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Analog gravity models of black holes and exotic compact objects provide a unique opportunity to study
key properties of such systems in controlled laboratory environments. In contrast to astrophysical systems,
analog gravity systems can be prepared carefully and their dynamical aspects thus investigated in
unprecedented ways. While gravitational wave scattering properties of astrophysical compact objects are
more connected to quasinormal modes, laboratory experiments can also access the transmission and
reflection coefficients, which are otherwise mostly relevant for Hawking radiation related phenomena. In
this work, we report two distinct results. First, we outline a semiclassical, nonparametric method that allows
for the reconstruction of the effective perturbation potential from the knowledge of transmission and
reflection coefficients for certain types of potentials in the Schrödinger wave equation admitting resonant
tunneling. Second, we show how to use our method by applying it to an imperfect draining vortex, which
has been suggested as an analog of extreme compact objects. Although the inverse problem is, in general,
not unique, choosing physically motivated assumptions and requiring the validity of semiclassical theory,
we demonstrate that the method provides efficient and accurate results.
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I. INTRODUCTION

Since the direct measurements of gravitational waves
from binary mergers of black holes and neutron stars, it is
finally possible to explore strong field dynamics in a direct
way [1–5]. Future improvements of existing detectors and
promising next generation successors will provide us with
pristine tests of general relativity and explore compact
objects [6–8]. As such measurements originate from
astrophysical sources, initial conditions and properties of
the systems cannot be explored in an arbitrary way, but are
ultimately given by whatever is realized in nature. In
particular, from a theoretical point of view, certain types
of observables cannot be directly probed in this context, but
are of fundamental interest.
Within compact object perturbation theory, it is known

that the dynamics of perturbed fields or the metric can often
be cast in the form of one-dimensional wave equations with
a potential term similar to those studied in quantum
mechanics [9–11]. In addition to the question of the
eigenvalue spectrum of a given potential, one of the most
common problems is also computing transmission and
reflection coefficients. The former one manifests itself in
the calculation of quasinormal modes [12–15], which are

relevant for the ringdown phase of a binary merger and of
special interest for testing the assumptions of the Kerr
hypothesis [16–18]. In astrophysical scenarios, transmis-
sion and reflection coefficients cannot directly be extracted.
In fact, they are more accurately described by a controlled
comparison of ingoing and outgoing radiation. It may be
indirectly addressable with extreme mass ratio inspirals
(EMRIs) with future detectors like the Laser Interferometer
Space Antenna [6], in which the smaller object can be
treated perturbatively around a massive exotic compact
object, e.g., see Refs. [19,20]. Moreover, very recently it
was demonstrated that it may also be possible to extract
graybody factors from ringdown of EMRIs, at least
approximately [21].
Analog gravity provides exciting and complementary

ways to study qualitatively similar phenomena and sys-
tems [22–24], but based on much simpler underlying
physics. For an extensive review, see Ref. [25]. One
well-known example is Hawking radiation, which cannot
be directly measured for astrophysical black holes, but
can be mimicked in analog systems [26–29], as has been
suggested and studied in Bose-Einstein condensates,
both theoretically [30–32] and experimentally [33,34].
Backreaction effects in a hydrodynamical setup have been
studied in Ref. [35]. Another black hole related observable
are quasinormal modes, which have been investigated
experimentally in an analog black hole setup in Ref. [36].
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In recent years, the study of astrophysical exotic compact
objects has received much attention, as someworks claimed
tentative evidence of smoking-gun signs of so-called echoes
in gravitational wave data, e.g., Ref. [37]. The echo
phenomenon was first studied for ultracompact constant
density stars in Refs. [38–41] and, since then, for a variety of
exotic compact objects. See Ref. [42] for a review on the
topic. Although subsequent works cannot confirm such
findings and refuse claimed significance [43,44], the ques-
tion of the existence of such objects remains intriguing. In
the context of analog gravity, a system with such properties
has been proposed in Ref. [45] and consists of an imperfect
draining vortex. In the same work, the observational
consequences of such a system have been studied for scalar
field perturbations. These include transmission and reflec-
tion coefficients, as well as possible superradiant features,
whose formal treatment, we call the “direct problem” in the
following. If analog exotic compact objects can be realized
in laboratory experiments and transmission/reflection coef-
ficients can be measured, how could one use them to study
their properties in the inverse problem?
In this work, we present a novel method that is based on

