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Orbital eccentricity and spin precession are precious observables to infer the formation history of binary
black holes with gravitational-wave data. We present a post-Newtonian, multi-timescale analysis of the
binary dynamics able to capture both precession and eccentricity over long inspirals. We show that the
evolution of an eccentric binary can be reduced to that of an effective source on quasicircular orbits,
coupled to a post-Newtonian prescription for the secular evolution of the eccentricity. Our findings unveil
an interplay between precession and eccentricity: the spins of eccentric binaries precess on shorter
timescales and their nutation amplitude is altered compared to black holes on quasicircular orbits,
consequently affecting the so-called spin morphology. Even if binaries circularize by the time they enter the
sensitivity window of our detectors, their spin orientations retain some memory of the past evolution on
eccentric orbits, thus providing a new link between gravitational-wave detection and astrophysical
formation. At the same time, we point out that residual eccentricity should be considered a source of
systematics when reconstructing the past history of black-hole binaries using the spin orientations.
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I. INTRODUCTION

The most generic bound orbits in Kepler’s two-body
problem are ellipses, which are parametrized by their
eccentricity 0 ≤ e < 1. In general relativity, point particles
are substituted by binary black holes (BHs) and, at least in
the post-Newtonian (PN) regime, the underlying timescale
separation implies that orbits can still be treated using
conic sections [1]. Gravitational-wave (GW) emission
causes a secular evolution of the orbital parameters that
tends to both shrink and circularize the orbit. The
relativistic two-body problem also presents distinctive
features related to the BH spins. Binaries with spins that
are misaligned with respect to the orbital angular momen-
tum precess about the direction of the total angular
momentum, varying their orientation [2].
Both eccentricity and spin precession are expected to

leave an imprint on the emitted GW signals and their
simultaneous measurement can provide crucial hints on
the underlying formation and evolutionary processes. For
stellar-mass BHs, orbital eccentricity is predicted to be a
clean signature of BH binaries assembled via recent
dynamical interactions [3–5], notably including Kozai-
Lidov oscillations in triple systems [6]. Misaligned spins
are also expected to be a telltale of GW sources formed
dynamically [7–10], though this is probably not a unique

feature [11–13]. For supermassive BH binaries, eccentricity
and spins both encode information on the pairing and
hardening processes that lead to the formation of such
systems following galaxy mergers [14].
At present, LIGO/Virgo data shows tantalizing evidence

of both eccentricity [15] and spin precession [16,17] in a
few binary BH events. The combined inference of the two
effects is still beyond the horizon because of the related
waveform-modeling challenges [18–21] as well as poten-
tial degeneracies [22].
LIGO and Virgo can distinguish eccentricities e≳ 0.05,

future ground third-generation detectors will push this limit
to e≳ 10−4 [23], while LISAwill be sensible to e≳ 10−2.5

for supermassive BH binaries [24]. In practice, sources with
eccentricities smaller than these thresholds are to be
considered circular for observational purposes.
For context, an equal-mass BH binary with total mass

M ¼ 20M⊙ evolving in isolation under radiation reaction
from an initial semimajor axis a ¼ 30R⊙ and an initial
eccentricity e ¼ 0.6 will reach the innermost stable orbit
with eccentricity e ∼ 10−4. In other words, PN circulari-
zation is brutal, and most binaries that are formed on highly
eccentric orbits might enter the detector sensitivity range
with eccentricity values that are well below the distinguish-
ability threshold [5,23]. While hoping for prominent out-
liers [3], solid inference on orbital eccentricity might well
remain challenging.*g.fumagalli47@campus.unimib.it
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BH binaries that are observed as circular might have
spent a large fraction of their lifetime on eccentric orbits.
Is this information somewhat accessible to GW detectors?
Do merging BHs retain any memory of their eccentric
past? In this paper, we explore this line of reasoning and
show some information is indeed encoded in the spin
sector of the gravitational dynamics. The evolution of the
BH spins depends on the binary eccentricity [25–29]
opening for the exciting possibility of using accurate spin
measurements to infer the presence of eccentricity at BH
formation, even if this does not correspond to eccentricity
at detection. In particular, this paper focuses on the
methodological aspects of this problem and develops
the appropriate formalism to capture long evolutions of
precessing, eccentric BH binaries.
Specifically, we exploit a multi-timescale approxima-

tion to the inspiral of BH binaries, which relies on
averaging the dynamics in sequence over the short time-
scales of the problem (orbit and spin precession) while
introducing the evolution over the longer timescale
(radiation reaction) in a quasiadiabatic fashion. This
framework has been developed [30,31] and extensively
tested [32,33] for circular binaries and is here fully
generalized to eccentric sources (see also Refs. [27–29]
for other attempts in this direction).
In a nutshell, the inclusion of eccentricity requires two

ingredients (Sec. II):
(i) First, we show that the short-timescale dynamics

of any eccentric binary can be mapped to that of
an effective circular source. This is an extremely
elegant property of the gravitational two-body prob-
lem and allows us to make direct use of the existing
numerical infrastructure [33].

