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Gravitational waves (GWs) from binary neutron stars (NSs) have opened unique opportunities to
constrain the nuclear equation of state by measuring tidal effects associated with the excitation of
characteristic modes of the NSs. This includes gravitomagnetic modes induced by the Coriolis effect whose
frequencies are proportional to the NS’s spin frequency. The NS’s spin orientation determines which
subclass of gravitomagnetic modes are predominantly excited. We incorporate these effects in GW models
needed for data analysis by encapsulating the adiabatic signatures from gravitomagnetic modes in slowly
rotating NSs in an effective Love number which differs before and after a mode resonance and combining
this with a known generic model for abrupt changes in the GWs at the mode resonance. This leads to an
efficient approximate model that adds to a point-mass baseline and which we use to perform case studies
of the impacts of gravitomagnetic effects for measurements with Cosmic Explorer, an envisioned next-
generation GW detector. We quantify the extent to which neglecting (including) the effect of
gravitomagnetic modes induces biases (significantly reduces statistical errors) in the measured tidal
deformability parameters, which depend on the equation of state. Our results substantiate the importance of
dynamical gravitomagnetic tidal effects for measurements with third-generation detectors.
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I. INTRODUCTION

The gravitational wave (GW) discovery of the binary
neutron star (NS) inspiral GW170817 [1] provided, for the
first time, a purely gravitational channel for probing the
properties of dense matter in NS interiors, whose equation
of state remains poorly constrained [2,3]. While this event
provided the first empirical constraints with GWs, more
precise measurements of the equation of state will become
possible as existing detectors (such as LIGO [4], Virgo [5],
KAGRA [6]) improve in sensitivity in the coming years [7]
and next-decade’s envisioned third-generation facilities
such as Einstein Telescope [8] and Cosmic Explorer [9]
become operational. These next-generation detectors will
have a much higher sensitivity and wider bandwidth, thus
opening opportunities for transformative insights into
dense matter under extreme gravity [10–12]. Realizing
this science potential critically relies on accurate theoretical

models of the GWs from binary systems including
matter effects. Such models underpin the inference of
source properties from the GW data, as reviewed in [13].
To date, GW measurements have only been sensitive to the
dominant effects of NS matter on the signals that are
characterized by an equation-of-state-dependent tidal
deformability parameter. The relatively large statistical
errors in these measurements dominated over systematic
errors [14], with the latter, e.g., due to shortcomings in the
modeling. However, similar measurements at a higher
sensitivity or with future detectors will require models that
are significantly more accurate and include more realistic
physics to avoid biases in the interpretation and enable
more stringent constraints on NS matter [15–20].
During a binary inspiral, the GW signatures of the

properties of matter are due to spin and tidal effects.
Tidal effects encompass various phenomena associated
with the resonant or nonresonant excitation of characteristic
oscillation modes of the NS, whose properties are set by the
physics of the dense subatomic matter in their interiors. The
modes are driven by the tidal fields of the companion,
which vary in time due to the orbital motion. Relativistic
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tidal fields can be decomposed into gravitoelectric and
gravitomagnetic fields depending on their parity properties.
The former are familiar from Newtonian gravity and
involved in the dominant tidal effects due to the funda-
mental modes of the NS. The fundamental modes have the
strongest tidal couplings and relatively high resonance
frequencies, which results in their excitation remaining
nonresonant for most of a quasicircular inspiral [21–23].
By contrast, gravitomagnetic tidal fields associated with
relativistic frame-dragging effects lead to the excitation of
inertial modes of NSs whose frequencies are proportional
to the spin [24–28] and will thus invariably pass through
tidal resonances in binary inspirals. The resonant energy
and angular momentum transfer between the modes, orbit,
and GWs leads to comparatively sudden changes in the GW
frequency evolution, thus contributing a small but distinc-
tive feature to the signals.
There has been much previous work on gravitomagnetic

modes of NSs, which are associated with the Coriolis effect
and include inertial modes such as the “r modes” [29–32].
Flanagan and Racine [33] computed the direct effects of
the resonance on the dynamics and developed an effective
waveform model for the resulting GW imprints. This
model was recently revisited to assess the impact for
measuring tidal deformabilities with next-generation detec-
tors [34–36]; see [37] for use of the model for other classes
of modes and [38] for studies of inertial modes in
postmerger GWs. Previous studies have also modeled
and examined the effect of nonresonant gravitomagnetic
tides on the inferred tidal deformability [39] and included
them in an effective one body model [40]. However, the
conclusions were limited due to an interesting feature of the
response of NS matter and spacetime to a gravitomagnetic
tidal perturbation: it is characterized by two kinds of
gravitomagnetic tidal deformabilities depending on the
assumptions on the state of the perturbed fluid [41–46].
As shown in [47], both play a role for GWs as different
linear combinations of both tidal deformabilities character-
ize the asymptotic limits of the tidal response of the NS
before and after a gravitomagnetic mode resonance.
In this paper, we first derive an explicit expression for the

effective gravitomagnetic response function characterizing
the ratio of the induced current quadrupole moment to
the gravitomagnetic tidal field. We specialize to a binary
system at large separation with arbitrary spin orientations
and low spin magnitudes. The asymptotic limits of the
effective response before and after resonance yield the
relevant combinations of the gravitomagnetic tidal deform-
abilities or Love numbers in the different adiabatic regimes
far from resonances. A new aspect in this paper is that we
include these effects together with the direct resonance-
induced changes in the GWs from [33,34]. These previous
studies further adopted a Newtonian description of NSs to
compute the GW signatures. Here, we instead map all
equation-of-state-dependent parameters that appear in the

resonance expressions (tidal couplings and resonance
frequencies of the modes) to their fully relativistic counter-
parts. In general, multiple quadrupolar gravitomagnetic
modes with azimuthal number jmj ¼ 1, 2 are resonantly
excited in an inspiral, however, within our approximations,
certain spin orientations favor the excitation of only one
of such subclass [33], which we exploit to simplify our
exploratory study. We also make use of previous findings
that, for NSs, the equation-of-state information contained in
gravitomagnetic Love numbers can be approximately
related to the gravitoelectric tidal deformability parameter
Λ, which reduces the number of signal parameters [39,48].
Furthermore, as the full parameter estimation in the entire
parameter space for binary NS signals in third-generation
detectors is extremely computationally expensive, we focus
most of the analyses on a four-dimensional subspace
and consider only a few case studies. While all of these
assumptions are restrictive, our aim is to scope out the
importance of gravitomagnetic modes for GW measure-
ments with third-generation detectors using a more realistic
model of these effects than in related previous studies. We
first estimate the plausible changes in the width of the
posterior distributions when using Bayesian data analysis
with Markov chain Monte Carlo pipelines versus the Fisher
matrix analysis, perform a number of sanity checks on the
results, and compare with previous work. We then study the
impact of different mode resonances and the asymptotic
adiabatic contributions on the accuracy with which tidal
deformability can be measured, as well as the biases
incurred when neglecting the gravitomagnetic effects.
The paper is organized as follows. In Sec. II we obtain

the effective Love number and discuss its features and the
description of gravitomagnetic tidal effects far from reso-
nance. In Sec. III we incorporate these results into a
frequency-domain waveform model. We discuss the data
analysis framework in Sec. IV and the results in Sec. V.
Section VII contains our conclusions and outlook.
Unless otherwise specified, we use geometric units

G ¼ c ¼ 1. We use capital Latin letters from the middle
of the alphabet I; J; K;… to denote spatial components
of a tensor expressed in the rest frame of a NS. These
indices are raised and lowered with the flat Cartesian three-
metric δIJ, thus, their up or down placement has no
meaning. We use the Einstein summation convention that
repeated indices are implied to be summed over. We also
use round brackets around indices to denote their symmet-
rization, for instance, for two vectors xI and vJ we denote
xðIvJÞ ¼ ðxIvJ þ xJvIÞ=2.

II. EFFECTIVE GRAVITOMAGNETIC
LOVE NUMBER

In this section, we review the identification of an
effective Love number based on a general relativistic
formalism for slowly rotating bodies to linear order in
the spin [47]. We calculate an explicit expression for the
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Love number using the leading-order gravitomagnetic tidal
fields in a binary system. We also derive the corresponding
adiabatic limits for arbitrary spin orientations by perform-
ing an orbit average. Our results focus on the quadrupole
which is expected to give the largest effect and makes use
of different approximation schemes adapted to the hier-
archy of length scales and timescales in a binary inspiral, as
explained in [47].