a semianalytic analysis of the underlying wave equation
and that does not require the specification of the details of
the underlying model. Note that this is very different from
standard inference approaches, in which one reconstructs
the parameters of a model using statistical tools. Instead, we
show how Wentzel-Kramers-Brillouin (WKB) theory-
based results known for quasistationary states of astro-
physical exotic compact objects [46–48] can be extended to
recover main properties of the effective potential, as well as
absorption properties at the surface of the objects. As proof
of principle, we apply it to the imperfect draining vortex
model studied in Ref. [45], for which we compute the
relevant observables with standard, accurate numerical
methods. Since inverse problems are often not uniquely
solvable, we argue how physically motivated constraints
allow one to reconstruct the relevant potential. The quality
of the reconstruction, due to its relation to WKB theory, is
very good for large angular numbers. We are also able to
reconstruct the reflectivity of the objects, for which results
become more accurate the more the object is reflecting
incoming waves.
This work is structured as follows. In Sec. II, we first

outline the methods to solve the inverse problem for given
transmission and reflection functions. We then apply these
methods to the imperfect draining vortex model and discuss
our results in Sec. III. Finally, our conclusions can be found
in Sec. IV.

II. METHODS

In this section, we first outline the fundamentals of the
direct problem in Sec. II A, then we present the inversion of
the WKB-based methods in Sec. II B and, finally, discuss in
Sec. II C how the transmission and reflection functions

need to be further analyzed in order to provide the input for
the analysis presented in the former section.

A. Outline of the direct problem

Throughout this work, the main properties of the systems
we consider can be obtained by studying the following
effective one-dimensional wave equation:

d2

dx2
ψðxÞ þ ½E − VðxÞ�ψðxÞ ¼ 0: ð1Þ

Here VðxÞ is, in general, an energy-dependent potential that
captures the dynamical properties of the object under
consideration. Exotic astrophysical systems [42], as well
as the analog systems we study in Sec. III, can be best
described by a potential barrier with model-dependent
reflection properties on one side of the barrier. To under-
stand the description of the inverse problem, let us first
review the key concepts of the direct one.
There are two common scenarios in which Eq. (1) is

typically studied. One of them is an eigenvalue problem for
discrete values of En that are determined from suitably
chosen boundary conditions. In its most basic form, this
can either give bound states (purely real eigenvalues of
potential wells) or quasinormal modes (complex eigenval-
ues of potential barriers). The second scenario is the
scattering problem of transmission and reflection coeffi-
cients, which is more commonly studied in quantum
mechanics or in the context of black holes for Hawking
radiation calculations. Both scenarios are not independent
of each other, and in fact, our framework requires a joint
analysis to address the inverse problem.

1. Semiclassical method

For those astrophysical or analog systems for which the
outlined method here is valid, the typical structure of the
potential yields the so-called quasistationary states as
eigenvalue problem. The spectrum ω2

n ¼En¼E0nþ iE1n
of those modes is characterized by real valued bound states
E0n, together with a very small imaginary part E1n
reflecting the transmission through the barrier and “sur-
face,” thus measuring the respective mode’s lifetime. In the
astrophysical context, these modes have first been found for
ultracompact constant density stars in Refs. [49,50] and are
also known as trapped modes. Accordingly, as we usually
have in the context of compact object perturbation theory,
the real part of ωn describes the frequency of the nth mode,
while the imaginary part of ωn is inversely proportional to
the damping time of that respective mode. Therefore,
exponentially small imaginary parts imply long-living
trapped modes. This is physically expected in a potential
well created between a reflective surface and a potential
barrier. We show such a typical case in Fig. 1.
As we will see later in the results, increasing the

reflectivity of the reflective wall tends to increase the
lifetime of the trapped modes. Since a “larger portion” of
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the wave is being reflected by the compact object’s surface,
rather than being absorbed, thosewaveswill be trapped in the
well for a longer time before they actually manage to escape
the well (being absorbed by the object or being sent back to
infinity). Therefore, larger reflectivity in the surface of the
compact object implies exponentially smaller imaginary
parts for the modes, which in turn leads to narrower widths
in the transmission plots, as we discuss and illustrate later.
A semianalytic treatment of astrophysical exotic compact

objects with such properties has been studied in Ref. [51],
which combined the classical Bohr-Sommerfeld rule

Z
x1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0n − VðxÞ

p
dx ¼ π

�
nþ 1

2

�
; ð2Þ

and the Gamow formula

E1n¼−
1

2
ðT1ðEÞþT2ðEÞÞ

�Z
x1

x0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En−VðxÞp dx

�
−1
: ð3Þ

Here x0, x1, x2 are the classical turning points defined by
E0n ¼ VðxÞ. The semiclassical approximations for the
transmissions T2ðEÞ through a potential barrier is given by

T2ðEÞ ¼ exp

�
2i
Z

x2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En − VðxÞ

p
dx

�
; ð4Þ

whileT1ðEÞ is defined in terms of boundary conditions at the
object’s surface located at x0 and discussed in Sec. III A. See
also Ref. [52] for a very similar approach for the direct
problem. The inverse problem related to reconstructing
properties of VðxÞ given the spectrum of quasistationary
states was studied in Refs. [46,47] by inverting the Bohr-
Sommerfeld rule and Gamow’s formula, as is explained in
more detail in Sec. II B.

