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The recent announcement of strong evidence for a stochastic gravitational-wave background (SGWB)
by various pulsar timing array collaborations has highlighted this signal as a promising candidate for future
observations. Despite its nondetection by ground-based detectors such as Advanced LIGO and Advanced
Virgo, Callister et al. [Phys. Rev. X 7, 041058 (2017)] developed a Bayesian formalism to search for an
isotropic SGWB with nontensorial polarizations, imposing constraints on signal amplitude in those
components that violate general relativity using LIGO’s data. Since our ultimate aim is to estimate the
spatial distribution of gravitational-wave sources, we have extended this existing method to allow for
anisotropic components in signal models. We then examined the potential benefits from including these
additional components. Using injection campaigns, we found that introducing anisotropic components into
a signal model led to more significant identification of the signal itself and violations of general relativity.
Moreover, the results of our Bayesian parameter estimation suggested that anisotropic components aid in
breaking down degeneracies between different polarization components, allowing us to infer model
parameters more precisely than through an isotropic analysis. In contrast, constraints on signal amplitude
remained comparable in the absence of such a signal. Although these results might depend on the assumed
source distribution on the sky, such as the Galactic plane, the formalism presented in this work has laid a
foundation for establishing a generalized Bayesian analysis for an SGWB, including its anisotropies and
nontensorial polarizations.
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I. INTRODUCTION

In recent years, there has been a dramatic expansion
in the field of gravitational wave (GW) astronomy, driven
by the consistent detection of such signals by the LIGO
Scientific, Virgo and KAGRA Collaboration (LVK) [1–4].
The GWs observed to date have come from compact binary
coalescence (CBC) such as binary black hole (BBH) [5–12]
and binary neutron star (BNS) [13,14]. Detailed studies
of these astrophysical events have enhanced our under-
standing of general relativity, nuclear physics, and the
astrophysical processes involved in such mergers, thus
providing a unique perspective into the Universe.
Moreover, the recent announcement regarding strong evi-
dence for an stochastic gravitational-wave background
(SGWB) by several pulsar timing array (PTA) collabora-
tions [15–18] has propelled this field forward with the
potential detection of an SGWB, introducing a potential
new avenue in the nHz frequency band to observe GWs.
An SGWB is the incoherent superposition of GWs

emitted from numerous sources, which are too faint to be

individually resolved (see e.g., [19] for a detailed review). It
is primarily composed of astrophysical sources such as
super-massive black hole (SMBH) binaries [20–25], targeted
by the PTA collaborations, along with stellar BBHs or BNSs
[26–30], and supernovae [31–35]. Alternatively, cosmologi-
cal sources, including signals emitted during the inflationary
era [36–44], phase transitions in the early Universe [45–47],
and primordial primordial black holes (BHs) [48–51], can
contribute to the SGWB. Despite the promising results from
the PTA collaborations, ground-based detectors like Laser
Interferometer Gravitational-wave Observatory (LIGO) [52]
and Virgo [53] have not made any substantial detections.
This is largely because they are tuned to higher frequency
GWs produced by events within a relatively nearby
Universe, whereas a considerable portion of the SGWB
signal falls into the low-frequency regime. Since May 2023,
with further improved sensitivities of LIGO and Virgo,
the expanded detector network including KAGRA [54]
has begun the fourth observing run, aiming for the novel
discovery of a SGWB signal.
As one of the physical implications from GW observa-

tions, there have been extensive studies that examine the
theories of gravity by investigating the violation of general*leo.tsukada@ligo.org
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relativity in GW observations [55–59]. These include (but
are not limited to) the parametrized tests of the post-
Newtonian coefficients [60–64], the speed of GWs [65],
black-hole nature of the merger remnant [66–72] and, most
relevant to this work, the nontensorial GW polarizations
[12,56,73–78]. Regarding the GW polarization analyses,
Ref. [73] demonstrates the method to search for a GW
signal from a CBC, which is purely polarized with either
one of three polarizations, i.e. scalar or vector or tensor.
This method was adopted for the analysis of GW170814
[9] and GW170817 [56], which were consequently rean-
alyzed with modified waveforms [74] and tensor-scalar
mixed polarization model [75], respectively. Alternatively,
Ref. [76] demonstrates the use of null streams, constructed
by a GW model with the tensor polarizations, as a model-
independent way to assess the GW polarization contents
violating the prediction from general relativity. They find
that the independent measurement of each GW polarization
for transient GW signals requires the same number of
detectors as the polarization modes to measure, which
leaves up to five detectors.1 References [77,78] apply this
approach to GW170817 and obtain a constraint of GW
amplitude for the vector polarization or p-values for the
nontensorial polarization hypothesis.
As opposed to the limitation for polarizationmeasurements

in such a transient GW signal, unpolarized SGWBs2 allow
for measuring or constraining the background amplitude for
each of the three GW polarizations separately. In the context
of ground-based GW detectors, Ref. [80] first explores the
detectability of an SGWB with nontensorial polarizations
based on a frequentist approach by deriving signal-to-noise
ratio (SNR) for arbitrarypolarizationcontents, finding that the
separate measurement of generic GW polarization contents
require at least three detectors. Alternatively, Ref. [81]
demonstrates a Bayesian framework to search for each
polarization component of an isotropic SGWB with a broad-
band frequency spectrum. More specifically, it provides a
statistical prescription to assess the presence of nontensorial
polarizations based on a Bayes factor as well as posterior
results of given model parameters as a way of parameter
estimation. Following this method, Refs. [82–84] search for
nontensorial polarization components of an SGWB in LVK’s
dataset up to the third observing run.
In this work, we extend the Bayesian framework

introduced by Ref. [81] to account for anisotropies of
an SGWB. Several searches for anisotropic SGWBs
contributed from either pointlike or extended sources

have been developed and performed for LVK’s dataset.
While pixel-wise radiometer methods [85–87] are intended
for pointlike sources, one of the common approaches for
extended sources is the use of the spherical harmonics
(SPH) expansion of an anisotropic SGWB signal in cross
spectral density (CSD) Cðf; tÞ, which reads [88,89]

