, mainly to be consistent with
previous works [10,11].
Let S denote a three-dimensional spacelike hypersurface

in M, and let s be a future-directed unit vector normal to S.
We define N ½S� as an averaged number of particle
trajectories in U, whose projections on M intersect S. In
other words, N ½S� denotes the number of particles in S. It
can be shown that [cf. [9], Eqs. (94)]

N ½S� ¼ −
Z
S

�Z
Pþ
x

F ðx; pÞpμsμdvolxðpÞ
�
ηS; ð3Þ

where

Pþ
x ¼ fp∈T�

xM∶gμνpμpν < 0; p is future-directedg ð4Þ

and ηS denotes the volume element on S. The volume
element on Pþ

x is given (in local adapted coordinates) by

dvolxðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμνðxÞ

p
dp0dp1dp2dp3: ð5Þ

Equation (3) gives rise to the definition of the so-called
particle current density

J μðxÞ ¼
Z
Pþ
x

F ðx; pÞpμdvolxðpÞ: ð6Þ

With this definition one can write N ½S� as

N ½S� ¼ −
Z
S
J μsμηS: ð7Þ

The geodesic motion can be described by Hamilton’s
equations

dxμ

dτ
¼ ∂Hðx; pÞ

∂pμ
; ð8aÞ

dpν

dτ
¼ −

∂Hðx; pÞ
∂xν

; ð8bÞ

where pμ ¼ dxμ=dτ,Hðx; pÞ ¼ 1
2
gμνðxαÞpμpν ¼ − 1

2
m2. In

the absence of collisions between particles, the distribution
function F satisfies the so-called Vlasov equation, which
can be expressed as a requirement that F should remain
constant along a geodesic:

dF
dτ

¼ ∂F
∂xμ

dxμ

dτ
þ ∂F
∂pν

dpν

dτ
¼ ∂F

∂xμ
∂H
∂pμ

−
∂F
∂pν

∂H
∂xν

¼ fH;Fg ¼ 0: ð9Þ
Here f·; ·g denotes the Poisson bracket. Note, in particular,
that a probability function depending on ðx; pÞ via con-
stants of motion Iiðx; pÞ, i.e., F ¼ F ðI1ðx; pÞ;…;
Isðx; pÞÞ, where fH; Iig ¼ 0, i ¼ 1;…; s, would always
satisfy the Vlasov equation. In explicit terms, Eq. (9) can be
written as

gμνpν
∂F
∂xμ

−
1

2
pαpβ

∂gαβ

∂xμ
∂F
∂pμ

¼ 0: ð10Þ

Using Eq. (9), one can show that the particle current
density satisfies the conservation law ∇μJ μ ¼ 0, which
again justifies formula (7). The particle number density can
be defined covariantly as n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−J μJ μ
p

. Alternatively,
one can work with the components of J μ.

III. PARTICLES CONFINED TO A PLANE

We will assume a specific-to-general approach and start
with illustrative cases of the gas confined to a plane.
More specifically, we will begin with a discussion of a
uniform gas of monoenergetic particles restricted to a two-
dimensional plane in the flat Minkowski spacetime. In the
next step, we turn to a planar accretion problem in the
Schwarzschild spacetime.
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A. Flat space case

Consider a uniform gas of monoenergetic noncolliding
particles confined to a two-dimensional plane in the flat
Minkowski spacetime. The gas particles move along
straight lines. The only nonvanishing component of the
particle current density J t can be computed in two
equivalent ways. A straightforward way is to work in
Cartesian coordinates ðt; x; y; zÞ. Defining

F ðxα; pβÞ ¼ δðzÞFðt; x; y;pβÞ; ð11Þ
we obtain

J μðxαÞ ¼ δðzÞJμðt; x; yÞ; ð12Þ
where

Jμðt; x; yÞ ¼
Z

Fðt; x; y;pβÞpμdvolxðpÞ: ð13Þ

For a uniformly distributed gas of monoenergetic
particles of the same mass m0, we assume

Fðx; pÞ ¼ αm0δðpzÞδðpt þ E0Þδ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t − p2

q
−m0

�
¼ αδðpzÞδðε − ε0Þδðm −m0Þ; ð14Þ

where pt ¼ −E, E ¼ mε, E0 ¼ mε0, and α is a proportion-
ality constant. Hence,

Jt ¼ αm0

Z
δðpzÞδðpt þ E0Þ

× δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t − p2

q
−m0

�
ptdptdpxdpydpz: ð15Þ

Integrating over pt and pz is straightforward, and it gives

Jt ¼ −αm0E0

Z
δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
0 − p2

x − p2
y

q
−m0

�
dpxdpy: ð16Þ

Introducing polar momentum coordinates px ¼ ζ cosϑ,
py ¼ ζ sin ϑ, we obtain dpxdpy ¼ ζdϑdζ and

Jt ¼ −2παm0E0

Z
∞

0

δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t − ζ2

q
−m0

�
ζdζ: ð17Þ

On the other hand,

δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t −ζ2

q
−m0

�
¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
0−m2

0

p δ
�
ζ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0−m2

0

q �
; ð18Þ

and hence

Jt ¼ −2παm2
0E0 ¼ −2παm3

0ε0; ð19Þ

where E0 ¼ m0ε0.

The second calculation is based on spherical coordinates.
While these may seem to be a bad choice for the problem
with an explicit translational symmetry, this calculation
provides an illustration of some aspects related to the
selection of samples of geodesics in the Monte Carlo
simulations discussed in this paper. We define

m2 ¼ p2
t − p2

r −
1

r2
p2
θ −

1

r2sin2θ
p2
φ; ð20aÞ

E ¼ −pt; ð20bÞ

l2 ¼ p2
θ þ

1

sin2 θ
p2
φ; ð20cÞ

lz ¼ pφ ð20dÞ
and assume a convention in which l ≥ 0. Quantitiesm, E, l,
and lz are constants of motion. A straightforward calcu-
lation gives

∂ðm2;E;l2;lzÞ
∂ðpt;pr;pθ;pφÞ

¼�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−m2−

l2

r2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2−

l2z
sin2θ

s
: ð21Þ

Treatingm, E, l, and lz as new momentum coordinates, one
obtains

mldmdEdldlz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2 −

l2

r2

r

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −

l2z
sin2 θ

s
dptdprdpθdpφ: ð22Þ

Keeping the pair of coordinates ðl; lzÞ is troublesome in
making the restriction to the equatorial plane. A convenient
solution is to change ðl; lzÞ ↦ ðl; σÞ, where

sin σ ¼ lz
l
: ð23Þ

Thus, pθ ¼ 0 corresponds to σ ¼ �π=2. We have
dlz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − l2z

p
dσ. Moreover, at the equatorial plane

θ ¼ π=2, we find

mldmdEdldσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2 −

l2

r2

r
dptdprdpθdpφ; ð24Þ

and hence the volume element dvolxðpÞ can be written as

dvolxðpÞ ¼
mldmdEdldσ

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2 − l2

r2

q : ð25Þ

Similarly,

δðpzÞ ¼
r
l

�
δ

�
σ −

π

2

�
þ δ

�
σ þ π

2

��
: ð26Þ

This gives
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Fðx; pÞ ¼ αm0r
l

δðm −m0ÞδðE − E0Þ

×

�
δ

�
σ −

π

2

�
þ δ

�
σ þ π

2

��
ð27Þ

and

Jt ¼ −
4αm2

0E0

r

Z
lmax

0

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0 − l2

r2

q ; ð28Þ

where lmax ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0

p
. The additional factor 2 appear-

ing in the above formula comes from the fact that a given
set of values E,m, and l corresponds to two possible values
of the radial momentum pr ¼ �jprj [cf. Eq. (20a)]. Let us
introduce the following dimensionless quantities:

l ¼ Mm0λ; r ¼ Mξ; E0 ¼ m0ε0; ð29Þ

where M denotes a reference mass parameter. The expres-
sion for Jt can be written as

Jt ¼ −
4αm3

0ε0
ξ

Zλmax

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − 1 − λ2

ξ2

q ; ð30Þ

where λmax ¼ ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − 1

p
. The integral in Eq. (30) reads

Zλmax

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − 1 − λ2

ξ2

q ¼ πξ

2
: ð31Þ

Note that it can also be expressed as

π

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − 1

p Zλmax

0

dλ ¼ πξ

2
: ð32Þ

Thus, we finally obtain

Jt ¼ −2παm3
0ε0; ð33Þ

which coincides with Eq. (19). We will return to Eqs. (30)–
(32) in Sec. III D, discussing the selection of geodesic
parameters. For future use, note that

ns ¼ 2παm3
0ε0 ð34Þ

can be interpreted as a particle surface density of the gas.

