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We study the Carrollian limit of the (general) quadratic gravity in four dimensions. We find that in order
for the Carrollian theory to be a modification of the Carrollian limit of general relativity, the parameters in
the action must depend on the speed of light in a specific way. By focusing on the leading and the next-to-
leading orders in the Carrollian expansion, we show that there are four such nonequivalent Carrollian
theories. Imposing conditions to remove tachyons (from the linearized theory), we end up with a
classification of Carrollian theories according to the leading-order and next-to-leading-order actions. All
modify the Carrollian limit of general relativity with quartic terms of the extrinsic curvature. To the leading
order, we show that two theories are equivalent to general relativity, one to Rþ R2 theory and one to the
general quadratic gravity. To the next-to-leading order, two are equivalent to Rþ R2 while the other two are
equivalent to the general quadratic gravity. We study the two theories that are equivalent to Rþ R2 to the
leading order and write their magnetic limit actions.
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I. INTRODUCTION

The quadratic gravity can be derived as an effective field
theory by truncating the expansion of the bosonic section of
string theory with the first order being general relativity
(GR) [1–5] or by imposing a maximal momentum to strings
[6]. It has been studied even before the connection to string
theory as a renormalizable theory of gravity [7–9]. It admits
a wide class of black-hole and other spherically symmetric
(exact) solutions [10–13]. Nevertheless, in general, it suffers
from the presence of unphysical ghost and tachyonic degrees
of freedom [8].
The Carrollian limit was first considered independently

by Levy-Leblond [14] and Sen Gupta [15] as the ultralocal
limit of the Poincaré group where the speed of light c
approaches zero, c → 0. However, at the time, due to the
lack of physical application of this limit, it was only studied
by mathematicians until 40 years later when the Carrollian
limit was linked to many applications in physics. Now,
Carrollian physics andCarrollian structures are studied in the
context of representations of the Carroll group, i.e., Carroll
particles [16–19], condensed matter physics [20–22], field
theory [23–26], conformal field theory [27–30], fluid
mechanics [31–36], cosmology [37,38], string theory
[39–41], gravity [42–50] (it is regarded as the strong coupling
limit of gravity theories [51]), black holes [19,52–56], null
boundaries [28,57–59], and dynamics of particles near black-
hole horizons [60–62].

The connection between the Carrollian limit and physics
near black-hole horizons was shown in [52] utilizing the
membrane paradigm [63–65] which is a paradigm showing
that the physics of a black hole on a stretched horizon is
dual to that of a relativistic fluid on a (2þ 1)-dimensional
submanifold. Taking the Carrollian limit of both sides gives
a duality between physics on the horizon and a Carrollian
fluid. It was shown afterwards that there are two non-
equivalent Carrollian limits of a relativistic theory called
the electric and magnetic limits. The electric limit comes
directly from the leading order (LO) in the Carrollian
expansion, i.e., the expansion in c, while the magnetic limit
is a certain truncation of the next-to-leading order (NLO) of
this expansion.
In this paper we analyze the electric and the magnetic

Carrollian limits of quadratic gravity, which is the first step
toward the analysis of dynamics of particles near black-
hole horizons. We study the electric limit of the general
quadratic gravity theory and construct a classification of
Carrollian theories from it, and the magnetic limit of the
resulting ghost-free theories. Throughout the paper we use
the units where Newton’s constantG is set toG ¼ 1=ð16πÞ.
The paper is organized as follows:

(i) In Sec. II, we review the pre-ultralocal (PUL)
parametrization, which is suitable for the Carrollian
expansion, and calculate the PUL versions of vari-
ous tensors appearing in a general four-dimensional
quadratic gravity action.

(ii) In Sec. III, we review the electric Carrollian limit of
GR and show the ultralocality of the spacetime
evolution.
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(iii) In Sec. IV, we perform the Carrollian expansion of
quadratic gravity action. We show that the param-
eters α and β in the action must depend on c in a
specific way; otherwise the resulting theory would
be drastically different from the Carrollian limit of
GR. Requiring the resulting theory to be a modifi-
cation to the Carrollian limit of GR to LO or NLO
gives four nonequivalent Carrollian theories.

(iv) In Sec. V, we study those limits one by one and
derive conditions on α and β to remove tachyons
(from the linearized theory) in each case to the LO
and NLO.

(v) In Sec. VI, we study the magnetic limit of the ghost-
free and tachyon-free theories.

(vi) The paper is concluded with a brief summary and
discussions of our results in Sec. VII.

II. PRE-ULTRALOCAL PARAMETRIZATION

The PUL parametrization is a parametrization of the
metric on a manifold using the decomposition of its tangent
bundle in vertical and horizontal subbundles (see below). It
is the most convenient parametrization of the spacetime for
the analysis of Carrollian gravity since it is well adapted to
the ultralocal structure of the Carrollian limit and it displays
the speed of light c explicitly, which makes the calculations
more obvious. In what follows, we briefly explain the
mathematical background of the PUL parametrization. By
following the calculations and notations from [46], we
present the PUL version of the Riemannian tensor which
will be used to calculate terms in quadratic gravity action in
later sections.
Let ðM; gÞ be a (dþ 1)-dimensional Lorentzian mani-

fold (with a mostly positive signature). Let us denote the
tangent bundle of M by TM and define two subbundles of
TM according to the signature of the metric: The first is
called the vertical bundle VerM (or the timelike bundle),
and it corresponds to the timelike direction; i.e., its fibers

are endowed with a vector space isomorphic to the time
coordinate. The second is referred to as the horizontal
bundle HorM (or the spatial bundle), and it represents the
remaining d spacelike directions. It is easy to prove that
TM ¼ VerM ⊕ HorM. Furthermore, it generates a foli-
ation of the manifold whose slices are the submanifolds of a
constant time coordinate t. This foliation allows us to
define orthogonal spatial and timelike sections as follows:
Consider a covector Tμ and a vector Vμ from VerM, where
μ; ν;… ¼ 1; 2;…; dþ 1 are tensor indices in TM. Next,
we consider a symmetric tensor Πμν from HorM, which is
the induced metric (or the first fundamental form), and its
inverse Πμν.
By construction of the subbundles and the foliation we

have

TμVμ¼−1; −VμTνþΠρμΠρν¼δνμ; TμΠμν¼ΠμνVν¼0;