hCðf; tÞi ¼
X

μ∈ fðl;mÞg
γμðf; tÞPμðfÞ: ð1Þ

Here, γμðf; tÞ is referred to as the overlap reduction
function (ORF) [90] projected onto the SPH basis repre-
sented by μ ¼ ðl; mÞ [91], and PμðfÞ is a generic form of a
spectral model with the anisotropic distribution. The Greek
subscript implies the summation across the SPH modes.
Reference [89] incorporates this expression into the
Bayesian framework of an isotropic SGWB to include
its anisotropies and provide detection statistics as well as
posterior results for an assumed source distribution on the
sky. Reference [92] explores the possibility to reconstruct a
SGWB intensity map using marginalized posterior distri-
butions. In this paper, we essentially combine the formal-
isms developed by Refs. [81,89] and establish a generalized
Bayesian analysis for an SGWB including anisotropies and
nontensorial polarizations.
This paper is structured as follows. Section II presents

the role and derivation of ORF in the context of ground-
based GW detectors. In particular, we compute the ORF
projected onto the SPH basis for the nontensorial polar-
izations as a key ingredient for this analysis. In Sec. III,
focusing on the Bayesian formalism as a versatile tool for
the data analysis in this work, we provide an overview of
the Bayesian framework and applications to the detection
and parameter estimation of an anisotopic SGWB.
Proceeding to Sec. IV, we demonstrate how to identify
an anisotropic SGWB signal with the nontensorial polar-
izations using a simulated noise dataset for the two LIGO
detectors. Specifically, a synthetic anisotropic SGWB
signal is injected into the dataset and recovered with either
isotropic or anisotropic SGWB model and we compare
the detection capability between the two cases. Finally, in
Sec. V, we investigate the results of parameter estimation to
quantify the measurement accuracy for the model param-
eters of an injected SGWB signal such as amplitude and
frequency spectrum, demonstrating various benefits gained
by incorporating higher SPH modes into a signal model.

II. OVERLAP REDUCTION FUNCTION

A. Formalism

As mentioned in Eq. (1), an SGWB signal is imprinted in
the CSD estimator, multiplied with a scaling factor and
phase shift, which are determined by a baseline’s geometry
and relative orientation and represented by the ORF γðfÞ.
Hence, this encodes the sensitivity of a given baseline to
an SGWB as a function of frequencies. In the context of

1Note that the scalar longitudinal and breathing modes indicate
complete degeneracy in their antenna responses [see Eq. (14)] of
the current ground-based detectors.

2Ref. [79] pointed out that one cannot necessarily apply the
model-independent formalism as some of the assumptions break
down in beyond-GR theories, e.g. Chern-Simons gravity. Never-
theless, this is beyond the scope of this paper and we leave this as
a potential avenue to pursue in the future.
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searches for anisotropic SGWBs, in general the ORF also
depends on time due to the Earth’s rotation with respect
to the cosmological rest frame. Specifically, at a particular
point on the sky Ω̂, this is given by3 [90,93–95]

γIðf; t; Ω̂Þ ¼ 5

8π

X
A

FA
1 ðΩ̂; tÞFA

2 ðΩ̂; tÞe2πifΩ̂·ΔxI ðtÞ
c ; ð2Þ

where ΔxIðtÞ is the time-dependent separation vector
between the two detectors in a baseline I.
FA
i ðΩ̂; tÞ is the ith detector’s antenna pattern response

function for the polarization A, which reads

FA
i ðΩ̂; tÞ ¼ dμνi ðtÞeAμνðΩ̂Þ: ð3Þ

dμνi ðtÞ is the response tensor of ith detector as follows

diðtÞ ¼
1

2
ðX̂ðtÞ ⊗ X̂ðtÞ − ŶðtÞ ⊗ ŶðtÞÞ; ð4Þ

where X̂ðtÞ; ŶðtÞ are the time-dependent unit vectors that
define the direction of detector’s x or y-arm respectively,
and ⊗ represents a tensor product. eAμνðΩ̂Þ is the polariza-
tion tensor, defined commonly on the GW frame, in which
Ω̂ is equivalent to the unit vector pointing at a GW source,
and m̂, n̂ are a pair of orthogonal unit vectors in the plane
perpendicular to Ω̂. Using these bases, for the two modes
A ¼ fþ;×g expected from general relativity, the polariza-
tion tensors are expressed as

eþðΩ̂Þ ¼ m̂ ⊗ m̂ − n̂ ⊗ n̂ ð5Þ

e×ðΩ̂Þ ¼ m̂ ⊗ n̂þ n̂ ⊗ m̂: ð6Þ

As a reference, once putting these together, using Euler
angles ðθ;ϕ;ψÞ in the detector frame, whose x and y axes
point toward detector’s arms, the antenna pattern response
functions for the two modes read

Fþðθ;ϕ;ψÞ ¼ 1

2
ð1þ cos2 θÞ cos 2ϕ cos 2ψ

− cos θ sin 2ϕ sin 2ψ ; ð7Þ

F×ðθ;ϕ;ψÞ ¼ −
1

2
ð1þ cos2 θÞ cos 2ϕ cos 2ψ

− cos θ sin 2ϕ cos 2ψ : ð8Þ

To adapt to an SGWB search for extended sources, the
ORF is projected from the pixel basis to the SPH basis

γIlmðf; tÞ ¼
Z
S2
dΩ̂γIðf; t; Ω̂ÞY�

lmðΩ̂Þ; ð9Þ

where Ylm is the ðl; mÞ mode of the SPH function defined
on the cartesian coordinate whose z-axis points to the
Earth’s rotation axis. This SPH-based ORF has been
analytically and numerically derived for the tensor polar-
izations in the literature [91,95]. This illustrates sensitivity
to an SGWB with the spatial scale characterized by ðl; mÞ
at each frequency bin for a given baseline’s geometry and
orientation. For example, as described in Appendix A, the
ORF for l ¼ 1 or 2 the global peak lies at frequencies
below 100 Hz, while for l ≥ 5 the peak appears at higher
frequencies. This can be understood by the diffraction
limit which each baseline is associated with due to the
separation between the two detectors, i.e. the spatial
resolution of signal components with lower frequencies
tends to be limited by some angular resolution. In what
follows, we explore the extension of the SPH-based ORF to
nontensorial GW polarizations, i.e. scalar and vector
polarizations.

