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In the present work, we study four-dimensional black strings in Horndeski models with translation
invariance. Imposing that the scalar field depends on the string-generator coordinate, the Klein-
Gordon equation admits a linear profile as a solution. This relaxation allows finding rotating,
asymptotically AdS3 × R black strings, dressed with an effective cosmological constant. In this
regard, we show that in the full spectrum of shift-symmetric Horndeski theories with Einstein limit,
the scalar charge needs to be fixed in terms of the parameter space. This method is employed to
concrete examples to illustrate the scheme we go along with. Regarding the conserved charges, we
compute them via the Euclidean method and show the fulfillment of the associated Smarr Law.
Finally, we exhibit that our anti–de Sitter strings are locally and globally stable under small
fluctuations around the equilibrium.
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I. INTRODUCTION

Black strings, black rings, or p-branes in general, are
an interesting class of solutions that enrich the phenom-
enology outreached by general relativity (GR). At the
fundamental level, the Emparan-Reall black ring [1]
illustrates that the classical uniqueness theorems [2–4]
are no longer valid in five or higher dimensions. Being
topologically distinct from black holes, these solutions
feature an extended event horizon, in which the extra
dimensions play a leading role in the existence of a linear
unstable mode: the so-called Gregory-Laflamme (GL)
instability [5].
Although the oxidation of the Schwarzschild black hole

with extended Euclidean coordinates is trivial, at the time
of introducing a cosmological constant the process gets
more involved. A simple way to obtain exact black strings
and p-branes with a negative cosmological constant in
arbitrary D ¼ 3þ p dimensions is by introducing p ≥ 1
massless scalar fields homogeneously distributed along
the brane generator coordinates [6]. The main idea relies
on the fact that these scalar fields can be minimally
coupled to gravity, and the integration constant coming
from the Klein-Gordon equation (hereon we will refer to it

as the scalar charge) is fixed in terms of the cosmological
constant. Surprisingly, it was shown that these strings do
not trigger the GL instability [7].
Notwithstanding black strings were introduced as

higher-dimensional objects, in four dimensions they have
also provided interesting phenomena. In addition to the
case p ¼ 1 from Ref. [6], the dynamic sector of Chern-
Simons modified gravity (CSMG) [8] admits rotating
and torsional black strings [9]. CSMG is an extension of
GR that can be motivated by the anomaly cancellation
in curved spacetimes, and string theory [10]. Since the
initial value problem is not generically well-posed, the
dynamical sector of CSMG should be thought of as an
effective theory [11]. To be self-contained, the action
considered in Ref. [9] reads:

S½gμν;ϕ� ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p h
R − 2Λþ α

4
ϕ⋆RR

i

−
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ∇μϕ∇μϕ: ð1:1Þ

Here, κ ¼ 8πG, ⋆Rμνλρ ¼ 1
2
ϵλρστRμν

στ is the dual of
the Riemann tensor, and ⋆RR is the Pontryagin density,
defined as

⋆RR≡ 1

2
ϵγδτσ Rμ

νγδRν
μτσ; ð1:2Þ

with ϵγδτσ the Levi-Civita tensor. At this point, we would
like to stress that unless otherwise stated, we will set
throughout this paper a stationary and axisymmetric three-
dimensional base manifold with one extended Euclidean
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coordinate (p ¼ 1), that is, a metric tensor belonging to the
following family:

ds2 ¼ −N2ðrÞfðrÞ dt2 þ dr2

fðrÞ þ r2ðJðrÞdtþ dθÞ2 þ dz2:

ð1:3Þ

The equations of motion obtained from the variation
of (1.1) reads,

Gμν þ Λgμν þ αCμν ¼ κ

�
∇μϕ∇νϕ −

1

2
gμν∇λϕ∇λϕ

�
;

□ϕþ α

8κ
⋆RR ¼ 0;

where

Cμν ¼ ∇ρϕϵ
ρσλðμ∇λR

νÞ
σ þ∇ρ∇σϕ

⋆RσðμνÞρ:

As noted in [9], the vanishing of the Pontryagin density
on (1.3) is a valuable resource in obtaining the string
solution, since the massless Klein-Gordon equation is
recovered, □ϕ ¼ 0. If one imposes the scalar field to be
dependent on the string coordinate, ϕ ¼ ϕðzÞ, a linear
profile is obtained,

ϕðzÞ ¼ ωzþ c; ð1:4Þ

where the shift symmetry of the field space (i.e., invariance
under the map ϕ ↦ ϕþ c) protects us to work with c ¼ 0
without any loss of generality. Furthermore, they showed
that solving the condition Cμν ¼ 0 for the CSMG string
was enough to ensure compatibility with the full system of
equations. As a consequence, the coupling constant α in the
model (1.1) is in some sense untraceable for these CSMG
strings, and the solution can be thought of as an extension
of the Bañados-Teitelboim-Zanelli (BTZ) black hole [12].
As was the case for the minimal coupling, the scalar charge
is fixed in terms of the cosmological constant. Recently, the
thermodynamic properties of these rotating CSMG strings,
as well as stability and string-soliton phase transitions have
been discussed in detail in Ref. [13].
In contrast with CSMG, Horndeski’s theory is a scalar-

tensor extension of GR that keeps second-order dynamics
for the metric and the scalar field. This ensures the theory to
be healthy in terms of ghost pathologies, hence interesting
for theoretical, as well as observational studies [14,15].
A concrete example is the shift-symmetric sector, defined
as the subclass where the action is invariant under the
mapping ϕ ↦ ϕþ c, which was restricted by a no-hair
theorem for static and spherically symmetric spacetimes
[16], forbidding a nontrivial scalar field. However, it was
realized that hairy solutions can be constructed in spherical
symmetry by bypassing some of the hypotheses [17–19]
(see also [20–29]). From an astrophysical motivation,

massive scalars are expected to exponentially decay at a
rate proportional to the inverse of their mass. Shift-
symmetric models provide massless or ultralight scalars,
hence they can be effectively analyzed in strong gravity
observations [30]. Some of these hairy solutions were
indeed probed against the M87* data, obtaining constraints
for the scalar hair [31]. In terms of the modern Galileon
formulation, the shift-symmetric sector of Horndeski
theory can be written as [32,33]