ð2:1Þ
The PUL parametrization of the metric gμν is given by

gμν ¼−c2TμTνþΠμν; gμν ¼−
1

c2
VμVνþΠμν: ð2:2Þ

The metric, its inverse, and the spatial tensors can be
written in terms of vielbeins as

gμν ¼ ηABEA
μEB

ν ; gμν ¼ ηABΘμ
AΘν

B;

Πμν ¼ ηabEa
μEb

ν ; Πμν ¼ ηabΘμ
aΘν

b; ð2:3Þ
where EA

μ and Θμ
A are the vielbeins. Indices A;B;… are

vielbein labels running from 1 to dþ 1 (the dimension of
TM) while a; b;… are vielbein labels running from 1 to d
(the dimension of the HorM). Comparing the PUL para-
metrization with the vielbein definition we get EA

μ ¼
ðcTμ; Ea

μÞ and Θμ
A ¼ ð−c−1Vμ;Θμ

aÞ.
Following [46], we assume that all fields are analytic in

c2 and expand them as follows:

Vμ ¼ vμ þ c2Mμ þOðc4Þ; Tμ ¼ τμ þ c2Nμ þOðc4Þ; Θμ
a ¼ θμa þ c2πμa þOðc4Þ;

Ea
μ ¼ eaμ þ c2Fa

μ þOðc4Þ; Πμν ¼ hμν þ c2Φμν þOðc4Þ; Πμν ¼ hμν þ c2Φμν þOðc4Þ; ð2:4Þ

where vμ;Mμ; τμ; Nν; θ
μ
a; π

μ
a; eaμ; Fa

μ; hμν;Φμν are fields used
to define geometries in the Carrollian limit. These fields are
not all independent but they are related by two constraints.
Thus, we can write τμ and θμa in terms of the other fields.
Including more orders in c2 leads to defining more fields
that interpolate between the Carrollian theory (LO in the
expansion) and the full theory on the manifold. Expanding
the first equation in (2.1), we get

τμvμ þ c2ðτμMμ þ NνvμÞ þ c4NμMμ ¼ −1: ð2:5Þ

Comparing the LO and NLO terms we arrive at

τμvμ ¼ −1; τμMμ þ Nνvμ ¼ 0: ð2:6Þ
Similarly, if we expand the second equation in (2.1), we
obtain

−τνvμ þ hμρhρν þ c2ðhμρΦρν þΦμρhρν −Mμτν − vμNμÞ þ c4ΦμρΦρν ¼ δμν ; ð2:7Þ
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which by comparison of LO and NLO terms gives

−τνvμþhμρhρν¼δμν ; hμρΦρνþΦμhρν−Mμτν−vμNμ¼0:

ð2:8Þ

Now, by expanding (2.2) we also get

hμνþc2Φμν¼δabeaμebνþc2δabðFa
μebνþeaμFb

νÞþc4δabFa
μFb

ν ;

ð2:9Þ

and after comparing the LO and NLO terms, we arrive at

hμν ¼ δabeaμebν ; Φμν ¼ δabðFa
μebν þ eaμFb

νÞ: ð2:10Þ

Similarly,

hμν ¼ δabθμaθνb; Φμν ¼ δabðθμaπνb þ πμaθνbÞ: ð2:11Þ

We remark that the induced metric h and the set of all v∈V
give rise to the Carrollian spacetime ðC;V; hÞ.
To derive a compatible connection with the PUL para-

metrization [46,59], we notice that Vμ and Πμν are invariant
under Carroll boosts. Thus, they must be covariantly

constant. Although this cannot determine a connection
uniquely, it was argued in Appendix B of [46] that the most
convenient choice is

Cρ
μν¼−Vρ

∂ðμTνÞ−VρTðμ£VTνÞ

þ1

2
Πρλ½∂μΠνλþ∂νΠλμ−∂λΠμν�−ΠρλTνKμλ; ð2:12Þ

where Kμλ ¼ − 1
2
£VΠμλ is the extrinsic curvature (or the

second fundamental form). The connection Cρ
μν has a

nonzero torsion given by

Tρ
μν ¼ 2ΠρλT ½μKν�λ; ð2:13Þ

which, to the LO, reads

Tρ
μν ¼ 2hρλτ½μKν�λ: ð2:14Þ

To proceed parametrizing the Riemann tensor of the
Levi-Civita connection, we write its Christoffel symbols
Γρ
μν in terms of the PUL fields using (2.2) and (2.3). The

result is

Γρ
μν ¼ 1

c2

�
−
1

2
VρVλ

∂μΠνλ −
1

2
VρVλ

∂νΠλμ þ
1

2
VρVλ

∂λΠμν

�
þ 1

2
½Πρλ

∂μΠνλ þ Πρλ
∂νΠλμ − Πρλ

∂λΠμν

þ VρVλ
∂μðTνTλÞ þ VρVλ

∂νðTμTλÞ − VρVλ
∂λðTνTμÞ� þ c2½Πρλ

∂μðTνTλÞ − Πρλ
∂νðTμTλÞ þ Πρλ

∂λðTνTμÞ�: ð2:15Þ

With the help of the coordinate expression of the Lie derivative we can rewrite Γρ
μν as