B. Extension to the nontensorial polarizations

The ORF’s dependence on the GW polarization boils
down to the polarization tensor, eAμνðΩ̂Þ. For the non-
tensorial polarization modes, these tensors read4

ebðΩ̂Þ ¼ m̂ ⊗ m̂þ n̂ ⊗ n̂ ð10Þ

elðΩ̂Þ ¼ Ω̂ ⊗ Ω̂ ð11Þ

exðΩ̂Þ ¼ m̂ ⊗ Ω̂þ Ω̂ ⊗ m̂ ð12Þ

eyðΩ̂Þ ¼ n̂ ⊗ Ω̂þ Ω̂ ⊗ n̂; ð13Þ

where the superscripts denote breathing (b), longitudinal
(l), vector-x (x) and vector-y (y) modes, respectively.
These polarization tensors lead to the antenna pattern
response function for each polarization as follows

Fbðθ;ϕ;ψÞ ¼ −Flðθ;ϕ;ψÞ ¼ 1

2
sin2 θ cos 2ϕ; ð14Þ

Fxðθ;ϕ;ψÞ¼ sinθðcosθcos2ϕcosψ −sin2ϕsinψÞ; ð15Þ

Fyðθ;ϕ;ψÞ ¼ − sin θðcos θ cos 2ϕ sinψ þ sin 2ϕ cosψÞ;
ð16Þ

3Note that the expression in Eq. (2) is normalized such that
in the case of a colocated and coaligned detector pairR
dΩ̂γðf; t; Ω̂Þ ¼ 1 at any frequency for the tensor polarization,

and hence the those for vector or scalar polarizations represent
values relative to the tensor counterpart.

4One should note that there exist two different conventions of
elðΩ̂Þ [80,81], and we adopt that of Callister et al. in Ref. [81] to
follow their formalism consistently.
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in terms of Euler angles on the detector frame, similar to
Eqs. (7) and (8).
Since we assume unpolarized GW power within each of

the vector and scalar polarizations similarly to the tensor
polarizations, the pixel-based ORF for the nontensorial
polarizations takes the same form as Eq. (2). Instead of the
analytical expression described in Ref. [91], we follow
the numerical approach shown in Refs. [95,96]. First, we
substitute the polarization tensors shown in Eqs. (10)–(13)
into Eq. (3) respectively to compute the pixel-based ORF
with respect to the HealPix pixelization of nside ¼ 16 (i.e.
12 × 162 ¼ 3072 pixels) [97]. Subsequently, following
Eq. (9), we convert it from the pixel basis to the SPH
basis using the HEALPY package [98].
We note that, in the coordinate system where its z-axis

points toward the Earth’s rotational axis, the time depend-
ence of the ORF due to the Earth’s rotation is equivalent to
the change in the azimuthal angle, and hence

γIlmðf; tÞ ¼ γIlmðf; trefÞeim2πðt−trefÞ=T; ð17Þ

where T is the period of the Earth’s rotation. This
factorization allows us to compute the SPH-based ORF

at a reference time γIlmðf; trefÞ and the time-dependent
phase separately. Eventually, γIlmðf; trefÞ is then multiplied
by the phase factor to account for the proper time shift and
to construct a two-dimensional f-t map, which substan-
tially reduces the computational cost.
We show the SPH-based ORF of the two LIGO detector

pair for each polarization family over 0 Hz to 500 Hz, e.g.
for brevity only ðl; mÞ ¼ ð1; 1Þ and (2, 2) modes in Figs. 1
and 2, respectively. Since the SPH-based ORF is a complex
function in general, the left plot in either figure shows the
real part of each γIlmðf; trefÞ and the right plot shows its
imaginary part. Note that tref is adjusted such that the
imaginary part of the tensorial ORF at f ¼ 0 Hz is zero,
which allows for a fair comparison of the plotted values
across the three polarizations at the consistent refer-
ence time.
As mentioned in Sec. II A, at each frequency bin the

amplitude of γIlmðf; trefÞ the sensitivity of the baseline I to
the SGWB component whose spatial scale is characterized
by the ðl; mÞ mode. The frequency range that yields the
peaked amplitude is a consequence of the interplay
between the diffraction effect in an observed SGWB signal
and the phase canceling between two detectors at higher

FIG. 1. SPH-based ORF of the two LIGO detector pair for each polarization family over 0 Hz to 500 Hz for ðl; mÞ ¼ ð1; 1Þmode. The
left plot shows the real part of the ORF, while the right one shows its imaginary part.

FIG. 2. SPH-based ORF of the two LIGO detector pair for each polarization family over 0 Hz to 500 Hz for ðl; mÞ ¼ ð2; 2Þmode. The
left plot shows the real part of the ORF, while the right one shows its imaginary part.
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frequencies. As opposed to the diffraction limit suppressing
sensitivity over lower frequencies, the signal components at
higher frequencies tend to have phases at two detectors
canceled out to some extent when taking crosscorrelation,
leading to a decaying function of the ORF in general. This
tradeoff is more noticeable for higher (l; m) modes, e.g.
Appendix A showing the ORF for ðl; mÞ ¼ ð10; 10Þmode,
which has the amplitude peaked at around 200 Hz.

III. BAYESIAN FORMALISM

A. Likelihood

Following the Bayesian formalism for an anisotropic
SGWB discussed in Ref. [89], here we expand this
approach to allow for an inferred signal model with
nontensorial GW polarizations or even a mixture of differ-
ent polarizations. In general, the mixture model of multiple
signal components takes the form ofX

i

H̄iðfÞγAi
μ ðf; tÞPi

μ; ð18Þ

where for i th signal component H̄iðf; θ0Þ is the frequency
spectrum normalized at some reference frequency, Ai is its
GW polarization and the subscript μ implies the summation
over the SPH basis

γAi
μ ðf; tÞPi

μ ¼
Xlmax;i

l¼0

Xl
m¼−l

γAi
lmðf; tÞPi

lm: ð19Þ

Note that in general the lmax value, i.e. spatial cutoff
scale in the SPH expansion, can be different across signal
components.
Following the approach described by Ref. [89], we

normalize the Plm such that

Plm ¼ ϵP̄lm s:t: P̄00 ¼
3H2

0

2πf3ref
ffiffiffiffiffiffi
4π

p ð20Þ

where ϵ is an amplitude parameter compatible to Ωref in
the conventional isotropic SGWB searches [83,84,99].
Henceforth, we consider P̄lm to be fixed for each signal
component but still be potentially different across them.
Given the multiple signal componentsM, each of which is
characterized by H̄, γμ and P̄μ, the Gaussian likelihood
reads

pðfCftgjfϵi; θ0ig;MÞ

∝ exp

�
−
1

2

X
f;t

jCðf; tÞ −P
iϵiH̄iðf; θ0iÞγAi

μ ðf; tÞP̄i
μj2

P1ðf; tÞP2ðf; tÞ
�
:

ð21Þ

Here, Pkðf; tÞ is the power spectral density (PSD) of k th
detector, and θ0i; ϵi are a set of model parameters regarding

H̄ðfÞ and the amplitude parameter of the ith signal
component in M, respectively.