2. Numerical method

Since the main focus of this work is to study the inverse
problem from the transmission and reflection coefficients,

we conclude this section with a summary of the approach to
solve the direct problem numerically. We refer the inter-
ested reader to Ref. [45] for more details. The results of the
direct study of the scattering problem then provide us with
the starting point for our study of the inverse problem.
The boundary condition that needs to be incorporated at

the inner boundary is given by

ψðx ≈ x0Þ ∼ Awall½e−iω̃x þ Ke−2iω̃x0eiω̃x�; ð5Þ
with ω̃ ¼ ω −mC, and where K is the reflectivity constant
at the wall in x0. At spatial infinity, they are given by

ψðx → ∞Þ ∼ Aine−iωx þ Aouteþiωx: ð6Þ

From the amplitudes ðAin; AoutÞ, we can define the reflec-
tion and transmission coefficients by

jtj2 ¼ jAwallj2
jAinj2 ð1 − jKj2Þ; ð7Þ

jrj2 ¼ jAoutj2
jAinj2 : ð8Þ

They are related to each other by

jrj2 ¼ 1 −
ω̃

ω
jtj2: ð9Þ

Note the notation TðEÞ ¼ tðEÞ2 as used in Eqs. (3) and (4).
As usual, we know that the physical solutions satisfying the
boundary conditions given by Eqs. (5) and (6) can be
decomposed into the basis of solutions ðuh; u∞Þ, defined by
the following asymptotic behavior:

uh∼
�
e−iω̃x; x→−∞;

A−
∞e−iωxþAþ

∞eiωx; x→þ∞;
ð10Þ

and

u∞∼
�
A−
h e

−iω̃xþAþ
h e

iω̃x; x→−∞;

eiωx; x→þ∞:
ð11Þ

If we express our general solution ψ into this basis of
solutions (uh, u∞), we can obtain the following relations
between the coefficients:

Aþ
h ¼ ω

ω̃
A−
∞; ð12Þ

Ain

Awall ¼
ω̃

ω
ðAþ

h − A−
hKe−2iω̃x0Þ; ð13Þ

Awall ¼ ω

ω̃

ðA−
∞Aout − Aþ

∞AinÞ
Ke−2iω̃x0

: ð14Þ

FIG. 1. Here we show a typical potential barrier VðxÞ (blue)
with turning points x0ðEÞ; x1ðEÞ, and x2ðEÞ for a given value of E
(orange dot-dashed line). The location of the reflective core’s
surface coincides with x0ðEÞ (black dotted line).
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These are the basic relations that are needed for the direct
scattering problem calculation and further discussions
about their derivation can be found in [45].
For the direct problem, we first need to evaluate the set of

coefficients ðAþ
h ; A

−
h ; A

þ
∞; A−

∞Þ. This is done by numerically
evolving the uh solution from the wall at x0 to infinity, and
vice versa, with the u∞ solution. With the evaluated
coefficients, and by using Eqs. (12)–(14), we can then
determine the coefficients ðAwall; Ain; AoutÞ and, accord-
ingly, the transmission and reflection coefficients T and R,
respectively.
Finally, the transmission and reflection coefficients,

calculated here by means of the direct numerical problem,
provide the starting point to study the inverse method that
we consider within this framework. In principle, these are
the observables that could be obtained through future
laboratory experiments of analog gravity systems.