Γρ
μν ¼ 1

c2
½−VρKμν� þ ½Cρ

μν þ ΠρλTνKμλ� þ c2½−TðμΠρλBνÞλ�; ð2:16Þ

where Bμν ¼ ∂μTν − ∂νTμ is the exterior derivative of the covector Tμ, which is the same as Eq. (2.21) in [46]. Finally, we
are equipped to parametrize the Riemann tensor of Γρ

μν,

Rρ
λμν ¼ ∂μΓ

ρ
νλ − ∂νΓ

ρ
μλ þ Γρ

μσΓσ
νλ − Γρ

νσΓσ
μλ: ð2:17Þ

Inserting (2.15), we obtain

Rρ
λμν ¼

1

c2
½2Vρ∇½νKμ�λ þ 2VρKλσCσ

½νμ� þ 2VρTλKα
½νKμ�α þ 2Kλ½νK

ρ
μ�� þ ½Rc ρλμν þ 2∇½μðKρ

ν�TλÞ þ 2Cσ
½μν�TλK

ρ
σ

þ VρKμσTðνBλÞσ − VρKνσTðμBλÞσ þ TðμBσÞρVσKνλ − TðνBσÞρVσKμλ� þ c2½∇νðTðμBλÞρÞ −∇μðTðνBλÞρÞ
þ 2Cσ

½νμ�TðσBλÞρÞ − TðμBσÞρTλKσ
ν þ TðνBσÞρTλKμ

σ� þ c4½TðμBσÞρTðνBλÞσ − TðνBσÞρTðμBλÞσ�; ð2:18Þ

where R
c ρ

λμν ¼ ∂μC
ρ
νλ − ∂νC

ρ
μλ þ Cρ

μσCσ
νλ − Cρ

νσCσ
μλ and indices lowering/raising for Kμν and Bμν was done by the induced

metric and its inverse.
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III. CARROLLIAN EXPANSION OF GR

Having derived the PUL parametrization of the Riemann
tensor in (2.18), we can now review the Carrollian
expansion of the GR following [46]. Recall that the
Einstein-Hilbert action in four dimensions (d ¼ 3) is

S ¼ c3
Z

R
ffiffiffiffiffiffi
−g

p
d4x: ð3:1Þ

Let us first calculate the PUL parametrization of the
Ricci scalar R. By contracting ρ and μ in (2.18), we can
write the Ricci tensor in the form

Rλν ¼
1

c2
½−∇μðVμKνλÞ − 2VμCσ

½μλ�Kνσ þKνλK −KμλK
μ
ν � þ

h
R
c

λν þ∇μðTλK
μ
νÞ −∇νðTλKÞ þ 2Cμ

½νβ�TλKμ
β

þKα
ðνBλÞα −

1

2
VμKα

νTλBμα −
1

2
TνVσBσαKα

λ

i
þ c2½−∇μðTðνBλÞμÞ þ 2Cσ

½νμ�TðσBλÞμ þ TðνBσÞμTλKμ
σ�

þ c4
�
−
1

4
TνTλBμνBμν

�
; ð3:2Þ

where∇μ is the covariant derivative corresponding to the connection C
ρ
μν. Here, we also introduced the trace of the extrinsic

curvature, K ¼ ΠμνKμν, and the Ricci tensor of the connection Cρ
μν,

R
c

λν ¼ ∂μC
μ
νλ − ∂νC

μ
μλ þ Cμ

μσCσ
νλ − Cμ

νσCσ
μλ: ð3:3Þ

The PUL parametrization of the Ricci scalar is obtained by contraction with the inverse metric and employing
Πλν∇μðVμKνλÞ ¼ ∇νðVνKÞ. The result is

R ¼ 1

c2
½K2 −KμνKμν − 2∇νðVνKÞ� þ ½−Rc þ Πλν∇μðTλKν

μÞ − Πλν∇νðTλKÞ þ VλVν∇μðTðνBλÞμÞ

− VλVν∇νðTðμBλÞμÞ� þ c2
�
−Πλν∇μðTðνBλÞμÞ þ Πλν∇νðTðμBλÞμÞ −

1

4
BμνBμν

�
; ð3:4Þ

where R
c ¼ ΠμνR

c

μν. We used VμR
c

μν ¼ 0 in the calculations.
Using the relation ∇ρΠμν ¼ −VðμΠνÞσBσλ½δλρ − VλTρ�,

we can find that Πλν∇μðTλK
μ
νÞ ¼ 0, Πλν∇νðTλKÞ ¼ 0,

VλVν∇μðTðνBλÞμÞ¼−Vλ∇μðBμ
λÞ, and −Πλν∇μðTðνBλÞμÞ¼

1
2
BμνBμν. Employing these identities, the Ricci scalar
simplifies to

R ¼ 1

c2
½K2 −KμνKμν − 2∇νðVνKÞ�

þ ½−Rc −∇μðVνBμ
νÞ� þ c2

�
1

4
BμνBμν

�
: ð3:5Þ

Furthermore, we can separate the total derivative terms as
they correspond to the boundary terms in actions of
physical theories. Finally, the PUL parametrization of
the Ricci scalar can be written in the form

R ¼ 1

c2
½K2 −KμνKμν� þ ½−Rc � þ c2

�
1

4
BμνBμν

�

þ boundary terms; ð3:6Þ

where we collected all the boundary terms from all orders.
Note that the boundary terms will be used in the calculation

of quadratic curvature terms. (They are not important in this
section since we compute the LO of GR.)
Hence, the (electric) Carrollian limit of the GR action is

S ¼ c2
Z

½K2 − KμνKμν�ed4x; ð3:7Þ

where Kμν ¼ − 1
2
£vhμν and e ¼ detðτμ; eaμÞ.

