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We provide accurate universal relations that allow to estimate the moment of inertia I and the ratio of
kinetic to gravitational binding energy T=W of uniformly rotating neutron stars from the knowledge of
mass, radius, and moment of inertia of an associated nonrotating neutron star. Based on these, several other
fluid quantities can be estimated as well. Astrophysical neutron stars rotate to varying degrees, and,
although rotational effects may be neglected in some cases, not modeling them will inevitably introduce
bias when performing parameter estimation. This is especially important for future, high-precision
measurements coming from electromagnetic and gravitational wave observations. The proposed universal
relations facilitate computationally cheap equation of state inference codes that permit the inclusion of
observations of rotating neutron stars. To demonstrate this, we deploy them into a recent Bayesian
framework for equation of state parameter estimation that is now valid for arbitrary, uniform rotation. Our
inference results are robust up to around percent-level precision for the generated neutron star observations,
consisting of the mass, equatorial radius, rotation rate, as well as co- and counterrotating f-mode
frequencies, that enter the framework as data.
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I. INTRODUCTION

Neutron stars provide extreme environments that chal-
lenge our current understanding of physical theories and
available methods to study them. They produce gravita-
tional fields whose accurate description calls for general
relativity, and the central densities require state-of-the-art
nuclear and particle physics. These extreme conditions
also allow one to constrain the unknown nuclear equation
of state (EOS) at high densities and look for promising
features of modified gravity theories. Undoubtedly, the first
gravitational wave measurement of the binary neutron star
merger GW170817 by the LIGO-Virgo observatories [1,2]
has opened a completely new window to study neutron
stars in the multimessenger era [3–8]. Also recently,
electromagnetic observations made by NICER have
allowed one to put new constraints on neutron star masses
and radii by modeling their hot spots [9,10]. With such
ongoing successes in electromagnetic and gravitational
wave astronomy that provide more precise observations
in the future, accurate modeling becomes more important
as well. This is particularly exciting for the promising
capabilities of future gravitational wave detectors, such as
the Einstein Telescope [11] and Cosmic Explorer [12]; see
[13,14] for very recent studies.

In order to robustly constrain the nuclear EOS from more
precise observations, many aspects need to be taken into
account properly. One main aspect is the utilization and
improvement of so-called universal relations, which are a
crucial tool when studying neutron star observables; they
relate certain bulk quantities (or combinations thereof) of
neutron stars in a way that is (largely) independent of the
EOS. Among the first such relations that were discovered
was a link between the normalized moment of inertia
I=MR2 and the compactness C ¼ M=R by Ravenhall and
Pethick [15] which was later refined by Lattimer and
Prakash [16]; similar relations were discovered and notably
extended to rapidly rotating neutron stars by Breu and
Rezzolla [17]. Also in the 1990s, Andersson and Kokkotas
discovered the first universal relations concerning mode
properties, opening up the field of gravitational wave
asteroseismology [18,19] which has been revisited
[20–22] and led to a deepened interest in such relations.
Another example are the famous I-Love-Q relations that
connect the moment of inertia, the Love number, and the
quadrupole moment in an EOS-insensitive way discovered
by Yagi and Yunes [23]. Many of the universal relations
that were initially proposed have been concerned with
nonrotating (or, in case the quadrupole moment Q is
involved, slowly rotating) neutron stars (and also quark
stars) not only due to the computational complexity of
constructing models of rapidly rotating neutron stars, but
also due to the enlarged parameter space. Latest since the
late 2000s with the advance in the seismology of rotating
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neutron stars (cf. Gaertig and Kokkotas [24]), increasingly
more universal relations have been discovered. As further
examples, we mention the extension of the I-Love-Q
relations to rotating stars by Pappas and Apostolatos
[25] and Chakrabarti et al. [26] or considerations regarding
the general shape of rotating stars (cf. Refs. [27–30]).
Traditionally, such relations have been found manually
guided by intuition and experience; however, data science-
driven approaches for an alternative construction of uni-
versal relations have been reported recently as well by
Papigkiotis and Pappas [31] and Manoharan and Kokkotas
[32]. While the majority of universal relations is concerned
with isolated neutron stars in equilibrium, one should not
discount the highly dynamic binary neutron star mergers
and their remnants; exemplarily, we mention the universal
threshold for prompt collapse discovered by Bauswein,
Baumgarte, and Janka [33] which has later been revisited
using simulations in full general relativity and with unequal
mass binaries [34,35]; there is also a link between the
f-mode frequency of isolated neutron stars (NSs) and the
peak frequency of remnants by Lioutas, Bauswein, and
Stergioulas [36].
Universal relations not only allow one to identify and

understand the relevant aspects of a problem, they are also
of great importance for any related application that requires
heavy computations. Good examples of such applications
are studies that vary the underlying EOS parameters in
order to compute neutron star observables for statistical
parameter estimation. Such observables might be mass and
radius, which are relatively easy to obtain for a given EOS,
but also more involved properties, e.g., oscillation proper-
ties such as f-modes, which require a much more involved
computation and cannot be easily carried out during
parameter estimation.
In this work, we provide accurate universal relations that

allow one to obtain properties of uniformly rotating neutron
stars from the knowledge of some properties of related
nonrotating neutron stars. In a certain sense, we extend the
work by Konstantinou and Morsink [37], who presented
universal relations of rotating neutron stars for mass and
radius. In particular, we show how the moment of inertia I
and the ratio of kinetic to gravitational binding energy T=W
at the Kepler limit can be obtained to around percent-level
accuracy from the mass M⋆, radius R⋆, and moment of
inertia I⋆ of the zero-spin star with the same central energy
density ϵc. These values at the Kepler limit can then be used
in further universal relations in order to approximate I and
T=W for stars of arbitrary rotation rates. Furthermore,
based on the estimates for those two quantities and an
estimate for the mass via the universal relation from
Ref. [37], we can derive estimates also for the angular
momentum J, the rotational kinetic energy T, the gravita-
tional binding energy W, and the proper mass Mp. The
advantage of the proposed universal relations is that the
properties of the nonrotating star on which the universal

relations are built can be easily obtained by solving one-
dimensional ordinary differential equations and the uni-
versal relations themselves are simple analytic expressions;
this allows computationally very cheap estimates for bulk
quantities of rapidly rotating neutron stars on percent level,
while the computation of the exact values (as provided,
e.g., by the RNS code [38]) is computationally much more
involved, as it requires the solution of an elliptic boundary
value problem.
To demonstrate the usefulness of these universal rela-

tions, we provide two applications. First, we apply them to
recently obtained universal relations for the co- and
counterrotating l ¼ jmj ¼ 2 f-mode frequency [39,40],
which to date required the knowledge of the rotational
neutron star properties. We find that the estimates for the
f-mode frequencies are also accurate to percent level,
which is required for accurate parameter estimation; see
Refs. [41,42]. Second, we incorporate the new results into
our recent Bayesian framework [42] and demonstrate the
reduction of bias in inferred EOS parameters, which is
important for future, high-accuracy gravitational wave
measurements.
The paper is organized as follows. In Sec. II, we discuss

