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A massive spin-2 field can grow unstably around a black hole, giving rise to a potential probe of the
existence of such fields. In this work, we use time-domain evolutions to study such instabilities.
Considering the linear regime by solving the equations generically governing a massive tensor field on the
background of a Kerr black hole, we find that black hole spin increases the growth rate and, most
significantly, the mass range of the axisymmetric (azimuthal number m ¼ 0) instability, which takes the
form of the Gregory-Laflamme black string instability for zero spin. We also consider the superradiant
unstable modes with 1 ≤ m ≤ 3, extending previous results to higher spin-2 masses, black hole spins, and
azimuthal numbers. We find that the superradiant modes grow slower than the m ¼ 0 modes, except for a
narrow range of high spins and masses, with m ¼ 1 and 2 requiring a dimensionless black hole spin of
aBH ≳ 0.95 to be dominant. Thus, in most of the parameter space, the backreaction of them ¼ 0 instability
must be taken into account when using black holes to constrain massive spin-2 fields. As a simple model of
this, we consider nonlinear evolutions in quadratic gravity, in particular Einstein-Weyl gravity. We find that,
depending on the initial perturbation, the black hole may approach zero mass with the curvature blowing up
in finite time, or can saturate at a larger mass with a surrounding cloud of the ghost spin-2 field.
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I. INTRODUCTION

Recently, there has been a renewed interest in studying the
phenomenological implications of massive spin-2 particles,
including as dark matter candidates [1–8]. Massive spin-2
fields also arise in a number of modifications of general
relativity [9], including when adding quadratic curvature
terms to the action [10,11], string-theory compactifica-
tions [12], nonlinear massive gravity [13,14], and ghost-
free bigravity theories [15–17]. While nonlinear massive
gravity requires the Vainshtein mechanism to recover
Newtonian gravity, bigravity theories with a massive and
massless graviton naturally recover general relativity with a
weakly coupled massive spin-2 field, and thus are com-
monly used to construct ghost-free, nonlinear theories of
spin-2 dark matter.
A powerful way to probe the existence of ultralight

bosons that may be weakly coupled to standard model
matter is through the superradiant instability of black holes
(BHs), which only relies on the fact that the bosons
gravitate. The spin-0 [18–28] and spin-1 [29–37], cases
have been well studied, leading to a detailed picture of the
observational implications (see Ref. [38] for a review). In

the presence of a spinning BH, a cloud of massive bosons
will grow exponentially at the expense of the rotational
energy of the BH. The instability will be fastest when the
Compton wavelength of the boson is comparable to the size
of the BH, or equivalently, when α ≔ μM is order one,
where mb ¼ μℏ is the boson mass,M is the total spacetime
mass, and we use geometric units with G ¼ c ¼ 1 through-
out. In the absence of significant nongravitational inter-
actions [39–42], the boson cloud will grow until the BH has
been spun down sufficiently so that its horizon frequency
matches the oscillation frequency of the cloud [27,35,43].
Superradiance can thus be observationally probed by
measuring BH spins [23,32,33,44,45], as well as searching
for gravitational wave signals sourced by the clouds
oscillations [44,46–54].
Massive spin-2 fields are also subject to the BH super-

radiant instability, with even shorter timescales. While the
nonlinear behavior of a spin-2 field is model dependent, the
linear limit around a background spacetime like a BH is
universally described by the covariant Fierz-Pauli theory,
meaning such instabilities will be a generic feature of a
large class of theories [12,55]. The superradiant instability
of spin-2 fields has been studied in the nonrelativistic limit
(α ≪ 1) using semianalytic methods in Refs. [56,57], and
recently for the fastest growing dipolar mode (azimuthal
number m ¼ 1 mode) for α ≤ 0.8 and dimensionless BH
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spins up to aBH ¼ 0.99 in Ref. [58]. However, an additional
complication is that massive spin-2 fields are unstable
to a monopolar (m ¼ 0) instability even around nonspin-
ning (Schwarzschild) BHs when α≲ 0.4 [56,59–62].
Intriguingly, this linear instability takes the same form as
the Gregory-Laflamme instability of a black string [63]
when identifying μ with the wave number along the flat
direction of the string, and the competition between
superradiant and Gregory-Laflamme instabilities has been
studied in six spacetime dimensions in Refs. [64–66]. It is
not known how the monopolar instability extends to
spinning BHs, nor what the saturation of this instability
is (see Ref. [67] for one possibility). Thus, in order to use
BH instabilities to probe massive spin-2 fields, it is
essential to know which instability dominates in different
parts of the parameter space and what the backreaction of
that instability is.
In this work, we tackle these questions using time