A. Definition of gravitomagnetic Love numbers

ANS immersed in an external gravitomagnetic tidal field
BIJ will develop an induced flux quadrupole moment J IJ.
The gravitomagnetic quadrupolar Love number, which we
denote by σ, is defined as the ratio

σ ¼ 1

2

J IJ

BIJ : ð2:1aÞ

Alternatively, σ can be identified as the coupling coefficient
in the Lagrangian [47] describing gravitomagnetic tides in
the adiabatic limit according to the conventions

LB
ad ¼

2σ

3
BIJBIJ: ð2:1bÞ

Calculations of magnetic Love numbers based on relativ-
istic perturbations of a NS revealed that magnetic quad-
rupolar Love numbers σ can be of two types [41–46]:
assuming that, under perturbations, the fluid of a non-
rotating NS remains static leads to the static Love number
σstat, while assuming it to be irrotational yields a different
result σirrot. As discussed in [47] and below, both Love
numbers are relevant for characterizing the gravitomagnetic
tidal response of a NS asymptotically far from a mode
resonance.

1. Effective frequency-dependent Love number

When going beyond the restriction to adiabatic limits,
the tidal deformability generalizes to an effective fre-
quency-dependent response function. Its particular form
is obtained by considering the dynamics of the matter
contributions to the flux quadrupole momentQIJ

B described
by the Lagrangian given in Eq. (3.17) of [47] as

LB ≈ −
3

32ðσirrot − σstatÞ
h
Q̇IJ

B Q̇
IJ
B − 2ω̂BΩJKQ̇IJ

B Q
KI
B

i

−
1

2
BIJQ̇IJ

B þ 2σstat
3

BIJBIJ: ð2:2Þ

Here, overdots denote proper time derivatives and the
tensor ΩIJ is related to the NS’s spin frequency Ω by

ΩIJ ¼ ϵIJKΩK; ð2:3Þ

where ϵIJK is the Levi-Civita permutation tensor. The
dimensionless frequency quantity ω̂B is given in terms
of the quadrupolar gravitomagnetic mode frequencies in the
corotating frame ωB

2m, where l ¼ 2 denotes the quadrupolar
modes and m the azimuthal mode number, by

ω̂B ¼ ωB
2m

mΩ
: ð2:4Þ

In the Newtonian limit, the mode frequencies ωB
2m reduce

to ωNewt
2m ¼ −mΩ=3 in this frame, making (2.4) indepen-

dent of m.
To obtain an effective adiabatic Lagrangian in the form

of (2.1) we integrate the first term in (2.2) by parts and
neglect the total time derivative. We then eliminate the
acceleration Q̈IJ

B by using the oscillator equations of motion

Q̈IJ
B − 2ω̂BΩKðIQ̇JÞK

B ¼ 8

3
ðσirrot − σstatÞḂIJ: ð2:5Þ

Substituting these equations of motion (2.5) for Q̈IJ
B into the

Lagrangian and omitting total derivatives leads to

L̄B ≈ −
1

4
BIJQ̇IJ

B þ 2σstat
3

BIJBIJ; ð2:6Þ

which is only valid for configurations of the system that
satisfy the equations of motion (2.5).
We identify the effective response function by requiring

that the Lagrangian (2.6) take the form of the adiabatic
Lagrangian (2.1) with σ replaced by an effective Love
number

L̄B¼! 2σeff
3

BIJBIJ: ð2:7Þ

Omitting total derivatives, this leads to the identification of
an instantaneous (inst) effective Love number

σinsteff ¼ − 3
8
BIJQ̇IJ

B þ σstatBIJBIJ

BKLBKL
: ð2:8Þ

This result for an effective Love number still has undesir-
able features, for instance, it varies over an orbit and the
definition is not unique due to the different ways of
assigning the time derivatives up to total derivative terms.
For example, the first term in the numerator of (2.8)
could equivalently be written as 3ḂIJQIJ

B =8. These subtle-
ties disappear when we impose that the above definitions
hold only at the level of the orbit-averaged Lagrangians.
Denoting the orbit average by angular brackets, we define
the effective Love number by

σeff ¼ σstat −
3

8

hBIJQ̇IJ
B i

hBIJBIJi
; ð2:9Þ
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with Q̇IJ
B a solution to the equations of motion (2.5). This is

effectively an expansion in the ratio of orbital and radiation-
reaction timescales. The approximation becomes less
accurate in the later inspiral: for an example of two neutron
stars at (10, 1 kHz) GW frequency, the corrections are of
order∼ð10−8; 10−2Þ. This is sufficient for our purposes here
to scope out the consequences for measurements; we plan
to develop a refined model in future work. The above
definition of the effective Love number (2.9) becomes more
transparent when expressed in terms of the flux quadrupole
defined in (2.1) which, as discussed in [47], is given by
J IJ ¼ 2σstatBIJ − 3Q̇IJ

B =4. With this,

σeff ¼
1

2

hBIJJ IJi
hBIJBIJi

; ð2:10Þ

which is directly analogous to the definition in the gravito-
electric case.

B. Application to a binary system

To obtain an explicit expression for the effective Love
number requires specifying the relevant tidal field BIJ.
Here, we consider a binary system composed of the NS
with mass M1 and a point-mass companion M2 at large
orbital separation. We work in the center of mass frame of
the NS and introduce a coordinate system in which the
position of the center of mass of the companion is zðtÞ
and its velocity is żðtÞ. The gravitomagnetic tidal field Bij

due to the companion is then given to the leading post-
Newtonian order by [33]

Bij ¼
6M2

r5
zðiϵjÞklzkżl; ð2:11Þ

where r is the relative separation and we use lowercase latin
indices for the spatial components of tensors in this frame.
We further specialize to quasicircular orbits of constant

radius ṙ ¼ ̈r ¼ 0 and parametrize the orbit using two
angles: the azimuthal orbital phase ϕ and the inclination
angle ψ of the spin axis of the NS relative to the orbital
angular momentum such that the position vector becomes

zðtÞ ¼ rðcosψ cosϕðtÞ; sinϕðtÞ; sinψ cosϕðtÞÞ: ð2:12Þ

The spin inclination angle ψ is often approximated as
constant because its change is very small [34,49]. The
transformation of (2.11) from the NS’s center of mass
frame to the corotating frame is given by

BIJ ¼ Ri
IR

j
JBij; ð2:13Þ

where Ri
I are rotation matrices. We assume that the NS’s

spin is along the z axis in the corotating frame such that
Ω¼ð0;0;ΩÞ and R1

1¼R2
2¼ cosðΩtÞ, R2

1 ¼ sinðΩtÞ ¼ −R1
2,

R3
3¼1with all other components vanishing. The body label

1 on Ω is implied here. To reduce (2.9) to a function of the
orbital parameters also requires the steady-state solution
of the oscillator equations of motion (2.5). This is most
conveniently calculated in a spherical-harmonic basis,
using that

QIJ
B ¼ N2

X
m

Y2m
IJ Q

B
m; ð2:14Þ

where N2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8π=15

p
and Y2m

IJ are symmetric-trace-free
tensors whose components are complex numbers [50]. We
use a similar decomposition as (2.14) for BIJ. The equa-
tions of motion (2.5) can then be expressed as

Q̈B
m þ imΩω̂BQ̇B

m ¼ −
8

3
ðσirrot − σstatÞḂm: ð2:15Þ

In order to solve (2.15) for the case of interest here,
we extract from (2.11)–(2.13) the spherical-harmonic
components

Bm ¼ N2Y�2m
IJ BIJ; ð2:16Þ

where the asterisk denotes complex conjugation. For
circular orbits, these coefficients are given by

2B2e−2iΩt ¼ B̄ð2i sinψ sinϕ − sin 2ψ cosϕÞ; ð2:17aÞ

B1e−iΩt ¼ B̄ði cosψ sinϕ − cos 2ψ cosϕÞ; ð2:17bÞ

B0 ¼ B̄
ffiffiffiffiffiffiffiffi
3=2

p
cosϕ sin 2ψ ; ð2:17cÞ

with

B̄ ¼ 3M2ω

r2
; ω ¼ ϕ̇: ð2:17dÞ

The results for negative m are obtained from the relation

B−m ¼ ð−1ÞmB�
m: ð2:18Þ

Using these forcing terms in the equations of
motion (2.15) and solving for steady-state solutions for
QB

m leads to

Q2e−2iΩt ¼
8B̄ðσirrot − σstatÞ

3D2

½iA2;scϕ þ C2;ssϕ�; ð2:19aÞ

Q1e−iΩt ¼
8B̄ðσirrot − σstatÞ

3D1

½iA1;ccϕ þ C1;csϕ�; ð2:19bÞ

Q0 ¼ −4
ffiffiffi
6

p M2ðσirrot − σstatÞ
r2

sin 2ψ sinϕ; ð2:19cÞ
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where cϕ ¼ cosðϕÞ, sϕ ¼ sinðϕÞ, and