P
i represents the summa-

tion across M. Note that the case of lmax ¼ 0 for all the
signal components reduces to the isotropic search for
nontensorial GW polarizations, e.g. [81,82]. Once a dis-
tribution of likelihood based on Eq. (21) is constructed, it
will be used to produce a posterior probability distribution
pðfϵi; θ0igjfCftg;MÞ based on the Bayes’ theorem.

B. Odds ratio

The Bayesian formalism provides a statistical way to
evaluate the preference of a particular hypothesis over
another, so-called odds ratio defined as

OH1

H2
¼ pðH1jfCftgÞ

pðH2jfCftgÞ
¼ pðfCftgjH1Þ

pðfCftgjH2Þ
πðH1Þ
πðH2Þ

; ð22Þ

where H1 is the hypothesis of interest and H2 is another
one to compare that against. pðfCftgjHÞ is the Bayesian
evidence given by

pðfCftgjHÞ ¼
Z

dθpðfCftgjθ;HÞpðθÞ; ð23Þ

and πðθÞ; πðHÞ are the prior probability for the model
parameters θ and a hypothesis H, respectively.
In the context of detecting nontensorial GW polariza-

tions, similarly to Refs. [81,82], we consider the two
hypotheses:

(i) GR: only the tensor polarization family is present in
the data,

(ii) NGR: either scalar or vector polarization family is
present in the data.

Therefore, denoting HA as a subhypothesis of a given
combination (or either) of tensor (T), vector (V) and
scalar (S) polarizations present in data, the GR hypothesis
corresponds to HT , while the NGR hypothesis consists of
fHS;HV;HTS, HVS;HTV;HTVSg. Accordingly, the odds
ratio of the NGR hypothesis against the GR counterpart
reads

ONGR
GR ¼

P
A≠TpðfCftgjHAÞπðHAÞ
pðfCftgjHTÞπðHTÞ

ð24Þ

¼
X
A≠T

OHA
HT
: ð25Þ

Here, we assign the prior probability equally to each
subhypothesis, i.e.

πðHAÞ ¼
1

7
∀A∈ fT; S;V;TS;VS;TV;TVSg: ð26Þ
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C. Implementation

It is computationally challenging to evaluate the like-
lihood naively based on Eq. (21) as it involves the
integration over frequency and time as well as summation
across the SPH modes across multiple signal components.
Reference [89] provides an implementation to bypass part
of the calculation by precomputing the time integration.
Here, we follow this approach and account for extra
complication due to the presence of multiple signal
components. Specifically, after expanding the exponent
of Eq. (21), the logarithmic likelihood contains the follow-
ing terms

X
i

ϵiRe½ðP̄i
μÞ�Xi

μ� −
1

2

X
i;j

ϵiϵjðP̄i
μÞ�Γij

μνP̄
j
ν: ð27Þ

Here, the dirty map Xμ is an observable given by CSD
convolved with detectors’ response function and spectrum
model HðfÞ, and the Fisher matrix Γμν is the covariance
matrix of the dirty map. See its full derivation in Ref. [88].
We note that these quantities are now specific to each

signal component as follows5

Xi
μ ¼

X
f

H̄i
X
t

τΔfðγAi
μ Þ�Cft

P1P2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
precomputed for Ai

; ð28Þ

Γij
μν ¼

X
f

H̄iH̄j
X
t

τΔfðγAi
μ Þ�γAj

ν

P1P2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
precomputed for ðAi;AjÞ

; ð29Þ

where τ is the time interval over which the Fourier
transform is applied to a time series strain data and Δf
is the frequency resolution of CSD. Therefore, the pre-
computed part in the dirty map (the Fisher matrix) needs to
be stored for each (every combination) of the three GW
polarizations, respectively. Subsequently, during the like-
lihood evaluation the precomputed part with the associated
polarization(s) of a given signal component or a pair of
those is retrieved and used to compute Eqs. (28) and (29).
This implementation allows the analysis to explore arbi-
trary signal-model space with minimal computational cost.
In order to efficiently construct a posterior probability

density function (PDF) over a multidimensional parameter
space, the pipeline stochastically samples a set of model
parameters defined in a given signal model. Every time a
new sample is drawn, the dirty map and the Fisher matrix
are constructed based on Eqs. (28) and (29) and eventually
the likelihood shown in Eq. (21), is evaluated. This
sampling process is repeated until the Bayesian evidence

is computed with sufficient precision. Specifically, we
adopt a nested-sampling algorithm DYNESTY [100], imple-
mented in the BILBY package. [101,102].

IV. SIGNAL IDENTIFICATION

References [81,89] show, as described in Sec. III B,
that one can use the odds ratio to evaluate the statistical
significance for a signal model of interest. Here, we study
the capability of detecting a signal among the noise and,
more importantly, identifying a signal from the NGR
hypothesis as opposed to the GR counterpart. To this
end, in order to follow the case studies performed in
Ref. [81], in this section and hereafter we restrict ourselves
to considering an anisotropic SGWB injection with only
scalar or tensor polarization family, or its mixture, which is
also motivated by scalar-tensor theories [103]. Yet, this can
be extended to include vector polarizations and the results
are not expected to change drastically.

A. Single polarization

We first perform an injection campaign using synthetic
SGWB signals with either scalar or tensor polarization.
Specifically, the P̄lm distribution is generated from the
mock Galactic plane shown in Fig. 1 of Ref. [89] with
lmax ¼ 5 and the power-law spectrum H̄ðf; θ0Þ with the
index α ¼ 2=3. The amplitude factor is determined
such that the isotropic component (lmax ¼ 0) of the signal
can be recovered with the optimal SNR ¼ 5, i.e. ϵ≈
1.8 × 10−8 ð4.3 × 10−9Þ for the scalar (tensor) polarization,
respectively.6 Our pipeline injects this signal into simulated
noise CSD between the two LIGO detectors of a one-year
observation with the design sensitivity [104], and recovers
it with the scalar polarization and lmax ¼ 0 or 5. In addition
to these injection runs, we also analyze simulated data
without injections, recovered with scalar polarization and
lmax ¼ 5. Table I summarizes four cases of the configu-
ration. Regarding the prior PDF, a log-uniform distribution
and a Gaussian distribution with zero mean and a standard
deviation of 3.5 are used for ϵ and α, respectively.
An analysis for each case is repeated for 500 different

realizations of the noise CSD and produces a distribution of
the log odds ratio lnOSIG

N . Note that throughout this work

TABLE I. Configurations of the injection campaign.

