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Fifth forces are ubiquitous in modified theories of gravity. In this paper, we analyze their effect on the
Cepheid-calibrated cosmic distance ladder, specifically with respect to the inferred value of the Hubble
constant (H0). We consider a variety of effective models where the strength, or amount of screening, of the
fifth force is estimated using proxy fields related to the large-scale structure of the Universe. To quantify the
level of tension between the local distance ladder and the Planck value for H0, we calculate the probability
of obtaining a test result at least as extreme as the observed one, assuming that the model is correct
(the p-value). For all models considered, the level of agreement is≳20%, relieving the tension compared to
the concordance model, exhibiting an agreement of only 1%. The alleviated discrepancy comes partially at
the cost of an increased tension between distance estimates from Cepheids and the tip of the red-giant
branch (TRGB). Demanding also that the consistency between Cepheid and TRGB distance estimates is
not impaired, some fifth force models can still accommodate the data with a probability ≳20%. This
provides incentive for more detailed investigations of fundamental theories on which the effective models
are based and their effect on the Hubble tension.
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I. INTRODUCTION

For almost a century, scientists have been engaged in the
pursuit of precisely measuring the current expansion rate of
the Universe, known as the Hubble constant (H0). Its value
has been a subject of controversy during most of this time.
At present, there is a discrepancy between the SH0ES team
value H0 ¼ ð73.0� 1.0Þ km=s=Mpc [1] and the Planck
satellite data giving H0 ¼ ð67.8� 0.5Þ km=s=Mpc [2]. To
infer H0, the SH0ES team use a Cepheid-calibrated cosmic
distance ladder, while the Planck value is based on the
distance to the last scattering surface of the cosmic micro-
wave background radiation. This discrepancy is commonly
referred to as the Hubble tension.
The most immediate resolution is to attribute the tension

to systematic errors. However, despite diligent efforts, this
approach has not been entirely successful. Another pos-
sibility is that there is new physics beyond the cosmological
standard model; see Refs. [3,4] for some examples. So far,
there is no such consensus solution, although early dark
energy appears to be one of the most popular models to

date [5–10]. Another proposal is that we are located in an
underdense region of the Universe [11–15]. This results in
an increased local expansion rate, explaining the “high”
value of H0 inferred by the SH0ES team [16]. However,
taking the full range of cosmological observations into
account, this is ruled out [17–21].
In this paper, we explore an alternative approach based

on fifth forces, first suggested in Ref. [22]. A fifth force is
the result of an extra degree of freedom and effectively
leads to an increase in the gravitational force in certain
environments, compared with the predictions of general
relativity (GR). This can be modeled as an increase in the
gravitational constant (G) compared with the Newtonian
constant of gravitation (GN).

1 IfG > GN in galaxies hosting
both type Ia supernovae (SNIa) and Cepheids but G ≃ GN
in anchor galaxies with direct distance measurements, the
SH0ESH0 is biased to a high value. Thus, taking a fifth force
into account can potentially harmonize theSH0ESvaluewith
Planck.
In Ref. [22], it was shown that an increase inG relative to

GN by 5%–30% in the host galaxies can alleviate the
tension. In that work, the derived value of the Hubble
constant was estimated by an effective rescaling. In the
present paper, we infer the value of H0 using a full
statistical analysis.
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1This assumes that the length scale of the spatial variations of
the fifth force is greater than the size of the system.
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We analyze three different models where the value of the
fifth force is determined by the value of a phenomeno-
logical proxy related to the large-scale structure of the
Universe. These are the externally sourced gravitational
potential (Φ), the externally sourced acceleration (a), and
the externally sourced curvature (K), described in more
detail below. The theoretical foundations for these models
are discussed further in Secs. V B and VII C.

A. Notation

The numerical values of the Hubble constant (H0) are
given in units of km=s=Mpc. Following Ref. [22], the
externally sourced gravitational potential (Φ) is given in
units of c2 where c is the speed of light, the externally
sourced acceleration (a) is given in units of km=s2, and the
externally sourced curvature (K) is given in units of 1=cm2.
Concerning galaxy names, N4258 stands for NGC 4258,
U9391 stands for UGC 9391, etc.

II. EXECUTIVE SUMMARY

In this paper, we follow themethods of the SH0ES team to
set up the Cepheid-calibrated distance ladder with the
addition that we take possible fifth force effects (para-
metrized by Φ, a, and K) into account. Since the model
parameter space allowed by the local distance ladder is
infinite in these cases, it is not possible to obtain a
constrained value for the Hubble constant, making the
consistency between Planck and the local distance ladder
inconclusive at this level. By including a weight at each point
in the parameter space representing the tension between the
local distance ladder and the Planck values for H0, the
allowed model parameter space becomes finite, allowing us
to infer a constrained value for the Hubble constant from the
local distance ladder, marginalized over the model param-
eters. For each model, we quantify the level of tension (or
consistency) between the local distance ladder and Planck by
the p-value—the probability of the present data:

(i) TheΦ-model yieldsH0 ¼ 68.0� 1.3with a p-value
of p ¼ 0.44.

(ii) The a-model yields H0 ¼ 69.4� 1.3 with a p-value
of p ¼ 0.25.

(iii) TheK-model yieldsH0 ¼ 69.9� 1.3with a p-value
of p ¼ 0.18.

Compared with the standard model without a fifth force,
which gives p ¼ 0.01, all fifth force models exhibit a fair
consistency between Planck and the local distance ladder.
The degree of consistency between the local distance

ladder and Planck is generically largest for models where
Cepheid-estimated galaxy distances are increased. At the
same time, distances to the same galaxies estimated using
the tip of the red-giant branch (TRGB) decrease, since these
are modified in the opposite direction in the presence of a
fifth force. Thus, the eased tension comes partially at the
cost of an impaired consistency between galaxy distance

estimates based on Cepheids and the TRGB. However,
since there is only a partial overlap between Cepheid and
TRGB host galaxies, the degree of inconsistency depends
on which galaxies are affected by the fifth force. Therefore,
it is possible to obtain a p-value ≳0.2 while still satisfying
the 95% confidence limit (CL) of the Cepheid versus
TRGB distances.
Our results provide further support that a fifth force

effective at galactic or large-scale structure scales can
have beneficial properties with respect to the Hubble
tension [22]. Thus, it provides an incentive to study the
foundational theories on which these effective fifth force
models are based, with the aim of determining the degree to
which these theories can alleviate the Hubble tension.