Am;s ¼ ω sinψ þ ð1þ ω̂BÞΩ sin 2ψ ; ð2:19dÞ

Cm;s ¼ mΩð1þ ω̂BÞ sinψ þ ω

m
sin 2ψ ; ð2:19eÞ

with the corresponding quantities with subscripts c
obtained by replacing “sin” by “cos” in the above expres-
sions. The denominators in (2.19) are given by

Dm ¼ �
ω −mΩð1þ ω̂BÞ��ωþmΩð1þ ω̂BÞ�: ð2:19fÞ

The final step is to use these results to obtain the
effective Love number. The relevant tensor contractions
entering (2.9) are given by

BIJBIJ ¼ 2B̄2; Q̇IJBIJ ¼
X2
m¼−2

Q̇mB−m: ð2:20Þ

Using (2.20) in (2.9) leads to the instantaneous effective
Love number. Performing an orbit average for the case
considered here amounts to

σeff ¼ σstat −
3

16B̄2

ω

2π

Z
2π=ω

0

X2
m¼−2

Q̇mB−mdt: ð2:21Þ

Substituting (2.17a) and (2.19) into (2.21) leads to the
final result for the effective Love number for one of
the bodies,

σeff ¼ σstat þ
3ðσirrot − σstatÞ

8
ðsin2ψÞ2 þ ðσirrot − σstatÞ

2D1

n
ωΩω̂Bðcosψ þ cos3ψÞ þ �

ω2 −Ω2ð1þ ω̂BÞ�ð1þ cosψ cos3ψÞ
o

þ ðσirrot − σstatÞðsinψÞ2
4D2

h
8ωΩω̂B cosψ þ �

ω2 − 4Ω2ð1þ ω̂BÞ�ð3þ cos2ψÞ
i
: ð2:22Þ

In a binary system of two NSs, one must add the
same contribution but with the parameters of the
companion body.

C. Features of the effective response

1. Effects of the spin orientation

The poles of the response (2.22), i.e., where one of
the factors in the denominators given in (2.19f) vanishes,
correspond to the four different mode resonances for the
m ≠ 0 modes. For special cases of the spin inclination
angle only a subset of the modes contributes to σeff , as also
evident from (2.19). For example, for aligned spin corre-
sponding to ψ ¼ 0 the response (2.22) reduces to

σeff jψ¼0 ¼ σstat þ
ðσirrot − σstatÞðω −ΩÞ

ω −Ωð1þ ω̂BÞ : ð2:23Þ

This shows that, for aligned spins, and within our
approximations, the only pole in the response is
ω → Ωð1þ ω̂BÞ which corresponds to the m ¼ 1 reso-
nance frequency.
Another special case is a spin inclination of ψ ¼ π=3,

where the contribution from the jmj ¼ 1 modes is non-
resonant. This can be seen either from (2.19), by noticing
that the numerator in Q1 for this special value of ψ will
involve factors of ω −Ωð1þ ω̂BÞ which cancel the diver-
gent term in the denominator, or by considering the third
term in (2.22) showing the same effect.

2. Adiabatic limits

Above, we have computed the response assuming a fixed
orbit, obtaining divergences in the response at the reso-
nances. However, in a binary inspiral, the continued GW
dissipation causes the system to evolve through the
resonance, exciting the mode amplitudes only to a finite
maximum value. This effect was already examined in detail
in [33], who also developed an effective waveform model
for these resonance-induced effects. A missing phenome-
non from these and subsequent studies were the additional
adiabatic effects due to the behavior of the modes far from
the resonances. To compute the relevant NS parameters
characterizing the adiabatic response, we consider the
asymptotic limits of σeff long before or after a resonance.
The subtleties with extracting the relevant limits were
discussed in detail in [47], as the appropriate ordering of
limits between ω;Ω → 0 is delicate and depends on the
situation. In particular, the relevant adiabatic limit before
the mode resonance is obtained by considering ω → 0
in (2.22), while the postresonance adiabatic limit is given
by taking the limit Ω → 0 first. This leads to the asymptotic
expressions pre- and postresonance respectively,

σasym ¼
�
σstat þ ðσirrot−σstatÞ½8þ3ω̂B sinð2ψÞ2�

8ð1þω̂BÞ
σirrot

: ð2:24Þ

We will use the above insights into the features of the
response to assemble an approximate waveform model that
properly accounts for both resonance and adiabatic effects.
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III. EFFECTIVE WAVEFORM MODEL WITH
ADIABATIC AND RESONANCE EFFECTS

A. Approximate waveform model

Computing the impact of gravitomagnetic tidal effects
on the GW signals from inspiraling NS binary systems is a
complicated task. Here, we bypass these challenges by
assembling a simple effective model for the gravitomag-
netic imprints in frequency-domain descriptions of the GW
signals based on adapting existing results using the insights
developed in the previous section. Such a model is very
useful for scoping out the features, magnitude, and con-
sequences of the various gravitomagnetic effects in future
GW measurements and for identifying focus areas for
more detailed modeling. In addition to the gravitomagnetic
effects, we also include the dominant adiabatic gravito-
electric tidal effects to understand the impacts on the overall
information on NS matter. We model here only the impact
of tides on the GW phase of the dominant GW mode by
modifying the coprecessing-frame GW phase of the
IMRPhenomPv2 waveform model [51–53].
Specifically, we write the GW phasing in the frequency

domain as

Ψ ¼ 2πftc − ϕc þ Ψpm þ Ψtidal
ad þΨtidal

res ; ð3:1aÞ

where tc and ϕc are the reference time and phase and f is the
GW frequency. The termΨpm is the point-mass contribution,
for which we use the post-Newtonian TaylorF2 results given,
e.g., in Eq. (3.18) of [54]. For the adiabatic tidal contribu-
tions Ψtidal

ad we use the results of [21,39,48,55–59] given by

Ψtidal
ad ¼ −b0Λ̃f5=3 þ

�
−b1Λ̃þ b2δΛ̃þ b3Σ̃

�
f7=3

− b4Σ̂ðχ1; χ2Þf8=3 þ f2f8=3 þ f3f3 þ f4f10=3

ð3:1bÞ

and take the resonance-induced effects from [33,34] in the
form

Ψtidal
res ¼ −

X
i¼1;2

�
1 −

f
fresi

	
jΔΦijΘðf − fresi Þ: ð3:1cÞ

The resonance effects included here are due to gravitomag-
netic modes only, which are the focus of this work. For a
more complete model, also gravitoelectric modes (in par-
ticular the f mode) should be included.We note that the signs
of all the contributions made explicit here correspond to
those relevant for the parameter choices for the case studies
discussed in Sec. V below, with all the tidal parameters
Λ̃; δΛ̃; Σ̃; Σ̂ defined below being positive. We also see that
the resonance contribution is a distinct sudden change in the
phase and time of the GW signal at the resonance, whose
scaling with the frequency is degenerate with that of the

gauge parameters ϕc and tc in the phasing (3.1). The various
coefficients in (3.1b) are given by

b0 ¼
117ðπMÞ5=3

256ν
; b1 ¼

9345ðπMÞ7=3
8192ν

; ð3:2Þ

b2 ¼
19785ðπMÞ7=3

46592ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
; ð3:3Þ

b3 ¼
3ðπMÞ7=3
128ν

¼ b4=ðπMÞ1=3; ð3:4Þ

withM ¼ M1 þM2 the total mass and ν ¼ M1M2=M2. The
functions fj depend on Λ̃; δΛ̃, and for f2 additionally on the
spins χ1;2. In particular, the expression for the function f2
in (3.1b) is obtained from Eqs. (7) and (9) of [60] and those
for f3, f4 from Eq. (6.6b) of [58]. The parameters Λ̃ and δΛ̃
characterizing the gravitoelectric effects are given by

Λ̃ ¼ 16

13

�
12

X1

− 11

	
X5
1Λ1 þ ð1 ↔ 2Þ; ð3:5Þ

2δΛ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p �
1 −

13272

1319
νþ 8944

1319
ν2
	
ðΛ1 þ Λ2Þ

þ
�
1 −

15910

1319
νþ 32850

1319
ν2 þ 3380

1319
ν3
	
ðΛ1 − Λ2Þ;

ð3:6Þ

with Λi the dimensionless quadrupolar gravitoelectric tidal
deformability parameters of each body indexed here by i.
We also denote Xi ¼ Mi=M and ð1 ↔ 2Þ indicates the
operation of adding the same terms but with the body labels
interchanged. The gravitomagnetic parameters in (3.1b) are
defined by [60]