domain evolutions of spin-2 fields. Considering unstable
modes for different BH spins, values of α, and azimuthal
numbers, we find that the m ¼ 0 instability dominates over
the fastest growing (1 ≤ m ≤ 2) superradiant modes in
most of the parameter space (including α≲ 1 and
aBH ≲ 0.95, and all the previously studied parameter
space). We find that the superradiant instability is only
the fastest growing mode for higher azimuthal numbers,
where the growth timescale is parametrically longer, or at
high BH spins and a narrow range of BH masses for lower
azimuthal numbers.
To begin to address the effect of the monopolar massive

spin-2 instability on the BH, we here consider nonlinear
evolutions in the modified theory where one adds quadratic
curvature terms to the Einstein-Hilbert action, in particular
Einstein-Weyl theory [10,11]. This theory has ghost
degrees of freedom associated with having fourth order
equations of motion, and will in general have different
behavior than a ghost-free nonlinear theory. However, it has
a well-posed nonlinear formulation [68–70], and serves
here as a simple model to illustrate several features of the
backreaction of the instability on a BH. We find that when
the initial massive tensor perturbation has the opposite sign
energy to the BH, the BH grows in mass until the instability
saturates with a surrounding ghost spin-2 field. When the
perturbation carries positive energy, we find the BH mass
approaches zero in finite time.

II. MODEL AND METHODOLOGY

The linear evolution of a tensor field Hab with mass
parameter μ on a Ricci-flat background spacetime is
governed by [12,55,56]

□Hab ¼ μ2Hab−2RacbdHcd; Ha
a ¼∇aHab ¼ 0; ð1Þ

where □ ¼ ∇a∇a is the covariant wave operator. In this
work, we evolve these equations on a Kerr BH background

in order to identify unstable modes. Extending the tech-
niques of Ref. [34] from spin-1 to spin-2, we will consider
different values of α ≔ Mμ, aBH, and m (where, in
coordinates adapted to the axisymmetric Killing vector,
Hab ∼ eimϕ, and we have introduced an imaginary compo-
nent to keep track of the angular phase—see Appendix A
for details), and in each case evolve some perturbation until
it is dominated by the fastest growing mode with those
parameters. We are primarily interested in measuring the
complex frequencies of the most unstable modes, Hab ∼
e−iωt with ω ¼ ωR þ iωI , by determining the growth rate
and oscillation frequency. In particular, we monitor the
evolution of the conserved (up to flux through the BH
horizon) quantity

E ≔ −
Z

Ht
ata

ffiffiffiffiffiffi
−g

p
d3x; ð2Þ

where ta is the Killing vector associated with the stationary
spacetime and g is the metric determinant, and perform
linear fits to argEðtÞ and log jEðtÞj after jEj has grown
through several e-folds. We find equivalent results meas-
uring the growth of other quantities (e.g., HabHab).
One can construct a theory coupling a massive spin-2

field to gravity without ghosts, which gives a nonlinear
extension of Eq. (1), using ghost-free bigravity [13,15,16]
(with metric perturbations governed by the linearized
Einstein equations). However, developing a well-posed
dynamical formulation of such theories is still a work in
progress [71]. Here, instead, as a toy-model of the nonlinear
evolution of the BH instabilities, we will temporarily set
aside our fear of ghosts and consider vacuum Einstein-
Weyl gravity. This theory has the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2μ2
CabcdCabcd

�
; ð3Þ

whereCabcd is theWeyl tensor. Solutions tovacuumEinstein-
Weyl gravity are special cases of solutions to quadratic
gravity (also known as fourth order gravity [72,73] or
Stelle gravity [10,11]) where the massive scalar degree of
freedom corresponding to the Ricci scalar in the latter is not
excited.1 The evolution equations are given in terms of the
(trace-free) Ricci tensor as

□Rab ¼ μ2Rab−2RacbdRcdþ1

2
gabRcdRcd; Ra

a ¼ 0: ð4Þ

These equations involve fourth-order derivatives of the
metric, and the massive tensor field can carry positive or
negative energy as dictated by Ostrogadsky’s theorem [74],

1In quadratic gravity, the Ricci scalar obeys a massive wave
equation and would thus be susceptible to the scalar super-
radiant instability, but on much longer timescales than those
considered here.
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but do give rise to a well-posed evolution system in a
generalized harmonic formulation [68,69]. Linearizing
around a Ricci-flat background, Eq. (4) reduces to Eq. (1)
with Rab identified with Hab [58,60].
We consider axisymmetric evolutions of the nonlinear

equations (4) and track the BH apparent horizon and
monitor its area ABH, angular momentum JBH, and, through
the Christodoulou formula, compute an associated mass
MBH. More details on the evolution equations, horizon
diagnostics, numerical scheme, and convergence results
can be found in Appendices A and B.