(ii) One then needs to add an evolutionary prescription
for the decay of the orbital eccentricity on the
radiation-reaction timescale. At leading order, this
is the seminal result by Peters [1], which is here
presented in a regularized form that allows for safe
numerical evaluations at arbitrarily low eccentricities.

We then scope out some of the predictions of our new
formalism (Sec. III). In particular, we investigate the robust-
ness of the underlying timescale hierarchy and the impact of
eccentricity on the evolution of precessing BH binaries. Our
results are framed in terms of potential GWobservables such
as the tilt angles and the spin morphologies. The investigated
couplings between spins and eccentricity provide a new
phenomenological handle to infer the past history of BH
binaries. The other side of the same coin, however, is that
residual eccentricity, if neglected, might introduce a signifi-
cant systematics in our astrophysical inference (Sec. IV). We
use natural units where G ¼ c ¼ 1.

II. BINARY EVOLUTION

We organize our discussion according to the
three phenomena that characterize the problem: orbit,

precession, and radiation reaction. We then present a
timescale comparison.

A. Orbit

Let us consider a BH binary with component masses
m1;2, total mass M ¼ m1 þm2, reduced mass is μ ¼
ðm1m2Þ=M, and mass ratio q ¼ m2=m1 ≤ 1. In the
center-of-mass frame, the problem reduces to an effective
scenario where a single particle of mass μ experiences a
central acceleration d2r=dt2 ¼ −Mr=r3, where r is sepa-
ration between the two bodies. A schematic representation
is provided in Fig. 1.
The specific energy and orbital angular momentum are

given by

E ¼ 1

2
μ

�
dr
dt

�
2

þ L2

2μr2
−
μM
r

; ð1Þ

L ¼ μr2
df
dt

; ð2Þ

where f is the true anomaly, i.e. the angular separation
along the orbit measured from the periapsis. In Newtonian
gravity, orbital energy and angular momentum are con-
served and fully characterize the semimajor axis a and the
eccentricity e:

jEj ¼ Mq
2ð1þ qÞa ; ð3Þ

L ¼ q2

ð1þ qÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3að1 − e2Þ

q
: ð4Þ

FIG. 1. Binaries on elliptic orbits can be reduced to an effective
system with fixed massM located in one of the foci and an orbiting
body of mass μ (black circles). The geometry of the orbit is defined
by semimajor axis a, semilatus rectum að1 − e2Þ, and distance at
periapsis að1 − eÞ. The true anomaly f is measured counterclock-
wise from the periapsis to the orbital separation vector r.
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Elliptical orbits correspond to e∈ ð0; 1Þ, while the limits
e ¼ 0 and e ¼ 1 correspond to circles and parabolas,
respectively. The orbital separation is given by

r ¼ að1 − e2Þ
1þ e cos f

; ð5Þ

the semilatus rectum is given by að1 − e2Þ, and the closest
distance between the two bodies is given by að1 − eÞ. From
Kepler’s third law, the period is

τorb ¼ 2π

ffiffiffiffiffi
a3

M

r
; ð6Þ

which defines the typical timescale of the orbital motion.
Equations (3) and (4) imply that binaries with the same

semimajor axis but different eccentricities have the same
energy but different angular momentum. In particular, L is
smaller for elliptic orbits compared to circular orbits. As
explored at length below, this turns out to be a crucial
feature when considering spinning BHs.
Throughout this paper, we refer to “eccentricity” as

given by its Keplerian definition in terms of E and L. This
is only appropriate as long as one can approximate the
binary evolution as an adiabatic series of quasiclosed orbits,
which is typically true in the PN regime for moderate
eccentricities (cf. Sec. IV). In contrast, the full theory of GR
does not allow for a natural definition of eccentricity, which
led to various proposals (see Refs. [34,35] and references
therein).

B. Spin precession

A spinning BH binary is characterized by three angular
momenta: the spins S1;2 of the two compact objects and
the orbital angular momentum L. These add up to the total
angular momentum J ¼ Lþ S1 þ S2. The magnitudes of
the spins are most commonly quoted in terms of the
dimensionless Kerr parameters χ1;2 ¼ S1;2=m2

1;2 ∈ ½0; 1�.
We describe the spin orientations using the polar angles

θ1;2 ∈ ½0; π� between each of the spin vectors and the
angular momentum and the azimuthal angle ΔΦ∈½−π;π�
between the projections of the two spins onto the orbital
plane.
These quantities can be used to construct the effective

spin [36]