B. Planar accretion onto a Schwarzschild black hole

As one of our test models, we consider planar stationary
accretion in the Schwarzschild spacetime. It is an

equivalent of the Bondi (or Michel)-type stationary accre-
tion of the collisionless gas occurring in the Schwarzschild
spacetime (see Refs. [10,11,23]) restricted to a plane.
Within the plane, the gas extends to infinity, and it is
assumed to be asymptotically “at rest.”Amodel of this type
for the Kerr spacetime has been analyzed in [17]. In
contrast to the Kerr case, the planar accretion model in
the Schwarzschild spacetime is relatively simple and can
serve as a pedagogical example in our discussion.
We work in standard Schwarzschild coordinates

ðt; r; θ;φÞ. The Schwarzschild metric has the well-known
form

g ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2dθ2 þ r2 sin2 θdφ2: ð35Þ

All our calculations can also be repeated using suitably
chosen horizon-penetrating Eddington-Finkelstein-type
coordinates, yielding essentially the same results. We use
the simplest Schwarzschild form of the metric to avoid
unnecessary complications.
The geodesic motion is integrable. There exist four

independent constants of motion, which, for simplicity,
we denote as

m2 ¼ −gμνpμpν; ð36aÞ

E ¼ −pt; ð36bÞ

l2 ¼ p2
θ þ

1

sin2 θ
p2
φ; ð36cÞ

lz ¼ pφ; ð36dÞ

using the symbols which have already been introduced in
the flat Minkowski case. As before, we assume l ≥ 0 and
define dimensionless quantities ξ, ε, λ, and λz:

r¼Mξ; E¼mε; lz¼Mmλz; l¼Mmλ; ð37Þ

where, this time, M refers explicitly to the Schwarzschild
mass. We will also use the momentum-space coordinate σ
(23), defined using dimensionless quantities by sin σ ¼ λz=λ.
The phase-space region available for the motion

can be controlled with almost the same expressions as
those used in the spherically symmetric model [10]. In what
follows, we will summarize the most important formulas;
details of the derivation can be found in [10]. The contra-
variant radial component of the momentum vector reads

pr ¼ �m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −UλðξÞ

q
; ð38Þ

where
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UλðξÞ ¼
�
1 −

2

ξ

��
1þ λ2

ξ2

�
ð39Þ

denotes the dimensionless effective radial potential.
The region available for the radial motion is character-

ized by the condition ε2 − UλðξÞ ≥ 0. Since UλðξÞ → 1, as
ξ → ∞, unbound orbits are characterized by the energy
ε ≥ 1. The orbits with the angular momentum λ < λcðεÞ,
where

λcðεÞ2 ¼
12

1 − 4�
3εffiffiffiffiffiffiffi
9ε2−8

p þ1

�
2

; ð40Þ

plunge into the black hole—we refer to these orbits as
absorbed ones. Unbound orbits with λ > λcðεÞ are scattered
off the centrifugal barrier. The maximum value of the
angular momentum for a scattered unbound orbit reaching
radius ξ reads

λmaxðε; ξÞ ¼ ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2

1 − 2
ξ

− 1

s
; ð41Þ

while the minimum allowed energy can be written as

εminðξÞ ¼

8>><
>>:

∞ ξ ≤ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2

ξ

��
1þ 1

ξ−3

�r
3 < ξ < 4

1 ξ ≥ 4:

ð42Þ

1. Monoenergetic particles

For a planar accretion model with monoenergetic
particles, we assume a one-particle distribution function
of the form

Fðx; pÞ ¼ αm0δð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pμpμ

p
−m0Þδðpt þ E0ÞδðpzÞ

¼ αδðm −m0Þδðε − ε0ÞδðpzÞ

¼ αξ

m0λ
δðm −m0Þδðε − ε0Þ

× ½δðσ − π=2Þ þ δðσ þ π=2Þ�: ð43Þ

One may readily verify that the above choice satisfies the
Vlasov equation (9).
The volume element in momentum space reads, in terms

of coordinates m, ε, λ, and σ,

dvolxðpÞ ¼
m3λ

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −UλðξÞ

p dmdεdλdσ: ð44Þ

The components of the particle surface current density Jμ
can now be expressed as a sum of two parts: a part
corresponding to absorbed orbits and a part corresponding

to scattered ones, i.e., Jμ ¼ JðabsÞμ þ JðscatÞμ . According
to the characterization given in the previous subsection,
one has

JðabsÞt ðξÞ ¼ −
2αm3

0

ξ

Z∞
1

dεδðε − ε0Þε
ZλcðεÞ
0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −UλðξÞ

p ¼ −
2αm3

0

ξ
ε0Θðε0 − 1Þ

Zλcðε0Þ
0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 −UλðξÞ

p ; ð45aÞ

JðscatÞt ðξÞ ¼ −
4αm3

0

ξ

Z∞
εminðξÞ

dεδðε − ε0Þε
Zλmaxðε;ξÞ

λcðεÞ

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − UλðξÞ

p

¼ −
4αm3

0

ξ
ε0Θðε0 − εminðξÞÞ

Zλmaxðε0;ξÞ

λcðε0Þ

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 −UλðξÞ

p ; ð45bÞ

where Θ denotes the Heaviside step function. The addi-

tional factor 2 in the expression for JðscatÞt is due to equal
contributions of ingoing and outgoing trajectories. The
radial component reads

JrðξÞ ¼ JrðabsÞðξÞ ¼ −
2αm3

0

ξ
Θðε0 − 1Þλcðε0Þ: ð46Þ

The radial component Jr is directly related with the rest-
mass accretion rate, which we define as (see Ref. [17])

Ṁ ¼ −2πMm0ξJr: ð47Þ

For the monoenergetic planar model the rest-mass accretion
rate reads
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Ṁ ¼ 4παMm4
0Θðε0 − 1Þλcðε0Þ: ð48Þ

As a general remark, applying to all models in this paper,
let us note that in physical applications the proportionality
constant α appearing in the expression for the distribution
function is rather hard to control. For planar models, it can
be expressed in terms of the asymptotic particle number
surface density ns, which for the gas of monoenergetic
particles is given by Eq. (34). This allows us to write
Eq. (48) as

Ṁ ¼ 2Mm0nsΘðε0 − 1Þ λcðε0Þ
ε0

: ð49Þ

For spherical models one can express the proportionality
constant α in terms of the asymptotic particle number
density [10,11]. Since in this work we focus mainly on the
Monte Carlo simulations, we will keep the proportionality
constant α for clarity in the resulting formulas.

2. Maxwell-Jüttner distribution

Assuming, instead of monoenergetic particles, that at
infinity the gas obeys a Maxwell-Jüttner distribution
restricted to a plane [24,25], we set

Fðx; pÞ ¼ αδ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−pμpμ
p

−m0

�
exp

�
β

m0

pt

�
δðpzÞ

¼ αξ

m0λ
δðm −m0Þ exp ð−βεÞ

× ½δðσ − π=2Þ þ δðσ þ π=2Þ�; ð50Þ

where β ¼ m0=ðkBTÞ, kB denotes the Boltzmann constant,
and T is the asymptotic temperature of the gas.
A calculation similar to that for the planar accretion of

monoenergetic particles yields

JðabsÞt ðξÞ ¼ −
2αm3

0

ξ

Z∞
1

ε expð−βεÞ
Z

λcðεÞ

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −UλðξÞ

p ;

ð51aÞ

JðscatÞt ðξÞ ¼ −
4αm3

0

ξ

Z∞
εminðξÞ

ε expð−βεÞ
Zλmaxðε;ξÞ

λcðεÞ

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −UλðξÞ

p ;

ð51bÞ

JrðξÞ ¼ −
2αm3

0

ξ

Z∞
1

dε expð−βεÞλcðεÞ: ð51cÞ

With a slight abuse of terminology, we will refer
to the model described in this subsection as the planar

Maxwell-Jüttner model, keeping in mind that the Maxwell-
Jüttner distribution is only assumed asymptotically.