III. LINEAR INSTABILITY RESULTS

Webegin by studying the linear stability ofmassive spin-2
perturbations on a Kerr BH background, which is generi-
cally governed by Eq. (1). In Refs. [56,59], it was noted that
Schwarzschild BHs are unstable to a monopolar instability
(m ¼ 0) with purely imaginary frequency:ωI ∼ μ. Kerr BHs
are unstable to the growth of m > 0 superradiant massive
spin-2 modes, as shown in Refs. [56–58]. The fastest
growing dipolar (m ¼ 1) modewas identified perturbatively
in the α ≪ 1 regime, with scaling ωIM ∼ α3, while ωIM ∼
α2mþ5 for m ≥ 2 in this regime. Hence, the monopolar
instability should dominate in the α ≪ 1 limit. Therefore, a
natural question arises: where in the parameter space is the
monopolar instability the fastest?
To address this question, we extend these analyses by

considering (i) the monopolar instability on a Kerr back-
ground spacetime up to aBH ¼ 0.998, (ii) the most unstable
dipolar superradiant family of modes in the highly

relativistic limit of the parameter space, and (iii) higher-
order unstable modes of the spin-2 field with m ¼ 2 and
m ¼ 3. In Fig. 1, we compare the growth rates ωI of all
these modes across the relevant parameter space, obtained
using the methods outlined in Sec. II (with details in
Appendix A).
Focusing on the monopolar modes first, the growth rates

follow the spin-independent scaling ωI ≈ 0.62μ in the
α ≪ 1 regime. These unstable modes turn stable at a
critical mass μc. This critical point goes from μcM ≈
0.44 in the Schwarzschild case (which is consistent with
Ref. [56]) up to μcM ≈ 1.73 for aBH ¼ 0.998, near the
extremal limit. The maximum of the monopolar instability
rate surpasses the rate of the slowest decaying quasinormal
mode of the BH when aBH ≳ 0.91. The m ≥ 1 superradiant
modes exhibit the expected scaling in the α ≪ 1 limit [57],
and show good agreement with the results in Ref. [58] in
the region of overlap. (See Appendix C for a detailed
comparison to Refs. [57,58], including the values of ωR.) In
the α ∼Oð1Þ regions of the parameter space, these modes
turn stable when the superradiance condition is saturated
ωR ¼ mΩH (where ΩH is the BH horizon frequency).
Comparing the monopolar (m ¼ 0) mode with the most

unstable superradiant m ¼ 1 mode, it becomes clear from
Fig. 1 that the monopolar instability dominates the dynam-
ics of the system in the linear regime across large ranges of
the relevant parameter space. In fact, only in the near-
extremal limit, for critical spin of acBH > 0.95, are the
growth rates of the most unstable m ¼ 1 superradiant
configuration comparable or larger than those of the
monopolar instability. (For comparison, we note that if

FIG. 1. The growth rates ωI of linear massive spin-2 field perturbations propagating in a Kerr background spacetime of mass M and
dimensionless spin aBH, characterized by their azimuthal mode numberm, as a function of the mass parameter μ. Data points indicate the
rates extracted from our time-domain evolutions (available at Ref. [75]), while the lines connecting the points are cubic interpolations.
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instead one assumed that the value of the critical mass for
the monopolar mode remained roughly constant with black
hole spin at the Schwarzschild value of μcM ≈ 0.44, this
would give a critical spin of acBH ∼ 0.72 for the m ¼ 1

superradiant instability to dominate [58].)
Considering higher order superradiant modes, this criti-

cal spin reduces with increasing azimuthal index m. From
Fig. 1, acBH < 0.95 for the m ¼ 2 superradiantly unstable
configurations and acBH ∼ 0.7 for m ¼ 3.2 Note, however,
the maximum growth rate at fixed spin decreases roughly
exponentially with increasing azimuthal index.