sequences of constant central energy density on which our
discovered universal relations are based and give a brief
review of their use in published literature. In Sec. III, we
introduce our list of employed EOSs and how we calculate
the sequences of neutron stars. Section IV is devoted to the
discovery of universal relations for the moment of inertia I
and the ratio of kinetic to gravitational binding energy T=W
for rapidly (and uniformly) rotating neutron stars. In Sec. V,
we explain how the co- and counterrotating l ¼ jmj ¼ 2
f-mode frequencies of rapidly rotating neutron stars may
be estimated when combined with previously published
universal relations [39], and we discuss the accuracy of
these estimates. As a second application, we extend our
previous EOS inference code [41] to allow for observations
of rapidly rotating neutron stars by implementing the
required universal relations. We consider three test cases
and discuss in which of these it is crucial to account for
rotational corrections. Last, we summarize our findings in
Sec. VI and discuss limitations and potential extensions.
Unless otherwise noted, we employ units in which c ¼
G ¼ M⊙ ¼ 1 throughout this paper.

II. SEQUENCES OF CONSTANT CENTRAL
ENERGY DENSITY

In this paper, we focus on sequences of neutron stars
along which the central energy density ϵc is held constant
and the angular rotation rate Ω ¼ 2πfspin is varied. For a
given ϵc, such a sequence is bounded by the nonrotating
limit (Ω ¼ 0) and the mass-shedding (or Kepler) limit
where the neutron star rotates at the maximum possible
angular rotation rate Ω ¼ ΩK . Here and henceforth, we use
the subscript “K” to denote a quantity that belongs to a
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model rotating at the Kepler limit; furthermore, we use the
subscript “⋆” for quantities of the nonrotating member of
the sequence.
While such sequences may have only limited astrophysi-

cal motivation (during the spin-down of an isolated neutron
star, its baryon mass will remain constant but not its central
energy density), they are numerically extremely simple to
generate. After specifying an EOS, the widely used RNS

code [38], which we employ to construct rotating equilib-
rium configurations, takes a central energy density ϵc and
some axis ratio r ¼ rp=re (where rp and re are the polar
and equatorial coordinate radii, respectively) as parameters
and then finds the corresponding solution to the Einstein
field equations; constructing sequences of, e.g., constant
baryon mass is computationally more expensive and
requires an iterative search for the corresponding pair
ðϵc; rÞ. The conceptual simplicity of sequences of constant
central energy density is one reason why these have been
used in several studies (e.g., Refs. [43,44]). Furthermore,
several universal relations that are based on such sequences
have been discovered; these are relations for the f-mode
frequencies and damping times [24,39,45] and those for
mass and radius [37].
The latter study has revealed a curious insensitivity to

EOSs in rapidly rotating neutron stars: The knowledge of
only massM⋆ and radius R⋆ of the nonrotating member of
the sequence allows one to estimate to high accuracy the
mass and equatorial radius of a star rotating at a given
angular rotation rateΩ using simple analytical formulas. As
has been pointed out in Ref. [37], such universal relations
may be used in EOS inference codes when working with
observations of (sufficiently) rapidly rotating neutron stars;
the requirement to construct rotating equilibrium configu-
rations by means of, e.g., the RNS code can be circumvented
by solving the much simpler TOV equations and then
applying the universal relations. However, as of yet, this
method is limited to mass as well as radius and also the
f-mode frequency as a perturbative quantity.
In a recent work [41], we approached the EOS inference

problem for observations of slowly rotating stars for which
the departure from sphericity may be neglected (hence,
mass and radius can safely be assumed to be those acquired
by the TOV solver without correction). In order to include a
potentially observed f-mode frequency in the EOS infer-
ence, we used a universal relation to account for rotational
corrections in these; however, we still (wrongly) used the
properties of a nonrotating star in this universal relation as a
good approximation.
We extend our previous work to faster spinning neutron

stars by building on sequences of constant central energy
density; they turn out to provide a useful slicing of the
M-R plane (given a specific EOS, we refer to the area in an
M vs R diagram that is covered by dynamically stable,
rotating equilibrium configurations of neutron stars as the
M-R plane) for which EOS-insensitive relations for bulk

quantities of neutron stars can be found. We would not
expect to find similarly simple relations if we, e.g.,
considered sequences of constant gravitational or baryon
mass, since for these sequences one parameter (namely, the
mass) is held constant and, hence, cannot provide infor-
mation with respect to the sequence. One might imagine yet
different sequences of neutron stars (or, equivalently, a
different slicing of the M-R plane), but we opt to focus on
sequences of constant central energy density owing to their
conceptual simplicity.

III. EQUATIONS OF STATE

We employ piecewise polytropic (PP) equations of
state [46] in our study as the four parameters
ðp1;Γ1;Γ2;Γ3Þ used in this approximation allow us to
easily cover a wide range of EOSs. We note that the choice
of this parametrization may introduce a bias, as the set of
PP EOSs is not dense within the set of all physically
allowed EOSs; however, it has been observed that universal
relations which are based on the PP parametrization are
robust and the introduced bias is very small [37].
In order to reveal relations for bulk quantities of

neutron stars that are (mostly) insensitive to the EOS
choice, we pick 31 arbitrary PP EOSs of those that have
been fitted to tabulated EOSs (cf. Refs. [46,47] for tables
of coefficients). We currently do not consider speed of
sound constraints [48,49]; however, the universality of the
relations is still remarkable and should improve with a
narrower set of EOSs; we also note that our selection of
EOSs does not account for phase transitions, which
potentially have interesting features in binary neutron
star mergers (e.g., Ref. [50]).
Using these EOSs, we construct 1550 sequences of

constant central energy density that comprise 83011
individual neutron star models. We pick the lowest ϵc
for an EOS as an integer multiple of 0.05 × 1015 g cm−3

such that the maximally rotating (and at the same time the
heaviest) member of that sequence has a mass of at least
1.1M⊙; this way, we ensure that our universal relations are
calibrated for neutron stars that are even a bit lighter than
astrophysically expected [51,52]. For each EOS, we
construct 50 sequences; we choose the corresponding
central energy densities such that the nonrotating stars of
one particular EOS are roughly evenly spaced in their
masses. The models along a sequence are evenly spaced in
the axis ratio r with Δr ¼ 0.01; in addition, we con-
structed several near-spherical models with axis ratios
r∈ ½0.99; 1.00� (which corresponds to spin frequencies up
to ∼200–300 Hz) in order to have a good resolution also
for slowly rotating models. Last, any sequence also
contains the Keplerian model, which, in general, does
not fit into the evenly spaced grid. Hence, every sequence
contains about 55 neutron star models, ranging from zero
to maximal rotation. We visualize our dataset in Fig. 1
using a corner plot for mass and radius.
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The maximum masses of spherical models resulting
from these EOSs span the range of 1.83–2.75M⊙; the radii
of nonrotating stars with a gravitational mass of 1.4M⊙
range from 10.4 to 14.9 km. These ranges demonstrate that
we include EOSs that are well outside the current astro-
physical constraints (see, e.g., Refs. [53–56]), but we
include them nonetheless in order to prove the robustness
of our universal relations on an even broader range
of EOSs.