χeff ¼
χ1 cos θ1 þ qχ2 cos θ2

1þ q
; ð7Þ

and the weighted spin difference [29]

δχ ¼ χ1 cos θ1 − qχ2 cos θ2
1þ q

: ð8Þ

Notably, χeff is a constant of motion at 2PN [37] while δχ
varies on the precession timescale [33].
Relativistic couplings between the orbital angular

momentum and the spins cause them to precess about
the direction of J [2]. This is a secular motion that takes
place over many orbits, which implies the spin dynamics
can be consistently orbit averaged [38]. The resulting
evolutionary equations at 2PN are [29,37,38]

dS1
dt

¼ ω1 × S1; ð9Þ

dS2
dt

¼ ω2 × S2; ð10Þ

dL
dt

¼ ωL × Lþ dL
dt

L̂; ð11Þ

where

ω1 ¼
1

2a3ð1− e2Þ3=2
��

4þ 3q−
3ð1þqÞχeffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1− e2Þ=M

p
�
LþS2

�
;

ð12Þ

ω2 ¼
1

2a3ð1− e2Þ3=2
��

4þ 3

q
−

3ð1þqÞχeff
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1− e2Þ=M

p
�
LþS1

�
;

ð13Þ

ωL ¼ 1

2a3ð1 − e2Þ3=2
��

4þ 3q −
3ð1þ qÞχeffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ=M

p
�
S1

þ
�
4þ 3

q
−

3ð1þ qÞχeff
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ=M

p
�
S2

�
ð14Þ

model the conservative dynamics and dL=dt encodes
dissipation via GWs.
Neglecting radiation reaction and exploiting the con-

servation of χeff , one can reduce Eqs. (9)–(14) to a single
equation for the weighted spin difference [33]

M
dδχ
dt

¼ 3q
ð1þqÞ2 χ1χ2ð1− e2Þ3=2

�
að1− e2Þ

M

�−3

×

�
1−

χeffffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1− e2Þ=M

p
�
sinθ1 sinθ2 sinΔΦ; ð15Þ

where the angles θ1, θ2, and ΔΦ depend on δχ. The
solution is quasiperiodic, with δχ oscillating between two
extrema δχ� which are themselves functions of a, e, q, χ1,
χ2, χeff , and J. In turn, these are used to define the spin
precession period

τpre ¼ 2

Z
δχþ

δχ−

�
dδχ
dt

�
−1
dδχ; ð16Þ
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which can be expressed in closed form using elliptic
integrals [33].
Setting e ¼ 0 in the expressions above trivially returns

the equations used in Refs. [31,33] for circular binaries
where r ¼ a. Moreover, it is immediate to prove that spin
evolution of an eccentric binary on an orbit described by a
and e is mathematically equivalent to that of a circular
binary with orbital separation

a0 ¼ að1 − e2Þ; ð17Þ

provided one also changes the time variable to

t0 ¼ tð1 − e2Þ3=2: ð18Þ

This change of variables for space and time is reminiscent
to the Lorentz transformations of special relativity, where
the eccentricity e enters the Lorentz factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
in place of the velocity v=c.
The spin properties of eccentric BH binaries can thus be

mapped to those of an effective circular source. In other
words, the eccentricity can be transformed away and dealt
with in postprocessing. We can thus make direct use of the
numerical infrastructure that has already been developed
for circular binaries: when tackling spin precession for
eccentric sources, one can evolve the corresponding
circular source and rescale the solution according to
Eqs. (17) and (18).

C. Radiation reaction

At lowest order, the eccentricity and semimajor axis
evolve according to Peters’ equations [1]:

da
dt

¼ −
64

5

q
ð1þ qÞ2

1þ 73
24
e2 þ 37

96
e4

a3ð1 − e2Þ7=2 M3; ð19Þ

de
dt

¼ −
304

15

q
ð1þ qÞ2

e
	
1þ 121

304
e2



a4ð1 − e2Þ5=2 M
3: ð20Þ

Equations (4), (19), and (20) can be used to derive the
radiation-reaction timescale:

τrr ¼
L

jdL=dtj ¼
5

32

ð1þ qÞ2
qM3

a4ð1 − e2Þ5=2
1þ 7

8
e2

: ð21Þ

Compared to other possible definitions including the more
common a=jda=dtj, defining τrr in terms of L as in Eq. (21)
is more appropriate in our context because the derivative
dL=dt directly enters Eq. (11).
Equations (19) and (20) lead to several predictions when

integrated either forward or backward in time from some
initial condition (a0, e0). First, one has da=dt < 0 for all
values of a and e, which is trivially related to the fact that
GWs can only dissipate energy and not inject it into the