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X5
n¼2

Ln; ð1:5Þ

with

L2 ¼ G2ðXÞ;
L3 ¼ −G3ðXÞ□ϕ;

L4 ¼ G4ðXÞRþ G4XðXÞ½ð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕ�;

L5 ¼ −
G5XðXÞ

6
½ð□ϕÞ3 − 3∇μ∇νϕ∇μ∇νϕ□ϕ

þ 2∇ν∇μϕ∇α∇νϕ∇μ∇αϕ� þG5ðXÞGμν∇ν∇μϕ:

Here, R is the Ricci scalar, Gμν is the Einstein tensor,
X ¼ − 1

2
∇μϕ∇μϕ stands for the kinetic term, and the

subscript GX denotes the derivative with respect to X.
In the case of black strings nontrivial profiles are

allowed, but the previous models share that the scalar
charge is fixed in terms of the cosmological constant, as a
consequence of the compatibility between the string and
the transverse sector, which is required to solve the
equations. In this direction, note as an additional example
that the previous results on CSMG strings [9,13] remain
valid if one swaps the Pontryagin density in (1.1) for the
Gauss-Bonnet (GB) density,

G ¼ R2 − 4RabRab þ RabcdRabcd: ð1:6Þ

Indeed, the discussion is more evident in this case, since the
GB density identically vanishes on (1.3). This is due to the
absence of nonvanishing z-components of the Riemann
tensor, so the Gauss-Bonnet density on the four-dimen-
sional ansatz is equivalent to its restriction to the three-
dimensional base manifold. Again, the contribution of the
nonminimal coupling ϕG will be lost and the scalar charge
will be fixed in terms of Λ. Thus, it is valid to ask if this
fixing issue can be considered as a general property
for these black strings. In this work, we will cover
Horndeski models with shift symmetry, using the general
static ansatz (1.3) and to look for conditions that made
possible to answer the previous question. If one imposes to
the scalar field a pure-string coordinate dependency, the
shift symmetric sector is compatible with □ϕ ¼ 0, and
therefore, a linear profile for the scalar field is always a

LUIS GUAJARDO PHYS. REV. D 108, 124041 (2023)

124041-2



solution of the Klein-Gordon equation. Using this, we will
show that as long as it admits an Einstein limit [defined in
such a way that the Einstein-Hilbert model is recovered in
the absence of the scalar field, i.e., G4ð0Þ ¼ 1], any model
supporting a four-dimensional black string solution with a
linear profile for the scalar field imposes an additional
restriction into its charge, fixing it in terms of the
parameter space.
In the attempt to organize the following information, in

Sec. II we will explicitly give the requirements that lead to a
four-dimensional asymptotically AdS3 × R black string,
arguing why the scalar charge fixes when the theory
possesses an Einstein limit. We perform a thermodynamic
analysis for the black string solutions in Sec. III, also
analyzing their stability around the equilibrium, and
showing that the thermodynamic quantities fulfill a
Smarr relation. We illustrate our results in Sec. IV, and
finally, Sec. V is devoted to our conclusions and further
remarks.

II. MAIN RESULT

As we stated in the introduction, the ansatz for the metric
and the scalar field makes the Klein-Gordon equation
compatible with □ϕ ¼ 0. To see this, let us start by
analyzing the scalar equation for Eq. (1.5), given explicitly
in Appendix B from Ref. [34]. Within our context, and for a
generic function KðXÞ, some useful properties appear,

∇μX ¼ −∇μϕ□ϕ; ð2:1Þ

∇μKðXÞ ¼ −KX∇μϕ□ϕ; ð2:2Þ

∇μ½KðXÞ∇μϕ� ¼ ∇μKðXÞ∇μϕþ KðXÞ□ϕ

¼ □ϕð−KX∇μϕ∇μϕþ KðXÞÞ; ð2:3Þ

∇μ∇νϕ ¼ □ϕδzμδ
z
ν: ð2:4Þ

Since all the z-components of the Riemann tensor are zero,
the mixed terms of the form Rμν∇μϕ, Rρμσν∇νϕ∇α∇βϕ, …
vanish. Thus, for any shift-symmetric Horndeski model, the
condition □ϕ ¼ 0 always fulfills the Klein-Gordon equa-
tion. Hence, we can always assume a linear profile for the
scalar field, as in Eq. (1.4). As a consequence, the variations
of L3 and L5 with respect to the metric fields vanish; any
solution will be independent of the functions G3 and G5.
Thus, one does not need to impose parity invariance
(ϕ → −ϕ), since it will be recovered anyway. All these
arguments invite us to study

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðL2 þ L4Þ; ð2:5Þ

with further details.