B. Inversion of Bohr-Sommerfeld rule
and Gamow formula

With the numerical results for reflection and trans-
mission coefficients available now, we will outline the
different steps of the inverse problem method. We start with
a high-level description of the main idea and explain more
specific details afterward.
The first step is to identify the location of resonance

peaks as an approximation for the energies of the quasista-
tionary states E0n. Assuming that the Bohr-Sommerfeld
rule (2) is a good approximation, it is known [53,54] that it
can be used to reconstruct the “width” L1ðEÞ of the
potential well as a function of the energy via

L1ðEÞ ¼ x1ðEÞ − x0ðEÞ ¼
∂

∂E
IðEÞ; ð15Þ

where IðEÞ is the so-called inclusion and given by

IðEÞ ¼ 2

Z
E

Emin

nðE0Þ þ 1=4ffiffiffiffiffiffiffiffiffiffiffiffiffi
E − E0p dE0: ð16Þ

Here Emin is the minimum of the potential defined by
extrapolating where nðEÞ þ 1=4 ¼ 0. Note that the poten-
tial cannot be uniquely reconstructed, but instead there are
infinitely many potentials with a given condition on their
turning points.
The second step is to combine the inversion of Gamow’s

formula for a two turning point potential barrier with the
information about the potential well, which has been
derived in Ref. [46] for a single barrier next to a reflective
boundary condition and in Ref. [47] for quasistationary
states trapped between two potential barriers. The inver-
sion of the Gamow formula allows one to connect the
transmission through a single potential barrier with the
width of the barrier. This was first shown in [55,56] and is
given by

L2ðEÞ ¼ x1ðEÞ − x0ðEÞ ð17Þ

¼ 1

π

Z
Emax

E

ðdTðE0Þ=dE0Þ
TðE0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 − E

p dE0: ð18Þ

Note that TðEÞ here is not the same as the full measured
transmission coefficient, as the latter one includes the net
result of the potential and the reflective wall combined
together.
To circumvent this limitation, we developed a numerical

fitting procedure that provides an effective transmission
through the potential barrier individually, which can then
be used for the reconstruction of the barrier. This numerical
procedure starts from the total transmission through the
barrier and reflective wall and isolates the pure effect of the
potential barrier. The final result obtained by this procedure
is what one could use as the input for the inversion of
the Gamow formula, given by Eq. (17) to reconstruct the
barrier, with the additional information coming from the
potential well. However, in order to obtain robust results,
one needs to slightly modify the transmission for energies
close to the peak of the barrier, which we outline in the
sequence. Finally, although we have not faced problems
from possible low-energy inaccuracies from the WKB
method, it could be a problem in other cases. In that case,
it may be useful to extrapolate the low-energy transmission
with analytic functions that do not cause so-called “over-
hanging cliffs” in the corresponding potentials; see
Ref. [57] for a related study on such analytic extensions.

1. Treatment at energies close to the barrier peak

Because of the reduced validity of the Bohr-Sommerfeld
rule and Gamow formula for energies around the peak of the
barrier, we complement the closevicinity of themaximumof
the potential barrier with a parabolic approximation

VparabolicðxÞ ¼ Emax þ aðx − xmaxÞ2: ð19Þ

Here the two relevant free parameters (Emax and a) are
directly obtained from fitting the analytic form of the
transmission to the numerical one; see Appendix of
Ref. [48]. With the estimate of Emax, one can now compute
L2ðEÞ to obtain width-equivalent potentialsVL2

ðxÞ. Finally,
we define the effective reconstructed barrier to be a smooth
interpolation between the two potentials

Veffðx; xint; λÞ ¼ VparabolicðxÞ
�
1

2
−
1

2
tanh½λðx− xintÞ�

�

þ VL2
ðxÞ

�
1

2
þ 1

2
tanh½λðx− xintÞ�

�
; ð20Þ

where λ controls the “smoothness” of the transition between
the two connected curves VparabolicðxÞ and VL2

ðxÞ in xint,
where these two curves intersect.Directly approximating the
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maximum of the potential with a parabola improves the
reconstruction, because the inversion of theGamow formula
used to derive L2ðEÞ is only valid for energies below the
barrier peak. The choice of thematching pointwhere the two
curves shall intersect is done by optimizing the determi-
nation of the position of the parabolamaximumon the x axis,
while looking for an intersection point where the functions
to be matched have the same value and same slope.

C. Analysis of the transmission

Knowing the transmission/reflection coefficients, we
now outline how exactly we analyze it to provide the
necessary input for the semiclassical inversion methods.
These quasistationary states, as well as the transmission,
are only related to the potential barrier and the reflec-
tive wall.