IV. UNIVERSAL RELATIONS

A. Moment of inertia

Along a given sequence of neutron stars from zero to
maximal rotation, the moment of inertia I varies by
definition from I⋆ to IK . As both mass and (equatorial)
radius of the stars increase along a sequence, it is intuitively
clear that also the moment of inertia monotonically
increases. We map the interval ½I⋆; IK� onto the unit interval
[0, 1] by considering the linearly rescaled moment of inertia
In ≔ ðI − I⋆Þ=ðIK − I⋆Þ. In the same manner, we normal-
ize a star’s rotation rate Ω by its corresponding Kepler limit
ΩK and introduce the fractional rotation rate Ωn ≔ Ω=ΩK
which then also spans the unit interval.

Having rescaled the moments of inertia and the stars’
angular rotation rates of our dataset, we show a scatter plot
of these in the unit square in Fig. 2. The angular rotation
rate Ω and the moment of inertia I are normalized in
such a way that the curves of any sequence will pass
by construction through the points (0, 0) and (1, 1), which
correspond to the nonrotating star and the star at the Kepler
limit, respectively. Such a rescaling to the unit interval has
proven to be very useful in related works, e.g., in Ref. [37]
or for studying the sound speed in Ref. [57]. However, we
find that not only these two points belong to the graph of a
sequence but, in fact, the entire graph connecting those two
points is (with only minor deviations) independent of the
EOS as well as the central energy density that is chosen for
a particular sequence. The figure strongly suggests a
relation In ≈ fðΩnÞ, and we propose a simple polynomial
fit of the form

fðΩnÞ ¼
X4
k¼1

c2kΩ2k
n : ð1Þ

FIG. 1. A corner plot of the dataset on which we construct the
universal relations. Each black dot in the M vs R diagram
represents one of 83011 NS models in our dataset. Their density
distribution is indicated by the red contour lines. The top and
right diagram show the corresponding histograms of radius and
mass, respectively. The darker lines correspond to theM-R curves
of the EOSs which are visible because our dataset contains some
additional near-spherical models; see the main text for more
details.

FIG. 2. A scatter plot of the rescaled moment of inertia In
against the fractional angular rotation rate Ωn for the 1550
sequences of stars in our dataset. As the graph shows a very large
number of data points, we display an inset, in which we enlarge a
small region of the graph; it becomes visible that the majority of
the data points gather within 2% (indicated by gray lines, not
shown in the main graph) of the polynomial fit (black solid line)
and there are some with a larger deviation from the fit. Upon
inspection, it turns out that the latter belong to neutron stars with
rather small masses M ≲ 1.2M⊙. The relative error may appear
large in the inset; however, the fit is made for the rescaled
quantity In which suffers from truncation errors. The relative
error for the moment of inertia I is bounded by 1.9%; see the
discussion in the main text for details.
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We omit the constant term in order to enforce fð0Þ ¼ 0, and
we account only for terms of even power, since the
corrections to the moment of inertia I⋆ of the nonrotating
star are of quadratic order. When fitting the coefficients to
the data, we also tried odd powers of Ωn in the fitting
function, but the odd coefficients either were afflicted with
large error bars or resulted in larger deviation from the data
points at low rotation rates. The coefficients we propose to
use for the fit are shown in Table I (the coefficients resulting
from a least-squares fit sum up to 0.9986; we rescale these
linearly so that their sum is 1.0). The moment of inertia I of
a star rotating at the (fractional) angular rotation rateΩn can
then be estimated by the formula

IðΩnÞ ¼ I⋆ þ ðIK − I⋆ÞfðΩnÞ: ð2Þ

We show the polynomial fit from Eq. (1) in Fig. 2, too. In
the inset, we enlarge a very small region of the graph in
order to visualize the structure of the data points; it is
apparent that the majority of the data points lie very close
the fitting curve and only a small portion of data points
show a larger deviation from the fit. Upon inspecting those
data points, we find that the latter belong to neutron stars
with rather small masses M ≈ 0.9–1.2M⊙. We observe that
this range of masses is roughly the threshold below which
universality is marginally reduced and the sequences tend
to deviate increasingly more from the main band visible in
the inset. In general, the fit is quite tight and independent of
the EOS and central energy density. The fit is based on
83011 NS models constructed using 31 different piecewise
polytropes.
It is important to note that the relative error1 in Fig. 2 may

appear very large; indeed, in the inset, the relative error is
up to 7%, and for lower Ωn it can grow naturally (due to
small absolute values) to more than 50%. This is an artifact
of the finite numerical accuracy when constructing equi-
librium models (we demand an accuracy of 10−6 in the RNS

code); the impact grows largest for slowly rotating models
where the difference I − I⋆ suffers from truncation errors.
However, the fit is made for the rescaled quantity In. When
we compare the correct I to its estimate via Eq. (2), then the
largest relative error in our dataset is 1.8%, and the mean
relative error of the estimates is 0.24%.

Since we have well above 80000 data points, we do not
show the relative error as a function of the rotation rate in a
cluttered scatter plot but instead show a histogram of the
relative errors in Fig. 3. We note that 80% of the models in
our dataset deviate less than 0.4% from the estimate, and
97.3% are fitted better than 1%. The largest errors occur for
rather large rotation rates Ωn ≈ 0.7–0.9 (this can be seen in
Fig. 2, where the bulge of the data points is largest, and in
the stacked histogram in Fig. 3, where the corresponding
rotation rates are shown in green). Intuitively, higher
rotation rates will favor some deviation from universality;
however, as the sequence will also have to pass exactly
through the point (1,1), we expect that the sequences will
naturally show more universal behavior close to this point
and, hence, the fit becomes more precise close to the
Kepler limit.

B. Moment of inertia at the Kepler limit

The universal relation proposed in Eq. (2) allows one to
estimate the moment of inertia of a rotating neutron star,
provided that the two moments of inertia I⋆ and IK at both
ends of the sequence are known. While I⋆ is relatively
easily accessible via Hartle’s slow-rotation formalism [58],
the value of IK requires a comparatively large computa-
tional expense for its precise calculation, e.g., the iterative
solution for the Kepler model employing the RNS code.

TABLE I. Coefficients used in Eq. (1) which is used in the universal relations for I and T=W.

Equations Quantity c2 c4 c6 c8 Max err. Mean err.