IV. NONLINEAR EVOLUTION

The results in the previous section indicate that the
m ¼ 0 instability is the fastest growing massive tensor
mode around a Kerr BH for much of the parameter space,
leading naturally to the question: what is the nonlinear
development of this instability? Due to the connection with
the Gregory-Laflamme instability [63] and questions of
cosmic censorship [76,77], this of theoretical, in addition
to phenomenological interest. The answer will in general
depend on the particular nonlinear model chosen, and will
not be fully addressed here. However, to gain some insight
into the possibilities, we will consider nonlinear evolutions
in Einstein-Weyl gravity, restricting to axisymmetry.
To begin with, we note a peculiarity of this theory is that,

since the linearly growing tensor field is just the (trace-free)
Ricci tensor Rab, if we think of the backreaction on the BH
metric as occurring through an effective stress-energy
tensor, in this case this would just be proportional to
Rab itself, and hence linearly (and not quadratically)
dependent on the exponentially growing mode. Hence,
for any set of parameters, we find two possible types of
nonlinear behavior depending on the initial sign of the
perturbation: one corresponding to the BH mass decreasing
at the expense of the growing massive tensor field, and the
other corresponding to the BH mass growing.
First considering nonspinningBHs, in Fig. 2, we illustrate

the evolution of the BH mass as a result of the spherically
symmetric instability for different values of α.3 When the
BHmass grows, the instability eventually saturates with the
development of a massive tensor cloud of effectively
negative energy, and a BH mass exceeding the value where
the instability shutoffs for the isolated case:MBH ≳ 0.44=μ.
However, when the value of α is much smaller than this, the
BH mass can significantly overshoot this threshold before
saturating, e.g., by ≈30% for α ¼ 0.05.

In contrast, when the BH mass decreases, we find no
evidence for a saturation of the instability, and the BH mass
appears to approach zero in finite time (though, of course,
at finite numerical resolution we are not able to track the
decrease to arbitrarily small values). In the bottom panel of
Fig. 2, we show a case where (through the use of high
resolution) we track the BH as its mass decreases by a
factor of ≈40, and find that it roughly follows MBH ∝
ðt − t0Þ (in harmonic time) at late times. We expect the
curvature at the horizon to diverge as the BH becomes
arbitrarily small since RabcdRabcd ¼ 0.75M−4

BH at the

FIG. 2. Top: the BH mass as a function of time during the
nonlinear development of the spherically symmetric instability in
Einstein-Weyl gravity for different values of α ¼ μM from 0.05
to 0.4. Solid lines indicate unstable modes that cause the BHmass
to grow, eventually saturating with clouds of the massive tensor
field surrounding them. Corresponding dashed lines indicate
opposite sign modes (with the same linear instability rate) that
cause the BH mass to shrink to zero as far as the evolution can be
carried out. Bottom: the late-time development of the instability
where the BH shrinks for α ¼ 0.05. The BH mass appears to
approach zero at time t0 linearly in harmonic time, with the
maximum value of jRabcdRabcdj outside the apparent horizon
blowing up like M−4

BH. The Ricci tensor squared RabRab is
subdominant, but its maximum magnitude also increases at a
similar rate.

2Due to the longer growth timescales of the m ¼ 3 modes,
we were unable to confidently identify a growing mode at
lower spins, and this estimate is based on extrapolating ωm¼3

R
for aBH ¼ 0.7 to 3ΩH .

3Note, since we have defined α ≔ μM in terms of the global
spacetime mass, it remains fixed even as the black hole mass
changes.
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horizon of a Schwarzschild BH. As shown in Fig. 2, we
indeed find that the curvature outside the shrinking appar-
ent horizon blows up in this way, suggesting that the end
state will be a naked curvature singularity.
At the linear level, whenMBH ≪ 1=μ, the instability rate

is independent of the BH mass, i.e., ωI ∼ μ, and thus the
instability timescale becomes long compared to the
dynamical timescale of the BH. If one naïvely assumes
(in analogy to the superradiance instability of spin-0 and
spin-1 fields) that in the nonlinear regime of the instability
the spacetime migrates through a sequence of quasi-
stationary Schwarzschild BHs of adiabatically varying
mass, then this finite-time diverging behavior is expected
purely from the linear analysis. Since when MBH ≪ 1=μ,
ṀBH ¼ −Ṁc ¼ −CμMc where C is a numerical constant
independent of the BH mass MBH and cloud mass Mc, in
this adiabatic approximation the BH’s mass decreases to
zero in finite time roughly as