1. Extracting quasistationary states
from transmission

Given the numerical transmission curve as the starting
point of our analysis, we need to extract the spectrum of
quasistationary modes. They are imprinted in the locations
and widths of the resonance peaks. For example, the real
part of the mode energies ðE0nÞ are the energy values at the
local center of the peaks (or the local center of the small
“bumps,” in the low-reflectivity scenario), while the imagi-
nary parts ðE1nÞ are related to the widths of those peaks.
As we will discuss later, for some cases (high-reflectivity

regime), the local center of the peaks are, with a very good
approximation, the local maximum as well. For those cases,
we extract the locations using a basic peak-finder algorithm
and then numerically fit a three parameter Lorentzian [58]
in a very close vicinity to it,

fðEÞ ¼ TðEmax;nÞΓ2
n

ðE − Emax;nÞ2 þ Γ2
n
; ð21Þ

where Emax;n is the location of the resonance peak and the
real part of En, Γn is the half width at half maximum, and
TðEmax;nÞ is the peak value of the transmission at the
resonant energy. The width Γn of a certain peak will be
related to the imaginary part/damping time of its respective
mode. To increase the accuracy and optimize the algorithm,
we iteratively refine the energy resolution in a more narrow
region around a given peak.
For the cases where the local maximums at the peaks are

not a good approximation for the centers of the peak, a
rather different approach is needed. This new approach is
based on the analysis of the slope of the transmission and its
variation within the peak. When passing through a peak/
bump, the transmission’s slope reaches a local maximum
and it quickly decays into a local minimum (passing
through zero, when there is a local maximum at this
peak/bump). Accordingly, at the local center of the peak,

the slope is decaying at the faster rate, so that the
transmission’s second-order derivative reaches a local
minimum there. This way, we can estimate the local center
of the small bumps by calculating the local minimum of
their second derivative there. We further discuss the low-
reflectivity scenarios in Sec. III B 2.
In all scenarios, we will be able to obtain the energies of

the quasistationary modes ðE0n; E1nÞ for all different
reflectivity regimes. These energies for the quasistationary
states can then be solved for nðE0Þ, interpolated, and then
used as input for Eq. (16).

2. Defining effective transmission
through the barrier

As we demonstrate explicitly in Sec. III, one can use the
transmission including the resonance peaks to construct an
“effective” transmission that only captures the transmission
through the barrier. To obtain this effective transmission,
we first compute the envelopes connecting only the minima
TminðEÞ and only the maxima TmaxðEÞ of the logarithm of
the transmission curve and then construct an effective
logarithmic transmission defined only by the envelopes
logðTeffectiveÞ ¼ ðlogðTmaxÞðEÞ þ logðTminÞðEÞÞ=2. As can
be seen in Fig. 4, it is a very good approximation of the
barrier transmission obtained in the case of perfect absorp-
tion at the core. Accordingly, this transmission will be the
input for Eq. (17).

III. APPLICATION AND RESULTS

In this section, we first outline the imperfect draining
vortex system in Sec. III A and then show the results of our
inverse method in Sec. III B.

A. Imperfect draining vortex model

In the following, we summarize the main details of the
imperfect draining vortex as an analog of an extremely
compact object. For more details, we refer the interested
reader to Ref. [45], where this model was outlined in more
depth. The effective wave equation, which is the central
piece of our analysis, can be written in the form

d2

dx2
ψðxÞ − V̄ðrÞψðxÞ ¼ 0; ð22Þ

where the potential V̄ðrÞ is given by

V̄ðrÞ ¼ −
�
ω −

mC
r2

�
2

ð23Þ

þ
�
1 −

1

r2

��
m2 − 1=4

r2
þ 5

4r4

�
; ð24Þ

where xðrÞ is the so-called tortoise coordinate,
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xðrÞ ¼ rþ 1

2
log

�
r − 1

rþ 1

�
: ð25Þ

The rotational properties of the vortex are characterized by
the constant C, and m labels the harmonic decomposition
used in the derivation of the effective wave equation for the
radial part of the wave function. The latter one has a similar
meaning as in the case of the Schwarzschild black hole. Note
that, as in the case of rotating black holes, the potential
becomes nontrivially ω dependent for rotating configura-
tions (for C ≠ 0). The absorption at the core of the vortex is
modeled by defining a reflectivity K through the interface
surface, and it is defined by the boundary conditions at
r ¼ rhð1þ ϵÞ, where ϵ is a very small number; we normal-
ize our acoustic horizon radius with rh ¼ 1.
As applications for our inverse method, we have used the

numerical setup described in Sec. II to generate transmission
curves as a function of energy. From now on, we assume that
the reflective wall is defined as the cylindrical surface (since
weare in a2þ 1-dimensional scenario)with a radial distance
of the center defined by the value (1þ ϵ), where ϵ ¼ 2e−20.
According to Eq. (25), this implies that the tortoise coor-
dinate is given by x0 ¼ −9 at the reflective wall. In order to
study different analog system realization, we choose several
reflectivity values K ¼ ½0; 0.75; 0.9; 0.99; 0.999�, several
harmonicsm ¼ ½4; 6; 8; 10�, andC ¼ 0. To make the impact
of each parameter more clear and to avoid a plethora of
various combinations,wevaryonly one of the parameters at a
time and set the other ones to default values. The trans-
mission curves for different reflectivity values are shown in
Fig. 2. As one would expect, the resonance peaks become
more dominant forK → 1 and vanish in the limitK → 0, but
their location remains extremely similar. Varying the har-
monic parameter m yields transmission curves provided in
Fig. 3. Note thatm changes the height of the potential barrier,
which mainly controls the number of resonance peaks, but
only mildly impacts their separation.