The variation of the action (2.5) with respect to the metric
can be reduced, after inserting relations (2.1)–(2.4), to

Eμν ≔ G4Gμν −
1

2
gμνG2 −

1

2
G4XR∇μϕ∇νϕ

−
1

2
G2X∇μϕ∇νϕ ¼ 0: ð2:6Þ

Splitting Eq. (2.6) to the transverse section of the string, and
the string coordinate, reads

G4Gμν −
1

2
G2gμν ¼ 0; ð2:7Þ

ð2XG4X −G4ÞR − ðG2 − 2XG2XÞ ¼ 0; ð2:8Þ

respectively. Note that the transverse equations are reminis-
cent of an Einstein-Hilbert configuration, dressed with an
effective cosmological constant Λe, defined as

Λe ≡ −
G2

2G4

: ð2:9Þ

In order to obtain a black string solution, we require to match
Eq. (2.7) with Eq. (2.8), yielding to the following restriction:

−
3G2

G4

¼ 2XG2X −G2

G4 − 2XG4X
: ð2:10Þ

So far, we have that given nonzero functions G2ðXÞ, G4ðXÞ
such that constraint (2.10) is met, a four-dimensional rotating
black string can be obtained. This is

ds2 ¼ −N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2ðJðrÞdtþ dθÞ2 þ dz2;

ð2:11Þ

with

NðrÞ ¼ 1; JðrÞ ¼ j1 −
j2
r2
;

ϕðzÞ ¼ ωz; fðrÞ ¼ −Λer2 −M þ j22
r2
; ð2:12Þ

and Λe as in (2.9). In this context, Eq. (2.10) is fixing the
scalar charge in terms of the parameter space, which may
include the bare cosmological constant Λ and eventually
some other coupling constants from particular theories.
The string will be asymptotically AdS3 ×R if and only if
in the parameter space G2

G4
> 0,1 and it can be thought of as an

1In the other case, when the effective cosmological constant is
positive, the solution admits an extended cosmological horizon,
see e.g., [35]. In this work, we are focusing the interest on AdS
strings, and we do not further elaborate on this case.
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extension of the BTZ black hole, dressed with an effective
cosmological constant Λe.
There are some subtleties that we are now in position to

discuss. For example, one can impose G4ð0Þ ¼ 1 to reach
an Einstein limit in the absence of the scalar field. This
requirement, while natural, is double-edged: Although it
avoids the ill-definition of the denominators from Eqs. (2.9)
and (2.10), it induces the fixing of the scalar charge. To
clarify this point let us focus on Eq. (2.10), and argue by
contradiction. Suppose that the scalar charge is not fixed in
the parameter space, then (2.10) is a differential equation
that relates G2 with G4, in the form

G2ðXÞ ∝
G4ðXÞ3

X
:

Nevertheless, for G4ð0Þ ¼ 1 one obtains that G2ð0Þ is ill-
defined. This argument proves that for the scalar field
profile (1.4), its charge is always rigid in the full spectrum
of shift-symmetric Horndeski theories with Einstein limit.
Now that we know that the scalar charge is always fixed

in the parameter space, some special cases might occur. For
instance, it might exists a nonzero value X ¼ x⋆ in the
parameter space satisfying G4ðx⋆Þ ¼ 0. The equations on
the base manifold (2.7) force G2ðx⋆Þ to vanish, so that the
transverse section is trivial. In that scenario, the equa-
tions (2.9) and (2.10) are no longer valid, and the solution
for the string can be found by solving

R ¼ −
G2X

G4X

����
X¼x⋆

; ð2:13Þ

as long as the rhs is well-defined. Note that in this case, one
could obtain mathematically consistent, asymptotically
anti–de Sitter (AdS) strings even in the absence of the
kinetic term and the bare cosmological constant Λ.
Furthermore, if G2Xðx⋆Þ ¼ 0 and G4Xðx⋆Þ ≠ 0, asymptoti-
cally flat strings are feasible.
On the other hand, suppose nonzero X ¼ x⋆ such that

G4ðx⋆Þ ≠ 0, but 2x⋆G4Xðx⋆Þ −G4ðx⋆Þ ¼ 0, such that the
metric contribution in (2.8) is lost. Then, the string sector is
just setting an additional constraint, which has to be
satisfied in order to solve the system. In this case, one is
left with (2.7), and the following restrictions in the
parameter space,

G4ðx⋆Þ¼2x⋆G4Xðx⋆Þ; G2ðx⋆Þ¼2x⋆G2Xðx⋆Þ: ð2:14Þ

III. BLACK STRING THERMODYNAMICS

Having the black string solutions from the previous
section, we now turn to thermodynamic analysis. We
will focus on our AdS strings from model (2.5), comput-
ing the thermodynamic quantities in the Euclidean

approach [36,37]. The partition function of a thermody-
namic ensemble is identified with the Euclidean path
integral, in the saddle point approximation around the
continuation of the classical solution [37]. In doing so,
the time coordinate is periodic and its period β is the
inverse of the Hawking temperature, β ¼ T−1. The
Euclidean action is then related to the Gibbs free
energy G by

SE ¼ βG ¼ βM − S − βΩJ ; ð3:1Þ

where M, S, and J represent the mass, the entropy, and
the angular momentum of the black string, respectively.
In order to obtain the Gibbs free energy, in our case will
be enough to consider the Wick rotating ansatz (t → iτ) of
metric (1.3) [38], given by

ds2 ¼ NðrÞ2fðrÞdτ2 þ dr2

fðrÞ þ r2ðiJðrÞdτ þ dθÞ2 þ dz2;