Polarization lmax

Injection Recovery Injection Recovery

Case 1 Scalar Scalar 5 5
Case 2 Scalar Scalar 5 0
Case 3 Tensor Scalar 5 5
Case 4 N/A Scalar N/A 5

5The dependency on f, t and θ0 is omitted for brevity. 6See Eq. (9) in Ref. [81] for the definition of the optimal SNR.
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the prior odds for both SIG and Nmodels are assumed to be
equal, and hence the odds ratio reduces to the Bayes factor,

BSIG
N ¼ pðfCftgjSIGÞ

pðfCftgjNÞ
: ð30Þ

The left plot in Fig. 3 shows a PDF of lnOSIG
N for each of

the four cases represented by the different colors. One can
see that the PDF for Case 4 (the noninjection run) is
narrowly distributed around zero, while those with the
injections extend up to around lnOSIG

N ¼ 30. Even among
these injection runs, the PDFs are largely distinct. In
particular, the PDF of Case 3 (with the injection of the
tensor polarization) is strongly skewed toward zero and
their mean is decreased from Case 1 (recovered with the
scalar polarization and) by more than 10 times, which
suggests that the signal recovery using an inconsistent
polarization reduces the capability of detecting the injected
signal. Furthermore, apart from the composition of GW
polarizations, the choice of lmax ¼ 0 (Case 2) or 5 (Case 1)
makes a noticeable impact on the lnOSIG

N PDF. This is
consistent with the results demonstrated in Ref. [89] despite
the different GW polarization used for each study. More
quantitatively speaking, the difference in the mean values
of around 3.7 is in great agreement with the ϵ ¼ 10−8 case
of Fig. 8 therein. In summary, one can infer the lmax value
as well as the GW polarization by comparing the lnOSIG

N
computed by multiple signal models with the different
choices of those hyperparameters. See a more thorough
study in Sec. IV B.
Additionally, we analyze each realization of a dataset

using the recovery signal model, which involves every
possible polarization combination and is otherwise con-
sistent with each of the four configurations listed in Table I.
This allows us to calculate the odds ratio of the NGR
hypothesis against the GR based on Eq. (24). Figure 3
indicates that overall the PDFs of lnONGR

GR follows a similar

behavior to those of lnOSIG
N except for Case 3. Therefore,

the choice of lmax has a reasonable effect on not only signal
detection but also a statistical test to assess the NGR
hypothesis. Regarding the behavior of Case 3, despite the
presence of the tensor polarization alone, the lnONGR

GR does
not strongly extend to a negative regime and its mean value
is hlnONGR

GR i ¼ 0.40. This is because no detection of the
nontensorial polarizations only places the upper limit of
their SGWB amplitude and does not entirely prefer the GR
hypothesis, being consistent with the statement in Ref. [81].

B. Mixed polarizations

To consider a more practical situation, we repeat the
study described above using an SGWB injection with a
mixture of the scalar and tensor polarizations. Following
the configuration discussed in Ref. [81], for injected
SGWB signals, we adopt the power-law H̄ðfÞ spectrum
with the power-law indices of αT ¼ 2=3 and αS ¼ 0.
Throughout this study, the Galactic-plane P̄lm model is
consistently used with lmax ¼ 0ð7Þ for the tensor (scalar)
polarization, simulating a signal of an anisotropic scalar
background overlying on top of an isotropic tensor back-
ground. We vary the amplitude factor for each polarization
component such that log10 ϵS (log10 ϵT) ranges from
−9.5ð−10.0Þ to −7.0ð−7.5Þ, and for a given grid point
of the log10 ϵ parameter space, a synthetic SGWB signal
is injected into a realization of the noise data used in
Sec. IVA. Also, injecting such a composite signal model
complicates its implementation in terms of the precom-
puted parts, which is more discussed in Appendix B.
We analyze each dataset using the power-law H̄ðfÞþ the

Galactic-plane P̄lm model with every possible polarization
combination to calculate lnOSIG

N and lnONGR
GR , adopting the

same prior PDF for ϵ and α as in Sec. IVA. Eventually, a
full set of runs produces a two-dimensional map of each
quantity across the log10 ϵ parameter space. This whole
process is iterated for the two configurations of the

FIG. 3. Left: PDF of lnOSIG
N between signal and noise hypotheses for each of the four cases summarized in Table I. Right: PDF of

lnONGR
GR between the NGR and GR hypotheses for each of the four cases summarized in Table I.
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recovery signal model as follows: For a given polarization
combination,

(i) Case 1: lmax ¼ 0 for the tensor polarization and
lmax ¼ 7 for the others,

(ii) Case 2: lmax ¼ 0 for both polarizations.
Figure 4 show a two-dimensional heat map of lnOSIG

N
(left) and lnONGR

GR (right) respectively for Case 1 with solid
contours of lnO ¼ 1, 8, 50. As a comparison in both plots,
a result for Case 2 is represented by the dashed contours,
each of which corresponds to the solid one with the same
color. One can see that a larger ϵS yields greater lnOSIG

N or
lnONGR

GR and that, more importantly, the contours of Case 2
(solid) all shift slightly below those of Case 1 (dashed).
This indicates that at a given (ϵT , ϵS) point, lnOSIG

N and
lnONGR

GR both increase by incorporating higher SPH modes
of a scalar background into the recovery signal model.
Regarding the ϵT dependency, lnOSIG

N monotonically
increases with ϵT , while lnONGR

GR rather decreases espe-
cially in the lower ϵS regime as the tensor polarization
component in the injected signal starts to dominate over the
scalar one. Although this overall structure of the two plots
simply reproduces the results shown in Ref. [81], the key
result here is the difference between Case 1 and Case 2,
which is also consistent with the behavior discussed
in Fig. 3.