B. Reconstruction of potential and reflectivity

With the transmission curves of the previous section, we
now apply the inverse methods introduced in Sec. II. We
first show and discuss our results for varying the harmonic
numberm in Sec. III B 1 and then study the reflectivityK in
Sec. III B 2.

1. Dependency on harmonic m

In the following, we demonstrate the various steps that
have been explained in Sec. II. We start our analysis with
the transmission curves from Fig. 3 (for K ¼ 0.99 and
m ¼ ½4; 6; 8; 10�). To obtain an accurate estimate for the
location and widths of the resonance peaks, we could
first normalize it with the K ¼ 0 transmission. If the
K ¼ 0 transmission is not available, e.g., because such a
case could not be realized in an experiment, it can also be

approximated with high accuracy from constructing
TeffectiveðEÞ from envelopes, as discussed in Sec. II C 2.
In the following, we assume the latter is the case and do not
make explicit use of any K ¼ 0 knowledge. The result of
the envelope construction is shown in Fig. 4, which clearly
demonstrates the excellent agreement between the effective
transmission and the K ¼ 0 transmission, at least until it
reaches energies close to the maximum of the potential
(E ≈ 20 ∼ 25). Using the location of the resonance peaks
E0n, we can invert the relation for nðE0nÞ, interpolate it, and
use it as input for Eq. (16), which then enters Eq. (15). This
yields the width of the cavity L1ðEÞ, which we report in the
bottom panel of Fig. 5, and concludes the reconstruction of
the cavity properties.
Next, we use the effective transmission TeffectiveðEÞ to

compute the width of the barrier L2ðEÞ via Eq. (17).
Because TeffectiveðEÞ deviates from the K ¼ 0 transmission
close to the potential maximum (depending on the value of
K), we use the Gamow formula (3) and the width of the
resonance peaks Γn ¼ E1n to define T2ðEÞ. The Gamow
formula relates those values with the sum of transmission
T1ðEÞ þ T2ðEÞ. Note the presence of the integral over the

FIG. 2. Here we show different aspects of the transmis-
sion TðEÞ. Top: transmission for different values of K ¼
½0; 0.75; 0.9; 0.99; 0.999�, C ¼ 0, and m ¼ 10. Bottom: same
transmissions as before (same colors), but normalized with the
one for no reflectivity K ¼ 0 denoted with T0 and in a smaller E
range for better visibility of the resonance peaks.
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potential well, which can only be computed using our
reconstructed width L1ðEÞ. Because of the nonuniqueness
of the reconstructed potentials from L1ðEÞ, we can con-
struct any potential with such a turning point relation to
carry out the integration numerically. Since the trans-
mission is constant through the wall T1ðEÞ ¼ 1 − K2,
and the transmission through the barrier T2ðEÞ is exponen-
tially smaller for lower energies, we can assert that, in the
low-energy regime, the sum T1ðEÞ þ T2ðEÞ tends to
T1ðEÞ þ T2ðEÞ ≈ T1ðEÞ ¼ 1 − K2. This helps us infer
the transmission through the wall T1ðEÞ and its associated
reflectivity K. With these values, we can infer the behavior
of T2ðEÞ for higher energies if we use T2ðEÞ ¼ T1ðEÞ þ
T2ðEÞ − ð1 − K2Þ, where T1ðEÞ þ T2ðEÞ is obtained by
Gamow formula [Eq. (3)]. This procedure gives us some
points slightly below the blue dots shown in Fig. 4. If we
interpolate those points, we obtain the green dashed line,
which can be used to properly continue the TeffectiveðEÞ in
the energy domain where the envelopes’ mean failed to
approximate the transmission through the barrier TK¼0ðEÞ.