ð3:2Þ

together with an axionic profile for the scalar field,
namely ϕ ¼ ϕðzÞ. The range for the integral will be
τ∈ ½0; β�, r ≥ rh, θ∈ ½0; σ�, and z∈ ½0; L�, where rh rep-
resents the location of the extended event horizon for the
string. As was mentioned in [13], shift symmetry protects
the theory for any stability concern related to the range
of z. Working on AdS3 ×R, the introduction of the cut-
off L ensures the volume of the codimension 2 manifold
is finite, ZZ

dθdz ¼ σL < ∞:

In other words, the quantities obtained here can be
effectively understood as densities. One also could con-
sider black rings instead of black strings using the one-
point compactification of the real line to study AdS3 × S1,
in which case L is directly finite since it stands for the
periodicity of the angle.
The main idea is to evaluate the action (2.5) on the

ansatz (3.2) and rewrite it in a reduced Hamiltonian form,

SE ¼
Z

d4x½NHþ NφHφ� þ B; ð3:3Þ

where B is a boundary term that matches the Euclidean
action when the Hamiltonian constraints

H ¼ 0; Hφ ¼ 0; ð3:4Þ

are satisfied. To fix the boundary term, one first imposes the
Euclidean action to reach a minimum around the solution,
δSE ¼ 0, requiring at the same time that the variation of the
boundary term, δB, cancels all the contributions coming
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from the variation of the bulk action [36]. In our case, the
reduced Hamiltonian is given by

H ¼ G4f0 − rG2 −
p2

2G4r3
; ð3:5Þ

where f0 ¼ df
dr and p is the conjugate momenta of

Nφ ¼ JðrÞ, defined as

Hφ ¼ p0ðrÞ ¼
�
G4ðXÞJ0ðrÞr3

NðrÞ
�0
: ð3:6Þ

The field equations obtained from the variation with respect
to the dynamic fields N, f, J, p, and ϕ reads

EN ≔ H ¼ 0; Ef ≔ G4N0ðrÞ ¼ 0;

EJ ≔ Hφ ¼ 0; Ep ≔ −
NðrÞp
G4r3

− J0ðrÞ ¼ 0;

and

Eϕ ≔ −ϕ̈
�
G4Xf0 − rG2X þ

p2G4X

2G2
4r

3

�

þ ϕ̇2ϕ̈

�
G4XXf0 − rG2XX −

p2

2r3

�
G4XXG2

4 − 2G2
4XG4

G4
4

��
¼ 0:

Here, ϕ̇ ¼ dϕ
dz. We can readily check the consistency of

these equations with the black string solution given
in Eq. (2.12).
At this point is important to recall that ω is fixed in terms

of the parameter space, as we viewed in Sec. II. Therefore,
in this work, we will consider a vanishing variation, namely
δω ¼ 0. Using this, the variation of the boundary term δB
simply reads

δB ¼ βσL½−G4ðXÞδf − JðrÞδp�jr¼∞
r¼rh : ð3:7Þ

In virtue of the field equation EJ ¼ 0, one has that p is
constant, and we normalize it to p ¼ 2j2G4ðXÞ, just to
match with the results exhibited in (2.12).
On the other hand, the temperature can be obtained by

demanding the Euclidean metric (3.2) not having conical
singularities, which in fact yields to

T ¼ NðrhÞf0ðrhÞ
4π

¼ −
Λer4h þ j22

2πr3h
: ð3:8Þ

Using the above, the variation of the metric function is
given by

δfjr¼∞ ¼ −δM; δfjr¼rh ¼ −
4π

β
δrh:

Working in the grand canonical ensemble, we obtain the
following boundary term:

B ¼ βσLG4M − 4πσLG4rh − βσLΩp; ð3:9Þ
where we have defined the angular velocity, Ω, as

Ω≡ Jð∞Þ − JðrhÞ ¼
j2
r2h

: ð3:10Þ

Therefore, the comparison between (3.1) and (3.9) allows
us to identify the thermodynamic quantities for the string.
In terms of the extended horizon rh, they are given by

M ¼ G4

�
−Λer2h þ

j22
r2h

�
σL;

S ¼ 4πG4rhσL; J ¼ 2G4j2σL; ð3:11Þ
and given these results, the mass and the entropy are
positive if G4ðXÞ > 0.
Plugging (3.11) and (3.8) into (3.1), one computes the

Gibbs free energy G for the string,

GðT;ΩÞ ¼ 4π2G4T2

Λe þ Ω2
σL: ð3:12Þ

Notice that the denominator is negative to ensure a positive
temperature (3.8). With this, when G4ðXÞ > 0 one can
check that

∂
2G
∂T2

≤ 0;
∂
2G
∂Ω2

≤ 0;
∂
2G
∂T2

∂
2G
∂Ω2

−
�

∂
2G

∂T∂Ω

�
2

≥ 0;

which means that G is a concave function, ensuring global
stability. Furthermore, it is also interesting to study local
stability, under small perturbations around the equilibrium.
In our case, the specific heat capacity cT and the isothermal
compressibility reads

cT ¼ T

�
∂S
∂T

�
¼ −

8π2G4T
Λe þ Ω2

σL; ð3:13Þ

κT ¼ 1

J

�
∂J
∂Ω

�
¼ Λe − 3Ω2

ΩðΛe þ Ω2Þ : ð3:14Þ

Again, local stability under thermal fluctuations requires
G4ðXÞ > 0.
We end this section showing that the thermodynamic

quantities (3.8), (3.11) satisfy a Smarr relation [39]. To see
this, we closely follow the ideas from [40]. It is straightfor-
ward to check that the reduced actions (3.3) and (3.5) is
invariant under the scalings:

r̄ ¼ ξr; f̄ ¼ ξ2f; N̄ ¼ ξ−2N;