(1), (2) I 0.4864 0.4542 −0.4218 0.4797 1.8% 0.24%
(1), (5) T=W 0.7842 0.1905 −0.1056 0.1305 4.3% 0.57%

FIG. 3. A stacked histogram of the relative deviations of our
83011 data points from the universal relation Eq. (2). The
majority of data points (roughly 80%) deviate less than 0.4%
from the fit, and the maximum relative error is 1.9%. The relative
errors are subdivided corresponding to the fractional rotation rate
Ωn of the neutron star model; this shows that the largest
deviations from the correct value appear for rotation rates
Ωn ≈ 0.7–0.9.

1In Sec. IV, for the newly proposed universal relations for I and
T=W, we define the relative error to be j1 − y=yfitj, i.e., relative to
the fit.
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However, instead of iterating for the Kepler limit, one might
as well iterate for the desired rotation rate and directly find
the sought-after moment of inertia.
Instead of employing an external code to solve the

Einstein field equations in order to find IK , we will
propose a universal relation that provides a very good
estimate to IK based on mass, radius, and moment of
inertia of the nonrotating star (keeping in mind that we
always work with sequences of constant central energy
density). For this universal relation, we define the two
auxiliary quantities

x ≔
I⋆
R3
⋆

and y ≔ IK
C3
⋆

R3
⋆
; ð3Þ

where C⋆ ≔ M⋆=R⋆ is the compactness of the nonrotat-
ing star.
In Fig. 4, we show a scatter plot of y vs x for the 1550

sequences of constant central energy density that we
computed; the points lie nearly perfectly on a line which
we fit using a functional expansion of the type

ln y ¼
X4
k¼0

dkðln xÞk: ð4Þ

We show the coefficients of a least-squares best fit in
Table II (we have annulled d1 manually, as it would be
afflicted with a large uncertainty). The accuracy of the fit is
visualized in the lower part of the same graph; the
maximum relative deviation from the universal relation
in our dataset is 2.2%.
Using this relation, it becomes clear that we can get a

very good estimate for IK out of the triple ðM⋆; R⋆; I⋆Þ; for
a given ϵc, these three values can relatively easily be
computed using the TOV equations along with Hartle’s
equation. Combined with Eq. (2), we can estimate the
moment of inertia of a neutron star spinning at a fractional
rotation rate Ωn to high accuracy. In a more realistic
setting, one would be interested in the moment of inertia
of a star rotating at a specific angular rotation rate Ω rather
than at a certain fractional rotation rate Ωn. This is no
restriction, since the Kepler velocity ΩK that links those
two can also be estimated well fromM⋆ and R⋆ via Eq. (1)
from Ref. [37].

1. Normalizations for the moment of inertia

We comment briefly on our auxiliary quantities x and y;
apparently, we construct quantities of the form ∼I=R3 and
discover universal relations between these. This is differ-
ent from several studies in which the moment of inertia is
considered in other combinations. Probably the most
intuitive normalization is based on the expressions for
the moment of inertia of axisymmetric objects as found in
Newtonian theory; there, the moment of inertia is propor-
tional to “mass times square of radius” and, hence, several
authors (e.g., Refs. [15,59]) linked the dimensionless
moment of inertia Ĩ ≔ I=ðMR2Þ of neutron stars to its
compactness C ¼ M=R. Later, it was discovered that
employing the mass-normalized moment of inertia Ī ≔
I=M3 allows for tighter universal relations regarding
the f-mode frequency [60], and, subsequently, the uni-
versal relations for the moment of inertia as a function
of the compactness were updated [17]. Indeed, we can
report that the auxiliary quantities x0 ¼ Ī ¼ I⋆=M3

⋆ and
y0 ¼ IK=ðM3

⋆C
2
⋆Þ, in both of which the mass-normalized

moment of inertia can be spotted, also obey a universal
relation; however, with a relative error of up to 4%, it is
not as tight as the universal relation between the auxiliary
quantities x and y when they are loosely based on I=R3 as
we defined them in Eq. (3). For a more thorough
discussion of the history of the combinations in which

FIG. 4. The scaled moment of inertia of neutron stars at the
Kepler limit against the radius-scaled moment of inertia of the
nonrotating neutron star with the same central energy density as
the rotating stars. The bottom panel shows the relative deviation
of the data points from the fit (black solid line); the maximum
relative error is 2.2%.

TABLE II. Coefficients dk and the combined quantities x and y that are used in Eq. (4).

x y d0 d1 d2 d3 d4 Max err. Mean err.

I⋆R−3
⋆ IKR−3

⋆ C3
⋆ −2.661 0.0 −0.6221 0.03786 0.01445 2.2% 0.55%

I⋆M−3
⋆ ðT=WÞKC−4

⋆ −6.338 9.808 −3.853 0.8878 −0.07858 3.2% 0.59%
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the moment of inertia appears in universal relations and
their physical motivation, see Sec. 4.1 in Ref. [17].

C. Ratio of kinetic to gravitational binding energy T=W

In the previous sections, we have demonstrated how the
moment of inertia of a rotating star can be estimated out of
the bulk quantities of the nonrotating star (with the same
central energy density). We find that, in structurally the
same way, it is also possible to estimate the value of T=W,
the ratio of rotational kinetic to gravitational binding
energy,2 of a rotating star. Even though T=W might be
difficult to observe, it is worthwhile having a universal
relation for it, since we can use it to derive several
other bulk quantities as we will argue at the end of this
section. In order to find the universal relation, we normal-
ize T=W in the same way as we normalized the moment
of inertia I; keeping in mind that ðT=WÞ⋆ vanishes
since T ∝ Ω2, we get a slightly simpler expression

ðT=WÞn ≔ ðT=WÞ=ðT=WÞK . Again, a scatter plot shown
in Fig. 5 suggests a very tight relation ðT=WÞn ≈ fðΩnÞ,
and we use the same polynomial expression given in
Eq. (1) as fitting function. The best-fit coefficients are
shown in Table I (after rescaling their sum from 0.9996
to 1.0). A very good approximation for the value of T=W
of a star rotating at the fractional rotation rate Ωn is then
given by

ðT=WÞðΩnÞ ¼ ðT=WÞKfðΩnÞ: ð5Þ

As before, in order to make use of this formula, we need to
know ðT=WÞK, i.e., the value of T=W at the Kepler limit
(in our dataset, this value ranges in the interval [0.084,
0.146], i.e., considerably below the value of ∼0.255 for
the onset of the bar-mode instability that requires differ-
ential rotation [63]). We find that a very tight relation
between the two auxiliary quantities

x ≔
I⋆
M3

⋆
and y ≔ ðT=WÞKC−4

⋆ ð6Þ

exists. The relation between those two can be well
modeled by the functional dependence given in Eq. (4),
and the corresponding least-squares best-fit coefficients
are listed in Table II. We show a scatter plot of our data
points in Fig. 6.
The relative error of the proposed universal relation for

T=W is less than 4.3% for the neutron star models in our
dataset. It is worth noting that for slowly rotating models
the absolute value of T=W is small, and, hence, the relative
error of the estimate is the largest. We show a stacked
histogram of the relative errors in Fig. 7, where we

FIG. 5. A scatter plot of the rescaled ðT=WÞn against the
fractional angular rotation rate Ωn for the 1550 sequences in our
dataset. An inset shows an enlargement of a small region of the
graph; almost all data points are inside a very narrow band (with
less than 1% relative error which is indicated by gray lines; not
shown in the main graph) around the polynomial fit (black solid
line). The few individually visible points outside the dense band
have a relative error of less than 2%.