system. This implies one can use a as a time coordinate and
consider de=da ¼ de=dt × ðda=dtÞ−1. If e0 ¼ 0, one has
de=da ¼ 0 and the orbit remains circular throughout its
evolution. If e0 > 0, one has da=de > 0, i.e. the eccen-
tricity tends to decrease along with the semimajor axis,
eventually approaching zero. Conversely, the eccentricity
tends to increase when integrating backward in time up to
e ¼ 1. The e0 ¼ 0 case is akin to a point of unstable
equilibrium: while perfectly circular binaries stay circular
even at past time infinity, binaries that are eccentric (even if
arbitrarily close to circular!) become parabolic when traced
back far enough in time. In particular, for eccentric binaries
one has [1]

lim
t→−∞

a ∝
1

1 − e2
; ð22Þ

which implies that, although a → ∞ and 1 − e2 → 0, their
product stays constant. The key consequence is that the
angular momentum L of an eccentric source from Eq. (4)
asymptotes to a constant value when backpropagated to
past time infinity. This is in contrast with the circular case
where instead the angular momentum L ∝

ffiffiffi
a

p
diverges for

wide orbits.
Such asymptotic distinction between eccentric and

circular binaries plays a pivotal role in this study and
constitutes a fundamental aspect of the interplay between
spins and eccentricity in BH binaries. The analytic results
presented in Refs. [31,33] in the a → ∞ limit intrinsically
rely on the divergence of L and thus cannot be generalized
to eccentric orbits, with conceptual consequences for GW
population analyses [39] that still need to be explored. We
note, however, that the Peters’ equations themselves lose
validity in this limit [40]. Equations (19) and (20) have been
orbit averaged [1] and thus are valid only when τorb ≪ τrr.
From Eqs. (6), (21), and (22), it is straightforward to prove
that the two timescales are of the same order of magnitude
when a → ∞ and e → 1 (cf. Sec. II E).

D. Precession-averaged inspiral

We now proceed on extending the precession-average
formalism to eccentric binaries. A generic quantity X can
be averaged to hXi ¼ ðR τpre

0 XdtÞ=τpre, where the integral
is more conveniently implemented using Eq. (15);
cf. Ref. [33]. Once constant of motions are taken into
account and both the orbital and the precessional motion
are averaged over, one only needs to connect quantities that
vary on the radiation-reaction timescale.
For the circular problem, there are only two such

quantities, namely the magnitudes of the orbital and total
angular momenta. The evolution thus reduces to integration
a single ordinary differential equation (ODE) [30,31]:

dκ
du

¼ hjS1 þ S2j2i; ð23Þ
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where

u ¼ 1

2L
ð24Þ

and

κ ¼ J2 − L2

2L
ð25Þ

are convenient reparametrizations of L and J, respectively.
The right-hand side of Eq. (23) depends on quantities that
are either constants of motion or vary on τrr and can be
written down in closed form [29,33]. The key assumptions
used in the derivation of Eq. (23) are that dL=dt is parallel
to L and independent of the spins [30,31], which are still
true for eccentric binaries at leading order in radiation
reaction [38]. We can thus use Eq. (23) as it is, provided one
properly generalizes L as in Eq. (4).
The eccentric problem however has three, and not two,

quantities that vary on the radiation reaction time: a, e, and
J (or some equivalent reparametrization). We already have
two variables, κ and u. For the third, we choose

uc ≡ uða; e ¼ 0Þ ¼ ð1þ qÞ2
2qM2

ffiffiffiffiffi
M
a

r
; ð26Þ

which is the coordinate used previously for the integration
of circular binaries and does not depend on e. In particular,
the condition 0 ≤ e < 1 implies u ≥ uc > 0. The resulting
evolutionary equation can be easily derived from Eqs. (19)
and (20) and reads

du
duc

¼ −
12ucuð7u2c − 15u2Þ

37u4c − 366u2cu2 þ 425u4
: ð27Þ

With some tedious but straightforward algebraic manipu-
lation, the solution can be written down as

ucu37=84
�
u2

u2c
− 1

�
121=532

�
u2

u2c
−
121

425

�
145=532

¼ k0; ð28Þ

where k0 is a constant that needs to be determined from the
initial conditions uc0 and u0.
For an initially circular binary, one has u0 ¼ uc0 and

k0 ¼ 0. The only solution to Eq. (28) is indeed u ¼ uc, i.e.
circular binaries stay circular. For an initially eccentric
binary, one has k0 > 0 and Eq. (28) can be solved numeri-
cally to identify uðucÞ. This is simpler and more accurate
than numerically integrating Eq. (27). Compared to the
analytic expression for aðeÞ reported in Ref. [1], our
formulation has the key advantage of being regular in
the limit of circular binaries—the first term in parentheses
in Eq. (28) acting as a regularizer—and thus more ame-
nable to numerical evaluations.