MBH ≈Mt¼0
BH þMt¼0

c ð1 − eCμtÞ: ð5Þ

Expanding this expression around the time t0 when
MBH ¼ 0 gives MBH ∝ ðt − t0Þ, as found in the Einstein-
Weyl evolutions. This means that generically a nonlinear
theory must exhibit some strong backreaction at small
scales in order for black holes to avoid the fate found here.
Next, we consider the axisymmetric instability of spin-

ning BHs. For simplicity, we fix α ¼ 0.4 and vary the initial
value of aBH. The resulting evolution of the BH mass and
angular momentum is shown in Fig. 3. For the sign of the
initial perturbation where the BH mass decreases, we find
that the spin decreases as well (in this theory, the massive
tensor degree of freedom can carry away angular momen-
tum even in axisymmetry), rapidly approaching zero. Thus,
we expect that these cases will behave similarly to the case
without angular momentum, approaching a zero-mass,
nonspinning BH in finite time. In contrast, for the opposite
sign perturbation, the BH mass and spin both increase. For
smaller initial spins, we again find that the solutions
eventually saturate with a larger mass BH surrounded by
a massive tensor cloud. However, for larger initial spins, we
find that the mass and angular momentum rapidly increase,
with the latter reaching super-extremal values: JBH >
ABH=ð8πÞ (note that, by construction, JBH ≤ M2

BH) [78].
In these cases, our evolutions eventually breakdown
(primarily due to not being able to track the apparent
horizon), and we leave the question of the ultimate fate of
these cases to future work.
Here, we have restricted our spacetime to be axisym-

metric (m ¼ 0), precluding the effect of the superradiant
instability. However, we do not expect this restriction to
significantly affect the cases we consider as the super-
radiant instability would operate on much longer timescales
than considered here. For the spinning cases we study,
when the massive spin-2 cloud grows with positive energy,

it rapidly spins down the black hole, making superradiance
irrelevant; when the massive spin-2 cloud grows with
negative energy, the black hole either rapidly reaches a
super-extremal state where we can no longer follow it, or it
saturates at a moderate spin where (assuming the instability
rates are roughly comparable to the equivalent values in
Kerr) superradiance would be slow.

V. DISCUSSION AND CONCLUSION

Using time domain evolutions to study the linear regime
of theories propagating a massive tensor on the background
of a spinning BH, we find that the monopolar instability
dominates over the superradiant instability in much of the
parameter space. Therefore, one cannot use the latter to

FIG. 3. The nonlinear development of the axisymmetric
(m ¼ 0) instability of BHs in Einstein-Weyl gravity for α¼ 0.4
and different initial values of the dimensionless BH spin
aBH ∈ ½0.1; 0.5�. We show the evolution of the BH mass (top
panel) and angular momentum normalized by the apparent
horizon area (bottom panel), with the same color used in both
panels for each case. Solid lines indicate unstable modes that
cause the BH mass and spin to grow. The lower spin cases
saturate, as in the nonspinning cases. However, the higher spin
cases exhibit rapidly increasing masses, and violate the extrem-
ality bound JBH ≤ ABH=ð8πÞ, and we are eventually unable to
continue the evolution. Corresponding dashed lines indicate
select cases with opposite sign modes that cause the BH spin
and mass to decrease toward zero, in a similar manner to the
nonspinning cases shown in Fig. 2.
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place constraints on massive spin-2 fields without taking
into account the backreaction of the former. Note that, for
α ≪ 1, the monopolar instability always dominates, regard-
less of the BH spin, and has a timescale that is independent
of the BH’s mass [56,59], τmono ≈ 10 sð10−16 eV=mbÞ. As
a result, all BHs, from solar-mass to supermassive ones
with MBH ¼ 1010M⊙, are unstable to the monopolar
instability with timescales smaller than the Salpeter accre-
tion time: τmono < 4.5 × 107 yrs, for a spin-2 field of mass
6 × 10−21 eV > mb > 7 × 10−31 eV. For spin-2 masses
heavier than this, we find the superradiance instability
becomes relevant in some parts of the parameter space
with rapidly spinning BHs and α ≳Oð1Þ. Finally, for
mb ≳ 5 × 10−11 eV, even a light BH of mass 5M⊙ is stable
to monopolar modes, but may be unstable to superradiant
modes with higher azimuthal numbers. We also find that
higher azimuthal numbers are required for the superradiant
instability to be relevant at moderately high spins (e.g.,
m ≥ 3 for aBH ≲ 0.7, as typical for the remnant of a low-
spin, quasicircular binary BH merger). Hence, an interest-
ing direction for future work is to determine the growth
rates for these more precisely.
As a simple model of the backreaction of the m ¼ 0