FIG. 6. The scaled value of T=W of neutron stars at the Kepler
limit against the mass-scaled moment of inertia of the nonrotating
neutron star with the same central energy density as the rotating
stars. The bottom panel shows the relative errors of the data
points; the maximum relative deviation from the best fit is 3.2%.

2Even though a binding energy (in our case, the gravitational
binding energyW) is usually considered negative, since this is the
energy that has to be added to a system in order to put infinite
separation between its individual particles, we follow the defi-
nition of Refs. [61,62] whereby we haveW > 0. This allows us to
omit the absolute value bars in T=jWj and declutter the formulas
in the text; we need to keep in mind only that W denotes the
negative of the (negative) binding energy.
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subdivide the relative errors corresponding to the fractional
rotation rate; it is apparent that the universal relation
becomes more accurate for larger rotation rates.
We conclude the description of the universal relations

by noting that at the same time we get accurate estimates
for the angular momentum J, the rotational kinetic
energy T, and the gravitational binding energy W as well
as the proper mass Mp of rapidly rotating neutron stars as
freebies. Having estimated M (as described in Ref. [37]),
I, and T=W via universal relations, we can then calculate
J ¼ IΩ, T ¼ 1

2
IΩ2, W ¼ T=ðT=WÞ, and finally Mp ¼

W þM − T. We have not conducted a thorough analysis
of the accuracy yet, but initial tests show that the relative
errors of those four quantities are comparable to those
of I and T=W.

V. APPLICATION AND RESULTS

In this section, we demonstrate the capabilities of the
new universal relations when combined with those pro-
posed in Ref. [37] for the mass and equatorial radius. In
Secs. VA and V B, we show the accuracy when applied
to the universal relations for the co- and counterrotating
l ¼ jmj ¼ 2 f-mode frequencies from Refs. [39,40]. In
Sec. V D, we incorporate them into the Bayesian EOS
framework from Ref. [42], which demonstrates its
capacities to perform quick inference for generic neutron
star observables beyond slow-rotation approximations.

A. Counterrotating f -mode frequency

In addition to mass, radius, and moment of inertia, we are
also interested in using the f-mode frequencies as potential
observables in the Bayesian framework. In order to do so,
we need to estimate these also from quantities of the
nonrotating star. The work presented in Ref. [39] offers

(when combined with the above proposed universal
relation for the moment of inertia; cf. Eq. (2)) two ways
of approximating the f-mode frequencies of a star with a
given central energy density and rotation rate; as both
approximations differ slightly in accuracy, we will explain
and employ both of them.
As we rely heavily on sequences of constant central

energy density, the most obvious way to find the f-mode
frequencies is to employ Eq. (4) in Ref. [39], which is also
fitted to the same type of neutron star sequences. We
reproduce the fitting function for completeness3:

σx

σ⋆
¼ 1þ ax1

�
Ω
σ⋆

�
þ ax2

�
Ω
σ⋆

�
2

; ð7Þ

where the index x is used to distinguish between the stable
corotating branch (labeled s) and potentially unstable
counterrotating branch (labeled u) of the f-mode; the
coefficients ax1 and ax2 are reported in the same work.
Given the f-mode frequency σ⋆ of the nonrotating star of
the sequence, this universal relation provides an estimate
for the f-mode frequencies of a star rotating with the
angular rotation rate Ω.
Effectively, we have reduced the problem to determining

the f-mode frequency σ⋆ of the nonrotating star, which is a
comparatively easy task. We might want to use σ⋆ from
our dataset based on time evolutions which was built in
preparation for the work that led to the discovery of f-mode
universal relations [39,40]. This would be consistent, as
these universal relations are also calibrated using those
values. However, since the EOS database for the previous
work has focused on rotating neutron stars, it does by far
not contain enough values for σ⋆; we need this value
essentially for any nonrotating neutron star of an arbitrary
EOS. Instead, we will use a very accurate universal relation
discovered by Lau, Leung, and Lin [60]4 to estimate σ⋆
from the mass M⋆ and the moment of inertia I⋆ (cf. their
Eq. (6)); our database (as described in Sec. V C 1) contains
those values. The most accurate value for σ⋆ could be
reliably found by using the estimate for σ⋆ from the
universal relation as an initial guess for the (numerically)
exact solution via an eigenvalue code; however, this would
considerably increase the computational expense of the
problem in return for an unnecessarily accurate value of the
f-mode frequency: Keep in mind that the universal relation
for the f-mode frequency of rotating stars works only to
percent level; furthermore, we also assume that the

FIG. 7. A stacked histogram of the relative errors of the
universal relation for T=W; they remain below 4.3% for all
models in our dataset. The relative errors are subdivided
corresponding to the fractional rotation rate Ωn of the neutron
star model; this shows that the deviation from the correct value is
largest for models with a small rotation rate, since the absolute
value of T=W is small for these.

3In the cited work (Ref. [39]), an index “i” is used to indicate
that the f-mode frequency is measured in an inertial frame as
opposed to a corotating frame. In the present work, we work
solely with frequencies in the inertial frame, and, hence, we omit
the index i here.

4Note that Lau, Leung, and Lin [60] denote the f-mode
frequency by ωr, which is related to our f-mode frequency σ⋆ via
ωr ¼ 2πσ⋆.
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observed f-mode frequencies are tainted with error bars of
several percent. The subpercent accuracy of the universal
relation proposed in Ref. [60] is certainly sufficient.
We use this method for approximating the f-mode

frequency of the potentially unstable branch; we show a
histogram of the relative errors in Fig. 8, which we define as

δσx ¼ jσxTE − σxURj
σxTE

: ð8Þ

Here, σTE and σUR are the frequencies as extracted from the
time evolution and determined by the universal relations
(using Eq. (6) from Ref. [60] to estimate σ⋆ and then Eq. (4)
from Ref. [39]), respectively. We note that the histogram in
Fig. 8 is built on the dataset underlying Ref. [39] with two
modifications; first, we omit those results that are based on
simple polytropes, and, second, we have, meanwhile,
extended our dataset to include f-mode frequencies of
neutron star models based on the piecewise polytropic
approximations to the EOSs DDME2 [64], FSU2 [65],
MPA1 [66], and MS1 [67] (the PP coefficients can be found
in Refs. [46,47]). The updated dataset contains roughly 50%
more f-mode frequencies than before. Even though the
universal relation Eq. (7) is calibrated to a smaller dataset,
the new frequencies are equally well approximated; this
supports the validity of the detailed procedure.
Since this branch of the f-mode, in general, crosses

the zero frequency line, relative errors will inevitably be
large and of little meaning for low f-mode frequencies.