ϕ̄ ¼ ϕ; J̄ ¼ ξ−2J; p̄ ¼ ξ2p:
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From this scaling symmetry, a direct application of the
Nöether theorem shows that the quantity

CðrÞ ¼ ½−G4ðXÞð−rf0 þ 2fÞ − JðrÞð−rp0 þ 2pÞ�σL
ð3:15Þ

is conserved, C0ðrÞ ¼ 0. Therefore one can evaluate the
above expression at the infinity and the horizon, and
Cð∞Þ ¼ CðrhÞ must hold. This leads to

Cð∞Þ ¼ 2G4ðXÞMσL ¼ 2M;

CðrhÞ ¼ ð−G4ðXÞð−4πTrhÞ − 2JðrhÞpÞσL ¼ TS þ 2ΩJ :

Hence, one gets

M ¼ 1

2
TS þ ΩJ ; ð3:16Þ

which is the Smarr relation.

IV. EXPLORING ANTI–DE SITTER
BLACK STRINGS IN SCALAR
GAUSS-BONNET THEORIES

It is now simple to revisit, for instance, the minimally
coupled case, which follows from G2ðXÞ ¼ −2Λþ X and
G4ðXÞ ¼ 1. Also note that our equations (2.7) and (2.8)
reproduce Eqs. (10) and (11) from Ref. [6].
Another simple example is the nonminimal coupling

between the scalar field and the Gauss-Bonnet density, ϕG,
as we briefly mentioned in the Introduction. In Galileon’s
formulation, this coupling is given by G5ðXÞ ¼ −4 ln X,
but since G5ðXÞ plays no role in the solution, we have left
again with the same results from [6], in agreement with our
hand-waving explanation.
As we have shown in Sec II, when the Horndeski model

admits an Einstein limit the scalar charge needs to be fixed
in terms of the parameter space, with some special cases
that might occur depending on the specific choice of the
functions G2ðXÞ and G4ðXÞ. In this section we would like
to consider an explicit example to cover those scenarios. To
that end, and just for simplicity, we can pick the following
combination consisting in a quadratic functionG2ðXÞ and a
linear function G4ðXÞ:

G2ðXÞ ¼ −2Λþ ηX þ 8αX2; G4ðXÞ ¼ 1þ 4αX;

where Λ, α, and η are parameters. Recall that G3ðXÞ and
G5ðXÞ are not needed to generate a string solution, because
for the ansatz (1.3) these terms, and their variations, vanish.
Nevertheless, they can always be introduced with a
physical meaning. In particular, when G3ðXÞ and G5ðXÞ
are chosen as

G3ðXÞ ¼ −8αX; G5ðXÞ ¼ 4α ln jXj;

one realizes that the action principle reads

S½gμν;ϕ�¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½R−2ΛþηX

−αðϕG−4Gμν∇μϕ∇νϕþ8X□ϕ−8X2Þ�: ð4:1Þ

These choices allow us to interpret the action (4.1) as an
extension of the minimally coupled case with a specific
combination, that has been coined in the literature as scalar
Gauss-Bonnet theories [41–45] because it generalizes the
five-dimensional Einstein-Gauss-Bonnet density in a four-
dimensional background. This particular nonminimal inter-
action between the scalar field and gravity that can also be
obtained by demanding conformal invariance to the Klein-
Gordon equation [46], and as a singular limit from D
dimensional conformal invariant theories [47–49]. The
analysis of the action (4.1) includes the possibility of
discuss black strings in the scalar Gauss-Bonnet model by
setting η ¼ 0, and to make contact with the minimally
coupled case when α ¼ 0.
First, note that if α > 0, then x⋆ ¼ − 1

4α is a nonzero
value satisfying G4ðx⋆Þ ¼ 0. Thus, the scalar charge is
fixed by ω2 ¼ 1

2α. As we saw in Sec. II we must have

G2ðx⋆Þ ¼ 0 ⇒ Λ ¼ 2 − η

8α
;

and consequently, the metric function is obtained by
solving (2.13), with

G2X

G4X
¼ ηþ 16αX

4α

����
X¼x⋆

¼ η − 4

4α
:

Note that in this case Eq. (2.13) relates three independent
functions, hence one expects a degenerate behavior. For
example, fixing NðrÞ ¼ 1 one can cast the metric as

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðJðrÞdtþ dθÞ2 þ dz2; ð4:2Þ

fðrÞ ¼ ðη − 4Þr2
24α

þ C1

r
þ C2 þ

1

2r2

Z
r4ðJ0ðrÞÞ2dr;

ϕðzÞ ¼ zffiffiffiffiffiffi
2α

p ; ð4:3Þ

Here C1 and C2 are integration constants coming from the
equation (2.13), and JðrÞ is a free function. One can note
that for η ¼ 4, the static case admits asymptotically flat
solutions provided α > 0, followed by a time scaling. We
highlight that these solutions are degenerate because the on
shell action vanishes at the point X ¼ x⋆, therefore they
cannot be seen either as an extension of the BTZ black hole
or Schwarzschild black holes. For this reason, we do not
further elaborate on this particular solution.
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Aside of the mentioned case, applying the constraint
(2.10) for the model (4.1) fixes the scalar charge ω in terms
of Λ, α, and η via a fourth-order algebraic equation,