Σ̃ ¼
�
6920

7
−
20740

21X1

	
X5
1Σ1 þ ð1 ↔ 2Þ; ð3:7aÞ

Σ̂¼


χ1 −

�
4933

3X1

−
9865

3
þ 1644X1

	
χ2

�
X5
1Σ1 þ ð1↔ 2Þ;

ð3:7bÞ

with χi ¼ Si=M2
i the dimensionless spin parameter of each

body. We use for the dimensionless gravitomagnetic deform-
ability parameters Σi the asymptotic results of Sec. II C 2 to
replace

Σi ¼
σasymi

M5
i

ð3:7cÞ

using the appropriate pre- or postresonance expressions
from (2.24).
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In the resonance contributions (3.1c), the quantity Θ
denotes the Heaviside step function, and fresi are the GW
frequencies at which the mode resonances occur. They are
related to the gravitomagnetic mode frequencies ωB

2m by

fres ¼ ωinertial
2m

π
; ð3:8Þ

where the mode frequencies in the inertial frame can be
obtained by shifting

ωinertial
2m ¼ ωB

2m −mΩ: ð3:9Þ

The quantities ΔΦ1;2 are the corresponding resonance-
induced phase shifts, which, for the l ¼ 2 modes with
m ¼ 2 and m ¼ 1, are given by [33]

ΔΦ2m ¼ −
10π2

192

�
2m
3

	
2=3

ðMiΩiÞ2=3
�
Mi

M

	
10=3

I2m
i ;

ð3:10aÞ

where M ¼ ðM1M2Þ3=5=M1=5 is the chirp mass and

I22
i ¼ ðĪri Þ2sin2ðψ iÞcos4

�
ψ i

2

	
ð1 − XiÞ; ð3:10bÞ

I21
i ¼ ðĪri Þ2cos2

�
3ψ i

2

	
cos2

�
ψ i

2

	
ð1 − XiÞ; ð3:10cÞ

with Īri related to the dimensionless relativistic tidal
deformabilities by [47]

ðĪrÞ2 ¼ 15

4π
ðΣstat − ΣirrotÞ: ð3:10dÞ

B. Reducing the number of matter parameters
using quasiuniversal relations

Even within the restricted context considered here,
the effective GW model for the tidal signatures (3.1b)
and (3.1c) contains ten matter parameters, namely the
deformabilities Λi, σstati , σirroti and resonance frequencies
for them ¼ 1 andm ¼ 2modes for each body. Such a large
number of extra parameters prevents the data analysis from
yielding meaningful results. We reduce the number of
parameters by using empirical quasiuniversal relations that
are approximately independent of the equation of state and
enable an approximate reduction of the matter parameters
to one deformability Λ for each body. The quasiuniversal
relations are of the form [39,48]

lnð∓ ΣÞ ¼
X5
n¼0

anYn; ð3:11Þ

with the irrotational case corresponding to the minus sign
and coefficients airrotn ¼ f−2.03; 0.487; 0.00969; 0.00103;
9.37 × 10−5; 2.24 × 10−6g, while the plus sign applies for
the static case with astatn ¼ f−2.66; 0.786;−0.01; 0.00128;
−6.37 × 10−5; 1.18 × 10−6g and where

Y ¼ lnðΛÞ: ð3:12Þ

The GW frequencies appearing in the resonant mode
contributions (3.1c) are given by (3.8), which can bewritten
explicitly as

fres ¼ 1

π
ðκm −mÞΩ; ð3:13Þ

where the parameter κm reduces to κm → 2m=3 in the
Newtonian limit, while for relativistic stars, it is approx-
imately related to Λ by [26,61]

κ2 ¼ 0.3668þ 0.0498Y − 0.0025Y2: ð3:14Þ

We note that these results from [26] are specialized to the
m ¼ 2mode. Within the effective action model (2.2) we are
using, the modes with different m all have the same scaled
frequency ω̂B and hence the same κ. Thus, we use (3.14)
also for the m ¼ 1 modes.
With the GW phasing model for the gravitomagnetic

effects in hand, we next apply it in a data analysis
framework to study the impact on GW measurements.

IV. ANALYSIS FRAMEWORK

A Bayesian data analysis framework is commonly
used for GW signals, as explained, e.g., in [13] and briefly
reviewed below. We assume that, in the absence of any GW
signal, the detector noise n has a Gaussian distribution,
where louder noise realizations are less likely. In the
presence of a signal h with parameters θ, the data d from
the detector output can be decomposed as

d ¼ hðθÞ þ n; ð4:1Þ

for some noise realization n. Then, the likelihood L for the
detector to measure the data d for a signal with parameters θ
is given by

logLðdjθÞ ¼ −
1

2
ðd − hðθÞjd − hðθÞÞ: ð4:2Þ

Here, the meaning of ð:j:Þ differs on both sides of the
equation: on the left-hand side, LðdjθÞ denotes the condi-
tional probability of observing the data d for a collection of
signal parameters θ, while on the right-hand side, the
notation ð:j:Þ indicates an inner product on the vector space
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of signals. For two signals h1 and h2 this inner product is
defined as

ðh1jh2Þ ¼ 4R
Z

fhigh

flow

h̃1ðfÞ�h̃2ðfÞ
SnðfÞ

df: ð4:3Þ

The symbolR denotes the operation of taking the real part,
the integration limits are the lower and upper frequency
range considered, Sn is the noise spectral density of the
detector, and the tilde and asterisk indicate the Fourier
transform and complex conjugate respectively. This log
likelihood (4.2) can be further expanded as

logLðdjθÞ¼−
1

2
½ðdjdÞþðhðθÞjhðθÞÞ−2ðdjhðθÞÞ�: ð4:4Þ

The first term is proportional to the log noise evidence
and the second term ðhðθÞjhðθÞÞ ¼ ρ2opt is called the
optimal matched filter signal-to-noise ratio (SNR) squared.
The third term is the product of the optimal SNR and the
matched filter SNR given by ðdjhðθÞÞ ¼ ρoptρmf.
The posterior probability distribution of the parameters θ

follows from the Bayes theorem,

pðθjH; d; IÞ ¼ pðdjH; θ;IÞpðθjH; IÞ
pðdjH; IÞ ; ð4:5Þ

where I is the background information, and H is the
hypothesis, i.e., the waveform model. The quantity
pðθjH; IÞ is the prior probability, i.e., knowledge about
the parameters within the model before analyzing the
data, pðdjH; IÞ is the evidence, and pðdjH; θ; IÞ is the
likelihood function which is identified with (4.4).
Computing the posterior probability distribution of the
parameters θ requires Markov chain Monte Carlo (MCMC)
samplers [62].
The above framework is general but also computation-

ally intensive, especially when taking into account the
following considerations. Gravitomagnetic tidal effects are
subdominant as shown in Fig. 1 [33,39], though expected
to be relevant for next-generation GW detectors. The
detectors will have a much wider frequency band than
current detectors such that signals from NS binaries will
linger for many hours to days within the sensitive band. The
associated tremendous computational costs severely limit
the scope of explorative studies possible with the current
MCMC code infrastructures. However, “golden” events
similar to GW170817, which would have a SNR of over a
thousand in next-generation detectors, will provide rich
science yields, especially when combined with the larger
number of events with lower SNR. For the exploratory
studies in this paper, we use an MCMC analysis in a lower-
dimensional subspace of the signal parameters, which
we validate against a simplified data analysis framework
based on approximations for large SNR: the Fisher matrix

formalism. For a high SNR event and Gaussian noise, the
probability distributions of the best-fit parameters will be
Gaussians centered around the actual values. Let θ be the
true value of the parameters and θþ Δθ the best-fit
parameters in the presence of Gaussian noise. Then for
large SNR, the likelihood function is given by

pðΔθÞ ¼ N e−
1
2
ΓijΔθiΔθj ; ð4:6Þ

where the Fisher matrix Γij is defined as

Γij ¼
�
∂h
∂θi

���� ∂h
∂θj

	
: ð4:7Þ

The 1-σ error σi on the parameters θi is then given by

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
: ð4:8Þ

V. RESULTS

We use the analysis frameworks described in Sec. IV to
analyze the impact of gravitomagnetic tides on the meas-
urability of the tidal Love number Λ. For simplicity, we
focus on the Cosmic Explorer (CE) detector [63], however,
we expect similar results for the Einstein Telescope [8].