V. PARAMETER ESTIMATION

Apart from the signal detection evaluated by the odds
ratio in the previous sections, parameter estimation is one
of the meaningful products obtained by the Bayesian
analysis, enriching the scientific implication. In this sec-
tion, we study the behavior of posterior distributions with
and without an anisotropic SGWB injection, using different
configurations for the choice of the lmax values in recovery
(e.g. lmax ¼ 0 or 7) as well as a detector network. Note that

in the case of lmax ¼ 0 our formalism reduces to the
Bayesian analysis for an isotropic SGWB, and hence this
demonstrates a comparison between isotropic and aniso-
tropic analyses. Throughout this study, we use a realization
of the same dataset as Sec. IVA, where an SGWB signal
synthesized from one or mixed GW polarizations may be
present. For signal recovery, following Refs. [81,82], we
adopt the most agnostic model in terms of the GW
polarizations, i.e. HTVS. Every polarization component
of any signal model in this study involves the Galactic-
plane P̄lm (denoted as P̄GP

μ ) and a power-law H̄ðf; θ0Þ
distribution, and hence the injection and recovery signal
models both take the form of

X
A

ϵA

�
f

25 Hz

�
αA
γAμ ðf; tÞP̄GP

μ : ð31Þ

Here, A indexes a GW polarization and runs across a set of
those involved in a given signal model. Per GW polariza-
tion component, we take ϵA and αA as free parameters to
infer, which results in a joint posterior PDF concerning the
six parameters in total. Throughout this study, we adopt the
same prior PDF for ϵA and αA as in Sec. IVA

A. Gaussian-noise test

We first consider a situation where no SGWB signal is
present in a dataset of the two LIGO detectors and Virgo
(HLV). This analysis yields lnOSIG

N ¼ −2.05ð−2.14Þ and
lnONGR

GR ¼ 1.34ð1.26Þ for lmax ¼ 0ð7Þ, suggesting a non-
detection of an SGWB signal. Figure 5 shows a joint
posterior PDF of the analysis with lmax ¼ 0 (blue) and 7
(yellow) respectively, as well as a prior PDF (gray dotted)
mentioned earlier. One can observe that the overall struc-
ture of the two posterior PDFs is largely consistent. Also,
across all the polarizations extremely larger values of α are

FIG. 4. Left: two-dimensional heat map of lnOSIG
N between signal and noise hypotheses with the solid (dashed) contours of lnO ¼ 1,

8, 50 for Case 1 (Case 2), respectively. Right: two-dimensional heat map of lnONGR
GR between signal and noise hypotheses with the solid

(dashed) contours of lnO ¼ 1, 8, 50 for Case 1 (Case 2), respectively.
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FIG. 5. Joint posterior PDF of the Gaussian noise test using the HLV dataset analyzed with lmax ¼ 0 (blue) and 7 (yellow)
respectively, as well as a prior PDF (gray dotted) mentioned earlier. The model parameters to infer in HTVS hypothesis consist of the
amplitude factor ϵ and the power-law index α for each polarization (e.g. tensor, vector, scalar from left to right in the x-axes).

TABLE II. 95% upper limits on the amplitude factor ϵ for each GW polarization obtained from the Gaussian noise
test after marginalizing over the rest of the parameters.

Tensor (ϵT) Vector (ϵV) Scalar (ϵS)

lmax ¼ 0 8.8 × 10−10 1.0 × 10−9 2.0 × 10−9
lmax ¼ 7 1.0 × 10−9 6.7 × 10−10 1.8 × 10−9
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TABLE III. lnOSIG
N and lnONGR

GR obtained by the scalar injection test for each recovery lmax and detector network.

lmax ¼ 0 lmax ¼ 7

HL HLV HL HLV

lnOSIG
N 12.49 15.35 13.65 16.02

lnONGR
GR 11.33 15.20 12.51 15.75

FIG. 6. Joint posterior PDF of the scalar injection test using the HLV dataset analyzed with lmax ¼ 0 (blue) and 7 (yellow)
respectively, as well as a prior PDF (gray dotted) mentioned earlier. The model parameters to infer in HTVS hypothesis consist of the
amplitude factor ϵ and the power-law index α for each polarization (e.g. tensor, vector, scalar from left to right in the x-axes).
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less likely than the smaller values because a frequency
spectrum with such a steep slope would have been detected
if exists. The null results of each run place an upper limit on
the amplitude factor, ϵ, which is summarized in Table II.
We note that although the upper limits derived from the two
analyses vary by around Oð10Þ%, these values should not
be compared quantitatively as they are conceptually differ-
ent searches, targeting isotropy or Galactic-place structure.

B. Single polarization injection

At this step, we simulate an anisotropic SGWB signal
with the scalar polarization, adopting the power-law H̄ðfÞ
and the Galactic-plane P̄lm model with lmax ¼ 7. Similar
to the injected signals described in Sec. IVA, the power-law
index αS is set to 2=3 and the amplitude factor is adjusted
so that the isotropic component of the signal can be
recovered with the optimal SNR ¼ 5 for the given dataset,

FIG. 7. Joint posterior PDF of the scalar injection test using the HL dataset analyzed with lmax ¼ 0 (blue) and 7 (yellow) respectively,
as well as a prior PDF (gray dotted) mentioned earlier. The model parameters to infer inHTVS hypothesis consist of the amplitude factor
ϵ and the power-law index α for each polarization (e.g. tensor, vector, scalar from left to right in the x-axes).
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FIG. 8. Joint posterior PDF of the scalar-tensor mixed injection test using the HLV dataset analyzed with lmax ¼ 0 (blue) and 7
(yellow) respectively, as well as a prior PDF (gray dotted) mentioned earlier. The model parameters to infer inHTVS hypothesis consist
of the amplitude factor ϵ and the power-law index α for each polarization (e.g. tensor, vector, scalar from left to right in the x-axes).

TABLE IV. lnOSIG
N and lnONGR

GR obtained by the scalar-tensor mixed injection test for each recovery lmax and
detector network.

lmax ¼ 0 lmax ¼ 7

HL HLV HL HLV

lnOSIG
N 42.22 43.95 45.62 47.45

lnONGR
GR 10.27 12.38 13.50 15.75
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e.g. ϵS ≈ 1.8 × 10−8. Analyzing the same HLV dataset as
the Gaussian-noise test in the presence of such an SGWB
injection, we obtain lnOSIG

N and lnONGR
GR summarized in

Tab. III for each lmax value. Both odds ratios indicate a
great statistical significance and even increase for the
lmax ¼ 7 case by around 3, which is consistent with
Fig. 3. This implies that an analysis usingHTVS hypothesis
can properly obtain additional information from higher

SPH modes imprinted in the data. Figure 6 shows posterior
PDFs for each lmax ¼ 0, 7 case with the prior PDF and the
injected value (red dashed) overlaid. Both analyses con-
sistently recover the injected ðϵS; αSÞ values and the overall
structure of the two PDFs are in great agreement.
As a comparison, we repeat this study using a dataset

of the two LIGO detectors (HL) with the same duration
and sensitivity curve, which results in decreasing lnOSIG

N ;

FIG. 9. Joint posterior PDF of the scalar-tensor mixed injection test using the HL dataset analyzed with lmax ¼ 0 (blue) and 7 (yellow)
respectively, as well as a prior PDF (gray dotted) mentioned earlier. The model parameters to infer in HTVS hypothesis consist of the
amplitude factor ϵ and the power-law index α for each polarization (e.g. tensor, vector, scalar from left to right in the x-axes).
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lnONGR
GR consistently for both lmax values (see Table III).