Smoothing T2ðEÞ with TeffectiveðEÞ we capture the
barrier transmission for low and maximum energies and,
finally, use it in Eq. (17) to obtain L2ðEÞ, which we report
in the bottom panel of Fig. 4. Because the L2ðEÞ integration
requires the knowledge of Emax, which is not known
a priori, we used the parabolic transmission (19) approxi-
mation to fit T2ðEÞ transmission in a range that can initially
be estimated from where the transmission starts to plateau.
With two relations L1ðEÞ; L2ðEÞ for three turning points

x0, x1, x2, one needs to provide a third relation to define a
specific potential. The natural choice in our problem is to
assume that the location of the reflective wall does not
depend on the energy, and thus, we set x0 to be some
constant. The only freedom in choosing the constant is a

FIG. 3. Here we show different aspects of the transmission
TðEÞ. Top: transmission for different values of m ¼ ½4; 6; 8; 10�,
C ¼ 0, and K ¼ 0.99. The K ¼ 0 case for each m is shown for
comparison (black lines). Bottom: same transmissions as before
(same colors), but normalized with the ones for no reflectivity
K ¼ 0 denoted with T0 and in a smaller E range for better
visibility of the resonance peaks.

FIG. 4. Here we compare the transmission TK¼0.99ðEÞ for
m ¼ 10 and C ¼ 0 (blue solid line) with TK¼0ðEÞ (black solid
line). The corresponding envelopes Tenvelopes

K¼0.99 ðEÞ (orange solid
line) and the average transmission Taverage

K¼0.99ðEÞ (red dash-dotted
line) defined by the two envelopes that are shown as well. It is
evident that the average transmission is a very accurate approxi-
mation for TK¼0ðEÞ until E ≈ 20, where it plateaus toward around
10−2 (black dotted line), which corresponds to 1 − K2. Here, the
effective transmission Teffective

K¼0.99 ðEÞ (green dashed line) follows
TK¼0ðEÞ closely until around the maximum of the potential
barrier (around E ¼ 25). TGamowðEÞ (blue points) are the trans-
missions obtained from the resonance peaks and Gamow for-
mula, see main text. Bottom: we show the same system as in the
top, but for a smaller energy range for better visibility of details.
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coordinate shift, which is not relevant for the underlying
properties of the system. Finally, we report the recon-
structed potentials defined by this choice in Fig. 6. As can
be seen in both figures, the overall accuracy of the
reconstruction improves with larger values of m.
Because m mostly controls the height of the barrier, and
thus the number of quasistationary states that appear as
resonance peaks, one should expect the reconstruction to be
more accurate because more information can be used for
the interpolation of the spectrum and effective transmis-
sion. Furthermore, the underlying WKB-based methods are
expected to be most accurate for the quasistationary states
that are located not too close to the minimum of the
potential and not too close to the maximum of the barrier.

2. Dependency on reflectivity K

What remains is the reconstruction of the correspond-
ing reflectivity parameters K. We assume that the wall’s
reflectivity K is energy independent and thus the same for
all different incident wave frequencies. In this case, the
transmission through the wall is also a constant and
given by

T1ðEÞ ¼ 1 − K2: ð26Þ

Accordingly, as an outcome of applying the Gamow
formula (3), one can obtain the sum of the value above,
for the transmission through the wall, with the trans-
mission T2ðEÞ through the potential barrier as if the wall
would be perfectly absorbing. The sum T1ðEÞ þ T2ðEÞ is
dominated by T1ðEÞ for low energies, because T2ðEÞ
becomes exponentially small. This fact can be illustrated
graphically in Fig. 4. If we look at the blue dots [the
Gamow points T1ðEÞ þ T2ðEÞ], we can see that they start
to plateau as we decrease the energy. This plateau gives
us the constant value of T1ðEÞ ¼ 1 − K2.
We show the reconstructed values of K in Fig. 7. Here,

the x axis labels the nth quasistationary state that has been
used in the Gamow formula (3). One can observe that, for
values of K close to 1, the reconstruction is very accurate.
In this case the transmission through the wall is much
smaller than the one through the barrier and the resonance
peaks can be very accurately extracted. For smaller values

FIG. 5. In this plot we show the exact (colored solid) and
reconstructed (black dashed) widths L1ðEÞ (top panel) and L2ðEÞ
(bottom panel) for K ¼ 0.99 and m ¼ ½4; 6; 8; 10�.

FIG. 6. Here we show the true (colored lines) and reconstructed
(black dashed) effective potentials VðxÞ for K ¼ 0.99 and
m ¼ ½4; 6; 8; 10�. The location of the effective core’s surface is
at x ¼ −9.