III. DATA DESCRIPTION

The present work requires the phenomenological proxy
values obtained in Ref. [22]. For this to cover all Cepheid
anchor and host galaxies, we employ the same datasets and
methodologies as previously described in Refs. [23,24],
with necessary modifications to incorporate the effects of
the fifth force.
To summarize, for the Large Magellanic Cloud (LMC),

we utilize a distance modulus of μLMC ¼ 18.477� 0.0263
derived from double eclipsing binaries [25–27]. The dis-
tance to N4258 is determined through megamaser obser-
vations to μN4258 ¼ 29.397� 0.032 [28]. Data for the
Milky Way (MW) Cepheids, including Gaia parallax
measurements, are extracted from Table 1 in Ref. [29].
For Cepheids in the LMC, we obtain the relevant data

from Table 2 in Ref. [27], while for Cepheids in M31 and
beyond, we use the data in Table 4 in Ref. [30].
We obtain the SNIa peak magnitudes from Table 5 in

Ref. [30], while TRGB data are sourced from Ref. [31].
The Hubble constant inferred from the local distance

ladder is calculated using

H0 ¼ 10MB=5þaBþ5; ð1Þ
with aB ¼ 0.71273� 0.00176 being the intercept of the
SNIa magnitude-redshift relation [30] and MB being the
SNIa B-band peak absolute magnitude.
The fifth force proxies ðΦ; a; KÞ are determined using

the maps in Ref. [32], modeling the large-scale structure out
to distances of 200 Mpc. The proxy value for a specific
galaxy achieves contributions from all sources within a
certain cutoff radius (Rmax) which designates the range of
the fifth force. Some examples are shown in Fig. 1. Via
Ref. [32], we have access to these values for five different
cutoff radii, Rmax ¼ ½0.4; 1.4; 5.1; 18.1; 50� Mpc. Proxy
uncertainties are accounted for using a Monte Carlo method
in the statistical data analysis. We simulate a sample of
realizations where the values of the proxy parameters are
drawn randomly from Gaussian distributions where the
width is given by the error bars in Fig. 1.
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For a given proxy, each sample provides, at every point
in the parameter grid:

(i) A best-fit H0.
(ii) The quality of the Cepheid distance ladder fit.
(iii) The tension with the Planck value for H0.
(iv) The tension between Cepheid and TRGB distances.

The final value of H0 and its corresponding uncertainty is
given by a weighted average over the simulated samples
and the parameter space, where the weight is given by the
probability of each sample as derived from the correspond-
ing Cepheid distance ladder χ2 and the tension with the
value for H0 derived from Planck data.
We derive the 95% confidence contour levels for the

Cepheid distance ladder fit and the TRGB tension using the
5% lowest percentile of the corresponding quantities across
the random proxy samples. For example, for each para-
meter point and random realization of the proxy values, we
obtain a value for the Cepheid fitted Hubble parameter
HCeph

0 and the corresponding χ2Ceph of the fit. We combine
this with a penalty term for the tension with the Planck
value HPlanck

0 as

χ2tot ¼ χ2Ceph þ
ðHCeph

0 −HPlanck
0 Þ2

σ2
HCeph

0

þ σ2
HPlanck

0

: ð2Þ

Denoting the 5% lowest percentile of the χ2tot across the
random samples at each parameter point χ25%, we assign to
each point in parameter space a probability∝ exp ð−χ25%=2Þ.
After normalization, this probability is finally used as the
weight when deriving the weighted average of H0 across
the full parameter space for a particular model. Note that the
HPlanck

0 is only used to assign the weight for each point in
parameter space, whereas the value for the Hubble constant
is derived solely from the Cepheid distance ladder. We refer
to this method of inferring H0 and confidence contours
(in the parameter space) as the “Planck-weighted local
distance ladder.”The globalminimum χ2 and corresponding
p-values for each proxy model are given by the mean
minimum χ2 across the simulations and its standard
deviation. The p-value is formally obtained by integrating
the χ2-distribution for the correct number of degrees of
freedom (dof) from the observed minimum χ2min up to
infinity. In practice, we use the incomplete gamma function
for this calculation,

p ¼ 1 − γ

�
dof
2

;
χ2min

2

�
: ð3Þ

In the case of no fifth force (i.e., GR), we have 1645 data
points and 28 parameters giving 1617 dof [23,24], and for
the proxy models 1615 dof.
When randomizing the proxy values, we investigate two

extreme cases. One is where the scatter is completely
correlated between all galaxies, where for example a lower-
than-average value for the proxy parameter is applied to all
galaxies. In the other case, we assume that the uncertainty
in the proxy values are completely uncorrelated between
galaxies. The two alternatives give very similar results for
the Hubble tension and TRGB consistency. As an example,
for theΦ-model with Rmax ¼ 0.4 Mpc, the inferred Hubble
constant value is H0 ¼ 68.0� 1.3 both with correlated and
uncorrelated errors in the proxy values, and the p-values
are p ¼ 0.44 and p ¼ 0.41. See Table III for a complete
comparative list. Here, as a default, we assume that the
errors in the proxy values are completely correlated. A
discussion of the results in the case of uncorrelated proxy
errors is contained in Appendix B.

IV. METHODS I: (RE)CALIBRATING
THE DISTANCE LADDER

The Cepheid-calibrated distance ladder consists of three
steps, each possibly susceptible to the influence of a fifth
force, potentially yielding a different value for H0. To
illustrate the effect, we express the Hubble constant as

5 log10H0 ¼ 5 log10 rðzÞ− 5 log10Danch−ΔmCephþΔmSN;

ð4Þ

FIG. 1. Values for the fifth force proxies for the anchor and
SNIa host galaxies for some example models. The boldface
galaxy names indicate the galaxies to which we have both
Cepheid and TRGB distance estimates. Following the color
coding of Ref. [22], the red line denotes the MW and the
LMC (which exhibit the same proxy values), and the green line
denotes N4258. The blue dots are the SNIa host galaxies. Top:
values for the externally sourced gravitational potential (Φ) for
Rmax ¼ 0.4 Mpc. Middle: values for the externally sourced
acceleration (a) for Rmax ¼ 18.1 Mpc. Bottom: values for the
externally sourced curvature (K) for Rmax ¼ 5.1 Mpc.
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where rðzÞ can be approximated by rðzÞ ≃ cz in the close
Hubble flow and

ΔmCeph ¼ mhost
Ceph −manch

Ceph; ð5aÞ

ΔmSN ¼ mhost
SN −mflow

SN ; ð5bÞ

see Refs. [23,24]. Here, ΔmCeph denotes a systematic offset
in Cepheid magnitudes between SNIa host galaxies and
anchor galaxies, while ΔmSN represents a systematic offset
in SNIa magnitudes between host galaxies and cosmic flow
galaxies. In the absence of a fifth force, it is assumed
that ΔmCeph ¼ ΔmSN ¼ 0.
From Eq. (4), we see that there are three ways that a fifth

force can lower the value of H0 (hence, easing the tension
with the Planck value), namely by:
(1) Increasing the independent anchor distances, Danch.
(2) Having ΔmCeph > 0. This condition applies

when the fifth force is stronger in the SNIa host
galaxies [22]. In this case, the host Cepheids appear
brighter, necessitating a correction by raising mhost