Varying this action we get the constraints

K2 − KμνKμν ¼ 0; hνα∇α½Kμν − Khμν� ¼ 0; ð3:8Þ

and the evolution equation

£vKμν ¼ −2Kα
μKνα þ KKμν: ð3:9Þ

IV. CARROLLIAN EXPANSION OF
QUADRATIC GRAVITY

Quadratic gravity is a theory where quadratic curvature
terms are added to the action, which makes it
renormalizable [7,8]. It also emerges from string theory
by imposing a cutoff for the maximum possible momenta
[6]. The action for the theory is given by
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S ¼ c3
Z

½R − αRμνRμν þ βR2� ffiffiffiffiffiffi
−g

p
d4x: ð4:1Þ

In Sec. III we computed the PUL parametrization of R. Now, we will do the same also for the two other terms in the
action, RμνRμν and R2. Using (3.2), we can find the PUL parametrization of RμνRμν,

RμνRμν ¼
1

c4
RμνRμν

ð−4Þ
þ 1

c2
RμνRμν

ð−2Þ
þ RμνRμν

ð0Þ
þ c4RμνRμν

ð4Þ
; ð4:2Þ

where

RμνRμν

ð−4Þ
¼ ΠναΠλβ∇μðVμKαβÞ∇ρðVρKνλÞ − 2KαβK∇μðVμKαβÞ þKλνKλνK2 − VμVν∇μK∇νK

þ 2KαβKαβVν∇νK − ðKμνKμνÞ2;

RμνRμν

ð−2Þ
¼ −2R

c λν∇μðVμKλνÞ −∇μðVμKαβÞKρβBα
ρ −

1

2
KραBβ

ρVμ∇μKαβ þ 2R
c

λνKλνKþKλνKKα
λBνα

− Πνα∇μK
μ
α∇ρK

ρ
ν þ 2Πνα∇μK

μ
α∇νKþ Vλ∇μK

μ
αKραBλρ − Πνα∇νK∇αK − Vλ∇αKKαϵBλϵ

− 2VνVα∇μðBα
μÞ∇νK − VαKσλBσαVρKβ

λBρβ þ 2Vλ∇μðBλ
μÞKαβKαβ;

RμνRμν

ð0Þ
¼ 1

2
KαβKαβBμνBμν − Πνα∇αK∇ρðBν

ρÞ − 1

4
VσKνρBσρ∇μðBν

μÞ − 1

2
VλVα∇μðBα

μÞ∇νðBλ
νÞ

þ 3

2
R
c αλ

Kβ
λBαβ þ R

c μν
R
c

μν þ
1

4
KβλKρλBνβBνρ þ

1

4
KβλKαρBαβBλρ; RμνRμν

ð4Þ
¼ 1

16
ðBαβBαβÞ2: ð4:3Þ

By expanding this expression to the LO, we arrive at

RμνRμν ¼
1

c4
½hναhλβ∇μðvμKαβÞ∇ρðvρKνλÞ − 2KαβK∇μðvμKαβÞ þ KλνKλνK2

− vμvν∇μK∇νK þ 2KαβKαβvν∇νK − ðKμνKμνÞ2�: ð4:4Þ

The PUL parametrization of R2 can be computed from (3.4),

R2 ¼ 1

c4
½K4 − 2K2KμνKμν − 4K2∇νðVνKÞ þ ðKμνKμνÞ2 þ 4KμνKμν∇νðVνKÞ þ 4∇μðVμKÞ∇νðVνKÞ�

þ 1

c2
½−K2R

c
−K2∇μðVλBμ

λÞ þKμνKμνR
c þKμνKμν∇ρðVλBρ

λÞ þ 2R
c∇μðVμKÞ þ 2∇μðVμKÞ∇νðVλBν

λÞ�

þ
�
1

2
KBμνBμν þ ðRc Þ2 − 1

2
KμνKμνBσρBσρ − BμνBμν∇ρðVρKÞ þ∇μðVλBμ

λÞ∇ρðVσBρ
σÞ

þ 2R
c∇μðVλBμ

λÞ
�
þ c2

�
−
1

4
R
c
BμνBμν − BμνBμν∇ρðVσBρ

σÞ
�
þ c4

�
1

16
ðBμνBμνÞ2

�
; ð4:5Þ

and its Carrollian expansion to the LO is

R2 ¼ 1

c4
½K4 − 2K2KμνKμν − 4K2∇νðvνKÞ þ ðKμνKμνÞ2 þ 4KμνKμν∇νðvνKÞ þ 4∇μðvμKÞ∇νðvνKÞ�: ð4:6Þ

Substituting (3.6), (4.4), and (4.6) into the action (4.1) we get

S ¼
Z

fc2½K2 − KμνKμν� − α½hναhλβ∇μðvμKαβÞ∇ρðvρKνλÞ − 2KαβK∇μðvμKαβÞ þ KλνKλνK2

− vμvν∇μK∇νK þ 2KαβKαβvν∇νK − ðKμνKμνÞ2� þ β½K4 − 2K2KμνKμν − 4K2∇νðvνKÞ
þ ðKμνKμνÞ2 þ 4KμνKμν∇ρðvρKÞ þ 4∇μðvμKÞ∇νðvνKÞ�ged4x: ð4:7Þ
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Interestingly, this formula can be rewritten purely by the extrinsic curvature Kμν and its Lie derivatives along v. In order to
do that, we first write

£vKμν ¼ vσ∇σKμν þ Kσν∇μvσ þ Kσμ∇νvσ − Kμν∇σvσ þ vσTρ
σμKρν þ vσTρ

σνKρμ; ð4:8Þ

where Tρ
μν is the torsion of the connection defined in Sec. II. Since the PUL-parametrization vector vμ is covariantly constant

by definition and Tρ
μν is given by (2.14), the relation reduces to

£vKμν ¼ vσ∇σKμν − Kσ
ðμKνÞσ: ð4:9Þ

Substituting in (4.7) and using the fact that vσ∇σ acts on scalars simply as £v, we get