Therefore, we show a stacked histogram in which we split
our f-mode data into the three groups where jσuj > 500 Hz
(shown in green), 200 Hz < jσuj ≤ 500 Hz (shown in
orange), and jσuj ≤ 200 Hz (shown in red). The relative
errors for large f-mode frequencies displayed in green
show that the universal relation is accurate to better than
3%–4% in the majority of cases; only a few data points
have a worse accuracy. The relative errors shown in orange
and red easily creep up to 100% and should not be
considered as a failure of the universal relation. In contrast,
the absolute error of the frequency is still fairly small and
does not exceed 70 Hz for 90% of our data points.

B. Corotating f -mode frequency

As can be seen in Fig. 2 in Ref. [39], the corotating
branch of the f-mode (which has higher frequencies than
the counterrotating branch in the inertial frame) displays a
universal behavior, too, but the spread of the data points is
considerably larger than it is for the counterrotating branch.
In order to estimate the frequencies of the corotating
branch, we will, therefore, resort to the universal relation
given in Eq. (6) in Ref. [39]; this relation provides an
estimate for the (normalized) f-mode frequency σ̂x of
a neutron star given its effective compactness η and
(normalized) angular rotation rate Ω̂ by virtue of

σ̂x ¼ ðcx1 þ cx2Ω̂þ cx3Ω̂
2Þ þ ðdx1 þ dx3Ω̂

2Þη: ð9Þ

We have σ̂x ¼ M̄σx=kHz and Ω̂ ¼ M̄Ω=kHz, where M̄ ¼
M=M⊙. The effective compactness η is related to the mass
M and moment of inertia I of the star via η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄3=I45

p
,

with I45 ¼ I=1045 g cm2. The numerical values of the
coefficients cx and dx are reported in Ref. [39], and
additional information can be found in Ref. [68].
In order to make use of the universal relation Eq. (9), we

need to know the mass and moment of inertia of the rotating
configuration (besides its rotation rate which in our work-
flow is treated as a parameter). Instead of constructing a
rotating neutron star via the RNS code, we can obtain an
accurate estimate for those two quantities via the universal
relation Eq. (4) proposed in Ref. [37] for the mass and using
Eqs. (1)–(4) for the moment of inertia. Estimating the
frequency of the corotating f-mode using these universal
relations results in an accuracy of better than 10%, but, in
fact, for the majority of cases we find an accuracy of
2%–3%; we show a histogram of the relative errors in
Fig. 9. Like in the case of the counterrotating f-mode
(cf. Sec. VA), we also determined a similar number of
corotating f-mode frequencies based on the same EOSs.
These data points extend the previous dataset on which
Ref. [39] was built; again, the universal relation, which was
fitted to the smaller dataset, estimates the newly determined
f-mode frequencies well.

FIG. 8. A stacked histogram of the relative errors as defined in
Eq. (8) when estimating the counterrotating f-mode frequency
using Eq. (7). Since relative errors for low frequencies are an
unreliable measure for accuracy, we split the set of relative errors
into three groups depending on the absolute value of the f-mode
frequency (as extracted from the time evolution). When the
magnitude of the f-mode is larger than 500 Hz (shown in green),
the relative errors peak at 3% and are larger than 10% only in a
few cases. For smaller magnitudes of the f-mode frequency
(shown in orange and red), the relative error naturally increases.
However, there are still many instances where even low-
frequency f-modes are estimated with only a small relative error.
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In this section, we have compared f-mode frequencies as
obtained from time evolutions to estimates from simple
analytical formulas. As can be seen in Figs. 8 and 9, the
relative error is at percent level and in only a few cases
exceeds 10%. Note that we achieved this accuracy for the
f-mode frequencies of a star spinning with angular fre-
quency fspin out of the three numbers M⋆, R⋆, and I⋆.

C. The EOS inference code

In a recent work [42], we presented a Bayesian frame-
work that uses neutron star observables to infer the Read
et al. [46] piecewise polytropic EOS from a precomputed
TOV template bank. In that framework, rotational effects
have only partially been included, i.e., by using the co- and
counterrotating f-mode frequencies but neglecting rota-
tional effects for other neutron star properties that enter at
quadratic order. However, as input data, rotational effects
had been taken into account properly in order to represent a
more realistic scenario and quantify possible bias. For more
details on the implementation, we refer to the original
work [42].
In the present work, we build on the previously devel-

oped inference code and extend it to properly account for
rotational corrections to the mass, radius, and moment of
inertia using the universal relations proposed in Ref. [37]
and those presented in this paper. This will lift the former
limitation of being restricted to observations of neutron
stars for which oblateness can be neglected. For simplicity,
we will use the same set of potentially measured observ-
ables as in the previous work, i.e., the mass, (circum-
ferential, equatorial) radius, rotation rate, and two f-mode
frequencies of a rotating neutron star. We note that it does
not pose any difficulty to extend the code to also allow

other observables to be taken into account; in the present
work, however, our focus lies on the extension to rapid
rotation and to study how well EOS inference works when
relying on universal relations.

1. The EOS database

We use essentially the same EOS database as in the
preceding study; we will repeat the relevant details here but
refer the reader to Sec. D in Ref. [42] for additional details.
During sampling, Markov chain Monte Carlo (MCMC)

walkers will move through the four-dimensional EOS
parameter space which is spanned by the PP parameters
θ ¼ ðp1;Γ1;Γ2;Γ3Þ, for which we assume flat priors. We
confine these four parameters by intervals such that all best
fits provided in Table III in Ref. [46] are covered. The
intervals are given by

log10ðp1Þ∈ ½33.940; 34.860�; ð10Þ

Γ1 ∈ ½2.000; 4.070�; ð11Þ

Γ2 ∈ ½1.260; 3.800�; ð12Þ

Γ3 ∈ ½1.290; 3.660�; ð13Þ

where p1 is given in dyn=cm2. An MCMC walker needs to
calculate the likelihood of making a step to a new point θ0 in
the parameter space. Ideally, we would calculate the M-R
curve of the EOS specified by θ0 by solving the TOV
equations on the fly; however, this is despite the simplicity
of the TOV equations computationally somewhat expen-
sive. Therefore, we build a large EOS database for which
we divide each of the above intervals for the four PP
parameters onto an evenly spaced grid of NEOS points
and calculate the M-R curves (including the moment of
inertia I) for each grid point. The likelihood of an MCMC
walker making a step to θ0 will be calculated with respect
to the EOS θapprox, where θapprox is the EOS present in the
database that is closest to θ0 (in the sense of being the
nearest neighbor). In order to perform convergence tests,
we build databases for NEOS ¼ 30, 40, 50. Note that all our
results are based on the NEOS ¼ 50 resolution.