Ceph.
(3) Having ΔmSN < 0. If the SNIa in the Hubble flow

experience a stronger fifth force than those in
Cepheid hosts, they appear brighter, requiring a
correction by raising mflow

SN .
For the process of fitting H0 from the local distance

ladder, we basically follow the method employed by the
SH0ES team, employing a three-step distance ladder in
which Cepheids are used to mediate between geometrical
anchor galaxy distances and SNIa in the Hubble flow. The
Cepheids are standardized using linear corrections with
respect to their periods, observed colors, and metallicities.
A minor difference is that we use an updated method to fit
for the Gaia residual parallax calibration for Cepheids in the
MW; see Refs. [23,24]. On top of this, we add the effects of
fifth forces on the observed Cepheid properties, and
constrain them, as detailed below.

A. Anchor distances

In Ref. [22], the MW and N4258 were used as anchor
galaxies. In our analysis, we extend the investigation by
including a distance estimate to the LMC. In the following,
we show that the distance anchors (Danch) are unaffected by
a fifth force, that is, by a modified gravitational constant.

1. MW

The distances to the Cepheids in the MWare determined
through observations of their parallax, providing a geo-
metric measurement, independent of G.

2. N4258

The distance estimate to N4258 relies on observing the
position, velocity (along the line of sight), and acceleration
(along the line of sight) of water masers near its center. The

model predictions for velocity and acceleration are based on
the masers’ Keplerian motion (plus relativistic corrections)
where the gravitational constant appears together
with the mass of the central black hole (MBH), making only
the combination GMBH observationally constrained [33].
That is, any deviation from GN can be compensated by a
corresponding change in MBH, so the fifth force does not
influence the distance estimate to N4258.

3. LMC

The distance to the LMC is estimated using observations
of detached eclipsing binaries (DEBs). The distance is
inferred from the orbital velocity and photometric light curve
of the system, which provide information about the physical
size of the individual stars [25]. By considering the DEB
temperatures, their luminosities can be determined, allowing
for the distance estimation without assuming any value forG.
Consequently, the estimated distance to the LMC remains
unaffected by a modified gravitational constant.

B. Cepheids

Cepheid pulsation periods are correlated with their
luminosities, making them standardizable candles. In the
calibration process, one must correct for color and (poten-
tially) metallicity. The pulsation period of a Cepheid is
influenced by processes occurring in the star’s envelope. In
the presence of an unscreened envelope (i.e., G > GN), the
dynamics governing the pulsation is altered, as the free-fall
time is reduced by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GN=G

p
[34]. This suggests

that the pulsation period is reduced by the same factor,
which is also supported by more detailed models utilizing
the linear adiabatic wave equation [35]. Consequently, in
galaxies where Cepheid envelopes are unscreened, the
period-luminosity relationship (PLR) is shifted compared
to galaxies where the envelopes are screened (i.e.,
G ¼ GN). This shift in the PLR has the same effect as
an increase in the Cepheid luminosity according to

Δ log10 L ¼ A
2
log10

�
1þ ΔG

GN

�
: ð6Þ

We adopt the value A ¼ 1.3, compliant with Ref. [22]. The
quantity ΔG=GN denotes the relative increase in the
gravitational constant, that is,

ΔG
GN

¼ G −GN

GN
: ð7Þ

The luminosity of a Cepheid is primarily determined by
hydrogen burning in a thin shell surrounding the helium
core. When this shell becomes unscreened, the star must
consume more fuel to balance the enhanced gravitational
force, resulting in higher luminosity. To account for this, a
modified stellar structure code [36] can be utilized to derive
the relation
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Δ log10 L ¼ B log10

�
1þ ΔG

GN

�
; ð8Þ

where the coefficient B depends on the mass of the Cepheid
and whether it lies at the second or third crossing of the
instability strip. We adopt B ¼ 4 and assume that ΔG=GN
takes the same value in the envelope and the core.
To summarize, there are two fifth force effects that

contribute to a shift in the PLR of Cepheids. The first arises
from modified dynamics within the envelope, while the
second stems from a modified burning rate in the vicinity of
the core. The total shift in the PLR is the sum of the two
effects, Eqs. (6) and (8).

C. Type Ia supernovae

If a fifth force is present so that the white dwarf is
unscreened, the effective gravitational force acting on it
increases, resulting in a shift in the SNIa absolute magni-
tude [22]. (See also Refs. [37,38].) However, due to
screening effects, generically ΔG=GN ≃ 0 in compact
objects, with an increasing trend as the density decreases.
A typical mean density for a white dwarf is 106 g=cm3,
while it is 10−5 g=cm3 for a typical Cepheid. Therefore, we
set ΔG=GN ¼ 0 for the SNIa, that is, no shift in their
absolute magnitudes.

D. TRGB consistency test

When the hydrogen at the core of a solar mass star is
depleted, energy is primarily generated through hydrogen
fusion in a shell surrounding the core. As the pressure and
temperature of the core increase, for stars with masses less
than ≃1.8M⊙, a rapid nuclear fusion process of helium,
known as the helium flash, takes place. This results in a
break in the luminosity evolution of the star, marking the tip
of the red-giant branch. In the near-infrared I-band
(∼800 nm), the TRGB serves as a standard candle
with an absolute magnitude of MI ≃ −4.0. This can be
employed as an alternative method for calibrating SNIa
luminosities, ultimately leading to the determination of H0

as discussed in Ref. [39]. Here, we utilize the TRGB as a
consistency test by comparing distances to galaxies inferred
from both Cepheids and the TRGB.
The luminosity of the red-giant branch stars (RGBs) is

determined by a thin hydrogen shell surrounding the
helium core. In the presence of a modified gravitational
constant in this shell, the inferred distance is well approxi-
mated by the formula [40]

Dtrue

DGR
¼ 1.021

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.04663

�
1þ ΔG

GN

�
8.389

s
: ð9Þ

We assume that, for a given galaxy, ΔG=GN takes the same
value in the RGBs [Eq. (9)] as in the Cepheids [Eqs. (6)
and (8)]. Since distances derived from Cepheids and the

TRGB are modified in opposite directions, significant fifth
forces generically lead to systematic disagreements, mak-
ing it possible to constrain the size of the fifth force. Since
the TRGB distance estimates in Ref. [31] are calibrated
using the RGBs in the LMC, we account for screening
effects also in these.