In summary, given a set of constants of motion (q, χ1, χ2,
χeff ) and initial conditions (uc0, u0, κ0), performing a
precession-averaged evolution of an eccentric binary
reduces to integrating the ODE (23) under the constraint
imposed by Eq. (28). The ODE solver is identical to that
of the circular case and the root finder for uðucÞ is an
additional, but trivial, computational task. Overall the
performance of our implementation is similar to what we
reported in Ref. [33] for the circular case.

E. Timescale separation

We now investigate the validity of our formalism.
Averaging over the orbital and precessional motions in
sequences relies on the timescale separation τorb ≪
τpre ≪ τrr. In the circular limit, this inequality trivially
corresponds to the PN condition a¼ r≫GM=c2. As illus-
trated in Fig. 2, the eccentric case is less straightforward.
In particular, one has

τrr
τorb

∝
�
a5=2 if e → 0;

const if e → 1;
ð29Þ

FIG. 2. Evolution of the timescale ratios τrr=τpre (solid) and
τrr=τorb (dotted) as a function of the binary semimajor axis for
four GW sources with q ¼ 0.5, χ1 ¼ 0.6, χ2 ¼ 0.9, and
ðθ1; θ2;ΔΦÞ ¼ ðπ=3; π=4;−π=3Þ. These are initialized with dif-
ferent eccentricities e0 ¼ 0, 10−6, 10−3, 10−2 at a separation
a ¼ 10M as indicated on the color scale and propagated back-
ward. Crosses indicate the location of the inspiral where the
eccentricity reaches e ¼ 0.6.
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and

τrr
τpre

∝
�
a3=2 if e → 0;

const if e → 1;
ð30Þ

where the circular (parabolic) limit corresponds to the late
time (early time) behavior of a generic eccentric source.
It follows that, for eccentric binaries, the accuracy of the
multi-timescale approach does not keep on improving as
one moves to larger and larger separations. Rather, it
plateaus. From Fig. 2, the transition between the two
behaviors takes place when e ∼ 0.5.
This is qualitatively different than the circular case, where

multi-timescale evolutions are inaccurate close to merger
(because of the breakdown of the PN approximation) but
become increasingly accurate toward past time infinity [31].
We express the regime of validity of the multi-timescale

approach in terms of two approximate conditions:
(i) At small separations, the periapsis distance should

be sufficiently large for the equations to remain
PN valid. Borrowing the threshold from Ref. [41],
we set að1 − eÞ≳ 10M.

(ii) At large separations, the Peters’ equations predict
parabolic orbits. These have infinitely large periods,
which is manifestly against the quasiadiabatic ap-
proach used to derive the equations themselves. This
is a known issue [42] and, in particular, Refs. [34,40]
suggest that orbit averaging can only be mean-
ingfully applied if e≲ 0.6.

These forbidden regions are highlighted in Fig. 3. In the
remaining gray-shaded region, the applicability of our
formalism depends on the precession timescale. Figure 3
shows contours of τpre=τrr for populations of BH binaries
with different values of the mass ratio, averaging over both
spin magnitudes and directions. Regions to the left of each
curve correspond to τpre=τrr > 100, which is safe territory
for the multi-timescale approach. This is not dissimilar to
the circular case [31] and, indeed, the black curves in Fig. 3
remain largely vertical, i.e. independent of the eccentricity.
The e ¼ 0.6 limit indicated in condition (ii) above roughly
separates the region of the parameter space where the
τpre=τrr contours start bending leftward.
For a quick rule of thumb, our multi-timescale approach

can be applied to eccentric binaries much like in the circular
case as long as the eccentricity is small to moderate, with
e ¼ 0.6 providing a nominal threshold. The high-eccentricity
case requires a new formalism, perhaps averaging over the
various phenomena entering the dynamics (orbit, precession,
inspiral, eccentricity decay) in a different order.

III. PHENOMENOLOGY

We first describe our findings in terms of the parameter
that most directly enters our formalism. We then present
predictions for quantities that are more directly observable.

A. Weighted spin difference

Compared to the quasicircular case, eccentricity enters
our formalism in two key aspects. First, the coordinate
transformation of Eqs. (17) and (18) accelerates the
evolution of all quantities that vary on the precession
timescale, including the spin directions (this feature was
already noted in Ref. [43]). Second, the orbital angular
momentum L does not diverge as t → −∞ [1].
For quasicircular binaries, the right-hand side of Eq. (15)

tends to zero in this limit, which implies that at large
separations BH spins move on precession cones of constant
opening angles θ1;2 [33]. This is not true in general for
eccentric binaries, suggesting that, even at early times,
the BH spin continues to nutate with an amplitude that
approaches a constant value and does not degenerate to
zero (but see Sec. II E on the validity of our formalism).
Figure 4 shows the precession-timescale evolution (i.e.

without radiation reaction) of the weighted spin difference
δχ for three binaries with different eccentricities. Notably,
the spins of eccentric binaries oscillate with a shorter period
and a larger amplitude. These are a direct consequence of
the two dynamical features we just highlighted.