Therefore, for the given dataset the addition of Virgo helps
the pipeline to better identify the signal and distinguish
between the NGR and GR hypotheses. Similar to Fig. 7,
the results of posterior PDFs given by this HL dataset are
shown in Fig. 6. One of the noticeable features compared to
Fig. 7 is the poor precision of recovered ðϵS; αSÞ PDF,
which further supports the gain from the Virgo’s data. Also,
there exist apparent peaks in the PDFs of ϵT and ϵV , which
reproduces the degeneracy between GW polarizations
described in Ref. [81].
Regarding the anisotropic component of the signal, one

can evaluate its detectability by comparing lnOSIG
N between

lmax ¼ 7 and 0, namely

lnOl¼7
l¼0 ¼ lnOSIG

N jl¼7 − lnOSIG
N jl¼0: ð32Þ

According to Table III, lnOl¼7
l¼0 ¼ 1.16 and 0.67 for HL

and HLV dataset respectively, which does not indicate
strong evidence of the anisotropic components given an
expected SNR of the injected signal. Nevertheless, it is
worth noting that the lmax ¼ 7 case mitigates the peak in
ϵV’s PDF. This can be understood by the fact that addi-
tional SPH modes lead to characteristic ORFs differing
across GW polarizations in a signal model and provide
extra consistency checks. In consequence, the precision
of ðϵS;αSÞ recovery slightly improves compared to the
lmax ¼ 0 case.

C. Mixed polarization injection

Lastly, we further complicate a situation by mixing the
scalar and tensor polarizations in the injected signal model.
Following the injection model in Sec. V B, we consistently
use the power-law H̄ðfÞ and the Galactic-plane P̄lm model
with lmax ¼ 7 for the both polarization components. Also,
for each component, the power-law index is set to 2=3
and the amplitude factor is adjusted so that the isotropic
component of the signal can be recovered with the optimal
SNR ¼ 5 for the given dataset, i.e. ϵS ≈ 1.8 × 10−8 and
ϵT ≈ 4.3 × 10−9. With this signal injected into the HLV
dataset, Table IV shows that lnOSIG

N is significantly larger
than those in Table III for both lmax ¼ 0 and 7 cases due
to an additional polarization component in the injection,
whereas lnONGR

GR is largely consistent with Table III.
Although, similar to Sec. V B, lnOl¼7

l¼0 derived from
Table IV (3.4 and 3.5 for HL and HLV dataset, respec-
tively) does not show strong evidence of the anisotropic
components, the posterior PDF shown in Fig. 8 indicates
that a consistent recovery of the four injected parameters
for both cases and that, for the PDFs of ϵS and αS, the
lmax ¼ 7 case produces slightly more precise estimates
than the lmax ¼ 0 case.
The posterior PDFs derived from the HL dataset, as

shown in Fig. 9, exhibits a rather outstanding difference

between these cases. Specifically, the analysis with
lmax ¼ 7 infers the injected parameter, ϵS and αS in
particular, more precisely than the lmax ¼ 0 case. Also,
some of the parameters among different polarization
components present degeneracies for the lmax ¼ 0 case,
which is manifested as apparent peaks in ϵV and αV’s PDFs,
whereas the lmax ¼ 7 case breaks the degeneracies and
results in the more precise inference of these parameters.
These findings, together with the injection studies in
Sec. IVA and Sec. V B, indicate that in the presence of
anisotropic SGWB signal the inclusion of higher SPH
modes allows us not only to better identify signals but also
to estimate signal parameters more precisely without
severe degeneracy between them. Although in practice
one does not know the right choice of lmax values a priori,
Ref. [89] demonstrates a systematic way to optimize the
choice of lmax values in terms of the odds ratio.

VI. CONCLUSION

In this work, we have described an extension of the
Bayesian formalism searching for an anisotropic SGWB to
incorporate nontensorial GW polarizations. In Sec. II A,
we numerically compute the ORF for the scalar and vector
polarizations on the SPH basis, γlmðfÞ, which encodes
the sensitivity of a given detector pair to an anisotropic
component of an SGWB characterized by the SPH’s
indices ðl; mÞ. Adopting these ORFs, we generalize the
likelihood function derived in Refs. [81,89] such that it
allows for multiple components with different polariza-
tions, P̄lm or H̄ðfÞ in the recovery signal model.
To demonstrate the capability to detect a nontensorial

anisotropic SGWB, we perform several simulation studies
involving signal injections with one or a mixture of the GW
polarizations. The results shown in Fig. 3 reproduce the
findings discussed in Ref. [81] and further suggest that,
compared to the lmax ¼ 0 case the right choice of the lmax
value improves the detectability and the odd ratio of the
NGR hypothesis, lnONGR

GR . We also examine the results of
parameter estimation with regard to the HTVS hypothesis,
using either HL or HLV dataset with and without an
anisotropic SGWB injection. Similar to the previous
injection study, we compare the posterior PDFs between
the two cases of lmax ¼ 7 (the optimal value) and lmax ¼ 0
(the isotropic model). As a result, we find that, in the
presence of an anisotropic SGWB, the addition of higher
SPH modes into a recovery signal model helps to break
the degeneracy among different polarization components
even without Virgo’s data and to infer model parameters
more precisely.
In principle, the Bayesian formalism described in this

work can be applied to any signal model. An example of
an astrophysically motivated P̄lm distribution would be a
population of millisecond pulsars in the MilkyWay Galaxy,
e.g. the P̄lm model developed in [105]. This formalism can
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evaluate any non-GR polarization component originating
from the population and, if it is sufficiently prominent,
separate it from the GR component, as illustrated in
Sec. V C. Practically speaking, however, one cannot adopt
arbitrary large lmax value or a recovery signal model
with numerous free parameters as those would make
matrix computation or sampling process costly. Also, this
formalism is intended to target a particular anisotropic
distribution model by fixing P̄lm coefficients a priori, but
ultimately we would be interested in directly inferring each
of the coefficients and producing P̄lm-independent results.
At present, the P̄lm inference for physically meaningful
lmax value is computationally infeasible for the same
reason. One of the promising approaches to these issues
might be to make use of a GPU during the likelihood
evaluation, which may involve high-dimensional matrices.
We leave this as a potential avenue for future improvement.
Alternatively, anisotropies subject to the cosmic vari-

ance, e.g. the large scale structure, are better suited to be
modeled by not P̄lm distribution but the angular power
spectrum, which is given by