V. METHODS II: FIFTH FORCE MODELS

In this section, we first describe how we calculate G
based on the value of the fifth force proxies and then
describe the proxy models utilized in this paper.

A. Mapping G

To be compatible with solar system tests of gravity, a
fifth force must exhibit a screening mechanism suppressing
its spatial variations on solar system scales.2 In galactic
environments, however, the variations can be significant,
leading to potentially observable effects. There is a plethora
of screening mechanisms in the literature. For comprehen-
sive reviews, see for example Refs. [44–46]. Ideally, the
value of the gravitational constant (G) should be calculated
for each astrophysical object from the equations of motion
of the theory. Such an approach is possible but computa-
tionally demanding (see, e.g., Ref. [47] for the case of
symmetron screening). For practical purposes, it can be
useful to parametrize the strength of the fifth force by a
proxy field (p) whose value is known observationally. In
this paper, we adopt this approach and focus on proxy fields
which are determined from the large-scale structure of the
Universe, described in the section below.
The dependence of G upon p depends on the underlying

fundamental gravity theory, although, to comply with
current observational constraints, it should be constant in
solar system environments. In Ref. [22], the authors assume
a stepwise mapping such that G ¼ GN if p is greater than
some critical value (pcrit) and G ¼ kGN if p < pcrit where
k > 1 is some fixed constant. To account for a continuous
dependence of G on p, in this paper, we set

ΔG
GN

¼ ΔG
GN

����
max

1

1þ ðp=p0Þq
; ð10Þ

where ΔG=GNjmax determines the maximal value of
ΔG=GN, q sets the width of the transition from
ΔG=GNjmax to 0, and p0 determines the value of p
where the transition takes place. See Fig. 2 for some
examples.

2A constant rescaling of the gravitational force in the solar
system can always be absorbed in a redefinition of GN, assuming
that the fifth force couples equally to all matter sectors (see
Refs. [41–43] for some counterexamples). The results in the
present work remain unchanged with such a rescaling since we
are only concerned with the relative variations in the fifth force.
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If q is small, the transition is slow; see Fig. 2. This results
in all galaxies exhibiting similar values of ΔG=GN,
resulting in little or no effect on the calibration of the
distance ladder. Accordingly, we find that the greatest effect
on H0 is achieved when q is large, that is, with a sharp
transition between screened and unscreened galaxies. Thus,
in the following, we set q ¼ 500 as a default value and
show results for other values of q in Appendix C.
In addition to the ðΔG=GNjmax; q; p0Þmodel parameters,

Rmax denotes the range of the fifth force, that is, determin-
ing the radius out to which a source contributes to the
fifth force.

B. Screening proxies

Here, we analyze proxy models where the degree of
screening is determined by the value of an observable
related to the large-scale structure of the Universe. The
proxy fields are the externally sourced gravitational poten-
tial (Φ), the externally sourced acceleration (a), and the
externally sourced curvature (K). The values of the proxy
fields are obtained from the maps in Ref. [32], from which
we have access to the proxy values for five different values
of the cutoff radius Rmax in the range 0.4–50 Mpc.
The externally sourced gravitational potential (p ¼ Φ)

can be used as a proxy, parametrizing the degree of screening
of an fðRÞ-model exhibiting chameleon screening [48]. The
degree of screening under a kinetic mechanism such as
k-mouflage [49] may be parametrized by the externally
sourced acceleration (p ¼ a), and Vainshtein screening
models [50–55] may be parametrized by the externally
sourced curvature, quantified by the Kretschmann scalar
(p ¼ K).

VI. RESULTS

In this section,we present the results of including the proxy
fifth force models in the calibration of the cosmic distance

ladder with themain goal to analyze how it affects the tension
between the distance ladder andPlanck. In the accompanying
figures, the black dashed lines are the 95%CLs obtained from
the quality of the local distance ladder fit and its agreement
with thePlanck value ofH0. Thewhite dashed lines show the
95% CLs obtained from comparing Cepheid and TRGB
distances as described in Sec. IV D.
For the screening models that we analyze here, each

point in the parameter space yields a certain value ofH0. As
seen in Fig. 3, for small values of ΔG=GNjmax, the Hubble
constant approaches the value obtained without a fifth
force, whereas increasing ΔG=GNjmax yields an increasing
effect on H0. When the proxy value p0 is smaller than the
minimum host galaxy value, all galaxies are screened, and
there is no effect on H0. Increasing p0 beyond the smallest
galaxy value, some of the host galaxies become
unscreened, while the anchor galaxies remain screened;
see Fig. 4 (left panel) for an example. In this case, the
inferred Hubble constant decreases compared to the stan-
dard case without a fifth force. Increasing ΔG=GNjmax
increases the effect, making it possible to obtain arbitrarily
low values of H0. What prevents such an arbitrary decrease
in the Hubble constant is the global fit of the distance
ladder, which requires a full statistical analysis as imple-
mented in this paper. Increasing p0 beyond the values of the
anchor galaxies, the anchor galaxies are fully unscreened,
while some host galaxies are still screened; see Fig. 4 (right
panel). In this case, the Hubble constant increases com-
pared with the standard case. Thus, we can understand the
transition in Fig. 3 where the Hubble constant goes from
being smaller than the standard SH0ES value to greater
when increasing p0. Increasing p0 even further, beyond the
greatest value among all galaxies, all galaxies become
unscreened to the same degree, and there is no effect onH0.
In general, the model parameter space allowed by the

local distance ladder is infinite, making it impossible to
obtain a constrained value for the Hubble constant by

FIG. 2. Examples of ΔG=GN as a function of the proxy value p as parameterized in Eq. (10). Left: varying q. Increasing q yields a
steeper transition. Right: varying p0. Increasing p0 pushes the transition to higher values of p.
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marginalizing over the model parameters; see Appendix A.
We therefore add the Planck value (67.8� 0.5) as a data
point to be compared to the best-fit local distance ladder
value for H0 when weighting parameter points during
marginalization, allowing us to infer a constrained value for
the Hubble constant from the local distance ladder by
effectively making the allowed model parameter space
finite. We refer to this method of obtaining H0 as the
“Planck-weighted local distance ladder.”
In the standard case, the Hubble tension manifests itself

as a poor fit of the local distance ladder when compared to
Planck data, that is, a low p-value (p ¼ 0.01)—the

probability of the present data. For each fifth force proxy,
we quantify the level of tension (or consistency) between
the local distance ladder and Planck by the p-value of the
given model, where higher p-values indicate less tension.
In Fig. 5, we present the values of H0 inferred from the

Planck-weighted local distance ladder, and in Table I, we
present numerical results for selected models and quantify
the performance of the screening models compared with the
standard case. A comprehensive list of results is given in
Appendix C.
The model which exhibits the lowest local value

of H0 (inferred from the Planck-weighted local distance

FIG. 4. Examples of ΔG=GN for host and anchor galaxies for a Φ-screening model with Rmax ¼ 0.4 Mpc. Left: log10 jΦ0j ¼ −8.3.
Here, the anchor galaxies (MW, LMC, and N4258) are all screened, while a significant fraction (68%) of the host galaxies are
unscreened. In this case, theH0 value is decreased. Right: log10 jΦ0j ¼ −8.0. Here, the anchor galaxies are fully unscreened, while some
host galaxies are still screened. In this case, the inferred H0 value increases.