αð6 − ηÞω4 − ð8αΛþ ηÞω2 − 2Λ ¼ 0; ð4:4Þ

which can be solved explicitly as

ω ¼ �
�ð8αΛþ ηÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8αΛþ ηÞ2 þ 8αΛð6 − ηÞ

p
2αð6 − ηÞ

�1=2

:

ð4:5Þ

Therefore, and using Λe as defined in (2.9), the metric
for the black string in this theory can be cast as (2.12)

ds2 ¼ −N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2ðJðrÞdtþ dθÞ2 þ dz2;

NðrÞ ¼ 1; fðrÞ ¼ −Λer2 −M þ j22
r2
;

JðrÞ ¼ j1 −
j2
r2
; ϕðzÞ ¼ ωz;

and

Λe ¼ −
ω2ðη − 8αω2Þ
4ð1þ 4αω2Þ ; ð4:6Þ

where ω is defined in (4.5). The expression for Λe in terms
of α, η, and Λ is not illuminating, so we have decided not to
display it. The black string is asymptotically AdS3 ×R as
long as Λe < 0, with an effective AdS3 curvature radius
given by

1

l
≡ −Λe: ð4:7Þ

Before starting the analysis of the scalar charge in the
parameter space, and subsequently the black string sol-
ution, let us briefly comment some general aspects. Note in
the first place that the parameter space contains three
continuous parameters ðα;Λ; ηÞ, and we have imposed
by hand η ≥ 0 to avoid phantom scalars. In the following,
we will further restrict ourselves to η∈ f0; 1; 6g because we
can keep track of the phenomenology in the absence of the
minimal coupling (η ¼ 0), the standard case η ¼ 1, and
the ill-definition in the denominator in (4.5). Of course,
other cases might be studied as well, but they do not
provide further insights. For the same reasons, the case
η ¼ 6 is left as an appendix (Appendix).
Secondly, the smooth limit α → 0 in (4.4) recovers the

minimally coupled case from Ref. [6]. One can directly
check in virtue of (4.4) that the kinetic term was mandatory
to avoid the vanishing of the cosmological constant Λ.

We take this fact as an input to split the rest of the analysis
depending on the sign of α.
Thirdly, although the action (4.1) does not possess parity

invariance (ϕ → −ϕ), as we mentioned in Sec. II it is
recovered on shell, thus the analysis can be carried out
independent of the outer sign of ω. We will present some
plots using the positive outer sign just for convenience.
However, some differences are likely to appear because of
the internal � sign in (4.5). We will refer to them as the
positive and negative branches of ω, hoping that these
nicknames can be illustrative of the different outcomes due
to this sign.
Last but not least, since the case G4ðx⋆Þ ¼ 0 was

discussed earlier, until the end of this section we will
assume G4ðXÞ ¼ 1þ 4αX ≠ 0; ∀ X.

A. α > 0

First, let us take a look in the η ¼ 0 case, which means
that the minimal coupling is absent. Regarding to the
domain constraints imposed by (4.5), Λ has to be restricted
to non-negative values, and the negative branch of ω is
forbidden due to mathematical inconsistencies. Moreover,
it follows from (4.6) that Λe is positive, thus cosmological
horizons appear.
The standard coupling η ¼ 1 is more interesting. First,

both branches are allowed when Λ belongs to the interval

I ¼
�
−7þ 3

ffiffiffi
5

p

16α
; 0

�
: ð4:8Þ

The negative branch ceases to exists outside this interval, in
contrast with its positive counterpart (see Fig. 1 below).
When Λ attains its minimum on I, both branches fix the

FIG. 1. ω in terms of Λ, for α > 0. The red plot (solid)
corresponds to the positive branch of ω, that is, considering
the þ sign in front of the inner square root in (4.5), and in blue
(dashed) we plot its negative branch. Note that, for a given α > 0
and Λ∈ I, two possible values of ω are allowed. Since α is a scale
factor, here we have set α ¼ 0.01 for plotting convenience.
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scalar charge to the same value, ω2 ¼ 3
ffiffi
5

p
−5

20α . From this
results, it is observed that the coupling constant α is in some
sense a scale factor, so changing its value will not modify
the conclusions. In the next figure, we illustrate both
branches of ω in terms of Λ.
In virtue of the Eq. (4.6), the effective cosmological

constant has a zero at

ω2 ¼ 0;∧ ω2 ¼ 1

8α
; ð4:9Þ

but ω ¼ 0 turns off the scalar field. Sticking to non-
vanishing values of ω, AdS strings are obtained for the
minimally coupled case when

ω2 <
1

8α
; ð4:10Þ

range that agrees with G4ðXÞ > 0 because

1þ 4αX > 0⇔ ω2 <
1

2α
;

therefore, from the thermodynamic analysis performed in
Sec. III we can ensure thermodynamic stability for these
AdS strings. As we see in Fig. 2 below, the negative branch
always provides AdS strings for allΛ∈ I, while the positive
branch do the same but in a restricted domain,