C. Monte Carlo integration

Our first approach is to apply aMonte Carlo integration to
Eq. (45) or (51) (for a general introduction to Monte Carlo
methods see, for instance, [28]). This procedure can be
viewed as an intermediate step between analytic solutions
given in previous subsections and our final aim to construct
actual Monte Carlo simulations. We will also use it as an
illustration of the problems related to the selection of the
sample of geodesics. Consider an integral

I ¼
Z
Ω

fðxÞdx: ð52Þ

Let Xi ∈Ω, i ¼ 1;…N denote N samples chosen from the
distribution pðxÞ. The Monte Carlo estimator of I reads

hIi ¼ 1

N

XN
i¼1

fðXiÞ
pðXiÞ

: ð53Þ

For a uniform distribution, one has pðxÞ ¼ 1=V, where
V ¼ volðΩÞ is the volume of Ω, and thus

hIi ¼ V
N

XN
i¼1

fðXiÞ: ð54Þ

Consider now an integral of the form

I ¼
Z
Ω

fðxÞgðxÞdx; ð55Þ

where gðxÞ is a weight. For pðxÞ ¼ cgðxÞ, where c is a
proportionality constant, one obtains

hIi ¼ 1

N

XN
i¼1

fðXiÞgðXiÞ
pðXiÞ

¼ 1

cN

XN
i¼1

fðXiÞ: ð56Þ

Since the probability density function pðxÞ integrates to
unity, we obtain

c ¼
�Z

Ω
gðxÞdx

�
−1
: ð57Þ

Thus,

hIi ¼ 1

N

�Z
Ω

gðxÞdx
�XN

i¼1

fðXiÞ: ð58Þ

These two options yield two different approaches to
solving our problem. For monoenergetic accretion, we
would rather use a uniform-distribution integration. This
can be done as follows. Let ξ0 be the outer radius of the
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region of interest, and let λi ∈ ½0; λmaxðε0; ξ0Þ� denote
uniformly selected random angular momenta. Note that
the configuration is assumed to extend to infinity. Selecting
a finite ξ0 allows us to focus our attention on the region
2 < ξ ≤ ξ0 and to limit the range of the angular momen-
tum.1 Angular momenta λi can be divided into two
classes, with the corresponding sets of indices: Iabs ¼
fi∶0 ≤ λi < λcðε0Þg, Iscat ¼ fi∶λc < λi ≤ λmaxðε0; ξ0Þg,
with Nabs ¼ #Iabs, Nscat ¼ #Iscat, where #I denotes the
number of elements in set I. Monte Carlo estimators of

JðabsÞt and JðscatÞt in the monoenergetic planar model can be
written as

hJðabsÞt i ¼ −
2αm3

0λcðε0Þ
Nabsξ

×
X
i∈ Iabs

ε0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − ð1 − 2

ξÞð1þ
λ2i
ξ2
Þ

q ; ð59aÞ

hJðscatÞt i ¼ −
4αm3

0½λmaxðε0; ξ0Þ − λcðε0Þ�
Nscatξ

×
X
i∈ Iscat

ε0Θðξ − ξminðλi; ε0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − ð1 − 2

ξÞð1þ
λ2i
ξ2
Þ

q ; ð59bÞ

where ξminðλ; εÞ denotes the pericenter radius—the
largest zero of the polynomial ξ3½ε2 −UλðξÞ�. Sample
results obtained in this way are shown in Fig. 1, assuming
ε0 ¼ 1.3 and ξ0 ¼ 20. Monte Carlo data are plotted with
dots. Solid and dashed lines represent exact solutions. We

plot the graphs of −Jt=ðαm3
0Þ and −JðabsÞt =ðαm3

0Þ. We omit
the calculation of the Monte Carlo estimator for Jr since it
is almost trivial.
The planar Maxwell-Jüttner accretion model can serve as

an illustration for the second scheme. Selecting geodesic
parameters from the Maxwell-Jüttner distribution can be
done using von Neumann’s rejection method [29]. As
before, let us focus on the region 2 < ξ ≤ ξ0. We start by
introducing a cutoff εcutoff for the allowed energy ε.
Subsequently, we select, assuming uniform distributions,
εi ∈ ½1; εcutoff �, λi ∈ ½0; λmaxðεcutoff ; ξ0Þ�, and an auxiliary
variable yi ∈ ½0; 1�. The values of εi and λi are added to
the set of selected parameters, if yi < expð−βεiÞ= expð−βÞ
and λi < λmaxðεi; ξ0Þ, and rejected otherwise. This pro-
cedure is iterated until a sufficient number of pairs ðεi; λiÞ is
selected. As before, parameters ðεi; λiÞ are divided into
those corresponding to absorbed trajectories [λi < λcðεiÞ]
and scattered ones [λi > λcðεiÞ]. We denote, also as before,
Nabs ¼ #Iabs, Nscat ¼ #Iscat.
Monte Carlo estimators of JðabsÞt and JðscatÞt are

computed as

hJðabsÞt i ¼ −
2αm3

0Vabs

Nabsξ

×
X
i∈ Iabs

εiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2i − ð1 − 2

ξÞð1þ
λ2i
ξ2
Þ

q ; ð60aÞ

hJðscatÞt i ¼ −
4αm3

0Vscat

Nscatξ

×
X
i∈ Iscat

εiΘðξ − ξminðλi; εiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2i − ð1 − 2

ξÞð1þ
λ2i
ξ2
Þ

q ; ð60bÞ

where

Vabs ¼
Z

εcutoff

1

expð−βεÞλcðεÞdε; ð61aÞ

Vscat ¼
Z

εcutoff

1

expð−βεÞ½λmaxðε; ξ0Þ − λcðεÞ�dε: ð61bÞ

An example of the components JðabsÞt and Jt obtained in this
way for β ¼ 1, εcutoff ¼ 10, and ξ0 ¼ 20 is shown in Fig. 2.
In Fig. 2 and in what follows, to assure a fair comparison,
both analytic solutions and Monte Carlo estimators are
computed assuming the same cutoff value εcutoff for the
maximal energy.
In both cases we have introduced small adjustments in

the Monte Carlo integration procedure, which make it
similar to the actual Monte Carlo simulations discussed in
the remainder of this paper. In particular, instead of limiting
the selection of geodesic parameters used to compute

FIG. 1. Components of the particle surface density current Jt
for the monoenergetic planar model with ε0 ¼ 1.3, ξ0 ¼ 20.
Exact solutions [Eqs. (45)] are plotted with solid and dashed
lines. Dots (blue and green) represent sample results obtained by
the Monte Carlo integration [Eqs. (59)]. There are 105 angular
momentum samples: Nabs ¼ 31814, Nscat ¼ 68186.

1Accretion from a region of a finite radius is an interesting
problem on its own [15].
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hJðscatÞt i with λmaxðε; ξÞ, we use an equivalent restriction on
ξmin—the pericenter radius.

D. Monte Carlo simulations of stationary
planar problems

1. Averages

We construct our Monte Carlo simulations of stationary
flows by selecting a set of geodesic trajectories and
counting their intersections with suitably chosen surfaces,
assuming appropriate weights.
As introductory examples, consider planar problems

described in Sec. III. We aim at a Monte Carlo simulation
that would allow us to compute the components of,
say, Jμ. This poses several problems. The first one is
related to the choice of a convenient parametrization of
geodesics. The second is to select geodesics assuming
the correct probability distribution expressed in terms of
geodesic parameters. Finally, one has to design a method
of computing suitable averages over momenta. We will
start the discussion with this last problem.
The essence of our Monte Carlo simulations is an

approximation of a continuous system by a discrete one,
given by the distribution function

F ðxμ; pνÞ ¼
Z XN

i¼1

δð4Þðxμ − xμðiÞðτÞÞ

× δð4Þðpν − pðiÞ
ν ðτÞÞdτ; ð62Þ

where N denotes the number of particles with trajectories

described by coordinates xμðiÞðτÞ and momenta pðiÞ
ν ðτÞ

[cf. [5], p. 14, Eq. (A6)]. Our convention regarding the
parameter τ is that of Eq. (8), and hence Eq. (62) differs by
the factor 1=m with respect to the formula in [5]. The
particle current density J μ corresponding to this distribu-
tion can be computed as

J μðxÞ ¼
Z

F ðx; pÞpμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβðxÞ

q
dp0…dp3

¼
Z XN

i¼1

δð4Þðxα − xαðiÞðτÞÞ

× pðiÞ
μ ðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβðxÞ

q
dτ: ð63Þ

The above expression is compatible with Eq. (7), which
can be seen as follows. Let S denote a hypersurface of
constant time, and let the spacetime metric g in the vicinity
of S be expressed in the standard 3þ 1 form

g ¼ ð−α2 þ βiβ
iÞdt2 þ 2βidtdxi þ γijdxidxj; ð64Þ

where α is the lapse, βi are the components of the
shift vector, and γ denotes the metric induced on S.
Then,

N ½S� ¼ −
Z
S
J μsμηS

¼ −
Z
S
ηS

Z
dτ

XN
i¼1

δð4Þðxμ − xμðiÞðτÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gδκðxÞ

q
pν
ðiÞðτÞsν: ð65Þ

Here, sν ¼ ð−α; 0; 0; 0Þ, and ηS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det γij

p
d3x. Thus,

N ½S� ¼
Z
S
d3x

Z
dτ

XN
i¼1

δð4Þðxμ − xμðiÞðτÞÞpt
ðiÞðτÞ

¼
XN
i¼1

Z
dτδðt − tðiÞðτÞÞ

dtðiÞ
dτ

¼ N; ð66Þ

where we have used the fact that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gμν

p ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffi
det γij

p
.