FIG. 3. The color shade denotes the value ofH0 (in units of km/s/Mpc) at each point in the parameter space. Note the different scales in
the color schemes between the plots. The black contours show the inferred 95% CLs from the Planck-weighted local distance ladder.
Everything above the white dashed curves is excluded by the Cepheid-TRGB consistency test with 95% confidence. On the vertical
axes, we have ΔG=GNjmax, which is the maximal relative increase in the gravitational constant due to the fifth force. On the horizontal
axes, we have Φ0, a0, and K0, which, for each respective model, denote the transition value for the proxy field. That is, galaxies with
smaller values are unscreened, and galaxies with greater values are screened. The cross indicates the best-fit point, tabulated in Table IV.
Left: screening with the gravitational potentialΦwith Rmax ¼ 0.4 Mpc and Rmax denoting the range of the fifth force. Middle: screening
with the acceleration a with Rmax ¼ 18.1 Mpc. Right: screening with the curvature K with Rmax ¼ 5.1 Mpc. For all models, a small
enough ΔG=GNjmax reproduces the standard value for the Hubble constant, that is H0 ¼ 73.2.
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ladder) is Φ-screening with Rmax ¼ 0.4 Mpc. In this case,
H0 ¼ 68.0� 1.3, with a p-value of p ¼ 0.44. Hence, for
this model, the local distance ladder is consistent with
Planck. Note that the consistency between the local H0

value and thePlanck value is mainly due to the best-fit value
of the Hubble constant changing, rather than an increased
uncertainty in H0. For externally sourced acceleration (a),
Rmax ¼ 50 Mpc provides the best consistency (lowest

tension) between the distance ladder and Planck
with p ¼ 0.25 and H0 ¼ 69.4� 1.3; see Table IV. For
externally sourced curvature (K),Rmax ¼ 1.4 Mpc provides
the lowest tension, withp ¼ 0.18 andH0 ¼ 69.9� 1.3; see
Table IV.
Unlike the dependence on q, there is no simple way to

predict the dependence of the inferredH0 on Rmax in Fig. 5.
The irregularities are due to the fact that the proxy field
values depend on the distribution of sources within the
cutoff radius. Thus, how the derived H0 changes with Rmax
depends on how the distribution of sources changes in the
anchors galaxies compared with the host galaxies. For
example, if the number of sources increase more in the
anchor galaxies than in the host galaxies as Rmax changes,
the anchor galaxies become more screened compared with
the host galaxies, and the best-fit H0 value decreases.
We conclude that fifth forces can alleviate the Hubble

tension. However, this comes partially at the cost of
worsening the consistency between Cepheid and TRGB
distance estimates. With no fifth force, the comparison of
Cepheid and TRGB distances gives χ2 ≃ 21. Generically,
the models with the greatest p-values (and lowest H0)
exhibit the greatest degree of tension between Cepheid and
TRGB distances; compare the top and bottom panels of
Fig. 5. For example, the Φ-model with the greatest p-value
(p ¼ 0.44) yields χ2 ≃ 33 for the TRGB consistency test.
The a-model with Rmax ¼ 18.1 Mpc, on the other hand,
exhibits a slightly lesser (but still significant) degree of
easing of the Hubble tension with p ¼ 0.15. In this case,
the TRGB χ2 stays at χ2 ≃ 21. Thus, the eased Hubble
tension partially (but not completely) comes at the cost of
an impaired consistency with TRGB. Note, however, that
there is no simple one-to-one correspondence between
reduced Hubble tension and worsened consistency with
TRGB. This can be illustrated by the fact that two screening
models with similar effects on the Hubble tension can have
vastly different effects on the consistency with TRGB;
cf. Table IV. The reason is that there is only a subset of
galaxies to which we have simultaneous Cepheid and
TRGB distance estimates. So, if the recalibration of H0

is largely caused by fifth force effects in galaxies to which
we do not have TRGB distance estimates, the Hubble
tension can be reduced while leaving the TRGB consis-
tency unaffected. This is of course an idealized (arguably
contrived) case, and we discuss this effect further in
Sec. VII. At this point, we simply note that there are
screening models that both stay within the 95% TRGB
confidence limit at the same time as p≳ 0.2, that is, easing
the tension to a significant degree.

VII. DISCUSSION

A. Consistency with TRGB

We have shown that large-scale structure screening
effects on the local distance ladder can potentially alleviate

FIG. 5. Top: inferred value of H0 from the Planck-weighted
local distance ladder. The sizes of the error bars are indicated by
the leftmost points. The models featured in Fig. 3 are marked with
stars. Bottom: consistency between Cepheid and TRGB distance
estimates (χ2-value) for the best-fit screening models. The
standard result (i.e., with no fifth force) is indicated by the
dashed line. Some of the models improve the consistency
between Cepheids and TRGB, while others (especially those
with low values of H0) worsen the Cepheid-TRGB consistency.

TABLE I. Effect of some example screening models on the
Hubble tension. The tabulated H0 value is inferred from the
Planck-weighted local distance ladder.