−7þ 3
ffiffiffi
5

p

16α
≤ Λ < −

1

64α
: ð4:11Þ

From the previous discussion, and as it can be seen in the
figure above, when Λ satisfies (4.11) both branches dress
the string with an AdS asymptotic. A natural question is

which solution is more stable. To answer this, one can
compute their Gibbs free energies, putting the strings at
the same temperature T and angular velocity Ω [50]. The
branch with lower Gibbs energy will be preferred. For
simplicity, we analyze the static case, Ω ¼ 0. In the general
case, one should consider the restriction Λe þ Ω2 < 0
in (3.12) that ensures a positive temperature (3.8). This
induces additional constraints in Λ and α, but no new
insights.
Let us work out these ideas. In the first place, we recast

the generic expression for the Gibbs free energy (3.12) in
terms of Λe and the extended horizon rh,

G ¼ G4ðXÞΛer2h: ð4:12Þ

Bathing both strings at the same temperature induces

Λþ
e r

þ
h ¼ Λ−

e r−h ;

(the superscript refers to the branch used) which leads to

ΔG≡Gþ −G− ¼ Λþ
e ðrþh Þ2

�
G4ðXþÞ −G4ðX−ÞΛ

þ
e

Λ−
e

�
;

ð4:13Þ

The evaluation of the difference using both ω-branches
(4.5) and their respective cosmological constants Λ�

e (4.6)
gives as a result that the positive branch is preferred, as we
can see in Fig. 3.
Recall that when Λ attain its minimum, the scalar charge

(and therefore Λe) has the same value on both branches (cf.,
Fig. 1). It follows that the difference between both Gibbs
free energies will vanish. This corresponds to the zero on

FIG. 2. Λe in terms of Λ for positive values of α and η ¼ 1. The
black star is located at ð− 1

64α ; 0Þ, where the effective cosmo-
logical constant is zero. Recall that for η ¼ 0, no event horizons
appear.

FIG. 3. Difference between the Gibbs energies computed for
the positive and negative branches. In this plot, we have set α ¼ 1

and scaled the vertical axis by a 102 factor. The horizontal axis
runs over the range (4.11), where both branches dress the string
with an AdS asymptotic.
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the left of the plot. On the other corner lies Λ ¼ − 1
64α, in

which case Λþ
e ¼ 0.

B. α < 0

For negative values of α, the domain for the positive
branch is given by

(
Λ ≥ − 3

4α ; when η ¼ 0;

Λ ≥ − 7þ3
ffiffi
5

p
16α ; when η ¼ 1:

In this region, both branches coexist. Nevertheless, the
negative branch is also allowed for negative values of Λ,
which is mathematically inconsistent for its positive
counterpart. In Fig. 4, a typical plot representing the values
of the scalar charge in terms of Λ:
AdS-strings are feasible only in the negative branch.

Note that thermodynamic stability is ensured since
G4ðXÞ ¼ 1þ 4αX is always positive when α < 0. We
further notice that for η ¼ 0, the value Λe is equal for
both cases. In turn, evaluating Λe one gets

Λþ
e − Λ−

e ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8αΛþ ηÞ2 þ 8αΛð6 − ηÞ

p
3αð6 − ηÞ ;

which clearly vanishes when η ¼ 0. The representative plot
to visualize the above is the shown in Fig. 5.
We end this section observing that in this region the

value x⋆ ¼ 1
4α is such that G4ðx⋆Þ ¼ 2, but G4ðx⋆Þ−

2x⋆G4Xðx⋆Þ ¼ 0. As we saw in the Sec. II, the string
equation imposes a further constraint on G2 (2.14); namely,

G2ðx⋆Þ − 2x⋆G2Xðx⋆Þ ¼ 0 ⇒ Λ ¼ −
ηþ 6

8α
: ð4:14Þ

Hence, applying these constraints to the effective cos-
mological constant (2.9), one gets

Λe ¼ −
G2ðx⋆Þ
2G4ðx⋆Þ

¼ −
ηþ 4

8α
> 0;

obtaining a cosmological horizon.

V. DISCUSSION AND FURTHER COMMENTS

In summary, in this work, we have explored four-
dimensional black strings in the framework of Horndeski
models with shift invariance. Imposing that the scalar field
depends only on the coordinate that spans the Euclidean
extension, rotating and asymptotically AdS3 × R black
strings in the full shift-symmetric spectrum were found,
generalizing prior results with minimal couplings [6]. In
this regard, the string still is an extension of the BTZ black
hole, but dressed with an effective cosmological constant.
We also have shown that the existence of AdS strings in the
absence of the bare cosmological constant is technically
possible. The fixing of the scalar charge in the parameter
space is possible as long as the theory admits an Einstein
limit [i.e., G4ð0Þ ¼ 1 in terms of the Galileon formulation
of Horndeski theory [32,33]]. If that is not the case,
one could have mathematically consistent hairy scenarios.
For instance, the choice G2ðXÞ ¼ −2ΛG4ðXÞ ¼ −2Λ

ffiffiffiffiffiffiffi
−X

p
satisfies the string equation trivially (2.8), and therefore the
scalar charge is no longer fixed.
Planar AdS black holes admit a soliton counterpart,

conjectured to be the lowest-energy solutions, and therefore
they can be naturally chosen as the ground state of the
theory [51]. In that case, phase transitions for the planar
AdS black hole can occur [52]. In the general case, our
solution (2.12) also admits a soliton-like counterpart, which
can be obtained by a double analytic continuation (t ↦ iχ,
θ ↦ iτ) on the black string metric. Thus, one can also

FIG. 5. Λe in terms of Λ for negative values of α. Only the
negative branch admits asymptotically AdS strings, for Λ < 0.