FIG. 7. Reconstruction of the different reflectivity parameters
K ¼ ½0.75; 0.9; 0.99; 0.999� with the inverse method using the
resonance peaks and Gamow formula. The solid lines correspond
to the exact values, while the different points are the reconstructed
values using the n, the resonance peak.
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of K, the reconstruction looses accuracy and deviates from
the correct injection by 10% ∼ 20% for K ¼ 0.75. To
investigate this, we tried several improvements. First, even
when the T2ðEÞ contribution is included in the Gamow
formula (by using the effective transmission extrapolated),
the results for K ¼ 0.75 do not change significantly,
especially not for moderate values of n, where the approxi-
mation is excellent. Second, we also checkedwhether fitting
all resonance peaks simultaneously can give better results,
because peaks start to overlap and results may get biased.
However, also in this casewe do not report improvements, as
we fit the resonance peaks in a close vicinity around the
maximum, where the impact of the other peaks is mainly
absorbed by the value of the transmission at eachmaximum,
TðEmaxÞ Eq. (21), and does not impact Γn significantly.
Finally, the alternative and more direct approach to deter-
mine K is from TðEÞ via Eq. (26) evaluated for energies
beyond the maximum of the barrier, since then the effect of
the barrier becomes negligible. We note that the latter
approach is complementary to using the widths of the
resonance peaks. Which of the two approaches yields more
accurate results when applied to real data with measurement
uncertainties remains for future work.

IV. CONCLUSIONS

Analog gravity systems may provide unique and con-
trolled measurements of their key properties, which are not
accessible from their astrophysical counterparts. The novel
method that we developed in this work is based on the
extension of semiclassical methods and is tailored to study
measured transmission/reflection coefficients of analog
exotic compact objects. The outcome of the method is the
reconstruction of the effective potential, which captures the
dynamical properties of the system, aswell as the reflectivity
coefficient describing the internal boundary condition. In
this work, we chose the imperfect draining vortex model
suggested inRef. [45] as one example. First, we obtained the
transmission/reflection coefficients with accurate (numeri-
cal) methods to explore different properties of the system, in
particular, the impact of the reflectivity K and different
angular numbers m. These results were then used as ideal
measurements of a future experiment to demonstrate the
capabilities of the new (semiclassical) method.
Our main findings are as follows. The reconstruction of

the effective potential becomes very accurate with increas-
ing angular numbersm, which is expected from the validity
of the underlyingWKB theory. This is also related to the fact
that, for the same location of the core, increasing m yields
more resonance states and thus more information used for
the interpolation of the inclusion (16) that is needed to
reconstruct the width of cavity. The reconstruction of the
reflectivity coefficientK through the width of the resonance
peaks becomes more accurate when it approaches unity,
which corresponds to the full reflection case. This may also
be expected, because large values of the reflectivity result in

more prominent resonance peaks. Although inverse prob-
lems are often not uniquely solvable (typically not limited by
the chosen methods), we suggested physically motivated
assumptions that allow one to reconstruct the effective
potential. We want to stress that, because the input of our
method has been computed with accurate numerical meth-
ods, but the reconstruction is based on semianalytic results,
comparing the original potential with its reconstruction is
not circular, but indeed self-consistent. Because of the
explicit energy dependence of the potential for rotating
configurations (for C ≠ 0), we have focused on C ¼ 0 and
leave the conceptually more involved inverse problem of the
energy-dependent potential for a separate work.
Since our method is based on modifying similar

approaches for the inverse problem of quasistationary
states [46,47] and Hawking radiation [48], we also want
to briefly compare some aspects. Although the knowledge of
the transmission/reflection coefficients does not rely on the
knowledge of the spectrum of quasistationary states, our
method partially relies on identifying them indirectly. Thus,
for specific model parameters that only provide very few
such states, our method is not very accurate. However, since
increasing angular numbers yields larger potential barriers,
they also yield potentials with more quasistationary states.
This means, if one is experimentally able to measure
transmission/reflection coefficients of large enough angular
numbers, our method can—even in such cases—always be
used. In the context of astrophysical objects, this is not easily
possible, as standard binary mergers mostly excite small
angular numbers, which undermines the opportunities of
studying analog gravity systems.
We conclude with a comment on measurement uncertain-

ties. Throughout thisworkwe assumed that the transmission/
reflection coefficients can beprovidedwith pristine accuracy.
However, any real experiment will come with statistical and
systematic uncertainties, which may need to be taken into
account. This could, for example, be done by repeating the
reconstruction procedure for different realizations of the
transmission coefficient that represent the statistical uncer-
tainties of the measurements. At the same time, these
uncertainties may not be relevant for all energy ranges, since
the transmission varies over many orders of magnitude. We
leave a detailed study of these aspects for future work.
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