GR Φð0.4 MpcÞ að18.1 MpcÞ Kð5.1 MpcÞ
H0 73.2� 1.3a 68.0� 1.3 70.2� 1.3 71.3� 1.3
p-value 0.01 0.44 0.15 0.07

χ2 1747 1622 1674 1698
TRGB χ2 21 33 21 17

aThe exception is the standard distance ladder value for H0 for
which no marginalization is required.
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the Hubble tension. However, this comes partially at the
cost of worsening the consistency between Cepheid and
TRGB distance estimates. This can be most easily under-
stood in the case where the anchor galaxies are screened. If
some of the host galaxies to which we have both Cepheid
and TRGB distance estimates are unscreened, then the
Cepheid distances to these galaxies are underestimated,
while the distances inferred from the TRGB are overesti-
mated. In this case, an increased fifth force increases the
inconsistency between the Cepheid and TRGB distance
estimates at the same time as it decreases the value of H0,
making it more compatible with Planck.
As an example, we take the best-fit Φ-screening

model with Rmax ¼ 0.4 Mpc (i.e., ΔG=GNjmax ≃ 0.05,
log10 jΦ0j ≃ −8.3). In this case, the MW and the LMC
have ΔG=GN ∼ 10−7, while for N4258 ΔG=GN ∼ 10−4, so
all anchor galaxies are screened. At the same time, there are
seven unscreened (ΔG=GN > 0.01) host galaxies to which
we have both Cepheid and TRGB distance estimates. Since
the consistency between these distances is impaired by the
unscreening of these host galaxies, the χ2-value for the
TRGB consistency test increases.
On the other hand, if all Cepheidþ TRGB host galaxies

are screened, then the consistency is unaffected. Note that
this can occur even if some of the host galaxies (to which
we do not have TRGB distance estimates) are unscreened,
thus yielding a lower H0 value while passing the
TRGB consistency test. This is the case for some of
the best-fit screening models, including for example the
a-screening model with Rmax ¼ 5.1 Mpc; cf. Fig. 5. In this
case, all Cepheidþ TRGB host galaxies are screened
(ΔG=GN < 0.01), including LMC, which is the TRGB
anchor galaxy. Hence, the TRGB consistency is
unchanged. At the same time, some of the host galaxies
to which there are no TRGB distance estimates exhibit a
significant amount of unscreening, for example ΔG=GN ¼
0.13 for N7250. Ultimately, this results in a decrease in H0

to 70.5� 1.3. The only thing that prevents such a scenario
from solving the Hubble tension by increasing ΔG=GNjmax
further is the quality of the global distance ladder fit for such
a model.3

In fact, the quality of the fit of TRGB versus Cepheid
distances can even be improved with the proxy screening
models. To understand how, we begin by reminding the
reader that if the anchor galaxies are unusually screened
compared to the host galaxies, the Cepheid-calibrated
distances are underestimated, and the TRGB-calibrated
distances are overestimated, and vice versa if the anchor
galaxies are unusually unscreened. Here, the relevant host
galaxies are those common to both the Cepheid and TRGB

distance ladders (marked in bold face in Fig. 1).
Importantly, the Cepheid anchor galaxies are MW, LMC,
and N4258, while the TRGB anchor galaxy is LMC, so the
anchor galaxies of the two distance ladders are only
partially overlapping. This means that the Cepheid anchor
galaxies can be (on average) unusually screened, while the
TRGB anchor galaxy (LMC) can be unusually unscreened,
compared with the host galaxies. Of course, this can only
happen to a certain degree since the LMC is shared as an
anchor between both distance ladders.
As an example, we study the best-fit K-screening model

with Rmax ¼ 5.1 Mpc. The proxy values for the galaxies of
this model are displayed in Fig. 1 (bottom). From this
figure, we see that a transition at log10 jK0j ¼ −55.4makes
the most of the galaxies screened, while a couple of host
galaxies (N1309 and N3370) are unscreened. For N4258,
we have ΔG=GN ∼ 10−4, while the MW and the LMC are
on the verge of being unscreened, with ΔG=GN ≃ 0.005.
This causes the Cepheid anchor galaxies to be unusually
screened compared with the host galaxies. On the other
hand, the LMC is more unscreened than the average host
galaxy, as can be seen in Fig. 6. Altogether, this increases
the distance estimates to the host galaxies both for the
Cepheid-calibrated distance ladder and the TRGB. The
quality of the fit of TRGB versus Cepheid distances is
improved from χ2 ≃ 21 without screening to χ2 ≃ 17 with
this screening model.

B. Comparative study

As mentioned previously, the work presented in this
paper is an extension of that in Ref. [22], including:

FIG. 6. Modified gravitational constant for the LMC and the
host galaxies to which we obtain both Cepheid and TRGB
distance estimates. This is for a K-screening model with
Rmax ¼ 5.1 Mpc;ΔG=GN ¼ 0.17; log10 jK0j ¼ −55.4. Note that
the LMC is more unscreened than the majority of the host
galaxies.

3One may also think that such as solution, relying on the
unscreened fifth force in one or a few specific host galaxies, such
as N7250, would be too contrived or too sensitive to comple-
mentary observational constraints to be interesting.
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(i) a full statistical data analysis;
(ii) adopting the LMC as an anchor galaxy;
(iii) not assuming, a priori, that the anchor galaxies are

screened, but letting the model decide, thereby
letting p0 be a free model parameter4;

(iv) a continuous dependence of ΔG=GN on the proxy
value.

Each of these differences has the potential to alter the
results of Ref. [22]. Nevertheless, we share the main
conclusion, that the tension with Planck can be eased
below 2σ while still being compatible with the TRGB
consistency test.
A quantitative comparison reveals that we generically

obtain a greater tension between Planck and the Cepheid-
calibrated distance ladder in the current work with an
average of ≃þ1.7σ greater tension in our analysis com-
pared with Ref. [22]. This is based on a comparison
between the results in Table IV in Ref. [22] with our
results presented in Appendix Awhere we, to comply with
Ref. [22], analyze the lowest value of H0 allowed by the
distance ladder alone (i.e., when the Planck H0 is not used
to weight the points in the parameter space).
As an example, for the K-screening model with

Rmax ¼ 5.1 Mpc, the smallest H0 allowed by TRGB
distances is in 3.4σ tension with Planck, while the
corresponding value in Ref. [22] is 1.5σ. The difference
can be understood by recalling that we let ΔG=GNjmax and
p0 be free parameters. In this case, there are points in the
parameter space where the TRGB fit is significantly
improved compared with a standard model without a fifth
force. For example, the χ2-value for the TRGB consistency
can be as low as χ2min ≃ 16.7 for this screening model,
while χ2 ≃ 20.8 is the value without a screening model.
In Ref. [22], it is assumed that all anchors galaxies
are screened, hence assuming χ2min ≃ 20.8 instead of
χ2min ≃ 16.7. This means that the requirement to stay within
the TRGB 95% CL, is more restrictive in our analysis, thus
explaining the reduced easing of the Hubble tension in our
analysis compared with Ref. [22].