instability, we carry out evolutions in Einstein-Weyl gravity.
Though the backreaction will be different in other (and in
particular, ghost-free) nonlinear theories, there are several
features that we find that can already be anticipated from the
linear theory, and thusmay bemore generic. Due to the short
timescales, we find that the BH can noticeably overshoot the
values where the linear analysis, considering the BH in
isolation, would indicate the instability shuts off. This
contrasts with the spin-1 (and presumably spin-0) super-
radiant instability, where the timescales are longer [35,43].
This overshooting happens when the BH mass grows to a
larger valuewith a surrounding ghost spin-2 field cloud, and
the instability saturates outside the regime where the linear
analysis would indicate the superradiant instability is active.
On the other hand, when the spin-2 field grows at the
expense of decreasing the BH mass (as one would also
expect for a nonghost field), this leads the BH to approach
zero mass in finite time. This is consistent with the fact that,
in the limit of small BHmass, the linear instability rate has a
nonzero value ∼μ. Notably, the Gregory-Laflamme insta-
bility of a black string [63], which has the same linear
structure as the monopolar instability, also has a similar fate:
points along the black string shrink to zero radius in finite
time, also leading to a mild, zero-mass, naked curvature
singularity [76,77]. This type of singularity is also what
arises in critical gravitational collapse [79].
For future work, it would be interesting to study the

development of the monopolar BH instability in other
nonlinear theories, as well as to better understand the fate of
the BHs that we found to be spun up to extremal values by
the instability. One might also expect BHs to be spun up in
theories where the instability decreases the BH mass

without extracting significant angular momentum. It
would also be interesting to follow the nonlinear develop-
ment of the superradiant instability in the regimes iden-
tified here where it dominates. Of particular observational
importance is the (likely model-dependent) question of the
gravitational wave signatures of these different instabil-
ities. A theory propagating both a massive and a massless
spin-2 field has, in general, more than two gravitational
wave polarization states with nontrivial dispersion rela-
tions [80,81], which gravitational wave detectors could, in
principle, be sensitive to.
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APPENDIX A: EVOLUTION EQUATIONS
AND NUMERICAL SCHEME

For the linear massive tensor field evolutions, we
numerically evolve Hab and ∂tHab according to Eq. (1)
on the background of a Kerr BH. As in harmonic and Z4
formulations of general relativity [85], we find it necessary
in BH spacetimes to add additional terms to Eq. (1) that
serve to damp violations of the constraint ∇aHab ¼ 0:

□Hab¼μ2Hab−2RacbdHcd

−κ

�
na∇cHbcþnb∇cHac−1

2
gabnc∇dHcd

�
: ðA1Þ

The terms on the second line will converge to zero as
∇aHab → 0, but serve to suppress constraint violating
modes that might otherwise grow, damping them on a
timescale 1=κ. In this study, we typically set κ ∼ 1=MBH.
In order to consider different unstable modes in isolation,

and to reduce the computational expense of the simulations,
we consider cases where Hab has an azimuthal symmetry
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with azimuthal number m. Under this assumption, follow-
ing Ref. [34], the computational domain can be reduced to
two spatial dimensions by introducing, for book keeping
purposes, an imaginary component to the massive tensor,
Hab ¼ HR

ab þ iHI
ab, and requiring that LϕHab ¼ imHab,

where Lϕ is the Lie derivative with respect to the axisym-
metric Killing vector. We use Cartesian coordinates, but
restrict our domain to the half plane with 0 ≤ x < ∞,
y ¼ 0, and −∞ < z < ∞. By evolving both the real and
imaginary part of Hab according to Eq. (A1), we can
compute out-of-plane derivatives ∂yHab using the sym-
metry assumption. On the symmetry axis, we apply
regularity conditions to the components of Hab. These
expressions were obtained following the procedure in
Appendix A of Ref. [86].
For the nonlinear evolutions in Einstein-Weyl gravity, our

evolution variables are fgab; ∂tgab; Rab; ∂tRabg. Following
Ref. [68], the metric is evolved in the generalized harmonic
formulation, where the gauge degrees are freedom are fixed
by requiring that □xa ¼ Ha, where Ha are specified
functions of the metric. The only difference is that Rab
now acts as a source term when evolving the metric:

gcd∂c∂dgab ¼ −2∇ðaHbÞ þ 2HcΓc
ab − 2Γc

daΓd
cb

− κðnaCb þ nbCa − ncCcgabÞ
− 2∂cgdða∂bÞgcd − 2Rab; ðA2Þ

where we have also included the usual terms to damp the
generalized harmonic constraint Ca ¼ Ha −□xa [85].
The Ricci tensor is evolved according to Eq. (4), but with

the addition of the same constraint damping term as in
Eq. (A1). The Riemann tensor term in Eq. (4) is calculated
from the metric and its derivatives, but with the second time
derivatives of gab being determined by substituting in
Eq. (A2). Recall that, under our assumptions, Ra

a ¼ 0.
We evolve all ten components of Rab, but subtract out any
trace component (due to truncation error) at each time step.
See Refs. [70,87] for related evolution schemes.
For the linear evolutions, we use either harmonic

coordinates [88] or (when the BH spin is large) Cartesian
Kerr-Schild coordinates [89]. For the nonlinear evolutions,
we begin with a BH in harmonic coordinates and use the
harmonic gauge: □xa ¼ 0. Spatial derivatives are discre-
tized using fourth-order finite difference stencils, while
time stepping is performed using fourth-order Runge Kutta.
We use adaptive mesh refinement to concentrate numerical
resolution around the BH, but the interpolation for the
refinement boundaries is only accurate to third-order in the
size of the time step.
For the nonlinear evolutions in axisymmetry, we track

the BH apparent horizon by finding the outermost margin-
ally outer trapped surface using a flow method [86].
Integrating over the horizon surface, we compute the area
ABH, and the angular momentum

JBH ¼ 1

8π

Z
ϕ̂iKijdAj; ðA3Þ

where Kij is the extrinsic curvature and ϕ̂i is the axisym-
metric Killing vector. From these quantities we can define a
BH mass through the Christodoulou formula

MBH ≔
�
ABH

16π
þ 4πJ2BH

ABH

�
1=2

: ðA4Þ

Note that, with this definition, the dimensionless spin is
given by

aBH ¼ JBH
M2

BH
¼ 2j
1þ j2

with j¼ 8πJBH
ABH

: ðA5Þ

Hence, aBH obtains a maximum of aBH ¼ 1 at j ¼ 1 and
decreases for larger j.

APPENDIX B: NUMERICAL CONVERGENCE

For most of the evolutions we perform, we use a
computational domain with seven or eight levels of mesh
refinement centered on the BH, and where the grid
spacing on the finest level is between dx ≈ 0.04M
and 0.02M. For nonlinear evolutions where the BH
shrinks, we add additional resolution and mesh refine-
ment levels. In the most extreme case, shown in the
bottom panel of Fig. 2, we have dx ≈ 5 × 10−4M on the
finest level used. We also perform resolution studies of
select cases to check for convergence and to estimate
numerical errors.

FIG. 4. The evolution of the Bianchi constraints IC ≔R
d3x½Pað∇bHab

R Þ2�1=2 þ ðR ↔ IÞ, normalized by the field am-
plitude IH ≔ j R d3xHR

abH
ab
R j1=2 þ ðR ↔ IÞ, throughout the de-

velopment of the m ¼ 1 superradiance instability of a massive
spin-2 field on a Kerr BH background with spin aBH ¼ 0.95 and
α ¼ 0.7. Since the initial perturbation used to trigger the linear
instability does not satisfy the constraints, they do not converge at
early times. At later times, both IC and IH grow exponentially at
the instability rate. The different resolutions have been scaled by
a factor consistent with fourth order convergence.
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In Fig. 4, we show a norm of the Bianchi constraint
violation

P
b j∇aHabj=4, integrated over the domain, dur-

ing a linear evolution case with m ¼ 1 (summing the
contributions from the real and imaginary components).
We normalize this quantity by the norm of the massive
tensor jHabHabj, as the whole solution is exponentially
increasing due to the instability. As evident from the figure,
the relative constraint violation at later times is roughly
constant in time, and converging to zero with increasing
resolution. We show a nonlinear evolution with Einstein-
Weyl gravity in Fig. 5. There, in addition to the Bianchi
constraint violation, we show the norm of the generalized
harmonic constraint. As can be seen from the plot, the
constraints converge to zero with increasing resolution at
the expected rate (between third and fourth order).
For several of the linear evolutions cases, we extract the

instability growth rate at three different resolutions, and use
Richardson extrapolation to estimate the truncation error in
these quantity. The results are shown in Table I. The errors
in the instability rates for the default resolutions do vary
noticeably with α for the considered values, ranging from
order 10% to a few percent or smaller, but these provide a
rough estimate for the errors across the parameter space.
Generally, we find that for larger BH spin and α, the
uncertainties are larger.