Wewill estimate the value of J μ at a point x, by selecting
a (small) hypersurface region Σ (a cell), such that x∈Σ, and
computing

hJ μi ¼
R
Σ J μηΣR
Σ ηΣ

: ð67Þ

FIG. 2. Same as in Fig. 1 but for the Maxwell-Jüttner planar
accretion model with β ¼ 1, εcutoff ¼ 10, and ξ0 ¼ 20. Exact
solutions [Eqs. (51a) and (51b)] are plotted with solid and dashed
lines. Blue and green dots show results of the Monte Carlo
integration [Eqs. (60)]. The total number of randomly selected
triples ðεi; λi; yiÞ is 2 × 106, which gives Nabs ¼ 10462,
Nscat ¼ 27268.
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For planar models, we might be interested in the surface
density value

hJμi ¼
R
Σ JμηΣR
Σ ηΣ

ð68Þ

as well.
Perhaps the most natural method would be to select a

region within a hypersurface of constant time, discretize
this region into cells, and average over trajectories passing
through a given cell. The trouble with this approach is that
it is not well suited to searching for stationary solutions.
Instead, we can select a timelike hypersurface foliated by
the orbits of a stationary Killing field and count the
intersections of the geodesics with such a surface, assuming
additional weights, which we derive below.
For a planar, stationary accretion flow in the

Schwarzschild spacetime, we take a segment

S ¼ fðr; θ;φÞ∶r1 ≤ r ≤ r2; θ ¼ π=2;φ ¼ φ0g ð69Þ

and a surface

Σ ¼ fðt; r; θ;φÞ∶t1 ≤ t ≤ t2; r1 ≤ r ≤ r2;

θ ¼ π=2;φ ¼ φ0g: ð70Þ
Let Φτðxi0Þ denote the orbit of the timelike Killing vector
field ξμ ¼ ð1; 0; 0; 0Þ, passing through xi0 at τ ¼ 0, i.e.,
Φ0ðxi0Þ ¼ xi0. Then, Σ can be expressed as the image

Σ ¼ Φ½t1;t2�ðSÞ: ð71Þ

For the planar model we have

J μðxÞ ¼
Z XN

i¼1

δðθ − π=2Þδð3Þðxα − xαðiÞðτÞÞ

× pðiÞ
μ ðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβðxÞ

q
dτ; ð72Þ

where

δð3Þðxα − xαðiÞðτÞÞ ¼ δðt − tðiÞðτÞÞδðr − rðiÞðτÞÞ
× δðφ0 − φðiÞðτÞÞ: ð73Þ

Since, at the equatorial plane δðθ − π=2Þ ¼ rδðzÞ and
J μ ¼ δðzÞJμ, we obtain

JμðxÞ ¼
Z XN

i¼1

rδð3Þðxα − xαðiÞðτÞÞ

× pðiÞ
μ ðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβðxÞ

q
dτ; ð74Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gαβðxÞ

p
¼ ðr2 sin θÞ−1 ¼ 1=r2. The volume

element induced on Σ reads ηΣ ¼ dtdr. A direct calcu-
lation gives

Z
Σ
JμηΣ¼

Z
t2

t1

dt
Z

r2

r1

dr
Z

dτ
XN
i¼1

δð3Þðxα−xαðiÞðτÞÞ
pðiÞ
μ ðτÞ
r

¼
Z

dτ
XN
i¼1

δðφ0−φðiÞðτÞÞ
pðiÞ
μ ðτÞ

rðiÞðτÞ
; ð75Þ

where in the last sum we only take into account trajectories
that intersect Σ. The integral with respect to τ can be
computed by writing

δðφ0 − φðiÞðτÞÞ ¼
X
k

δðτ − τkÞ
jdφðiÞ
dτ jτ¼τk

j
; ð76Þ

where φðiÞðτkÞ ¼ φ0. The above sum runs over all inter-
sections of the ith trajectory with Σ. Note that

dφðiÞ
dτ

¼ gφφpðiÞ
φ ¼ 1

r2ðiÞ
pðiÞ
φ : ð77Þ

Thus, we finally obtain

Z
Σ
JμηΣ ¼

XNint

i¼1

pðiÞ
μ rðiÞ
lðiÞ

; ð78Þ

where Nint is the number of all intersections of trajectories
with the surface Σ (see Fig. 3). The particle current surface
density can now be approximated as

hJμi ¼
1

ðt2 − t1Þðr2 − r1Þ
XNint

i¼1

pðiÞ
μ rðiÞ
lðiÞ

¼ 1

Mmðt2 − t1Þðξ2 − ξ1Þ
XNint

i¼1

pðiÞ
μ ξðiÞ
λðiÞ

: ð79Þ

For stationary problems, the result should be independent
of the choice of t1 and t2 in a sense that the number of
trajectories that intersect Σ should be proportional to the
length t2 − t1 if the latter is sufficiently large. In practice,
we omit the factor t2 − t1 and normalize the results by the
number of trajectories taken into account. Moreover,
instead of considering full orbits in the four-dimensional
spacetime, it is sufficient to work with projections of
trajectories onto surfaces of constant time t.

2. Selecting trajectories

The setup described above brings us immediately to the
problem of selecting the appropriate distribution of geo-
desics. Let us start the discussion with a homogeneous
distribution of a gas within a plane in the Minkowski
spacetime, introduced in Sec. III A. In principle, we are
interested in an infinite distribution, but for practical
reasons, a Monte Carlo simulation has to be restricted to
a compact region in space, say, a disk of a dimensionless
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radius ξ0. The problem we are facing turns out to
be a variation of the classic Bertrand problem (or
Bertrand paradox), known from the theory of geometrical
probability [30]. Bertrand’s problem is usually formulated
as follows. On a fixed circle, one randomly selects a chord.
What is the probability that the length of this chord is
larger than the side of an equilateral triangle inscribed in
this circle? It is then shown that different methods of
selecting the chord “at random” lead to different answers
(different probabilities). One of the methods of selecting
chords is to demand that they belong to straight lines
uniformly distributed in a plane. Such a distribution has
been studied, e.g., by Kendall and Moran in [31]. In terms
of Cartesian coordinates ðx; yÞ, straight lines can be para-
metrized by

uxþ vyþ 1 ¼ 0: ð80Þ

It can be shown that the probability distribution

Fðu; vÞdudv ¼ ðu2 þ v2Þ−3
2dudv ð81Þ

is invariant under the group of Euclidean symmetries on the
plane—rotations and translations [31]. The trouble with
parameters u and v is that they are not well suited to a
description of chords within a given circle. Instead, a better
description can be provided by parametrizing the chords
(or, equivalently, straight lines in the plane) by polar
coordinates ðp; ϑÞ of the point on the chord with the
smallest distance to the center of the circle. In terms of
ðp;ϑÞ, one has

ðu2 þ v2Þ−3
2dudv ¼ dpdϑ; ð82Þ

and given that dudv ¼ pdpdϑ, we obtain

Fðp;ϑÞ ¼ p−1: ð83Þ

In the context of Bertrand’s paradox, this distribution was
already proposed by Poincaré in 1912 [32].
While in the original formulation of Bertrand’s paradox

choosing a solution may be a matter of preference,
Poincaré’s solution happens to be well suited to our
problem at hand, as the restriction to a given circle is only
technical—we are, in fact, interested in a description of a
gas of particles with trajectories distributed uniformly in a
plane. For monoenergetic particles of energy ε0, the para-
metrization in terms of the coordinate p is equivalent to the
one with the total angular momentum λ, as λ and

p ¼ Mξ ¼ Mλffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − 1

p ð84Þ

are linearly related. Let us now return to the angular
momentum distribution appearing in Eqs. (30) and (32).

Using Eq. (84), we can express Jt given by Eqs. (30)
and (32) as

Jt ¼ −
αm3

0ε0
Mξ

Z
Mξ

0

dp
Z

2π

0

dϑ: ð85Þ

To conclude, in a Monte Carlo simulation of uniformly
distributed monoenergetic particles confined to a plane in
flat Minkowski spacetime, we would select trajectories
distributed uniformly in λ. An example of such a distribu-
tion of straight lines in a plane is shown in Fig. 4. Since the
total angular momentum λ is a constant of motion and our
models of accretion in Schwarzschild spacetime assume a
uniform planar asymptotic distribution of particles, a uni-
form distribution of λ has to be assumed for these models
as well.