D. Bayesian inference on EOS

In the following, we compare results of this framework
before and after including rotational effects using the
previously derived universal relations. This upgrade pro-
motes our framework to model arbitrary rotation rates for
neutron star bulk properties from the same nonrotating
TOV template bank as before.
For the sake of clarity, we focus on a limited set of

examples to demonstrate when the improvements become
crucial. In all subsequent examples, we have used the
PYTHON MCMC sampler EMCEE [69] with 100 walkers,

FIG. 9. A histogram of the relative errors when estimating the
corotating branch of the f-mode using Eq. (9); we use the newly
proposed universal relation for the moment of inertia and the
universal relation for the mass from Ref. [37] to estimate the
required bulk quantities of the rotating stars. We calculate
the relative error as given in Eq. (8). For the majority of neutron
star models, our estimate is accurate to 2%–3%; in general, the
relative error stays below 10%.
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2000 steps, and in total 12 parallel runs. The sampling of
each of the following examples only takes about 10–20 min
on a standard laptop. Posterior corner plots have been
constructed using the PYTHON package CORNER [70]. We
strongly emphasize that all mock data used in the follow-
ing, as done in Ref. [42], have been produced with the RNS

code and the f-mode frequencies have been directly taken
from the time evolution presented in Ref. [39]. We consider
the SLy EOS [71] and noiseless injections of neutron star
observables with a relative error of 5%, as our main
objective here is to study the performance of Bayesian
framework and not to carry out astrophysical projections of
future measurements.
First, we study a set of slowly rotating neutron stars for

which the mock data can be found in Table III. In Fig. 10,

we show that the EOS posteriors as obtained in our
previous work (left panel), which also assumed a set of
slowly rotating neutron stars, are almost identical to the
ones obtained with the new universal relations (right panel).
This further quantifies that the slow-rotation approxima-
tions are justified for such cases. Because none of the
neutron stars is particularly heavy, the high-density regime
of the EOS is not explored well, which agrees with the
rather uninformed posteriors for Γ3.
Next, we consider a set of moderately rotating neutron

stars for which the mock data can be found in Table IV. The
corresponding EOS posteriors from the MCMC analysis
are reported in Fig. 11. It is evident that the EOS parameters
obtained with the slow-rotation approximation are strongly
biased, while the ones obtained with the universal relation

TABLE III. Mock data for slowly rotating neutron stars con-
structed with the SLy EOS.

n M [M⊙] Re [km] fspin [kHz] σu [kHz] σs [kHz] r

1 1.282 11.827 0.192 1.590 2.075 0.990
2 1.200 11.902 0.238 1.486 2.082 0.983
3 1.363 11.792 0.211 1.603 2.143 0.989
4 1.924 11.013 0.272 1.862 2.649 0.990
5 1.601 11.637 0.283 1.618 2.368 0.984
6 1.788 11.340 0.247 1.798 2.476 0.990

FIG. 10. Results of the MCMC analysis using observations of slowly rotating neutron stars listed in Table III as described in the main
text. The two corner plots compare the results using the old framework with slow-rotation approximations (left panel) and the new
framework based on universal relations that allow rapid rotation (right panel). The blue lines indicate the injected EOS parameters, and
black dashed intervals define the {0.16, 0.5, 0.84} quantils. The results of both frameworks are almost identical, which reconfirms that
the slow-rotation approximation is justified for observations of neutron stars that rotate sufficiently slowly (cf. Ref. [42]).

TABLE IV. Mock data for moderately rotating neutron stars
constructed with the SLy EOS.

n M [M⊙] Re [km] fspin [kHz] σu [kHz] σs [kHz] r

1 1.800 11.491 0.472 1.416 2.728 0.963
2 1.200 12.035 0.358 1.300 2.187 0.962
3 1.828 11.440 0.484 1.420 2.776 0.962
4 1.739 11.548 0.412 1.484 2.610 0.970
5 2.030 10.692 0.522 1.556 3.118 0.970
6 1.500 11.858 0.410 1.365 2.432 0.962
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are comparable to the previous case in Fig. 10. Because
some of the considered neutron stars in this dataset are
heavier compared to the previous one, the high-density
constraints on Γ3 are much more informative, while the
other EOS parameters are constrained similarly well. For
similar findings see also Ref. [72].
As final test, we consider the set of rapidly rotating

neutron stars that can be found in Table V. The results of the
MCMC parameter estimation are shown in Fig. 12, which
is organized as the previous ones. It is evident that the slow-
rotation approach fails completely, as the posteriors of most
EOS parameters ramp up against the boundary of the
allowed parameter space. In strong contrast are the results
using the universal relations, which even in this rather
extreme case yield very reliable bounds.
Note that in all of the here presented cases, despite

arguably the last one for the universal relation approach, the
injected EOS parameters cannot be reconstructed perfectly.

This is the case even though we have not added noise to the
data (noiseless injections). Instead, the small bias is due to
the remaining imperfections in adopting universal relations
and cannot easily be improved in the full rotating case, but
recently something related has been studied for universal
relations using the tidal deformability [73]. However, as the
assumed measurement errors are already very small (rel-
ative errors of 5%), the bias is negligible but may become
relevant for more precise measurements. Although all the
here presented results have been obtained for the SLy EOS,
we note that we have also performed EOS inference runs
using observations based on the MPA1 EOS [66]. We find
qualitatively very similar behavior for the robustness of the
universal relation approach and clear failure of the slow-
rotation approach when applied to rapidly rotating neutron
stars. More specifically, the true values of all EOS param-
eters are well within the {0.16, 0.84} quantils, and the
constraints on p1 and Γ2 are more informative than the ones
for Γ1 and Γ3. Note that the MPA1 EOS was not used in
Ref. [39] for the construction of the universal f-mode
relation.
To verify to what extend our results depend on the

resolution of the precomputed EOS database, we have
conducted several convergence tests. One of them is
provided in Fig. 13 and shows the 1D posteriors distribu-
tions of the EOS parameters when sampled with different
database resolutions, which are defined by 30, 40, and 50
steps for each parameter. Here, we show results for slowly
rotating neutron star observables from Table III. In Fig. 14,
the ones for moderately rotating data from Table IV can be

FIG. 11. The same as Fig. 10 but for observations of moderately rotating neutron stars as shown in Table IV. At rotation rates of 350–
550 Hz or axis ratios of r ≈ 0.96–0.97, the stars’ oblateness is no longer negligible and we observe a strong bias in the posteriors, in
particular, for Γ1 and Γ3, when using the old framework. The new framework reconstructs the PP parameters well.