APPENDIX C: REAL FREQUENCIES
AND COMPARISON TO LITERATURE

For completeness, we provide the real parts of the
frequencies associated with the fastest growing m ¼ 1
and m ¼ 2 superradiant modes (the m ¼ 0 modes have
zero real frequency) here, and compare these, as well as the
growth rates, to results obtained in Refs. [57,58]. To that
end, we show the real parts of the frequencies in Fig. 6 and
the imaginary parts in Fig. 7.
In Ref. [58], the frequencies, ωR and ωI , of the most

unstable m ¼ 1 superradiant modes were determined by
solving the elliptic equations governing the eigenvalue

FIG. 5. The convergence of the constraints with increasing
resolution for a nonlinear evolution in Einstein-Weyl gravity of a
nonspinning BH with α ¼ 0.2. In this case (corresponding to the
solid magenta curve in Fig. 2), the BH mass increases and
saturates at a larger value. We show both the norm of the Bianchi
constraint ∇aRab ¼ 0 (solid lines) and the generalized harmonic
constraint Ha −□xa ¼ 0 (dashed lines) integrated on the do-
main. The constraints converge at between third and fourth order,
with the different resolutions scaled by a factor consistent with
the former. Due to the fact that the initial perturbation we use does
not satisfy the constraints, there is nonconvergence in the Bianchi
constraint at early times, but this is exponentially small compared
to the subsequent truncation error, and does not affect the
convergence at later times.

TABLE I. A comparison of the instability growth rate measured
at the default resolution, to the Richardson extrapolated value
using three different resolutions. This gives a measure of the
truncation error, shown as a percent in the last column.

α aBH m
MωI: default
resolution

Richardson
extrapolated version

Error
(%)

0.4 0.99 0 7.1872 × 10−2 7.1866 × 10−2 0.01
1.6 0.998 0 7.65 × 10−3 8.07 × 10−3 5.2
0.7 0.95 1 1.27 × 10−2 1.25 × 10−2 1.6
0.9 0.998 1 1.91 × 10−2 2.01 × 10−2 5.0
1.0 0.95 2 8.80 × 10−4 8.18 × 10−4 8.0
1.5 0.99 2 1.59 × 10−3 1.40 × 10−3 14
1.4 0.998 2 2.19 × 10−3 2.13 × 10−3 3.0
1.9 0.99 3 1.19 × 10−4 1.08 × 10−4 10

FIG. 6. The real part of the frequency ωR of the most unstable
m ¼ 1 (top) andm ¼ 2 (bottom) superradiant modes of a massive
spin-2 field around Kerr BHs of various dimensionless spins aBH.
Circular points correspond to our time-domain results. The
dashed lines are interpolations of the numerical results in
Ref. [58], for the most unstable m ¼ 1 mode, and analytic
expressions determined in Ref. [57], for the most unstable
m ¼ 2 superradiant state.
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problem for α ≤ 0.8 and aBH ≤ 0.99. Comparing their
results (interpolated to some of the specific values of
aBH we consider) in the region where they overlap with
ours in the top panels of Figs. 6 and 7, we find good
agreement (to within roughly 5%, and consistent with the
expected truncation error).
In Ref. [57], analytic estimates for ωR and ωI of the most

unstable m ¼ 2 superradiant modes were obtained in the
α ≪ 1 limit. Up to α ≈ 0.5, these expressions for ωR match
our results (compare, in particular, the m ¼ 2 and aBH ¼
0.95 family of modes in Fig. 6). The estimates for the
growth rates of these configurations, on the other hand, are
inconsistent with our time-domain predictions at α ≈ 0.5;
we expect that the agreement would be better in the α < 0.5
region of the parameter space. Our data for the m ¼ 3
superradiant mode covers α ≥ 1.3, a regime in which we do
not find good agreement with the perturbative estimates
valid in the α ≪ 1 limit.
Finally, we mention that the numerical values of ωR and

ωI calculated in this work for m ¼ 0, 1, 2, and 3 (as well as
some lower values of aBH for m ¼ 0 omitted here for
clarity) are available at Ref. [75].
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