3. Implementation for the planar accretion problem

Unbound trajectories confined to a plane in the
Schwarzschild spacetime can be parametrized by the energy
ε, angular momentum λ, the location of the intersection of
the orbit with the circle of the given radius ξ0 (outer
boundary of the simulation region), and the sign ϵλ dis-
tinguishing between the clockwise or anticlockwise direc-
tion of motion. If λ ¼ jλzj (the motion occurs in the
equatorial plane), we set ϵλ ¼ sgnλz. We compute trajecto-
ries using a formalism based on the Biermann-Weierstrass
theorem introduced in [33]. Its main ingredient is a universal
formula for a radius in terms of the so-called true anomaly
angle ψ (the polar angle in the orbital plane). It reads

FIG. 3. Illustration of intersections of the ith trajectory with the
surface Σ, as defined in Eq. (70). In this example, the number of
intersections Nint ¼ 3 [see Eq. (78)].
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ξðψÞ ¼ ξ0 þ
−ϵr

ffiffiffiffiffiffiffiffiffiffiffi
fðξ0Þ

p
℘0ðψÞ þ 1

2
f0ðξ0Þ½℘ðψÞ − 1

24
f00ðξ0Þ� þ 1

24
fðξ0Þf000ðξ0Þ

2½℘ðψÞ − 1
24
f00ðξ0Þ�2 − 1

48
fðξ0Þfð4Þðξ0Þ

; ð86Þ

where

fðξÞ ¼ a0ξ4 þ 4a1ξ3 þ 6a2ξ2 þ 4a3ξ; ð87Þ

and

a0¼
ε2−1

λ2
; 4a1¼

2

λ2
; 6a2¼−1; 4a3¼2: ð88Þ

The Weierstrass ℘ function has to be computed with the
following Weierstrass invariants:

g2 ¼
1

12
−

1

λ2
; ð89aÞ

g3 ¼
1

63
−

1

12λ2
−
ε2 − 1

4λ2
; ð89bÞ

i.e., ℘ðψÞ ¼ ℘ðψ ; g2; g3Þ, and the same applies to the
derivative ℘0ðψÞ. Here, the sign ϵr ¼ �1 corresponds to
the radial direction of motion at the initial location ξ0.
Taking ingoing trajectories at ξ0, we set ϵr ¼ −1.
As another element, we need formulas for the allowed

range Rψ of the true anomaly ψ. It is computed differently
for absorbed and scattered orbits. We define the following
function:

XðξÞ ¼
Z

∞

ξ

dξ0ffiffiffiffiffiffiffiffiffiffi
fðξ0Þp : ð90Þ

For generic unbound scattered orbits, XðξÞ can be
expressed as

XðξÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 − y1

p

2
64F̃

0
B@arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

12
− 1

2ξ

y2 − y1

s
; k

1
CA

− F̃

0
B@arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

12

y2 − y1

s
; k

1
CA
3
75; ð91Þ

where y1, y2, and y3 denote the roots of the polynomial
4y3 − g2y − g3, satisfying y1 < y2 < y3,

k2 ¼ y2 − y1
y3 − y1

; ð92Þ

and F̃ðϕ; kÞ is the Legendre elliptic integral defined by

F̃ðϕ; kÞ ¼
Zϕ
0

dχffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2χ

p ; −
π

2
< ϕ <

π

2
: ð93Þ

For unbound absorbed orbits, an explicitly real formula
for Xðξ0Þ is different. Let y1 denote a real zero of
the polynomial 4y3 − g2y − g3 ¼ 4ðy − y1Þðy2 þ pyþ qÞ,
where p2 − 4q < 0 and thus y2 þ pyþ q > 0. We define
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ py1 þ q

p
and

k2 ¼ 1

2

�
1 −

y1 þ p=2
μ

�
: ð94Þ

The expression for XðξÞ reads

XðξÞ ¼ 1

2
ffiffiffi
μ

p

2
64F̃

0
B@2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

12
þ 1

2ξ − y1
μ

s
; k

1
CA

− F̃

0
B@2 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

12
− y1
μ

s
; k

1
CA
3
75: ð95Þ

The calculation of the allowed range of ψ is now quite
simple. For unbound scattered orbits, one has

Rψ ¼ 2½XðξperiÞ − Xðξ0Þ�; ð96Þ
where ξperi denotes the pericenter radius. For unbound
absorbed orbits, we set

Rψ ¼ Xð2Þ − Xðξ0Þ; ð97Þ
since ξ ¼ 2 corresponds to the black hole horizon.
Note that the range Rψ of the angle ψ can be larger

than 2π, in which case the orbit circles around the black
hole. Thus, the last “technical” element in our description
is a simple function that gives the number of intersections
of a given geodesic trajectory with a radius of constant
polar angle φ. To define such a function, one only needs
to know the range Rψ , the polar coordinate φ0 correspond-
ing to the initial radius ξ0, the sign ϵλ, and the polar
coordinate of the radius φ for which one counts the
intersections with the given geodesic. This idea is illus-
trated in Fig. 5. In this case a sample absorbed geodesic
is depicted with a blue line. Radial segments which are
intersected twice are marked with solid gray lines. Radial
segments with three intersections are marked with dashed
lines. A sample Wolfram Mathematica [26] code for such
a function is as follows (here, phi ¼ φ, phi0 ¼ φ0,
range ¼ Rψ , dir ¼ ϵλ):
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NumberOfIntersections[phi_, phi0_, range_, dir_] := If[dir == 1,
If[phi > phi0,
If[Mod[range, 2 Pi] > phi—phi0, Quotient[range, 2 Pi] +1, Quotient[range, 2 Pi]],
If[Mod[range + phi0, 2 Pi] > phi, Quotient[range + phi0, 2 Pi],
Quotient[range + phi0, 2 Pi]—1]],

If[phi < phi0,
If[Mod[range, 2 Pi] > phi0—phi, Quotient[range, 2 Pi] +1, Quotient[range, 2 Pi]],
If[Mod[phi0—range, 2 Pi] < phi, Quotient[range—phi0, 2 Pi] +1,
Quotient[range—phi0, 2 Pi]]]

]

Given all these elements, we select trajectories with a
given energy ε0 and uniformly distributed values of
φ0 ∈ ½0; 2πÞ, λ∈ ½0; λmaxðε0; ξ0Þ�, and the sign ϵλ ¼ �1.
For clarity, these parameters can be divided into two
classes: those corresponding to absorbed trajectories with
λ < λcðεÞ and those corresponding to scattered orbits with
λ > λcðεÞ. A plot of such trajectories, projected at a
hypersurface of constant time, is given in Fig. 6.
According to Eq. (79), the components of Jμ can be

computed by counting the number of intersections per
length interval at a given radius (φ ¼ const), with appro-
priate weights. Such intersections are illustrated in Fig. 7.
Let the set of indices Iabsðξ1; ξ2Þ number the intersections of
absorbed trajectories in the segment ξ1 ≤ ξ ≤ ξ2 of a radius
of constant φ. Note that a given trajectory can contribute
more than once to the set of intersections Iabsðξ1; ξ2Þ—this
can happen for spiraling orbits, similar to the one shown in
Fig. 5. An analogous set of indices referring to scattered
orbits will be denoted by Iscatðξ1; ξ2Þ. The Monte Carlo

estimators of components JðabsÞt and JðscatÞt at ðξ ¼ ðξ1 þ
ξ2Þ=2;φÞ can be computed as

hJðabsÞt i ¼ −
4παm3

0λcðε0Þ
Nabsðξ2 − ξ1Þ

X
i∈ Iabsðξ1;ξ2Þ

ε0ξðiÞ
λðiÞ

; ð98aÞ

hJðscatÞt i ¼ −
4παm3

0½λmaxðε0; ξ0Þ − λcðε0Þ�
Nscatðξ2 − ξ1Þ

×
X

i∈ Iscatðξ1;ξ2Þ

ε0ξðiÞ
λðiÞ

; ð98bÞ

where Nabs and Nscat denote the number of absorbed and
scattered orbits, respectively. The estimator for Jr can be
computed as

FIG. 5. Illustration of the function controlling the number of
intersections of a geodesic and a radial segment of constant φ. A
spiraling geodesic is plotted with the blue line. It corresponds to
ε ¼ 1.1 and λ ¼ 4.7244. Radial segments of constant φwhich are
intersected twice are depicted with solid lines. A dashed line is
used for rays intersected three times. The orange circle corre-
sponds to the black hole horizon.