FIG. 1. Phase accumulation due to tidal effects described
in (3.1b) and (3.1c). The plot shows phase accumulation
due to adiabatic electric tidal effects (blue curve), adiabatic
magnetic tidal effects (orange and red curve), and resonant
magnetic tidal effects (green and violet curve) as a function of
frequency for aligned spins χ ¼ f0.005 and 0.01g with masses
ðM1;M2Þ ¼ ð1.5; 1.3ÞM⊙ and tidal deformability parameters
ðΛ̃; δΛ̃Þ ¼ ð519.38; 48.37Þ. The terms “Electric,” “Mag. adi”
and “Mag. res” denotes adiabatic gravitoelectric tidal contribu-
tion in (3.1b), adiabatic gravitomagnetic tidal contribution
in (3.1b) and resonant gravitomagnetic tidal contribution in
(3.1c) respectively.
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A. Setup and parameter choices for case studies

We consider a few illustrative cases for our analysis.
These examples represent only a small subset of the
expected range of diverse events but nevertheless yield
useful insights. Specifically, we consider binary neutron
stars with masses ðM1;M2Þ ¼ ð1.5; 1.3ÞM⊙ and explore
two values of the dimensionless spin parameters χ ¼ 0.005
and χ ¼ 0.01 for each NS, where χ refers to the spin
magnitudes. For the tidal deformability parameters we
choose ðΛ̃; δΛ̃Þ ¼ ð519; 48Þ, corresponding to the MPA1
equation of state. The choice of masses and tidal deform-
ability parameters of binary neutron stars are compatible
with the observed binary neutron star GW170817
source [1,64]. We use quasiuniversal relations [65] between
the moment of inertia and Λ to convert from χ to the spin
frequency Ω. In general, both the m ¼ 1 and m ¼ 2
resonances will contribute to the signals. To isolate each
of these resonance effects and analyze its contributions, we
choose spin inclination angles of ψ ¼ 0 (aligned spins)
and ψ ¼ π=3 such that only the m ¼ 1 or m ¼ 2 modes,
respectively, undergo a resonant excitation within our
approximations. We assume the same spin magnitudes
and orientations for both NSs.
We analyze the signals in the CE detector sensitivity [63]

between flow ¼ 5 and fhigh ∼ 1720 Hz, which is a proxy
for the merger frequency based on the estimates for
nonspinning NSs from [66]. Unless otherwise specified,
the SNR for the signals from these systems is 1800 for the
CE detector, which corresponds to an event similar to
GW170817.
For the above choices of binary parameters, the mode

resonance frequencies for the larger and smaller mass NSs
are given by fres1 ¼ 12 (24) and fres2 ¼ 13 (26) Hz for the
m ¼ 1 (m ¼ 2) modes, respectively, and taking the spin
magnitudes to be χ ¼ 0.005; they increase to twice these
numbers when doubling the spin magnitudes to χ ¼ 0.01.
Figure 2 illustrates the location of these resonances together
with the power spectral density of the CE detector [63].
To study the consequences of different effects, we

consider different tidal waveform models. We refer to
the “PNTidal” model as the piece of (3.1b) involving only
the adiabatic gravitoelectric tidal effects characterized
by Λ̃; δΛ̃; we denote models that also include gravitomag-
netic effects by PNTidalmodes for the resonant contributions
(3.1c), PNTidalasym for the asymptotic adiabatic contribu-
tions, and PNTidalmodes

asym for the model which includes all
gravitomagnetic effects. Because we work only to linear
order in the spins, we neglect the effects of spin-induced
multipole moments on the GWs. We have modified the
tidal contribution to the phase in the IMRPhenomPv2 wave-
form in LALSuite to obtain the above waveform models [67].
For Bayesian parameter estimation, we use PyCBC to call
different waveform models from LALSuite, generate the
power spectral density curve, and construct the likelihood

function (4.2) [68]. From this likelihood function we obtain
the posterior distribution of parameters using the EMCEE

sampler [62].

B. Consistency checks

1. Fisher matrix versus Bayesian parameter
estimation and effect of the dimensionality

of the parameter space

The Fisher matrix approximation is valid for high SNR,
which we expect to hold for most of the case studies
considered here. To assess the validity of this expectation
we compare with Bayesian parameter estimation results
for the case of the PNTidal matter model. In principle,
the waveforms are characterized by 17 parameters, after
reducing the matter parameters to just Λ for each body.
Exploring the full parameter space is thus very computa-
tionally expensive. For efficiency, we focus the compara-
tive analysis here only on the following restricted subset of
the intrinsic parameters:

θ ¼ ðtc;ϕc; Λ̃; δΛ̃Þ; ð5:1Þ

and fix the other parameters to be ψ1 ¼ 0, ψ2 ¼ 0,
χ1 ¼ 0.01, and χ2 ¼ 0.01. This subset was chosen to
contain the matter-related parameters Λ̃ and δΛ̃ as well
as tc and ϕc which are degenerate with mode resonance
effects. We calculate the Fisher matrix (4.7) analytically
and sample the Fisher likelihood (4.6) with the uniform
prior on all parameters as well as constraints Λ1 ≥ 0,

FIG. 2. CE noise spectral density and various mode resonances
for the two bodies and varying spins χ. Green and purple symbols
refer to the NS with mass M1 ¼ 1.5M⊙ with lower and higher
spin respectively, while red and brown symbols are the corre-
sponding values for the companion of mass M2 ¼ 1.3M⊙.
Diamond shapes denote the modes with azimuthal number
m ¼ 1, triangles those with m ¼ 2. Note that the y value of
the symbols has no meaning.
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Λ2 ≥ 0. In principle, the 1-σ error for all parameters could
be obtained from (4.8) using the Fisher matrix (4.7),
however, for higher dimensions, the Fisher matrix is ill
conditioned which makes it difficult to use (4.8), which is
why sampling the Fisher likelihood is preferred. We also
perform a Bayesian analysis for the same setup using the
EMCEE sampler [62] to obtain the posterior probability
distribution of the parameters. Figure 3 shows the results of
both analyses. We see that, in this case, the results from the
Fisher (blue curve) and Bayesian (orange curve) frame-
works agree well and are centered on the injected value
(vertical line). To obtain an estimate of the changes in the
width of the posterior distributions when including more
parameters, in particular the masses and spin magnitudes
for each body, we also perform a Fisher analysis for eight
free parameters θ ¼ ðtc;ϕc;M1;M2; Λ̃; δΛ̃; χ1; χ2Þ. More
specifically, we obtain a mean and 90 percentile results of
Λ̃ ¼ 519þ5.1

−4.7 from the MCMC and Λ̃ ¼ 518.9þ4.8
−4.9 from the

Fisher analyses with four free parameters respectively,
which shows that they are in good agreement. For an
eight-dimensional parameter space we find Λ̃ ¼ 518.9þ11.3

−11.2 ,
which indicates that when doubling the dimensionality of
the parameter space the posterior distributions increase in
width by about a factor of 2. The good agreement between
the Fisher and Bayesian results also provides a useful check

of the 4D MCMC sampling, which is the method we will
continue to use in what follows.

2. Comparison to the adiabatic effects studied in [60]

The final consistency check we perform here is to
compare with the results of [60] for the impact of adiabatic
gravitomagnetic effects on measurements of Λ̃. Following
[60] we restrict our analysis to only three free parameters
θ ¼ ðtc;ϕc; Λ̃Þ, with all the other parameters fixed.
Figure 4 shows the results for aligned spins of magnitude
χ ¼ 0.005. Comparing the orange curve (no mode reso-
nances) and blue curve (no adiabatic effects) to the green
curve shows that in this case the largest impact of
gravitomagnetic effects is due to the adiabatic limits, while
mode resonances play a subdominant role. Specifically, we
obtain Λ̃ ¼ 519.34.5−4.5 with the full model (green curve) that
was also used for the injection and thus quantifies the
statistical errors. Using only the adiabatic effects (orange
curve) leads to Λ̃ ¼ 520.94.4−4.4, which is close to the injected
value. On the other hand, including only the mode
resonances for the recovery while neglecting the adiabatic
effects (blue curve) leads to a distribution that is signifi-
cantly shifted away from the injected value with Λ̃ ¼
515.14.6−4.5. The smallness of the effect of the mode reso-
nances on measurements of Λ̃ is in part due to the fact that
the resonance-induced phase corrections (3.1c) have a
scaling in frequency degenerate with the gauge parameters
tc and ϕc in the phase (3.1a), which absorbs some of the
resonance effects into shifts of tc and ϕc. Specifically, for
f > fres, the resonance-induced phase shift (3.1c) com-
prises a constant contribution −jΔΦj and a term that grows
linearly with frequency jΔΦjf=fres, where the coefficient
jΔΦj is given in (3.10). These constant and linear terms add
to the contributions parametrized by ϕc and 2πftc respec-
tively in the total phase (3.1a). The adiabatic effects show a
similar magnitude as found in [60] based on only the
irrotational or static Love numbers, which lead to shifts
in the posterior distributions to lower and higher values
respectively, cf. Fig. 6 therein. While the specific choices
for the case study here differ from [60] the setup is similar
enough to interpret qualitative trends by comparing their
findings to the adiabatic results represented by the orange
curve in Fig. 4, which uses the more realistic asymptotic
Love numbers from (2.24) as opposed to only σirrot for the
entire waveform.