TABLE V. Mock data for rapidly rotating neutron stars con-
structed with the SLy EOS.

n M [M⊙] Re [km] fspin [kHz] σu[kHz] σs[kHz] r

1 1.200 13.191 0.744 0.567 2.419 0.812
2 2.100 10.899 0.966 0.747 3.665 0.900
3 1.379 13.870 0.912 0.254 2.582 0.734
4 1.774 12.678 0.965 0.380 3.013 0.809
5 1.467 13.613 0.927 0.273 2.665 0.750
6 1.573 13.005 0.896 0.413 2.775 0.800
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found. Both cases demonstrate that the posteriors are very
robust with respect to the different resolutions, but small
artifacts of the EOS grid resolution can be seen, e.g., the
steplike structure for p1 for the lowest resolution. In
Fig. 13, the direct comparison between the slow-rotation
approximation and universal relation based results indicate
a small but consistent bias for p1, as well as traces of one
for Γ1, which are both more relevant for the low-density
region of the neutron star. Γ2 is very similar, indicating that
it is less sensitive to rotational effects, which should be
expected. Since Γ3 is not well probed by most of the data,
the posteriors are flat and the possible presence of bias is
less relevant. In Fig. 14, one clearly sees that the chosen
resolution is much less important compared to the signifi-
cant biases that are introduced through the slow-rotation
approximation. Furthermore, we have also studied even
lower resolutions of 10 and 20 (not shown) but conclude
that they are not fine enough to provide robust answers for
the here studied relative errors of 5%. Finally, we also
studied the {0.16, 0.5, 0.84} quantils for different reso-
lutions and find, as expected from Figs. 13 and 14, that
these quantities are very robust, as the coarse grid reso-
lution tends to average out.
The main conclusions from these demonstrations are

clear. Modeling significantly rotating neutron star observ-
ables with a slow-rotation approximation framework is, as
expected, in general, not robust and can cause major bias in
the reconstructed EOS parameters when violated. However,

FIG. 12. The same as Fig. 10 but for observations of rapidly rotating neutron stars as shown in Table V. With axis ratios of
r ≈ 0.73–0.90, the stars are far from sphericity and, as a result, the old framework fails completely. The new framework built on the
universal relations for rapid rotation, again, yields very useful results.

FIG. 13. Here, we show MCMC results using different EOS
database resolutions for slowly rotating neutron star observables
from Table III. The slow-rotation approximation (SR, blue) and
universal relation (UR, orange) methods have been applied with
EOS grid resolutions of 30, 40, and 50 (different line styles).
Black vertical lines indicate the correct EOS parameters.
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using the new universal relations yields robust results, even
when the provided observables have been provided with a
few percent-level uncertainty. We note that due to the
simple analytic structure of the universal relations, there is
no significant increase in computational time during
sampling (depending on resolution and other details around
a factor of 2). This would be drastically different if the
stellar structure equations would have to be solved during
sampling.

VI. CONCLUSIONS

We have presented four universal relations that allow one
to approximate some of the bulk properties of uniformly
rotating neutron stars at percent-level accuracy. In particu-
lar, we propose universal relations to obtain the moment of
inertia I and the value of T=W at the Kepler limit and
subsequently also for arbitrarily fast rotating neutron stars.
These universal relations are insensitive to the EOS and rely
solely on the knowledge of the triple ðM⋆; R⋆; I⋆Þ of the
zero-spin star with the same central energy density, which
can easily be calculated by solving the TOV equations
along with Hartle’s equation. We also explain how the
estimated quantities I and T=W can be combined with other
known or estimated quantities in order to obtain estimates
for the angular momentum J, the rotational kinetic energy
T, the gravitational binding energy W, and the proper
mass Mp.
We built a large dataset of 1550 sequences of constant

central energy density across 31 EOSs. The universal

relations for I and T=W are calibrated using this dataset.
The data are strongly correlated, and we find that the
quantities as computed using the polynomial fits deviate
on average less than 0.6% from the RNS code; the
maximum relative errors of the four universal relation
lies between 1.8% and 4.3%. Combining our results with
recent universal relations for the mass and equatorial
radius from Konstantinou and Morsink [37], we have
considered two applications to demonstrate the potential
for future applications.
First, using the universal relations for mass and

moment of inertia, we have computed approximations
to the frequencies of the co- and counterrotating
l ¼ jmj ¼ 2 f-modes from nonrotating neutron star prop-
erties only and compared them to values obtained from
time evolutions in an earlier work (cf. Refs. [39,40]). We
find very good agreement and the frequency estimates
yield an accuracy of 2%–3% in the majority of cases; only
a few f-mode frequencies deviate more than 10% from
our estimate.
Second, we have incorporated the new universal rela-

tions into the Bayesian framework presented in Ref. [42].
This allows us to infer the parameters of the Read et al. [46]
EOS model from a hypothetical set of neutron star
observations beyond slow-rotation approximations for
the statistical modeling. For our inference analysis, we
use three different sets of mock observations which we take
from the dataset of our earlier work [39]: one set of slowly
rotating neutron stars such that their oblateness is negli-
gible, one set of moderately rotating stars for which their
axis ratios are r ≈ 0.96–0.97, and one set of fast rotating
stars with axis ratios of r ≈ 0.73–0.90. In all presented
cases, the use of universal relation-based modeling is
sufficient to reconstruct the injected EOS parameters within
{0.16, 0.84} quantils. Our inference analysis also demon-
strates that using slow-rotation approximations for sets of
moderately and fast rotating neutron star observables yields
significant bias and that using the new universal relations is
crucial. Our choice of mock observations results in more
informative posteriors for the EOS piecewise polytropic
indices at high densities, when considering a similar
number of observables with similar measurement accuracy.
Because of the very fast numerical evaluation of the
underlying universal relations, modeling rotating stars
has negligible impact on computational time compared
to the slow-rotation scheme used earlier [42]. We empha-
size that the possibility to avoid solving the Einstein
equations for rotating neutron stars during sampling or
to avoid building a significantly larger precomputed EOS
database provides major improvements for future param-
eter estimation studies.
In the EOS inference runs, we use mass, equatorial

radius, rotation rate, and two f-mode frequencies as
observables. The new universal relation for the moment
of inertia is essential in the estimation of the latter; as our

FIG. 14. Here, we show MCMC results using different EOS
database resolutions for the moderately rotating ones from
Table IV. The chosen resolutions and definition of lines are
the same as those in Fig. 13.
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focus lies on the extension of a previous code to rapid
rotation, we do not consider I or T=W to be observables in
our inference runs. However, it poses no difficulty to
incorporate these quantities observables into the inference
code employing the respective universal relations, should
the need arise.
Future work may also include the extension to more

realistic models for the underlying EOS; this means
employing different kinds of EOS parametrizations to
broaden the covered range of EOSs (and reduce a potential
bias) but also to take into account (astro)physical con-
straints to narrow the range of EOSs. Furthermore, the

possibility of phase transitions opens up a different path-
way for potential extensions.
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