C. Theoretical foundations

In the present work, we have studied effective fifth force
models where the degree of screening is parametrized by a
phenomenological proxy value related to the large-scale
structure of the Universe. We have shown that some of
these models can ease the Hubble tension to probabilities
≳20% while staying within the 95% CL for the TRGB
consistency test. This motivates further study of these
screening models, in particular their theoretical motivation.
With theory-based fifth force models (e.g., such that the
equations of motion are derivable from an action principle),

additional constraints on the theory may be imposed by
complementary tests of gravity, such as cosmological
observations. Note that the effective proxy models consid-
ered in this paper are agnostic with respect to their
cosmological effects.
In the literature, it has been argued that many of the

common screening mechanisms can be parametrized by
these proxy values; see for example Refs. [22,44,46].
Typically, screening parametrized by the externally sourced
gravitational potential (Φ) is associated with thin-shell
mechanisms such as the chameleon, symmetron, and
dilaton.5 In Ref. [48], it was shown that the chameleon
screening induced by fðRÞ gravity can be represented by
the proxy Φ. However, for an observationally viable
chameleon mechanism, all the distance ladder galaxies
are screened, and accordingly there is no effect on the
Hubble tension [22,56,57]. Concerning the symmetron
model, it does not have beneficial properties with respect
to the Hubble tension, as shown in Ref. [47]. More
generally, it has been argued that the observational con-
straints from other gravity probes prohibit thin-shell mech-
anisms from affecting the cosmic distance ladder
calibration of H0 [22]. However, a detailed reanalysis of
the effective screening conditions that are commonly used
to constrain the effects of a fifth force suggest that existing
constraints might be significantly overestimated [58],
possibly leaving room for appreciable effects with respect
to the Hubble tension.
The degree of screening under a kinetic mechanism

such as k-mouflage [49] may be parametrized by the
externally sourced acceleration (p ¼ a), and Vainshtein
screening models [50–55] may be parametrized by
the externally sourced curvature, quantified by the
Kretschmann scalar (p ¼ K). Complementary observa-
tional constraints on kinetic and Vainshtein screening
mechanisms seem to prohibit the influence of a fifth force
on the calibration of the cosmic distance ladder also for
these models (see, e.g., Refs. [22,59–61]). However, as in
the case of symmetron screening [47], each theory needs
close individual examination to establish whether it
provides an observationally viable screening model that
has beneficial properties with respect to the Hubble
tension.
It should also be stressed that a recalibration of the

cosmic distance ladder does not necessarily involve a fifth
force but can in principle be induced by any other
phenomenon that has the effect of introducing systematic
differences in the Cepheid period-luminosity relation
between different galaxies.

4This is the case for the Cepheid-calibrated distance ladder as
well as the TRGB consistency test.

5For the sake of completeness, it should be noted that the
symmetron model only exhibits a thin-shell mechanism under
certain circumstances, depending on the environment and the
theory parameters. See Ref. [47] for details.
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APPENDIX A: CALIBRATING THE DISTANCE
LADDER WITHOUT Planck

In this Appendix, we analyze the calibration of the
cosmic distance ladder without marginalizing over proxy
parameters. In this case, the probability of the fit to data at
each point in the proxy parameter space does not include
the tension to the Planck value for H0. In Fig. 7, we
show the results corresponding to Fig. 3. As can be seen,
without taking the tension to the Planck H0 into account,
the excluded region in the parameter space assumes a
“U-shape,” so the allowed values of the model parameters
p0 and ΔG=GNjmax are unbounded; a large ΔG=GNjmax is
admitted by letting p0 be small enough (or large enough),
and any value of p0 is allowed as long as ΔG=GNjmax is
small enough. With the allowed region being unbounded
in the parameter space, it is not possible to constrain the
value of the Hubble constant for each proxy model, but
rather only for each point in the proxy model parameter
space.6

In Table II, we show the results corresponding to Table I
for some example models. We see that the best-fit models
only exhibit a minor improvement with respect to the H0

tension and the minimum values for H0 allowed by the
95% CLs (from the distance ladder and Cepheid-TRGB

consistency) are in > 2σ tension with Planck. For some
other models, it is possible to ease the tension to ≃2σ while
satisfying the TRGB consistency test. Yet, it is important to
keep in mind that a definitive constraint on H0 cannot be
obtained for these models. The values in Table II represent
the values at the best-fit points (and the lowest values
allowed) with the error bars on the Hubble constant
reflecting the uncertainty in the determination of H0 at
this point in the parameter space.
Changing the value of q shifts the constraints in the

parameter space in the vertical direction in the sense that
smaller q allows for a larger range of ΔG=GNjmax. This is
due to the fact that a small q leads to a slow variation of
ΔG=GN with respect to the proxy value p. Hence, all
galaxies obtain approximately the same value for G,
resulting in no modification to the local distance ladder.
At the same time, the widened transition between screened/
unscreened galaxies also widens the excluded region in

FIG. 7. Inferred H0 as a function of the model parameters. Black contours: 95% CLs from the Cepheid-calibrated distance ladder (no
weighting with the Planck H0). White contours: 95% CLs obtained from comparing Cepheid and TRGB distances. The cross indicates
the best-fit point, and the diamond indicates the point with the lowest H0 value compatible with the 95% CLs. Left: Φ-screening with
Rmax ¼ 0.4 Mpc. Middle: a-screening with Rmax ¼ 18.1 Mpc. Right: K-screening with Rmax ¼ 5.1 Mpc. Everything above the dashed
curves is excluded with 95% confidence.

TABLE II. Effect of some example fifth force models on the
Hubble tension (no weighting with the Planck H0). GR denotes
the standard case without a fifth force. Here, H0 (best fit) denotes
the value of the Hubble constant at the best-fit point in parameter
space, while H0 (low) is the minimum value allowed by the
95% CLs from the distance ladder and the Cepheid-TRGB
consistency. Here, the error bars on H0 are set by the uncertainty
in the determination of H0 at the corresponding point in the
parameter space.

GR Φð0.4 MpcÞ að18.1 MpcÞ Kð5.1 MpcÞ
H0 (best fit) 73.2� 1.3 72.3� 1.3 72.7� 1.3 72.9� 1.3
Tension 4.1σ 3.5σ 3.8σ 4.0σ

H0 (low) � � � 70.9� 1.3 71.9� 1.3 72.2� 1.3
Tension � � � 2.5σ 3.2σ 3.4σ

6Possibly, a one-sided constraint on H0 could be obtained,
although not in a Bayesian sense.
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the ðp0;ΔG=GNjmaxÞ-plane. To summarize, a decrease
to q ¼ 20 widens the U-shape of Fig. 8 and pushes it
upward compared with the default case in Fig. 7 where
q ¼ 500.
With increasing Rmax, we increase the range out to which

the fifth force from a source contributes, thereby increasing
the proxy value p for each galaxy. Accordingly, we expect
the excluded region in the parameter space to be pushed
toward larger values of p0. In other words, the excluded
U-shape is pushed to the right. The shape of the excluded
region also changes to some degree due to the fact that
different galaxies change their proxy values by different
amounts when Rmax varies; see Fig. 9.