C. Physical effects

Having performed the consistency checks discussed
above, we next analyze the impact of various physical
effects and parameter dependencies by Bayesian parameter
estimation on the four-dimensional parameter space (5.1).
We first consider nonspinning systems, where there is no
effect from the mode resonances, then aligned spins with

FIG. 3. Posterior probability distribution of Λ̃ for SNR 1800
with the PNTidal waveform model (without gravitomagnetic
effects) used for injection and recovery. The label 4D refers to a
reduced parameter space of the tidal deformabilities Λ̃; δΛ̃ and
the time and phase of coalescence tc;ϕc with all other parameters
fixed, while 8D also includes the sampling of the mass and spin
parameters for each body. The results from the Fisher matrix
(orange curve) agree well with the corresponding Bayesian
analysis (blue curve), with both centered on the injected value
(vertical line). The green curve shows the broadening of the
distribution when doubling the dimensionality of the parameter
space sampled. The shaded tails of the curves indicate regions
outside the 90% credible interval. For the parameter δΛ̃, both the
4D and 8D posteriors are essentially flat in this case.
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only the m ¼ 1 modes resonant, and finally spin orienta-
tions that maximize the effects of the m ¼ 2 modes.

1. Gravitomagnetic effects for nonspinning systems

For this study we use the PNTidal model without the
gravitomagnetic effects as the reference baseline for the
injection and set χ ¼ 0. Figure 5 shows the results for
the posterior distributions in the tidal parameters Λ̃ and δΛ̃,
with the two-dimensional representations given in the
lower left panel and the one-dimensional projections for
each parameter in the upper and right panels. The one-
dimensional representations are the full distributions, while
the contours in the Λ̃ − δΛ̃ plane correspond to the credible
intervals at the 1-σ (68%) and 2-σ (95%) confidence level.
The blue curves in Fig. 5 represent a consistency check that
when injecting and recovering with the same model the
mean is centered on the injected value indicated by the gray
lines and quantify the statistical uncertainties. The orange
curve in Fig. 5 corresponds to the results obtained when
including all gravitomagnetic effects, where, however, for
nonspinning systems there is only an adiabatic gravito-
magnetic effect, no resonances. As expected, we see that
they induce a small shift in the posterior for Λ̃. We note that
the difference to the study in Sec. V B 2 is the model used
for the injection, the value of the spins, which also impacts
the adiabatic gravitomagnetic parameters (3.7), and the
dimensionality of the parameter space sampled. We also
observe that the adiabatic effects have no significant impact
on the measurability of δΛ̃ in this case, as the shape of the

error ellipses and the flat distribution in δΛ̃ remain largely
unaffected.

2. Effect of gravitomagnetic tides for aligned spins

A more realistic scenario is to include finite spins of the
NSs. We first consider the case of aligned spins, where
the m ¼ 1 mode resonances contribute in addition to the
adiabatic effects. As in Sec. V C 1, we use the model
without gravitomagnetic tides as the reference baseline for
the injection and recover with the same model (blue curve)
as well as the model including all gravitomagnetic effects
(orange curve). For small spins χ ¼ 0.005, we see from
Fig. 6 that the gravitomagnetic effects lead to a slightly
larger shift in the posterior probability distributions than in
the nonspinning case shown in Fig. 5. These trends become
more discernible for higher spins of χ ¼ 0.01 shown in
Fig. 7. For higher spins, the recovered distributions for Λ̃
with and without gravitomagnetic effects have essentially
no overlap. We also notice that compared to the low-spin
case in Fig. 6 the shift in the distribution for Λ̃ is in the
opposite direction. We will investigate the causes of this
below in Sec. VI. Roughly, it can be attributed to the fact
that for higher spins the resonances occur at higher
frequency, as seen in Fig. 2. Furthermore, as also found
in [34], which included only the mode resonance effects
with Newtonian parameters, the presence of gravitomag-
netic tides significantly improves the measurability of δΛ̃.

FIG. 4. Shifts in the posterior distribution for Λ̃ due to adiabatic
and resonant gravitomagnetic effects. This case study is for SNR
1800, aligned spins χ ¼ 0.005, and sampling only on ðΛ̃; tc;ϕcÞ
with all other parameters fixed. We inject with a waveform that
includes all effects PNTidalmodes

asym and recover with the same
waveform (green curve) and those that include only the resonance
jumps (blue curve) and only the adiabatic effects (orange curve).
In this case the contribution from the adiabatic effects is
dominant; omitting them (as for the results shown by the blue
curve) leads to the largest shifts in the distribution.

FIG. 5. Posterior distributions of the tidal parameters for
nonspinning NSs at SNR 1800. The injection neglected grav-
itomagnetic tides, and the blue curve illustrates the recovery with
the same waveform. The effect of gravitomagnetic tides, which
are purely adiabatic in this case, is indicated by the orange curve.
In the two-dimensional representation in the lower left panel, the
contours correspond to the 1- and 2-σ confidence levels.
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This is indicated by a peak in the one-dimensional
projection or the size of the ellipse in the Λ̃ − δΛ̃ plane,
which is in contrast to the distribution being essentially
uninformative when neglecting the gravitomagnetic effects
(cf. the blue curves in Fig. 7).

3. Effects of different gravitomagnetic contributions
for aligned spins

Having quantified the impact of gravitomagnetic effects,
we next investigate the relative importance of adiabatic and
resonant contributions to these results. For this purpose,
we switch to using the full tidal model PNTidalmodes

asym for
the injections. The results when recovering with different
models that are missing various effects for the case with
spins of χ ¼ 0.005 are shown in the upper panels of Fig. 8.
The green curve illustrates the recovery with the same
model as the injection, the blue curve corresponds to
omitting the adiabatic effects, while the orange curve
illustrates the omission of resonance effects from the
model. From the large (small) shift away from the injected
value in the distribution for Λ̃ when omitting (including)
adiabatic effects it follows that the conclusions of
Sec. V B 2 about the signatures from adiabatic tides
dominating over the resonance effects in this case continue
to hold for the larger parameter space considered here.
Furthermore, we also see by comparing the orange and blue
curves in the upper panels of Fig. 8 that the more peaked
distribution in δΛ̃ can be primarily attributed to the mode
resonances in this case.
The lower panel of Fig. 8 shows the same study with

higher spins of χ ¼ 0.01. We see the opposite behavior
compared to the case with lower spins: now the mode
resonances (blue curves) dominate over adiabatic effects
(orange curve) for measuring Λ̃ without bias; in fact the
inferred Λ̃ with the adiabatic model has no overlap with the
injected value in this case. In all cases, a peaked distribution
in δΛ̃ emerges, indicating that it is measurable, though with
significantly larger errors than Λ̃. The resonance effects
yield a double-peaked distribution in this parameter for
χ ¼ 0.01, which we attribute to the larger spacing of the
two resonances in this case. Interestingly, for χ ¼ 0.01 the
adiabatic effects contribute about equally to measuring δΛ̃
as the mode resonances, which is in contrast with the
case of lower spins. We notice also a slight bimodality for
χ ¼ 0.005 with PNTidalmodes

asym , which we attribute to a
competition between adiabatic and resonant effects, which
act in opposite directions.

4. Effect of the m= 2 modes

The analysis thus far focused on aligned-spin systems
where only the m ¼ 1 modes are resonant. In this sub-
section we quantify the impact of the m ¼ 2 mode
resonances by choosing spin orientations ψ ¼ π=3

FIG. 6. Gravitomagnetic effects for aligned spins of χ1;2 ¼
0.005 and SNR 1800. The blue curve corresponds to using the
same waveform for injection and recovery. Comparing this with
the orange curve indicates the changes due to gravitomagnetic
tides from both the m ¼ 1 mode resonances and the adiabatic
effects, which lead to a shift in the distribution of Λ̃ and a slight
change in the shape of the δΛ̃ posterior.