S ¼
Z

fc2½K2 − KμνKμν� − α½hναhλβ£vKαβ£vKνλ þ 2£vKνλKσðνKλÞ
σ þ Kσ

ðαKβÞσKρðαKβÞ
ρ

− ðKμνKμνÞ2 − 2KαβK£vKαβ − 2KαβKKσ
ðαKβÞσ þ K2KμνKμν − ð£vKÞ2 þ 2KμνKμν£vK�

þ β½K4 − 2K2KμνKμν − 4K2£vK þ ðKμνKμνÞ2 þ 4KμνKμν£vK þ ð£vKÞ2�ged4x: ð4:10Þ

Note that only the first two terms have the factor c2.
Thus, assuming α and β being independent of c, the
Carrollian limit of the theory would exclude the first
two terms coming from the Carrollian limit of the Ricci
scalar. This means that the resulting theory would not
couple to R, and it will be drastically different from the
Carrollian limit of GR [cf. (3.7)]. Hence, α and β should
depend on c. In this case, we get an infinite number of
nonequivalent Carrollian theories, but only four of them
modify GR to LO or NLO. Notice that this limit is, as
expected, ultralocal since there are no space derivatives in
the Lagrangian, and therefore, there would not be space
derivatives in the field equations. This means that the
evolution of a point cannot be affected by neighboring
points no matter how close they are.

Similar calculations were done in [66] by rescaling
specific terms in the action. However, our approach gives
more freedom to rescale terms differently and gives more
nonequivalent theories. Other papers considered specific
solutions for fðRÞ gravity [67–69]. A general classification
of theories for the most general quadratic gravity theory
will be provided in the next section.

V. THEORIES FROM THE CARROLLIAN LIMIT
OF QUADRATIC GRAVITY

In this section, we study Carrollian theories resulting
from the Carrollian limit of quadratic gravity. Different
(nonequivalent) theories arise from assuming different
dependencies of α and β on the speed of light c in (4.10).

TABLE I. This table summarizes some possible Carrollian theories arising from quadratic gravity that couple to R at most in the NLO.
We list the theories with factors of c with non-negative powers since negative c dependencies are clearly not modifications of the
Carrollian limit of GR. For example, although (0, 0) cannot be a modification to the Carrollian limit of GR, we can say that R terms are a
NLO modification of this theory. There are other geometries which are modifications to the listed geometries such as (0, 4) which can be
regarded as a next-to-next-to-leading-order modification of (0, 2) while GR itself is the NLO. We can extend the list indefinitely adding
more geometries modifying GR to higher orders but here we focus on the LO and NLO.

Carrollian theories from quadratic gravity

Theory Action contributing to the LO
Type of modification to the

Carrollian limit of GR

(0, 0) S ¼ c3
R ½−αRμνRμν þ βR2� ffiffiffiffiffiffi−gp

d4x Not a modification of GR

(0, 2) S ¼ c3
R
−αRμνRμν

ffiffiffiffiffiffi−gp
d4x Not a modification of GR

(2, 0) S ¼ c3
R
βR2 ffiffiffiffiffiffi−gp

d4x Not a modification of GR

(2, 2) S ¼ c3
R ½R − αRμνRμν þ βR2� ffiffiffiffiffiffi−gp

d4x Modifies GR to the LO

(2, 4) S ¼ c3
R ½R − αRμνRμν� ffiffiffiffiffiffi−gp

d4x Modifies GR to the LO with RμνRμν

terms and the NLO by R2 terms

(4, 2) S ¼ c3
R ½Rþ βR2� ffiffiffiffiffiffi−gp

d4x Modifies GR to the LO with R2 terms
and the NLO by RμνRμν terms

(4, 4) S ¼ c3
R
R

ffiffiffiffiffiffi−gp
d4x Modifies GR in the NLO
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Thus, we classify them as such and denote them by ðn;mÞ,
where α ¼ cnα0 and β ¼ cmβ0. The relevant theories are
listed in Table I. As mentioned above, not all theories are
modifications toGR. For example, the theories with negative
powers of c in α or β but also (0,0), (0,2), and (2,0) are not
physically interesting since they are drastically different from
GRatLO. It is easy to see that dependencieswith odd powers
of c ultimately converge to one of the theories in Table I.
Theories with higher-power dependencies on c cannot
modify GR to the LO nor the NLO but to higher orders;
however, since α and β dependencies on c are nonperturba-
tive assumptions, having higher powers of c in the action
without being an overall factor can lead to inconsistencies in
the Galilean limit. Thus, in what follows, we focus only on
the four interesting Carrollian theories (2,2), (2,4), (4,2),
and (4,4).

A. (2, 2) Carrollian theory

Consider the case where α and β are quadratic in the
speed of light, α ¼ c2α0, β ¼ c2β0, with α0 and β0 being
constants independent of c. We will study the resulting
action to the LO, i.e., the electric limit. From Table I, the
action is

S ¼ c3
Z

½R − αRμνRμν þ βR2� ffiffiffiffiffiffi
−g

p
d4x: ð5:1Þ

Writing α ¼ c2α0 and β ¼ c2β0, where α0 and β0 are c
independent constants, we can write the action as

S ¼
Z

c3½R − c2α0RμνRμν þ c2β0R2� ffiffiffiffiffiffi
−g

p
d4x; ð5:2Þ

which in the LO of the Carrollian expansion gives

S ¼ c2
Z

f½K2 − KμνKμν� − α0½hναhλβ£vKαβ£vKνλ þ 2£vKνλKσðνKλÞ
σ þ Kσ

ðαKβÞσKρðαKβÞ
ρ − 2KαβK£vKαβ

− 2KαβKKσ
ðαKβÞσ þ K2KμνKμν − ð£vKÞ2 þ 2KμνKμν£vK − ðKμνKμνÞ2� þ β0½K4 − 2K2KμνKμν