FIG. 4. Randomly distributed straight lines on a plane. There
are 500 lines in this picture, selected according to Eq. (82) or (83).
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hJri ¼ −
4παm3

0λcðε0Þ
Nabsðξ2 − ξ1Þ

×
X

i∈ Iabsðξ1;ξ2Þ

ξðiÞ
λðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 −UλðiÞ ðξðiÞÞ

q
: ð99Þ

Wediscretize the radial direction according to ξj < ξ < ξjþ1,
j ¼ 1;…; Nξ − 1, with ξ1 ¼ 2 and ξNξ

¼ ξ0 (the radius of
the outer boundary). Thus, strictly speaking, the values ξ1 and
ξ2 appearing in all our formulas should be replaced by
ξ1 → ξj, ξ2 → ξjþ1. We will, however, keep the notation
with ξ1 and ξ2 referring to cell boundaries, as it is probably
more transparent. A comparison of results obtained according
to Eqs. (98) and (99) with exact expressions for Jt and Jr is
shown in Figs. 8 and 9.
Apart from the number of trajectories, the resolution of

the method is controlled by the number of radii of constant
φ and the size ξjþ1 − ξj of radial segments ½ξj; ξjþ1�. In the
example shown in Figs. 8 and 9, there are 120 radii of
constant φ, distributed within the full angle, and 100
equidistant radial segments ½ξj; ξjþ1� in the range 2 < ξ ≤
ξ0 ¼ 20 at each radius φ ¼ const. The values of hJμi can be
computed separately for each radius of constant φ; in our
examples we additionally average the results over all radii
of constant φ.
In a similar fashion one can compute Monte Carlo

estimators of the particle current density in the case
with the Maxwell-Jüttner asymptotic distribution. It is

convenient to select trajectories directly from the
Maxwell-Jüttner distribution. Again, von Neumann’s rejec-
tion method can be used. We repeat the procedure described
in Sec. III C; however, this time four parameters
ðεi; λi;φ0;i; ϵλ;i; yiÞ are selected in each iteration step, and
uniform distributions are assumed for φ0;i ∈ ½0; 2πÞ,
and ϵλ;i ¼ �1.

FIG. 7. Intersection points of orbits plotted in Fig. 6 and radii of
constant φ.

FIG. 8. Time components of the particle surface density current
Jt for the planar accretion model with monoenergetic particles. In
this case ε0 ¼ 1.3 and ξ0 ¼ 20. Exact solutions [Eqs. (45)] are
plotted with solid and dashed lines. Blue and green points depict
results of a Monte Carlo simulation [Eqs. (98)]. There are 5 × 104

orbits: 15,953 absorbed trajectories and 34,047 scattered ones.

FIG. 6. Randomly distributed monoenergetic (ε0 ¼ 1.3) geo-
desics on a plane. Angular momenta are uniformly distributed
within λ∈ ½0; λmaxðε0; ξ0Þ�, where ξ0 ¼ 20. Absorbed orbits are
depicted in blue. Scattered orbits are plotted in green. There are
500 orbits in this plot.
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Monte Carlo estimators of the particle current surface
density in the asymptotically Maxwell-Jüttner model can
be written as

hJðabsÞt i ¼ −
4παm3

0Vabs

Nabsðξ2 − ξ1Þ
X

i∈ Iabsðξ1;ξ2Þ

εðiÞξðiÞ
λðiÞ

; ð100aÞ

hJðscatÞt i ¼ −
4παm3

0Vscat

Nscatðξ2 − ξ1Þ
X

i∈ Iscatðξ1;ξ2Þ

εðiÞξðiÞ
λðiÞ

; ð100bÞ

where Vabs and Vscat are given by Eqs. (61). The estimator
for Jr can be computed as

hJri ¼ −
4παm3

0Vabs

Nabsðξ2 − ξ1Þ

×
X

i∈ Iabsðξ1;ξ2Þ

ξðiÞ
λðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðiÞ −UλðiÞ ðξðiÞÞ

q
: ð101Þ

A comparison of these estimators and exact solutions given
by Eqs. (51) is shown in Figs. 10 and 11.

IV. SPHERICALLY SYMMETRIC SOLUTIONS

A. Spherically symmetric solutions
in the Schwarzschild background

We now turn to spherically symmetric solutions. The
calculations given in this section are similar to those for
planar systems, and thus we will mostly only summarize

the results. Spherically symmetric models describing sta-
tionary accretion of collisionless gas in the Schwarzschild
spacetime were derived in [10,11], in particular, assuming
the Maxwell-Jüttner distribution at infinity. In the following

FIG. 9. Radial component of the particle surface density current
Jr for the model illustrated in Fig. 8 (planar model with
monoenergetic particles; ε0 ¼ 1.3 and ξ0 ¼ 20). The exact
solution [Eq. (46)] is plotted with the solid line. Blue and green
dots show results of a Monte Carlo simulation [Eq. (99)]. The
sample of geodesic orbits is the same as in Fig. 8. There are
5 × 104 orbits: 15,953 absorbed trajectories and 34,047
scattered ones.

FIG. 10. Time components of the particle surface density
current Jt for the planar Maxwell-Jüttner model. In this case
β ¼ 1, εcutoff ¼ 10, and ξ0 ¼ 20. Exact solutions [Eqs. (51a) and
(51b)] are plotted with solid and dashed lines. Blue and green
dots show results of a Monte Carlo simulation [Eqs. (100)]. There
are 2 × 106 sets ðεi; λi;φ0;i; ϵλ;i; yiÞ, giving 10,356 absorbed and
27,056 scattered orbits.

FIG. 11. Radial component of the particle surface density
current Jr for the planar accretion model with a Maxwell-Jüttner
asymptotic distribution. In this case β ¼ 1, ξ0 ¼ 20, εcutoff ¼ 10.
The exact solution [Eq. (51c)] is plotted with a solid line. Blue
dots show results of a Monte Carlo simulation [Eq. (101)]. The
sample of geodesic orbits is the same as in Fig. 10. There are
2 × 106 sets ðεi; λi;φ0;i; ϵλ;i; yiÞ, giving 10,356 absorbed and
27,056 scattered orbits.
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two subsections we give expressions for the particle current
density in the spherically symmetric stationary accretion
model with monoenergetic particles and recall expressions
derived already in [10,11] for the spherical Maxwell-
Jüttner model.

1. Monoenergetic particles

For the gas of monoenergetic particles, the one-particle
distribution function reads, in our standard setup,

F ðx; pÞ ¼ αm0δ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−pμpμ
p

−m0

�
δðpt þ E0Þ

¼ αδ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−pμpμ
p

−m0

�
δðε − ε0Þ; ð102Þ

where, as before, we only take into account future pointing
momenta. The momentum-space volume element can be
written as

dvolxðpÞ ¼
m3λ

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 −UλðξÞ

p dεdmdλdχ; ð103Þ

where the variable χ is defined as

pθ ¼ Mmλ cos χ; pφ ¼ Mmλ sin θ sin χ ð104Þ

(see Ref. [10]).
Taking into account the regions in the phase space

available for the motion of absorbed and scattered particles,
one can write time components of the particle current
density as

J ðabsÞ
t ðξÞ ¼ −

2παm4
0ε0

ξ2
Θðε0 − 1Þ

Z
λcðε0Þ

0

λdλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 −UλðξÞ

p ;

ð105aÞ

J ðscatÞ
t ðξÞ ¼ −

4παm4
0ε0

ξ2
Θðε0 − εminðξÞÞ

×
Z

λmaxðε0;ξÞ

λcðε0Þ

λdλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 − UλðξÞ

p : ð105bÞ

The integrals with respect to momenta can be easily
computed, yielding

J ðabsÞ
t ðξÞ ¼ −

2παm4
0ε0

ξ2
Θðε0 − 1Þ λ2cðε0Þ

sλcðε0; ξÞ þ s0ðε0; ξÞ
;

ð106aÞ

J ðscatÞ
t ðξÞ ¼ −

4παm4
0ε0

ξ2
Θðε0 − εminðξÞÞ

×
λ2maxðε0; ξÞ − λcðε0Þ2
sλcðε0; ξÞ þ sλmax

ðε0; ξÞ
; ð106bÞ

where

sλðε; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − UλðξÞ

q
: ð107Þ

Similarly, for J r, we find

J rðξÞ ¼ −
2παm4

0

ξ2
Θðε0 − 1Þ

Z
λcðε0Þ

0

λdλ

¼ −
παm4

0

ξ2
Θðε0 − 1Þλcðε0Þ2: ð108Þ

2. Asymptotic Maxwell-Jüttner distribution

Assuming the gas obeying the Maxwell-Jüttner distri-
bution asymptotically, we find the one-particle distribution
function in the form

F ðx; pÞ ¼ αδ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−pμpμ
p

−m0

�
exp

�
β

m
kμpμ

�

¼ αδ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−pμpμ
p

−m0

�
exp ð−βεÞ: ð109Þ

This gives the following expressions for J t and J r.