FIG. 7. Gravitomagnetic effects for aligned spins of χ1;2 ¼ 0.01
and SNR 1800. The blue curve corresponds to using the same
waveform for injection and recovery, the orange curve indicates
the effect of gravitomagnetic tides from both the m ¼ 1 mode
resonances and the adiabatic effects. Significant shifts in Λ̃ and a
peaked shape of the distribution of δΛ̃ are clearly visible in this
case. This is also illustrated by the two-dimensional representa-
tion of the error ellipses in the lower left panel.
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following a similar line of analysis as for the aligned-spin
case. We note that the spins are rather small, so we assume
that the spin orientation is approximately constant over
the inspiral [34].
First, we consider the impact of including all gravito-

magnetic effects. From Fig. 9 we see that, even for small
spins of χ ¼ 0.005, the gravitomagnetic effects lead to
larger shifts in the posterior probability distribution for Λ̃
and in the opposite direction compared to the aligned-spin
case in Fig. 6. An approximate reasoning for this behavior
is that the m ¼ 2 resonances occur later in the inspiral than
the m ¼ 1 resonances, as we will discuss in more depth in
Sec. VI. Figure 9 also shows a peak in the distribution for
δΛ when including gravitomagnetic tides (orange curves),
however, because the injection neglected gravitomagnetic
effects, it is not centered on the injected value.
For higher spins of χ ¼ 0.01, the above trends are more

pronounced, as seen in Fig. 10. We observe that the two-
dimensional confidence intervals have no overlaps at all in
this case, and that the distribution in δΛ becomes more
distinctly peaked.
To gain deeper insights into the reasons for these results,

we next characterize the impact of the resonant and
adiabatic contributions to gravitomagnetic effects sepa-
rately. The results of injecting with the full PNTidalasymmodes
and recovering with different models for cases with smaller
and larger spins are shown in the upper and lower panels of

FIG. 8. Effects of various gravitomagnetic contributions on the
parameter recovery for aligned spins. The results are for the
systems with SNR 1800 and spins of χ ¼ 0.005 (upper) and
χ ¼ 0.01 (lower). Green curves correspond to recovering with the
same full model as used for the injection, blue curves include only
the mode resonances, while orange curves indicate the adiabatic
effects. We see that the conclusions about the impact of the
resonance and adiabatic effect is opposite for the lower and higher
spins: for low spins, adiabatic effects are most important for
reducing the bias in Λ̃, while resonances give the dominant
contribution to the measurability of δΛ̃. For high spins, the largest
reduction in the bias in Λ̃ is due to the resonances, while the
impact on δΛ̃ is comparable between resonance and adiabatic
effects.

FIG. 9. Gravitomagnetic effects for spin orientations ψ ¼ π=3
and magnitudes χ ¼ 0.005 at SNR 1800. The blue curve
corresponds to using the same waveform for injection and
recovery. Comparing this with the orange curve indicates the
changes due to gravitomagnetic tides from both the m ¼ 2 mode
resonances and the adiabatic effects, which lead to a shift in the
distribution of Λ̃ and a more peaked shape of the δΛ̃ posterior.
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Fig. 11 respectively. We see that the contributions of the
m ¼ 2 mode resonances (blue curves) are more significant
for reducing biases than the adiabatic effects (orange
curves) for both the smaller and larger spin magnitudes
in this case, though both effects are important to accurately
recover the parameters.

D. Measurement accuracy for different spins

Having characterized the importance of the various
contributions and gravitomagnetic tides overall, we next
compare the net effects on the measurement accuracy for
different spin magnitudes. In this study, the injected
and recovered waveform is the full PNTidalmodes

asym model
with increasing spin χ ¼ f0; 0.005; 0.01g. The results for
aligned spins are shown in Fig. 12, where the blue, orange,
and green curves correspond to spins of 0, 0.005, and 0.01
respectively. We see that changing the spins has very little
impact on the posterior distributions for Λ̃ in this case. By
contrast, a decreasing spin results in a broader distribution
in δΛ̃. As our analysis keeps the spins fixed, the impact of
spins is through their coupling with adiabatic tidal param-
eters through (3.7), the resonance phase shift ∼Ω2=3, and
the mode resonance frequency, as we will further discuss in
Sec. VI. From the above results, we also infer that the
double peak in the distribution of δΛ̃ for χ ¼ 0.005 arises
from the combination of adiabatic and resonant effects,
which act in opposite directions, while for χ ¼ 0.01 it is

largely due to the presence of two resonances spaced
widely enough to be noticeable in the data analysis (see
also Fig. 8).
A different perspective on the behavior can be gained by

considering where in frequency the information about tidal

FIG. 10. Gravitomagnetic effects for spin orientations ψ ¼ π=3
and magnitudes χ1;2 ¼ 0.01 at SNR 1800. The blue curve
corresponds to using the same waveform for injection and
recovery. Comparing this with the orange curve indicates the
changes due to gravitomagnetic tides from both the m ¼ 2 mode
resonances and the adiabatic effects, which lead to a substantial
shift in the distribution of Λ̃ and clear peak in the δΛ̃ posterior.

FIG. 11. Effects of various gravitomagnetic contributions on
the parameter recovery for misaligned spins. The results are for
the systems with SNR 1800 and spin orientations of ψ ¼ π=3
with χ ¼ 0.005 (upper) and χ ¼ 0.01 (lower). Green curves
correspond to recovering with the same full model as the
injection, blue curves include only the mode resonances, while
orange curves indicate the adiabatic effects. We see that in both
cases the mode resonances play a larger role for reducing biases
than the adiabatic effects.
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parameters accumulates. This is not immediately visible
from the phasing (3.1a) due to the implicit and nontrivial
dependencies of the gravitomagnetic parameters on Λ̃ and
δΛ̃ upon using the quasiuniversal relations. Figure 13

shows the normalized integrands entering the Fisher matrix
error computations. The resonance frequencies for both
neutron stars of aligned spins χ ¼ 0.005 are 12 and 13 Hz.
As the frequency becomes equal to the first resonance
frequency of 12 Hz, we start to see the effect of mode
resonance in both figures for Λ̃; δ̃Λ and at the second
resonance frequency, there is again a sharp change in the
normalized integrands. But as it hits zero crossing it rises
again which is an artifact of taking the absolute value of
integrands. We also see that around 200 Hz there are
spikes that are coming from the power spectral density
having spikes (Fig. 2). For Λ̃, the abrupt changes due to
the resonances are too small to be visible on the scale of
this plot, which is in contrast to the information on δΛ̃,
where the resonance features are clearly visible.
The corresponding results with varying spin magnitudes

for the case with misaligned spins of ψ ¼ π=3 are shown in
Fig. 14. We find similar trends as for the aligned-spin case.
However, a notable difference is that, while the presence of
spin has the expected impacts on the distributions, the
consequences of any change in its magnitude are very
small. This is in contrast with the trends in Fig. 12 for
the m ¼ 1 modes. An explanation of this behavior could
potentially come from considering the location of the
resonances studied here with respect to the noise curve
shown in Fig. 2, where changing the spin has a more drastic
impact on the relative location of the m ¼ 1 resonances
(diamonds) in the detector sensitivity: For m ¼ 1 and
χ ¼ 0.005 the resonance lies in the frequency regime
below ∼20 Hz where the detector sensitivity deteriorates
considerably, and for χ ¼ 0.01 it is in the bucket of the

FIG. 12. Effect of the spin magnitude on inferred tidal param-
eters for aligned spins and SNR of 1800. The injection and
recovery both use the same model PNTidalmodes

asym with correspond-
ing spin magnitudes, as indicated in the legend. Increasing the
spin magnitude has very little impact on the width of the posterior
in Λ̃ but significantly affects that of δΛ̃, where a higher spin leads
to tighter bounds.

FIG. 13. Accumulation of information encoded in integrands Absð∂h̃⋆
∂θi

∂h̃
∂θi

� 1
SnðfÞÞ (normalized to its maximum value) for θi ¼ Λ̃ (left)

and θi ¼ δΛ̃ (right) as a function of frequency for the injected value of aligned spins f0.0; 0.005; 0.01g, Λ̃ ¼ 519.38, and δΛ̃ ¼ 48.37.
SNR denotes the integrands Absð h̃⋆ h̃

SnðfÞÞ, Electric denotes only adiabatic gravitoelectric tidal contribution in (3.1a), and Mag. all denotes

adiabatic and resonant gravitomagnetic tidal contribution in (3.1a).
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sensitive band, while for m ¼ 2 the resonances are in the
bucket for both spin values.

1. Extrapolating to lower SNR of 400

Thus far, we have assumed a SNR of 1800 in the CE
detector, which is plausible for an event similar to

GW170817. However, many more events will be observed
at a lower SNR. To estimate the changes in our conclusions
for such more numerous events, we perform the same
Bayesian analysis as above but for a SNR of 400 instead of
1800. From Fig. 15 we see that for lower SNR the
qualitative trends of the effects of increasing the spins
remain: there is little impact on the posterior distribution for
Λ̃, while that for δΛ̃ becomes tighter. Comparing the left
and right panels of Fig. 15, which correspond respectively
to the spin orientations where only the m ¼ 1 and m ¼ 2
modes are present, we also notice that, for the higher spins
considered here, the m ¼ 1 modes have a larger effect on

FIG. 14. Effect of the spin magnitude on inferred tidal param-
eters for inclined spins at 60° and SNR of 1800. The injection and
recovery both use the full model PNTidalmodes

asym with varying spin
magnitudes as indicated in the legend. Increasing the spin
magnitude from a finite value to a higher one has very little
impact on the width of the posteriors in this case.