Cl ¼ 1

2lþ 1

X
m

jPlmj2: ð33Þ

Since the likelihood function for Cl is highly nontrivial, the
formalism for a Cl-targeted search is not straightforward
and has not been established yet, which remains to be future
work to pursue. Despite these caveats, the formalism
presented in this work has paved the way to establish a
generalized Bayesian analysis for an SGWB including
anisotropies and nontensorial polarizations.
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APPENDIX A: ORF ANALYSIS

As discussed in Sec. II A, the SPH-based ORF encodes
the sensitivity of a given detector pair to an anisotropic
component of an SGWB characterized by the SPH’s
indices ðl; mÞ. This appendix is dedicated for further
investigation and provides useful insight on its behavior
across different detector pairs and ðl; mÞ modes.
Figures 10 and 11 show real and imaginary parts of

the SPH-based ORF in ðl; mÞ ¼ ð1; 1Þ and (2, 2) modes,
respectively, for the LIGO-Hanford and Virgo (HV) detec-
tor pair. Similar to the monopole ORF discussed in
Ref. [81], the intervals between zeros are much shorter
than those of HL detector pair shown in Figs. 1 and 2
because these intervals are disproportional to a separation
between the two detectors. Also, over the whole frequency
range, HV’s ORFs are smaller than HL’s by a factor of
several, indicating that the geometry and orientation of the
HV pair makes it less sensitive to those SPH modes.
In contrast, the ORF for ðl; mÞ ¼ ð10; 10Þ mode plotted

in Figs. 12 and 13 show some promise for the HV pair with
the following features. First, one can see that both HL and
HV’s ORFs have the global peak of their amplitude located
far away from 0 Hz. This reflects the fact that a higher-
frequency component of a given signal has a better spatial
resolution of its source. Second, the peak location for
HV’s ORF is shifted slightly toward lower frequencies
(∼100 Hz). This can be explained by the diffraction-limit

FIG. 10. SPH-based ORF of the LIGO-Hanford and Virgo detector pair for each polarization family over 0 Hz to 500 Hz for
ðl; mÞ ¼ ð1; 1Þ mode. The left plot shows the real part of the ORF, while the right one shows its imaginary part.
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argument discussed in the literature (e.g. [106–109]), where
the angular resolution on the sky is determined by the
separation between detectors (D) and the most sensitive
frequency (f):

θ ¼ c
2Df

: ðA1Þ

In other words, the typical frequencies sensitive to the
given θ is disproportional to the separation. Third,
most importantly, the overall amplitude of HV’s ORF
at around 100 Hz is larger than HL’s, particularly for the
scalar and vector polarizations. Although the diffraction-
limit argument has qualitatively described this behavior,
this investigation more clearly demonstrates the

FIG. 12. SPH-based ORF of the two LIGO detector pair for each polarization family over 0 Hz to 500 Hz for ðl; mÞ ¼ ð10; 10Þmode.
The left plot shows the real part of the ORF, while the right one shows its imaginary part.

FIG. 13. SPH-based ORF of the LIGO-Hanford and Virgo detector pair for each polarization family over 0 Hz to 500 Hz for
ðl; mÞ ¼ ð10; 10Þ mode. The left plot shows the real part of the ORF, while the right one shows its imaginary part.

FIG. 11. SPH-based ORF of the LIGO-Hanford and Virgo detector pair for each polarization family over 0 Hz to 500 Hz for
ðl; mÞ ¼ ð2; 2Þ mode. The left plot shows the real part of the ORF, while the right one shows its imaginary part.
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advantage of the Virgo detector in terms of the sensitivity
to an anisotropic SGWB. In reality, however, the overall
sensitivity of a given detector pair should account for the
PSD of each detector as well, which suppresses the
benefit from HV’s ORF given the current projection of
Virgo’s sensitivity.

APPENDIX B: INJECTING A COMPOSITE
SIGNAL MODEL

Here we describe our implementation of SGWB injec-
tion on the frequency and SPH domain in the presence
of multiple components in a signal model. To begin with,
building upon Eq. (23) in Ref. [89], injecting such a
composite signal model into CSD reads

Cðf; tÞ ¼ Cnðf; tÞ þ
X
a

ϵinja H̄inj
a ðf; fθ⃗injgÞγAa

μ ðf; tÞP̄inj;a
μ ;

ðB1Þ

where Cnðf; tÞ is noise-only CSD, the superscript inj

denotes each model or parameter intended for an injection
and the index runs across all the components in a given
signal model for injection. Substituting this expression into

Eq. (21), the expansion of its exponent yields the following
additional terms

−
X
a

ϵinja Re½ðP̄inj;a
μ Þ�Xinj;a

μ �−1

2

X
a;b

ϵinja ϵinjb ðP̄inj;a
μ Þ�Γinj;ab

μν P̄inj;b
ν

þ
X
a;i

ϵinja ϵiRe½ðP̄inj;a
μ Þ�ΓðcÞ;ai

μν P̄i
ν�; ðB2Þ

due to the injection apart from the terms in Eq. (27) arising
from the recovery signal model. In Eq. (B2), the indices
ða; bÞ run across all the components in a given signal
model for injection, while the index i denotes a component
in a given signal model for recovery. Xinj;a

μ and Γinj;ab
μν are

based on similar definitions to those shown in Eqs. (28)
and (29), respectively, replacing the indices ði; jÞ with

ða; bÞ and C with Cn. Also, Γ
ðcÞ;ai
μν is the coupled Fisher

matrix defined as

ΓðcÞ;ai
μν ¼

X
f

X
t

γAa�
μ ðf; tÞ τΔfH̄iH̄

inj
a

P1ðf; tÞP2ðf; tÞ
γAi
ν ðf; tÞ; ðB3Þ

generalizing Eq. (25) in Ref. [89].
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