J ðabsÞ
t ðξÞ¼−

2παm4
0

ξ2

Z∞
1

dεe−βεε
Z

λcðεÞ

0

dλ
λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2−UλðξÞ
p

¼−
2παm4

0

ξ2

Z∞
1

dεe−βεε
λcðεÞ2

sλcðε;ξÞþs0ðε;ξÞ
; ð110aÞ

J ðscatÞ
t ðξÞ ¼ −

4παm4
0

ξ2

Z∞
εminðξÞ

dεe−βεε
Zλmaxðε;ξÞ

λcðεÞ

dλ
λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 −UλðξÞ
p

¼ −
4παm4

0

ξ2

Z∞
εminðξÞ

dεe−βεε
λmaxðε; ξÞ2 − λcðεÞ2
sλcðε; ξÞ þ sλmax

ðε; ξÞ ;

ð110bÞ

J rðξÞ ¼ −
2παm4

0

ξ2

Z∞
1

dεe−βε
Z

λcðεÞ

0

dλλ

¼ −
παm4

0

ξ2

Z∞
1

dεe−βελcðεÞ2: ð110cÞ
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B. Monte Carlo simulations of spherically
symmetric solutions

Similarly to the planar case, one can perform both
Monte Carlo integration and the actual Monte Carlo
simulation of stationary spherically symmetric accretion
flows. Since Monte Carlo integration is essentially straight-
forward and does not require any new elements, we will
omit this part.
We now take

S ¼ fðr; θ;φÞ∶r1 ≤ r ≤ r2; θ1 ≤ θ ≤ θ2;φ ¼ φ0g ð111Þ

and the surface

Σ ¼ fðt; r; θ;φÞ∶t1 ≤ t ≤ t2; r1 ≤ r ≤ r2;

θ1 ≤ θ ≤ θ2;φ ¼ φ0g ð112Þ

and compute the estimators

hJ μi ¼
R
Σ J μηΣR
Σ ηΣ

: ð113Þ

The calculation is analogous to the previous one, performed
for the planar case. The expression for the particle current
density reads

J μðxÞ ¼
Z XN

i¼1

δð4Þðxα − xαðiÞðτÞÞ
pðiÞ
μ ðτÞ

r2 sin θ
dτ: ð114Þ

The volume element on Σ can be written as ηΣ ¼ rdtdrdθ.
Thus,

Z
Σ
ηΣ ¼ 1

2
ðt2 − t1Þðr2 − r1Þðθ2 − θ1Þðr1 þ r2Þ; ð115Þ

and

Z
Σ
J μηΣ ¼

XNint

i¼1

pðiÞ
μ rðiÞ sin θðiÞ

jlðiÞz j
: ð116Þ

The values lz and l are related: jlzj ¼ l cos ι, where ι denotes
the inclination of the orbit with respect to the equatorial
plane of the coordinate system. Thus,

Z
Σ
J μηΣ ¼

XNint

i¼1

pðiÞ
μ rðiÞ sin θðiÞ
lðiÞ cos ιðiÞ

: ð117Þ

This gives the Monte Carlo estimator of J μ in the form

hJ μi ¼
1

ðt2 − t1Þðr2 − r1Þðθ2 − θ1Þ
XNint

i¼1

pðiÞ
μ sin θðiÞ
lðiÞ cos ιðiÞ

¼ 1

M2mðt2 − t1Þðξ2 − ξ1Þðθ2 − θ1Þ

×
XNint

i¼1

pðiÞ
μ sin θðiÞ

λðiÞ cos ιðiÞ
ð118Þ

where we have assumed that r2 − r1 ≪ 1, and, conse-
quently, 1

2
ðr1 þ r2Þ ≈ rðiÞ.

The easiest way of simulating spherically symmetric
flows in the Schwarzschild background uses the fact that
each trajectory is in fact a planar one. Thus, one can still
select parameters of trajectories in a single plane. In this
case, one can ignore the factors depending on θ and the
inclination angle, and write

hJ μi ∝
1

ðt2 − t1Þðξ2 − ξ1Þ
XNint

i¼1

pðiÞ
μ

λðiÞ
: ð119Þ

The key difference with respect to the planar case is
related to the selection of geodesics. While in the planar
case we select geodesics from the distribution ∝ dλ,
the three-dimensional case requires a distribution ∝ λdλ.
To see this, one can return to a classic discussion of a
uniform random distribution of straight lines in the three-
dimensional flat space given by Kendall and Moran in [31].
They parametrize straight lines in R3 by

x ¼ azþ p; ð120aÞ

y ¼ bzþ q; ð120bÞ

where ðx; y; zÞ denote Cartesian coordinates. The appro-
priate probability measure, invariant with respect to
Euclidean rotations and translations, is given by

ð1þ a2 þ b2Þ−2dadbdpdq ð121Þ

[cf. Eq. (3.50), p. 74 in [31] ]. The plane perpendicular to
the line given by Eqs. (120) and passing through the origin
of the coordinate system is described by

axþ byþ z ¼ 0: ð122Þ

The unit vector normal to this plane has the coordinates

ðnx; ny; nzÞ ¼
ða; b; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 þ b2

p : ð123Þ

Let us fix the parameters a and b. The intersection of
the line (120) with the plane (122) is specified by the
parameters p and q. The area element at the plane (122)
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defined by such intersection points and obtained by varying
the parameters p and q is given by

dS ¼ ð1þ a2 þ b2Þ−1
2dpdq ð124Þ

(note an error in [31] in this formula). Let dΩ denote the
solid angle element around the normal vector ni, obtained
by varying a and b. Kendall and Moran show that

ð1þ a2 þ b2Þ−2dadbdpdq ¼ dSdΩ: ð125Þ

Let δ be a distance from the center of the coordinate
system to the intersection point. It is given by

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ b2Þp2 − 2abpqþ ð1þ a2Þq2

1þ a2 þ b2

s
: ð126Þ

Fix the parameters a and b. Let ϕ denote an angle between
the intersection of the plane (122) and the plane z ¼ 0 and
the line joining the origin of the coordinate system and the
intersection point. We have

cosϕ ¼ aq − bp

δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p : ð127Þ

One can show that

∂ðδ;ϕÞ
∂ðp; qÞ ¼ � 1

δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 þ b2

p : ð128Þ

Thus,

dS ¼ δdδdϕ; ð129Þ

as expected [ðδ;ϕÞ are standard polar coordinates in the
plane (122)]. Again, the total angular momentum λ asso-
ciated with a given line is directly proportional to its
distance δ from the center of the coordinate system. This
justifies our claim that

ð1þ a2 þ b2Þ−2dadbdpdq ∝ λdλ: ð130Þ

Assuming the notation from the previous section, we
write Monte Carlo estimators for the monoenergetic model
in the following form:

hJ ðabsÞ
t i ¼ −

2π2αm4
0λcðε0Þ2

Nabsðξ2 − ξ1Þ
X

i∈ Iabsðξ1;ξ2Þ

ε0
λðiÞ

; ð131aÞ

hJ ðscatÞ
t i ¼ −

2π2αm4
0½λmaxðε0; ξ0Þ2 − λcðε0Þ2�
Nscatðξ2 − ξ1Þ

×
X

i∈ Iscatðξ1;ξ2Þ

ε0
λðiÞ

: ð131bÞ

The estimator for J r can be computed as

hJ ri ¼ −
2π2αm4

0λcðε0Þ2
Nabsðξ2 − ξ1Þ

X
i∈ Iabsðξ1;ξ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 −UλðiÞ ðξðiÞÞ

q
λðiÞ

:

ð132Þ

Here, as in the planar case, we have adapted our normali-
zation to analytic formulas (106) and (108). A comparison
of these estimators with the exact solutions is given in
Figs. 12 and 13.
In a similar fashion one can compute Monte Carlo

estimators of the particle current density in the case with
the Maxwell-Jüttner asymptotic distribution. As in the
planar case, parameters of the trajectories can be selected
from the Maxwell-Jüttner distribution, using von
Neumann’s rejection method. Once again, we repeat the
procedure described in Sec. III C. The only difference is
that this time both angular momenta λ and the energies ε are
selected from nonuniform distributions. This requires
introducing two separate auxiliary parameters (yi and zi,

say). Monte Carlo estimators of J ðabsÞ
t and J ðscatÞ

t can be
computed as

hJ ðabsÞ
t i ¼ −

4π2αm4
0V̂abs

Nabsðξ2 − ξ1Þ
X

i∈ Iabsðξ1;ξ2Þ

εðiÞ
λðiÞ

; ð133aÞ

FIG. 12. Time components of the particle current density J t for
the monoenergetic spherically symmetric model with ε0 ¼ 1.3
and ξ0 ¼ 20. Exact solutions [Eqs. (106)] are plotted with solid
and dashed lines. Blue and green dots show results of a
Monte Carlo simulation [Eqs. (131)]. We use von Neumann’s
rejection method to select appropriate distribution of the total
angular momentum. There are 5 × 104 von Neumann iteration
steps giving 2477 absorbed and 22,273 scattered trajectories.
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hJ ðscatÞ
t i ¼ −