FIG. 3. Validity region of the precession-average formalism as a
function of binary semimajor axis a and eccentricity e. The light
blue area indicates the region where the close-passage distance is
að1 − eÞ < 10M, likely beyond the regime of validity of the PN
approximation. The red area indicates the condition e > 0.6,
which is our conservative limit for the inapplicability of the orbit-
averaged approach to radiation reaction. The black solid curves
show the condition τrr=τpre ¼ 100, with > 100 being true in the
lighter regions to the left of each curve. We average the value of
τrr=τpre over four sets of binaries with fixed mass ratios q ¼ 0.1,
0.5, 0.7, 1 and spins that are generated uniformly in magnitudes
in [0.1, 1] and isotropic in directions.
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We further quantify the impact of eccentricity on spin
precession with a suitable deviation parameter Δ. We first
precession average δχ and rescale it to its oscillation
amplitude [33]

hδχ̃i ¼ hδχi − δχ−
δχþ − δχ−

∈ ½0; 1�: ð31Þ

We then compute hδχ̃i for a given eccentric binary and
compare it against an equivalent quantity hδχ̃ic, which is
estimated assuming the same values of a, q, χ1, χ1, θ1, θ2
and ΔΦ but setting e ¼ 0. Our deviation parameter is then
defined as

Δ ¼ hδχ̃i − hδχ̃ic
hδχ̃i þ hδχ̃ic

∈ ½−1; 1�; ð32Þ

and can be interpreted as a fractional measurement of the
impact of eccentricity on spin precession. Figure 5 illus-
trates the value of Δ across some sections of our parameter
space. We consider six sets with fixed mass ratios and spin
magnitudes and average our results over spin directions
distributed isotropically.
In general, we find that the magnitude jΔj increases with

both the mass ratio and the spin magnitudes, signaling an
enhanced interplay between spins and eccentricity in such

FIG. 4. Time evolution of the weighted spin difference δχ for
three representative BH binaries with mass ratio q ¼ 0.95, spin
magnitudes χ1¼ χ2¼0.9, initial spin orientations ðθ1; θ2;ΔΦÞ ¼
ðπ=3; π=4;−π=3Þ, semimajor axis a ¼ 104M, and eccentricities
e ¼ 0 (solid), 0.5 (dashed), and 0.6 (dotted). In terms of the
deviation parameter from Eq. (32), these three sources have
Δ ¼ 0, 1.5 × 10−3, and 2.4 × 10−3, respectively.

FIG. 5. Spin-eccentricity interplay in terms of the deviation parameter Δ as a function of binary semimajor axis a and eccentricity e.
We consider sources with e < 0.6, which sets the validity of our model (Sec. II E). For each panel, we consider three sets of BH binaries
with different mass ratios and spin magnitudes. In all cases, we average over the orientations of the spins, which are assumed to be
distributed isotropically. In the right panel, we set χ1 ¼ χ2 ¼ 0.9 and vary q ¼ 0.95 (blue solid), 0.5 (orange dashed), and 0.1 (green
dotted). In the left panel, we instead set q ¼ 0.95 and vary χ1 ¼ χ2 ¼ 0.9 (blue solid), 0.5 (orange dashed), and 0.1 (green dotted). The
blue solid contours are the same across the two panels. Gray areas indicate the region að1 − eÞ ≤ 10M where the PN approximation
breaks down.
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systems. The deviation Δ is largely positive across the
parameter space, with the key exception of binaries with
nearly equal masses and large spins. Note that Δ is a
precession-average quantity and as such is only accurate
when the underlying timescale hierarchy is respected.

B. Spin orientations

While δχ is the quantity that directly enters our formal-
ism, more intuitive insight can be gained by rephrasing our
findings in terms of the spin angles θ1, θ2, and ΔΦ. Our
results are shown in Figs. 6 and 7 for some representative
sources. Note we only illustrate the range of variation of
each of these angles as the timescale separation τpre ≪ τrr
implies they oscillate many times at each orbital separation.
Figure 6 shows the evolution of three systems with

q ¼ 0.95, χ1 ¼ χ2 ¼ 0.96, and initial spin orientations
ðθ1; θ2;ΔΦÞ ¼ ðπ=3; 2π=3;−π=9Þ. Integrations are initial-
ized at the initial semimajor axis a0 ¼ 4000M considering
three different initial eccentricities e0 ¼ 0, 0.5, and 0.6.
While we can formally integrate both forward and back-
ward in time (i.e. toward smaller and larger eccentricities,
respectively), we expect our formalism to break down at
early times when e≳ 0.6, cf. Sec. II E. The key message
here is that the spins of these binaries trace different
precession cones as they evolve toward merger. That is,
the spin dynamics depends on the eccentricity.
As these binaries approach merger, the range the spin