− 4K2£vK þ ðKμνKμνÞ2 þ 4KμνKμν£vK þ ð£vKÞ2�ged4x: ð5:3Þ

Since the Carrollian expansion and the weak-field
regime are not conflicting, the conditions to find tachyons
remain the same. In [7] it was found that the additional
degrees of freedom have masses of1

m0 ¼
1ffiffiffi
2

p 1ffiffiffiffiffiffi
−α

p ; m2 ¼
1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
α − 3β

p : ð5:4Þ

The conditions to avoid tachyons are (at any order of the
Carrollian expansion)

α ≤ 0; α − 3β ≥ 0; ð5:5Þ

which translates to

α0 ≤ 0; α0 − 3β0 ≥ 0; ð5:6Þ

in the case of (2, 2) theory.

B. (2, 4) Carrollian theory

Let us now investigate the case where α ¼ c2α0 and
β ¼ c4β0. The action is

S ¼ c3
Z

½R − c2α0RμνRμν þ c4β0R2� ffiffiffiffiffiffi
−g

p
d4x: ð5:7Þ

To the LO in the Carrollian expansion, we get the action

S ¼ c2
Z

f½K2 − KμνKμν� − α0½hναhλβ£vKαβ£vKνλ þ 2£vKνλKσðνKλÞ
σ þ Kσ

ðαKβÞσKρðαKβÞ
ρ

− 2KαβK£vKαβ − 2KαβKKσ
ðαKβÞσ þ K2KμνKμν − ð£vKÞ2 þ 2KμνKμν£vK − ðKμνKμνÞ2�ged4x: ð5:8Þ

Notice that this theory is the same as the Carrollian limit of
R − αRμνRμν. The conditions (5.5) to the LO reduce to
α0 ¼ 0. Thus, to the LO, the theory without tachyons is the
same as the Carrollian limit of GR.
Assuming α0 and β0 to be of the same numerical order,

the conditions to the LO and NLO, respectively, are

α0 ¼ 0; β0 ≤ 0: ð5:9Þ

Thus, the theory without tachyons to the NLO would be

S ¼ c3
Z

½RNLO þ c4β0ðR2ÞLO�
ffiffiffiffiffiffi
−g

p
d4x; ð5:10Þ

where RNLO is the Ricci scalar expanded to the NLO and
ðR2ÞLO is the LO of the Carrollian expansion of R2.

1We remark that α and β in our convention have opposite signs
to the convention used in [7].
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C. (4, 2) Carrollian theory

Considering the dependencies are α ¼ c4α0 and
β ¼ c2β0, the action is

S ¼ c3
Z

½R − c4α0RμνRμν þ c2β0R2� ffiffiffiffiffiffi
−g

p
d4x: ð5:11Þ

The corresponding LO action reads

S¼c2
Z

½ðK2−KμνKμνÞþβ0½K4−2K2KμνKμν−4K2£vK

þðKμνKμνÞ2þ4KμνKμν£vKþð£vKÞ2��ed4x: ð5:12Þ

In this case the conditions (5.5) then reduce to β0 ≤ 0.
Expanding the conditions to the NLO we obtain

β0 ≤ 0; α0 ¼ 0: ð5:13Þ

Hence, this theory is equivalent to the Carrollian limit of
R − βR2 theory to all orders with NLO action being the
same as (5.10).

D. (4, 4) Carrollian theory

If we consider α ¼ c4α0 and β ¼ c4β0, then the action
reads

S ¼ c3
Z

½R − c4α0RμνRμν þ c4β0R2� ffiffiffiffiffiffi
−g

p
d4x: ð5:14Þ

For this theory, the LO action is the same as GR. At the
NLO and higher orders it will receive corrections from both
R2 and RμνRμν terms. The conditions (5.5) are the same as
in the (2, 2) case.

VI. THE MAGNETIC LIMIT

In this section we study the magnetic limit of the theories
(2, 4) and (4, 2) because these two theories are free from
tachyons and ghosts if β0 ≤ 0. The magnetic limit is
obtained by truncating the NLO action such that the
resulting action is invariant under Carroll symmetries. In
the case of quadratic gravity we have to truncate it the same
way as GR; i.e., we have to put all the NLO fields to zero. It
is well known that the NLO captures all the dynamics of the

Carrollian limit [46]. Thus, the field equations from the
magnetic limit leads to corrections to the dynamics in GR
and even more solutions that are nonexistent in GR.

A. The magnetic limit of (2, 4)

Imposing the truncation

Mμ ¼ Nμ ¼ Φμν ¼ Φμν ¼ 0; ð6:1Þ

we get the LO and NLO of the terms of (5.10) to be

RLO¼K2−KμνKμν; RNLO¼−R
c
;

ðR2ÞLO¼ðK2−KμνKμνÞðK2−KμνKμνþ4£vKÞ−4ð£vKÞ2:
ð6:2Þ

As shown in the previous section, the LO of this theory is
identical to the LO of GR; i.e., the constraints and the
evolution equation are the same as (3.8) and (3.9). In the
NLO, the LO constraints and evolution equations must
hold, so they serve as constraints to the NLO field
equations. Thus, taking the trace of (3.9) we get

hμν£vKμν ¼ −2KμνKμν þ K2; ð6:3Þ

and then noting that

£vK ¼ hμν£vKμν þ 2KμνKμν; ð6:4Þ

we get

£vK ¼ K2: ð6:5Þ

Thus, the constraints on the magnetic action Lagrangian are

K2−KμνKμν¼0; hνα∇α½Kμν−Khμν�¼0; £vK¼K2:

ð6:6Þ

Notice that this is not a general equation. It is valid only in
(2, 4) and the theories where LO is identical to GR.
Using the above relations, we can write the action for the

magnetic limit of (2, 4) as

S ¼ −
Z

d4xe½−Rc þ β0½ðK2 − KμνKμνÞðK2 − KμνKμν þ 4£vKÞ − 4ð£vKÞ2� þ λ1ðK2 − KμνKμνÞ þ β0λ2ð£vK − K2Þ�; ð6:7Þ

where λ1 and λ2 are Lagrange multipliers. As expected, the
theory (2, 4) modifies the magnetic limit of GR with quartic
terms in the extrinsic curvature and imposes an additional
constraint. It would be interesting to see how these terms
modify the dynamics of different solutions of the field

equations, especially black holes. We expect that this
theory has more solutions than the Carrollian limit of
GR, namely those corresponding to the Schwarzchild-Bach
black holes [12,13]. If this is the case, then one should
examine if some terms can be considered as a flux that is
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analogous to the magnetic field in [61]. Here, however, the
flux would come from the theory instead of being turned on
by hand.

B. The magnetic limit of (4, 2)

This case is more complicated than (2, 4) since the LO is
more involved than that of GR. We first study the con-
straints and the evolution equations for the LO, and then

move on to the NLO. To the LO, the action is

S¼
Z

d4xe½ðK2 −KμνKμνÞð1þ β0½K2 −KμνKμν þ 4£vK�Þ

− β0ð£vKÞ2�: ð6:8Þ

Varying with respect to vμ and hμν, we get the constraints

ðK2 − KμνKμνÞð1þ β0½K2 − KμνKμν þ 4£vK�Þ − β0ð£vKÞ2 ¼ 0; ð6:9aÞ

hμρ∇μðKρν − Khρν þ 2β0½Kρνð−3ðK2 − KαβKαβÞ þ 4£vKÞ − KhρνðK2 − KαβKαβ þ 2£vKÞ�Þ ¼ 0: ð6:9bÞ

Varying with respect to hμν and using the constraints, the evolution equation is

2ðKKμν − Kσ
μKνσÞð1þ β0ð2ðK2 − KαβKαβÞ þ 4£vKÞÞ þ 2ð2β0ðK2 − KαβKαβÞ − β0£vKÞð£vKμν − 4Kσ

μKσνÞ
þ £v½ðKhμν − KμνÞð1þ β0ð2ðK2 − KαβKαβÞ þ 4£vKÞÞ� − 8β0£v½Kμνð2ðK2 − KαβKαβÞ − £vKÞ�
þ 2β0£v£v½2ðK2 − KαβKαβÞ − £vK� ¼ 0: ð6:10Þ

As expected, setting β0 ¼ 0, the equation reduces to the evolution equation of GR. The corrections to GR due to the R2 term
are quartic in the extrinsic curvature.
After truncation the NLO action reads

S ¼ c3
Z

e½Rc þ β0ð−K2 þ KμνKμν þ 2£vKÞðRc þ∇μðvλbμλÞÞ�d4x: ð6:11Þ

However, the equations for the LO must also, so we have to add (6.9) to the Lagrangian as a constraint,

S ¼ c3
Z

e½Rc þ β0ð−K2 þ KμνKμν þ 2£vKÞðRc þ∇μðvλbμλÞÞ þ λððK2 − KμνKμνÞð1þ β0½K2 − KμνKμν þ 4£vK�Þ

− β0ð£vKÞ2Þ�d4x; ð6:12Þ

where λ is a Lagrange multiplier. Notice that the field
equations for this action must include (6.10).
Now, we study a special case of the above equations

where we treat £vK as an independent variable. Varying the
action with respect to vσ, we get the equations

ðK2−KμνKμνÞð1þβ0½K2−KμνKμνþ4£vK�Þ−β0ð£vKÞ2¼0;

hρσ∇σðKhρμ−KρμÞ¼0: ð6:13Þ

Varying the action with respect to £vK and assuming
£vK ≠ 0, we get

£vK ¼ 2ðK2 − KμνKμνÞ: ð6:14Þ

From (6.13) and (6.14), we get the equations

£vK ¼ −2
5β0

; K2 − KμνKμν ¼ −1
5β0

: ð6:15Þ

Varying the action with respect to hμν and using (6.15)
we get

£vKμν ¼ −2Kσ
μKσν þ Khμν: ð6:16Þ

Collecting the independent field equations we get the
system

£vK ¼ −2
5β0

; K2 −KμνKμν ¼ −1
5β0

;

− 2Kσ
μKσν þKhμν ¼ £vKμν; hρσ∇σðKhρμ −KρμÞ ¼ 0:

ð6:17Þ

It turns out that this system solves (6.9) and (6.10). Thus,
the solutions to the system (6.17) are also solutions to the
full (4, 2) equations at LO. Notice that this system solves
the full theory but the converse is not true. This means that a
solution for (6.17) is a solution for the full theory but its set
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of solutions is only a subset of that of the full theory. It is
also worth mentioning that this system cannot reproduce
GR without a cosmological constant; i.e., it is not valid
for β0 ¼ 0.
Notice that (6.17) is similar to Eq. (4.18) in [46], which

describe GR with a cosmological constant, except for when
the evolution equation is the same as GR without a
cosmological constant. Modifications to the gravitational
sector to reproduce a cosmological constant (without

adding a cosmological constant term in the Lagrangian)
were studied in fðRÞ gravity [70]. Thus, we can interpret
the effect of the R2 term to be an effective cosmological
constant with the value −1=ð10β0Þ. We will leave the
solutions of this system of equations to future works.
Now we use them as constraints to write the action for the
magnetic limit.
For the special case where £vK is considered indepen-

dent, the NLO action reads

S ¼ c3
Z

e

�
R
c þ β0ð−K2 þKμνKμν þ 2£vKÞðRc þ∇μðvλbμλÞÞ þ λ1

�
£vK þ 2

5β0

�
þ λ2

�
K2 −KμνKμν þ 1

5β0

��
d4x; ð6:18Þ

where λ1 and λ2 are Lagrange multipliers and bμν ¼
∂μτν − ∂ντμ.
It is clear that the action contains a cosmological term.