FIG. 4. ω in terms of Λ for negative values of α. The
positive branch is not allowed for negative values of Λ, as
expected from (4.5).
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explore if phase transitions are possible in this case.
Focusing on the static case for simplicity, the metric for
the soliton reads

ds2ðsÞ ¼ −ρ2dτ2 þ dρ2

gðρÞ þ gðρÞdχ2 þ dz2; ð5:1Þ

where gðρÞ ¼ −Λeρ
2 − μ, and μ is an integration constant.

For both solutions to share the same asymptotic geometry
and behavior, one imposes matching conditions at both
boundary geometries, demanding periodicity in a suitable
manner [53]. For instance, notice that in contrast with the
black string, the soliton coordinate χ needs to be periodic to
get rid of conical singularities. Its period, σðsÞ, must be

σðsÞ ¼
4π

g0ðρ0Þ
;

where ρ0 is the largest root of gðρÞ ¼ 0, which induces an
extra ingredient in the asymptotic geometry of the string.
When the matching conditions are fulfilled, computing the
difference between the Gibbs energies ΔG≡G −G0

directly leads to a phase transition at a critical temperature

Tc ¼
ffiffiffiffiffiffiffiffiffi
−Λe

p
2π

:

Our results are similar to those of [13]; a first-order phase
transition is supported by the existence of the scalar field,
the soliton is preferred when T < Tc and the string in the
other case, T > Tc.
We have also explored a concrete example using a

quadratic choice for G2ðXÞ [cf. (4.1)]. This allows us to
find a range for Λ in which two different values for the
scalar charge are possible, but no phase transitions between
those configurations were observed. The difference
between the Gibbs free energies vanishes on the boundary
of the common interval (4.11), and one configuration is
always preferred in its interior.
In this work, we have centered the attention on the four-

dimensional scenario because Horndeski guarantees to be
the most general scalar-tensor theory there. Very recently, a
no-hair theorem was proven for asymptotically flat and
circular black holes in any shift-symmetric model, includ-
ing higher-derivative extensions of Horndeski models [54],
generalizing similar results from Galileon’s theory [16].
Unfortunately, lifting our ideas to higher dimensions is not
an immediate task. Starting from the known fact that there
is no analog of the Horndeski result, higher-order gravi-
tational extensions are also allowed since the Gauss-Bonnet
density (1.6) is no longer a total derivative, and its
dynamics affect the equations (see, e.g., [55–58]). For
the same reasons, the coupling ϕG loses translation
symmetry in five dimensions, therefore the simple idea
of casting a 4D shift-invariant model in five dimensions

might have nonexpected consequences. Our toy model
(4.1) provides an interesting example; casting (4.1) in
D ¼ 5 (using as a base manifold a four-dimensional
maximally symmetric spacetime and one extended coor-
dinate), when the scalar field linearly depends on the string
coordinate the matching between the transverse sector
and the string coordinate is only consistent with the
extension of flat space on the sphere. Nevertheless, if
one restricts the problem just to analyze (2.5) as a particular
case, one can go to arbitraryD ¼ dþ 1 dimensions, taking
a d-dimensional Einstein manifold, and one extended
coordinate.
For the same reasons as in the previous paragraph,

exploring our toy model (4.1) in five dimensions also
constitutes an interesting route to extend this work. Not
only the mass parameter is lost in the attempt to match the
transverse section with the string equation, but since ϕG is
nontrivial, the latter possesses a z dependency that fixes
the parameter space in such a way that Λe ¼ 0. Employing
some known techniques to endow a mass parameter into the
above extension would be an interesting problem. A valid
option is to try with the introduction of additional sources,
such as nonlinear electrodynamics [59] (see [60] for a
recent review), that have been widely explored as an
excellent laboratory to provide a charge-to-mass ratio that
circumvents massless situations [45,61,62]. These incom-
patibilities result from the scalar field’s linearity and open a
window to look for nonlinear profiles.
The existence of linear unstable modes can also be a

followup question for these strings. The minimally coupled
case was proven to be stable [7], but in the general case,
the answer is not clear. Even if one sticks to recast the
action (2.5) in five dimensions, the Klein-Gordon equation
now considers arbitrary functions G2ðXÞ and G4ðXÞ that
might trigger an instability. In that sense, some additional
restrictions might help to stabilize these strings in the
general setup.
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APPENDIX: THE η= 6 CASE

As it can be seen from (4.4) when η ¼ 6 the scalar X is
fixed in terms of a linear equation instead of a quadratic one
(or equivalently, the scalar charge is fixed via a quadratic
equation instead of a fourth-order one). This leads to

ω2 ¼ −Λ
4αΛþ 3

; ðA1Þ
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whose solution exists when the rhs is non-negative. Hence,
for nonvanishing values of Λ, the rhs is positive for

α < −
3

4Λ
: ðA2Þ

Computing Λe from (2.9), one gets

Λe ¼
ð16αΛþ 9ÞΛ
6ð4αΛþ 3Þ ; ðA3Þ

therefore, the effective cosmological constant is negative
when

�− 3
4Λ < α < − 9

16Λ ; if Λ > 0

α < − 9
16Λ ∨ α > − 3

4Λ ; if Λ < 0;

but, at the time of making it consistent with (A2), one
observes that AdS strings are not possible for Λ > 0, and
restricts α to

α < −
3

4Λ
;

when Λ is negative.
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