angles can vary within is smaller for sources with larger
initial eccentricities. It is worth noting that this is true even
if the eccentricity of all three sources close to merger is

essentially zero (e ∼ 10−4 at a ¼ 30M): the spins of BH
binaries at small separations (i.e. when they become
detectable by our instruments) “remember” their past
evolution on eccentric orbits. The smaller nutation ampli-
tude observed close to merger for the eccentric evolutions
compared to the circular case is consistent with the results
reported in Sec. III A for BH binaries with nearly equal
masses and high spins. While this is the case for the sources
in Fig. 6, we do not expect this to be a generic feature.
The strong features observed at a ≃ 2210M (4000M) and

the azimuthal angle ΔΦ is instantaneously ill defined. The
occurrence of these phase transitions is deeply affected by
the eccentricity to the point that, at least for these specific
cases, the transition itself disappears in the case of the
most eccentric source. This point is further explored in
Sec. III C below.
While likely outside the regime of validity of our

formalism, the backward integration of these sources
toward larger separation shows how eccentric sources
maintain a finite nutation amplitude, i.e. the range of
variations of θ1;2 does not go to zero as a increases.
This is a direct consequence of the magnitude of the orbital
angular momentum remaining finite at past time infinity.
The eccentric binaries of Fig. 6 reach merger with

eccentricities of ∼10−4, which is well below the distin-
guishability threshold of our detectors [23]. In practice,
these sources will all be classified as circular. Figure 7
demonstrates the impact of such indistinguishability on the
reconstruction of the spin history. We consider the same
e0 ¼ 0.6 evolution of Fig. 6, where the source is evolved
from large to small separations. We then take the final

FIG. 6. Evolution of the spin angles θ1 (left), θ2 (middle), and ΔΦ (right) under radiation reaction. Each of the angles oscillate in the
reported ranges. We consider three binaries with mass ratio q ¼ 0.95, spin magnitudes χ1 ¼ χ2 ¼ 0.96, and initial spin orientations
ðθ1; θ2;ΔΦÞ ¼ ðπ=3; 2π=3;−π=9Þ. Sources are evolved assuming initial eccentricities e0 ¼ 0 (dark gray), 0.5 (light gray), and 0.6 (red)
at a0 ¼ 4000M. We track the evolution both forward to a ¼ 30M and backward to a ¼ 105M. At large separations, the eccentricity
grows beyond e ¼ 0.6 (vertical dotted lines) and our formalism loses validity (lighter shaded areas and dashed curves).
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condition, reset its residual eccentricity to 0, and evolve it
back to the initial large separation. This “back and forth”
evolution is not invertible, i.e. the binary does not go back
to where it started in parameter space.
As shown in Fig. 7, the two evolutions are similar to each

other only at small separations when the eccentricity is low
and differ as e increases. For context, the forward evolution
had e ∼ 0.14 at a ¼ 1000M. The backward evolution (i.e.
which in this example corresponds to our reconstructed
information) shows a prominent phase transition that is
instead absent in the eccentric forward evolution (i.e. which
instead corresponds to the actual source). This experiment
shows that eccentricity, even when it is far below the
threshold of distinguishability, poses a serious challenge
when attempting a reconstruction of the binary formation
history using the spin directions [7–13]. Residual eccen-
tricity is a systematic uncertainty that needs to be taken into
account when interpreting GW data.

C. Spin morphologies

The parameter space of precessing BH binaries can be
divided into three distinct regions, or “morphologies,”
according to the evolution of the azimuthal angle ΔΦ [31].
In particular, this angle can either (i) circulate between
ΔΦ ¼ 0 to ΔΦ ¼ �π, (ii) librate about ΔΦ ¼ 0 (and never
reach ΔΦ ¼ �π), or (iii) librate about ΔΦ ¼ �π (and
never reach ΔΦ ¼ 0). In particular, the zero-amplitude
limits of the two librating morphologies are the so-called
spin-orbit resonances of the spin precession problem [38].
While the morphology is an integrated quantity that is

defined over an entire precession cycle, the radiation

reaction causes secular transitions between the different
classes. Some examples are shown in Figs. 6 and 7,
where in both cases the e ¼ 0 and e ¼ 0.5 binaries
belong to the circulating morphology at large separations
and transition toward the librating about ΔΦ ¼ 0 mor-
phology at some point during the inspiral. Classifying
BH binaries in terms of these classes is promising
because, at least for the quasicircular problem, the
morphology near merger (where binaries are detected)
tracks the spin tilts at large separations (where binaries
are formed) [31,44].
For circular sources, one can prove that all binaries