This is a direct result of the emergence of an effective
cosmological constant in the LO equations. Like the
magnetic limit action of (2, 4), this action modifies the
magnetic limit of GR but with a nonzero cosmological
constant. Applying this to the general magnetic limit action
(6.12) we conclude that it includes a cosmological term in
addition to terms that can be interpreted as flux. Notice that
magnetic limits are no longer ultralocal due to the presence
of spatial derivatives of the metric in the form of the Ricci
scalar and terms containing the covariant derivative of bμν.
This allows some dynamics that were absent in the
electric limit.

VII. CONCLUSIONS

In the present paper, we studied the electric and magnetic
Carrollian limits of quadratic gravity. We calculated the
PUL parametrization of terms with quadratic curvature in
the action. After the Carrollian expansion, we saw that such

terms are of the order of c−4 while the Ricci scalar term is
only of the order of c−2. From that, we concluded that the
Carrollian limit of quadratic gravity requires α and β to
depend on c in a particular way so that the resulting theory
is a modification of GR. We classified different limits
according to the dependencies of α and β on c. For
example, the three of them (0, 0) (no dependence on c),
(0, 2), and (2, 0) are not GR modifications because to the
LO only the terms of order c−4 survive, i.e., only the
quadratic terms in curvature but not the Ricci scalar. The
only four theories that are modifications of GR (to the LO
and NLO) are summarized in Table II together with the
corresponding modifications.
Focusing on the ghost-free theories, namely (2, 4) and

(4, 2), we see that (2, 4) is the same as GR to the LO, so the
electric limit and the constraints to the magnetic limit are
the same as those of GR. However, to the NLO the theory
has extra terms which can be interpreted as an additional
flux. In the case of (4, 2) the LO and the NLO are
equivalent to that of Rþ β0R2 theory. The constraints
and the evolution equations are in general much more
complicated. However, there is a special case where the LO

TABLE II. After imposing the conditions to remove tachyons, the set of resulting theories consists either of the full Stelle gravity to
various orders or variations of Rþ R2 theories. It is worth mentioning that, as said before, theories with odd powers of c will be
equivalent to one of the theories above, and higher powers of c may be problematic in the Galilean limit. Note that the LO actions
possess Carrollian symmetries by construction so they are Carrollian theories, but the NLO actions do not. The NLO of the Carrollian
expansion does not preserve Carrollian symmetry in general; however, certain truncation recovers the symmetries resulting in the
magnetic Carrollian limit of the theory.

Carrollian theories from quadratic gravity after removing tachyons

Theory Action contributing to the LO Action contributing to the NLO Conditions

(2, 2) S ¼ c3
R ½RLO − c2α0ðRμνRμνÞLO

þc2β0ðR2ÞLO�
ffiffiffiffiffiffi−gp

d4x
S ¼ c3

R ½RNLO − c2α0ðRμνRμνÞNLO
þc2β0ðR2ÞNLO�

ffiffiffiffiffiffi−gp
d4x

α0 ≤ 0, α0 − 3β0 ≥ 0

(2, 4) S ¼ c3
R ½RLO� ffiffiffiffiffiffi−gp

d4x S ¼ c3
R ½RNLO þ c4β0ðR2ÞLO�

ffiffiffiffiffiffi−gp
d4x α0 ¼ 0, β0 ≤ 0

(4, 2) S ¼ c3
R ½RLO þ c2β0ðR2ÞLO�

ffiffiffiffiffiffi−gp
d4x S ¼ c3

R ½RNLO þ c4β0ðR2ÞNLO�
ffiffiffiffiffiffi−gp

d4x α0 ¼ 0, β0 ≤ 0

(4, 4) S ¼ c3
R ½RLO� ffiffiffiffiffiffi−gp

d4x S ¼ c3
R ½RNLO − c4α0ðRμνRμνÞNLO
þc4β0ðR2ÞNLO�

ffiffiffiffiffiffi−gp
d4x

α0 ≤ 0, α0 − 3β0 ≥ 0

POULA TADROS and IVAN KOLÁŘ PHYS. REV. D 108, 124051 (2023)

124051-10



equations reduce to GR with a cosmological constant,
and this means that the full theory gives rise to an
emergent cosmological constant in addition to the extra
terms which, as in the (2, 4) case, can be interpreted as
an additional flux.
More work has to be done to study the field equations for

these theories to the LO and NLO. It would be interesting to
compare each case with GR to understand what modifica-
tions can arise from different quartic terms of the extrinsic
curvature. Another direction for future research is to
calculate the Galilean limit of quadratic gravity. Since the
dependence of α and β on c is not a perturbative assumption,
the higher powers of c in the action may be problematic in
the Galilean limit. In the current classification the most
attractive options for future study are (2, 4) and (4, 2) since,
after imposing the tachyon removing conditions, we get the
Carrollian limit ofRþ βR2, a renormalizable theorywith no
ghosts or tachyons (only if β is positive) which is deduced

directly from the string theory. We plan to study black-hole
solutions for these theories. Since Rþ R2 theories have
more black-hole solutions than GR, a direction for future
work is to study black-hole solutions for their actions. These
should coincide with the Carrollian limit of Schwarzchild-
Bach solutions. It is interesting to analyze the dynamics of
Carrollian particles on horizons of various black-hole solu-
tions and compare the dynamics with that of [61] as well as
study the modifications arising from the quartic terms.
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