4π2αm4
0V̂scat

Nscatðξ2 − ξ1Þ
X

i∈ Iscatðξ1;ξ2Þ

εðiÞ
λðiÞ

: ð133bÞ

The estimator for J r reads

hJ ri¼−
4π2αm4

0V̂abs

Nabsðξ2−ξ1Þ
X

i∈Iabsðξ1;ξ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðiÞ−UλðiÞ ðξðiÞÞ

q
λðiÞ

: ð134Þ

Here,

V̂abs ¼
1

2

Z
εcutoff

1

expð−βεÞλcðεÞ2dε; ð135aÞ

V̂scat¼
1

2

Z
εcutoff

1

expð−βεÞ½λmaxðε;ξ0Þ2−λcðεÞ2�dε: ð135bÞ

A comparison of Monte Carlo estimators defined in this
way and exact solutions is given in Figs. 14 and 15.
Of course, one can also adhere to the original prescrip-

tion given by Eq. (118) and distribute selected trajectories
among randomly oriented orbital planes. This requires
some technical elements in the calculation but does not
change the overall results. The idea is to count (with
appropriate weights) intersections of trajectories with
meridian half-planes of a fixed spherical coordinate system.
As before, we separately count intersections falling in the
radial regions ξj < ξ < ξjþ1, j ¼ 1;…; Nξ − 1, with ξ1 ¼
2 and ξNξ

¼ ξ0, but we also discretize with respect to θ and

separately count intersections occurring in different regions
θk < θ < θkþ1, k ¼ 1;…; Nθ − 1, θ1 ¼ 0 and θNθ

¼ π. As
before, for clarity, we keep the notation with ξ1, ξ2, θ1, and
θ2 referring to cell boundaries.

FIG. 14. Time components of the particle current density J t for
the Maxwell-Jüttner spherically symmetric model with β ¼ 1,
εcutoff ¼ 10, and ξ0 ¼ 20. Exact solutions [Eqs. (110a) and
(110b)] are plotted with solid and dashed lines. Blue and green
dots show results of a Monte Carlo simulation [Eqs. (133)]. There
are 6 × 106 sets ðεi; λi;φ0;i; ϵλ;i; yi; ziÞ, giving 963 absorbed
trajectories and 12,804 scattered trajectories in this simulation.

FIG. 13. Radial component of the particle current density
J r for the monoenergetic spherically symmetric model with
ε0 ¼ 1.3 and ξ0 ¼ 20. The exact solution [Eq. (108)] is plotted
with the solid line. Blue dots show results of a Monte Carlo
simulation [Eq. (132)]. The sample of geodesic orbits is the same
as in Fig. 12. There are 2477 absorbed trajectories.

FIG. 15. Radial component of the particle current density J r

for the Maxwell-Jüttner spherically symmetric model with β ¼ 1,
εcutoff ¼ 10, and ξ0 ¼ 20. The exact solution [Eq. (110c)] is
plotted with the solid line. Blue dots show results of a
Monte Carlo simulation [Eqs. (134)]. The sample of geodesic
orbits is the same as in Fig. 14. There are 6 × 106 sets
ðεi; λi;φ0;i; ϵλ;i; yi; ziÞ, giving 963 absorbed trajectories and
12,804 scattered trajectories in this simulation.
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The Monte Carlo estimators are then computed as

hJ ðabsÞ
t i ¼ −

8παm4
0V̂abs

Nabsðξ2 − ξ1Þðθ2 − θ1Þ
X

i∈ Iabsðξ1;ξ2;θ1;θ2Þ

εðiÞ sin θðiÞ
λðiÞ cos ιðiÞ

; ð136aÞ

hJ ðscatÞ
t i ¼ −

8παm4
0V̂scat

Nscatðξ2 − ξ1Þðθ2 − θ1Þ
X

i∈ Iscatðξ1;ξ2;θ1;θ2Þ

εðiÞ sin θðiÞ
λðiÞ cos ιðiÞ

; ð136bÞ

hJ ri ¼ −
8παm4

0V̂abs

Nabsðξ2 − ξ1Þðθ2 − θ1Þ
X

i∈ Iabsðξ1;ξ2;θ1;θ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðiÞ −UλðiÞ ðξðiÞÞ

q
sin θðiÞ

λðiÞ cos ιðiÞ
; ð136cÞ

where Iabsðξ1; ξ2; θ1; θ2Þ and Iscatðξ1; ξ2; θ1; θ2Þ collect
indices corresponding to intersections of absorbed and
scattered trajectories falling in the regions ξ1 ≤ ξðiÞ ≤ ξ2
and θ1 ≤ θðiÞ ≤ θ2.
The orientation of the orbital plane can be controlled

by specifying coordinates of the normal vector. Choosing
to work with Cartesian coordinates facilitates the selec-
tion procedure—again, von Neumann’s rejection method
can be used to select normal vectors distributed uniformly
in a unit sphere. Taking into account different possible
orientations of the orbits would be important for nonspheri-
cally symmetric solutions. Examples of such solutions,
representing models of a Schwarzschild black hole

moving through the medium, are provided in [13,14].
For spherically symmetric solutions, one can average the
results not only over different values of φ0, but also over
cells ½θ1; θ2�.
For completeness, Fig. 16 shows an example of

intersections of orbits selected according to the Maxwell-
Jüttner distribution with a grid of meridional half-
planes. Sample results of a Monte Carlo simulation
with a fixed coordinate system and randomly distri-
buted orbital planes of individual trajectories are shown
in Fig. 17.

FIG. 16. Intersections of trajectories with a grid of meridional
half-planes. Blue and green dots correspond to absorbed and
scattered orbits, respectively. There are 79 absorbed orbits and
1077 scattered ones.

FIG. 17. Time components of the particle current density J t for
the Maxwell-Jüttner spherically symmetric model with β ¼ 1,
εcutoff ¼ 10, and ξ0 ¼ 20. Exact solutions [Eqs. (110a) and
(110b)] are plotted with solid and dashed lines. Blue and green
dots show results of a Monte Carlo simulation in which orbital
planes of individual trajectories are distributed randomly, and we
count intersections of orbits with segments of meridional half-
planes of a fixed coordinate system (as shown in Fig. 16). We use
von Neumann’s rejection method, selecting geodesic parameters
and the vector normal to the equatorial plane in a single iteration
step. There are 107 iteration steps, giving 828 absorbed and
10,979 scattered trajectories.
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V. SUMMARY

We have developed Monte Carlo techniques for solving
the general-relativistic Vlasov equation. We focused on
stationary accretion-type solutions on the Schwarzschild
background, but with appropriate adjustments, our methods
should also work in other cases, including stationary
configurations of the collisionless gas in Kerr spacetime,
as well as time-dependent solutions of initial value prob-
lems. (A possible future implementation valid for Kerr
spacetime should, in particular, recover results of the planar
model [17] as a test.)
The emphasis on stationary solutions sets our formu-

lation in contrast to particle-in-cell methods, designed to
solve initial value problems and allowing for an efficient
coupling of (plasma) particles with electromagnetic fields
(see, e.g., [19,34]). Nonspherically symmetric numerical
stationary solutions of Einstein-Vlasov equations were
obtained already in pioneering works [35,36] and more
recently in [37]. Numerical methods used in these papers
are focused on Einstein equations; the kinetic part is
treated with relatively simple Ansätze for the distribution
function, and it is restricted to bound orbits. In this paper
we were concerned with the kinetic part only, aiming at
constructing a possibly versatile framework. Our averag-
ing method for computing observable quantities, such as
the particle current density or the energy-momentum
tensor, is general [although one might need to adapt the
hypersurface Σ in Eqs. (67) and (68) to the problem at

hand]. An appropriate selection of the sample of geodesics
can be treated as a separate issue. We have provided
examples corresponding to a homogeneous asymptotic
distribution of particles, characteristic of Bondi-type
accretion problems.
Our discussion emphasized the difference between

planar models (in which the motion of particles is confined
to a common plane) and nonplanar ones. It is especially
tricky (or subtle) for spherically symmetric spacetimes (like
the Schwarzschild spacetime), in which each of the geo-
desics belongs to a single plane.
In all examples, we have concentrated on computing the

particle current density, but other observable quantities can
be obtained in a similar fashion. A simple Monte Carlo
simulation yielding the rest-mass accretion rate in the
low-temperature limit of the Bondi-Hoyle-Lyttleton-type
models described in [13,14] was reported in [16].
Aside from a purely technical aspect of the proposed

Monte Carlo method, we hope that the cases investigated
in this paper offer insight into the geometric structure
of the general-relativistic kinetic theory and its statistical
interpretation.
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