belong to the circulating morphology at large separations,
while the two librating morphologies can only be popu-
lated by transitions occurring during the inspiral [33].
Once more, this feature is due to the divergence of L at
early times and does not hold for eccentric sources. This
implies that eccentric binaries will more likely be found in
the two librating morphologies compared to their circular
counterparts.
This point is illustrated in Fig. 8. We consider BH binaries

with q ¼ 0.95, χ1;2 uniformly distributed in [0.5, 1],
and spin orientations distributed isotropically. Sources
are evolved backward in time from small (a0 ¼ 30M) to
large separations (af ¼ 106M) with an initial eccentricity
e0 ¼ 2 × 10−3. We report the fraction of binaries in each of
the spin morphologies, together with analogous fractions
obtained setting e0 ¼ 0. The key conclusion is that, as the
evolution proceeds, some eccentric sources remain in their
librating morphologies at large separations while all circular
binaries transit to circulation. This might have important

FIG. 7. Forward and backward evolution of the spin angles θ1 (left), θ2 (middle), and ΔΦ (right), resetting the eccentricity to zero near
merger. We consider the same binary of Fig. 6 with q ¼ 0.95, χ1 ¼ χ2 ¼ 0.96, ðθ1; θ2;ΔΦÞ ¼ ðπ=3; 2π=3;−π=9Þ, a0 ¼ 4000M, and
e0 ¼ 0.6, and evolve it toward merger (red). At a ¼ 30M, this binary has an eccentricity e ∼ 10−4. We artificially set this value to zero
and evolve the same binary backward to large separations (dark gray).
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consequences when attempting to use the spin morphologies
to constrain astrophysical formation channels.

IV. CONCLUSIONS

Spin precession and eccentricity are precious indicators
of the astrophysical origin of binary BHs in both the stellar-
mass and the supermassive regimes. As binaries evolve
from formation to merger, couplings between the orbital
eccentricity and the BH spins enter the dynamics, with
potential consequences for our astrophysical inference.
Binaries tend to circularize during their long inspiral

before merger [1], which implies most sources are expected
to enter the sensitivity window of our detectors with
vanishingly small eccentricities, likely below the distin-
guishability threshold [23,24]. This paper shows that the
spin evolution retains some memory of the eccentric past of
BH binaries. The implications are twofold, with a pro and
a con:

(i) Because the spin orientations depend on the eccen-
tricity, interplay between the two effects provides
an avenue to infer that sources formed on eccentric
orbits even if they are not detected as such.
Astrophysical degeneracies will likely prevent us

from inferring this effect on an event-by-event
basis, but the implications for the GW population
problem are promising. If a sizable fraction of BH
binaries forms on eccentric orbits, this should have
an impact on the statistical properties of the spin
orientations inferred via GWs. The next step is to
formalize this intuition in terms of concrete ob-
servational predictions.

(ii) The interplay between orbital eccentricity and spin
precession implies that inference using the latter will
be polluted by the former. The broader program of
inferring the astrophysical formation channels of BH
binaries using the spin directions thus suffers from
an important systematics, namely residual eccen-
tricity. Analyses that attempt reconstructing the spin
history of BH binaries should be carried out taking
residual eccentricity into account. The next step here
is to design a suitable strategy to “marginalize out”
this source of uncertainty.

Our paper presents a multi-timescale treatment of the
binary dynamics able to capture moderately eccentric
sources, generalizing results that were previously restricted
to circular orbits [31,33] (see also Refs. [27–29,32]). This
extension involves two key steps: an analytical rescaling of
the spin-precession equations and an additional prescrip-
tion for the evolution of the eccentricity itself. We explored
the resulting phenomenology showing in particular how
eccentricity impacts (i) the dynamical quantities entering
our formalism, (ii) the nutation amplitude of the BH spins,
and (iii) the so-called spin morphologies.
Our findings will be implemented in the public version

of the PRECESSION code [33,45]. It is important to stress that
our approach relies on the well-known, orbit-averaged PN
equations of motion [1], which cannot be used reliably
when the eccentricity is e≳ 0.6 [40]. Pushing our formal-
ism beyond this limit is a promising avenue for future work,
which likely requires going back to the drawing board and
carefully consider how the different timescales separate
across the parameter space.
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FIG. 8. Fraction of eccentric (colored areas and dashed black
curves) and circular (solid black curves) binaries falling in each of
the three morphologies as a function of the binary semimajor axis
a. We assume a set of BH binaries with fixed mass ratio q ¼ 0.95,
spin magnitudes χ1;2 uniformly distributed in [0.5, 1], and
isotropic spin directions. Sources are initialized at ða0 ¼ 30M;
e0 ¼ 2 × 10−3Þ and evolved backward to a ¼ 106M. Lighter
areas to the left of the vertical gray line indicate the region where
e > 0.6 and our formalism loses validity.
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