APPENDIX B: UNCORRELATED PROXY
ERRORS

In the main text, we have assumed that the errors in the
proxy values are completely correlated. Another assumption
would be that the errors in the proxy values are completely
uncorrelated. Most likely, the truth lies somewhere in
between these two extremes. However, a comparison shows
that the choice of correlation does not significantly affect our
conclusions concerning the Hubble tension. Typically, the
difference inH0 between correlated and uncorrelated errors
is a few tenths of a km=s=Mpc, and the differences in p is
typically ≃0.01. See Table III for a comparative list.

FIG. 8. Results corresponding to Fig. 7, but with a lower value of the transition parameter, q ¼ 20. (No weighting with the PlanckH0).
The confidence contours are widened and shifted upward as discussed in the text.

FIG. 9. Inferred H0 as a function of the model parameters for Φ-screening models. Left: Rmax ¼ 0.4 Mpc. Middel: Rmax ¼ 1.4 Mpc.
Right: Rmax ¼ 5.1 Mpc. Everything above the dashed curves is excluded with 95% confidence (no weighting with the Planck H0). The
excluded region moves to the right as Rmax increases.
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TABLE III. Comparing results for the Planck-weighted local distance ladder with completely correlated versus
completely uncorrelated errors in the proxy values.

Proxy Rmax Correlation H0 p-value TRGB χ2

Φ
0.4 Mpc Correlated 68.0� 1.3 0.44 33

Uncorrelated 68.1� 1.3 0.41 34

a 0.4 Mpc Correlated 70.2� 1.4 0.19 20
Uncorrelated 70.2� 1.5 0.21 20

K 0.4 Mpc Correlated 71.1� 1.4 0.09 21
Uncorrelated 70.9� 1.7 0.09 21

Φ 1.4 Mpc Correlated 68.6� 1.3 0.34 37
Uncorrelated 68.7� 1.4 0.31 36

a 1.4 Mpc Correlated 70.6� 1.3 0.14 19
Uncorrelated 70.9� 1.6 0.15 20

K 1.4 Mpc Correlated 69.9� 1.3 0.18 19
Uncorrelated 70.1� 1.6 0.17 20

Φ 5.1 Mpc Correlated 71.3� 1.4 0.07 21
Uncorrelated 71.7� 1.4 0.08 21

a 5.1 Mpc Correlated 70.5� 1.3 0.13 21
Uncorrelated 70.8� 1.6 0.14 20

K 5.1 Mpc Correlated 71.3� 1.3 0.07 17
Uncorrelated 71.2� 1.5 0.08 18

Φ 18.1 Mpc Correlated 70.1� 1.3 0.13 21
Uncorrelated 70.8� 1.6 0.13 23

a 18.1 Mpc Correlated 70.2� 1.3 0.15 21
Uncorrelated 70.3� 1.4 0.14 21

K 18.1 Mpc Correlated 70.9� 1.3 0.09 22
Uncorrelated 71.0� 1.4 0.09 22

Φ 50 Mpc Correlated 70.4� 1.3 0.11 21
Uncorrelated 71.6� 2.0 0.12 42

a 50 Mpc Correlated 69.4� 1.3 0.25 34
Uncorrelated 69.3� 1.4 0.25 38

K 50 Mpc Correlated 71.1� 1.3 0.08 21
Uncorrelated 71.2� 1.4 0.08 22
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APPENDIX C: COMPLEMENTARY RESULTS

In Table IV, we present a comprehensive list of numerical results for the screening models, including the Planck H0 as a
weight factor in the local distance ladder when marginalizing over model parameters.
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TABLE IV. The effect of various screening models on the Hubble tension (with the Planck-weighted local distance ladder) and the
TRGB consistency test. Here, q ¼ 500. The tabulated ΔG=GNjmax and p0 are the best-fit values. The unscreening fraction (Unscr. frac.)
denotes the fraction of host galaxies withΔG=GN > 0.01. The anchor screening (Anch. scr.) is entered on the format n=mwhere the first
slot indicates MW and LMC and the second slot indicates N4258. Here, “0” stands for no screening (i.e., ΔG=GN > 0.01), and “1”
stands for screened. The unscreening fraction and anchor screening are calculated at the best-fit point. The p-values and χ2-values are
obtained from the quality of the global distance ladder fit with the Planck H0 added. This table should be considered as a guide to the
qualitative behavior of the fifth force models rather than a list of exact numbers. To save computational time, we have used a coarser grid
in the parameter space here than in the results featured in the main text.

Proxy Rmax
ΔG
GN

j
max

log10 jp0j hΔGGN
i Unscreening fraction Anchor screening H0 p-value χ2 TRGB χ2

GR � � � � � � � � � � � � � � � � � � 73.2� 1.3a 0.01 1747 20.8

Φ 0.4 Mpc 0.05 −8.3 0.02 58% 1=1 68.0� 1.3 0.44 1622 32.8
1.4 Mpc 0.06 −7.2 0.03 47% 1=1 68.6� 1.3 0.34 1638 36.6
5.1 Mpc 0.16 −7.1 0.01 5% 1=1 71.3� 1.4 0.07 1699 20.8
18.1 Mpc 0.09 −5.2 0.02 21% 1=1 70.1� 1.3 0.13 1679 21.3
50 Mpc 0.09 −4.2 0.01 16% 1=1 70.4� 1.3 0.11 1686 20.6

a 0.4 Mpc 0.13 −15.6 0.02 21% 1=1 70.2� 1.4 0.19 1664 20.3
1.4 Mpc 0.14 −15.7 0.01 16% 1=1 70.6� 1.3 0.14 1677 19.0
5.1 Mpc 0.13 −15.6 0.02 16% 1=1 70.5� 1.3 0.13 1678 20.8
18.1 Mpc 0.09 −15.2 0.02 26% 1=1 70.2� 1.3 0.15 1674 20.9
50 Mpc 0.09 −14.7 0.02 26% 1=1 69.4� 1.3 0.25 1654 33.7

K 0.4 Mpc 0.17 −55.5 0.02 42% 1=1 71.1� 1.4 0.09 1690 20.9
1.4 Mpc 0.13 −55.4 0.02 37% 1=1 69.9� 1.3 0.18 1667 19.5
5.1 Mpc 0.17 −55.4 0.01 26% 1=1 71.3� 1.3 0.07 1698 16.6
18.1 Mpc 0.16 −55.4 0.02 26% 1=1 70.9� 1.3 0.09 1692 21.6
50 Mpc 0.17 −55.3 0.02 21% 1=1 71.1� 1.3 0.08 1697 21.2

aFor reference, here we have entered the standard H0 value in the case of no fifth force, obtained from the distance ladder alone.
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