FIG. 15. Bayesian parameter estimation results for systems with SNR 400 for different spins. The injection and recovery both use the
model PNTidalmodes

asym with the corresponding spin magnitude indicated in the legend. Left: aligned spins. Right: spin inclinations of 60°.
Same as Figs. 12 and 14 except for lower SNR.

TABLE I. Recovered mean and 90% credible intervals of
Λ̃ðδΛ̃Þ for SNR 1800 and 400. The injected values are Λ̃ ¼
519 and δΛ̃ ¼ 48. The spin magnitude χ on each NS increases
from top to bottom, and we recall that in the aligned-spin case
ψ ¼ 0 only the m ¼ 1 modes pass through resonance, for ψ ¼
π=3 it is only the m ¼ 2 modes, and in the nonspinning case the
resonances are absent.

χ ψ ¼ 0 ψ ¼ π=3

SNR 1800 SNR 1800
0.0 518.8þ5.0

−5.3 ð10.5þ193.2
−194.2Þ 518.8þ5.0

−5.3 ð10.5þ193.2
−194.2Þ

0.005 518.8þ4.7
−4.9 ð12.1þ135.5

−143.5Þ 519.1þ4.8
−4.6 ð9.2þ118.5

−118.4Þ
0.01 519.0þ4.7

−4.5 ð12.1þ75.6
−79.4 Þ 519.2þ4.9

−4.6 ð12.5þ106.8
−109.7Þ

SNR 400 SNR 400
0.0 518.9þ20.6

−20.3 (14.6þ190.1
−198.8 ) 518.9þ20.6

−20.3 (14.6þ190.1
−198.8 )

0.005 519.1þ20.5
−20.5 ð10.9þ191.9

−191.6 Þ 520.1þ20.1
−20.5 ð12.2þ187.0

−191.8 Þ
0.01 520.4þ20.1

−20.0 ð12.0þ158.5
−162.0 Þ 521.1þ20.0

−19.4 ð8.4þ188.3
−189.1 Þ
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the measurability of δΛ̃ than the m ¼ 2 modes. Comparing
the results of Fig. 15 with the cases with higher SNR in
Figs. 12 and 14 also quantifies the expected trends of a
higher SNR resulting in tighter posterior distributions in the
parameters. Table I lists the specific values obtained for the
mean and 90% credible intervals of the inferred Λ̃ and δΛ̃
distributions. From these results we see that for Λ̃, the
change in the 90% interval for SNR 400 compared to 1800
is largely consistent with an approximate scaling of the
errors as ðSNRÞ−1, i.e., the width increases by roughly a
factor of ∼4.5. By contrast, the broadening of the 90%
interval in δΛ̃ with lower SNR is significantly less than
expected from such a scaling, which is a promising
indication for measurements, however, corroborating this
for more realistic data analysis implications will require
further work.

VI. DISCUSSION

In this section, we discuss interesting aspects of the
above findings and their interpretation. The high-level
outcome of the case studies in Sec. V is that they
corroborate previously disconnected findings [34,60] that
gravitomagnetic tidal signatures in the GWs from both
adiabatic and resonance-induced effects can have important
impacts on the GW phasing for measurements with third-
generation detectors. In addition, our analysis provided
insights into the quantitative dependencies of these results
on different features associated with the resonance-induced
and adiabatic contributions and showed that their relative
importance strongly depends on the system parameters.
We discuss these findings below.

A. Features and parameter dependencies
of gravitomagnetic effects in GWs

1. Asymptotic adiabatic effects

The leading-order contribution in the phase is para-
metrized by the quantity Σ̃ in (3.1b), which increases
slowly with Λ̃ and is positive both before and after a
resonance. However, its magnitude significantly drops to
much lower values across a resonance. In the GW phase,
Σ̃ first enters together with δΛ̃ at the same scaling with
frequency and both with the opposite sign as the Λ̃
contribution, cf. (3.1b). These effects thus lead to a
reduction of the net size of tidal GW signatures. Spin
effects coupled with the adiabatic gravitomagnetic effects
enter at a higher order in frequency through the parameter
Σ̂, thus contributing new information that breaks the
degeneracy with δΛ̃. For the specific cases considered
here, Σ̂ is positive. The spin orientation impacts the size of
the preresonance values of the adiabatic parameters Σ̃
and Σ̂, which can be larger for misaligned spins than for
aligned spins.

2. Resonance-induced effects

The resonance effects in the GW phase introduce a
behavior that is very different from other contributions to
the phasing because of its abruptness. Once present, the
scaling with frequency is the same as for the gauge
parameters tc;ϕc. The size of the resonance-induced phase
shifts depend on the spin magnitude and orientation, as well
as the static and irrotational gravitomagnetic Love numbers
characterizing how strongly the modes couple to the tidal
field. The resonance jumps induce a negative GW phase
correction, accelerating the inspiral and increasing the
difference to a nontidal signal. This is the opposite behavior
as the leading-order adiabatic effects from gravitomagnetic
tides discussed above. The resonance effects increase with
larger Λ̃ and decrease for larger δΛ̃. Furthermore, larger
spins lead to larger resonance jumps, as also seen from the
spin dependence of (3.10), where ΔΦ2m ∼ χ2=3, and where
we also note that the dependence on the spin orientation is
such that ΔΦ2m is largest for aligned spins. In addition, the
resonance frequencies are approximately proportional to
the spin frequency as well as the mode number m. Larger
spins and m shift the resonances to higher frequencies,
which can have several consequences depending on the
resonance location. For example, for the case studies
considered here, a shift of the resonances to higher
frequencies leads to an enhanced accumulation of infor-
mation from the preresonance adiabatic effects, the reso-
nance jumps being within regimes of greater detector
sensitivity, and a reduction in the number of cycles over
which information from the resonances accumulates. As
expected, when resonances occur within the most sensitive
band of the detector, which in Sec. V were the cases with
χ ¼ 0.01 and the scenario with χ ¼ 0.005 with spins
misaligned by 60°, the relative importance of the resonance
effects is larger.

B. Case studies of aligned-spin systems

For systems with aligned spins, we found different
trends depending on the spin magnitudes. In the non-
spinning case, only the adiabatic postresonance effects
contribute to the GW phase. As explained above, the
leading-order adiabatic gravitomagnetic parameter Σ̃ con-
tributes to the phasing (3.1b) in the same way as δΛ̃,
while the contribution from Σ̂ vanishes for zero spins.
Consequently, gravitomagnetic effects have a rather small
impact on the measurability of δΛ̃, as also seen in Fig. 5.
Furthermore, the Σ̃-dependent contribution effectively
reduces the size of the tidal effects in the phasing, which
in the Bayesian analysis leads to the shift of the recovered Λ̃
to lower values, as also seen in Fig. 5.
For finite but low spins of χ ¼ 0.005, the gravitomag-

netic mode resonances occur at the lower end of CE’s
sensitive band, cf. Fig. 2, where the sensitivity is deterio-
rating. As seen in the upper panel of Fig. 8, we find that in
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this case the dominant contribution for recovering the
correct mean for Λ̃ is the postresonance asymptotic values.
Consequently, the results for Λ̃ shown in Fig. 6 are similar
to the nonspinning case in Fig. 5. When compared to the
full baseline model with all gravitomagnetic effects, the
mode resonances tend to lead to lower Λ̃ mean values,
while adiabatic effects shift the distribution more toward
higher ones in this case. A new feature with spins is that the
δΛ̃ distribution becomes less flat, implying that this
parameter becomes measurable, albeit with much larger
statistical errors than Λ̃. As seen from Fig. 8, a nonflat
distribution arises from both adiabatic effects and reso-
nance jumps, however, the contribution from the latter is
larger in this case.
For the higher spin system with χ ¼ 0.01, where the

resonances occur at higher frequencies, the posterior in Λ̃
with all gravitomagnetic effects is shifted in the opposite
direction relative to the gravitoelectric baseline than the
case with lower spins χ ¼ 0.005, as seen by comparing
Figs. 6 and 7. This is due to the resonance effects
becoming the dominant contribution to the results for
Λ̃, as seen in the lower panel of Fig. 8. Interestingly, the
measurement of δΛ̃ in this higher spin case is impacted
nearly equally by both adiabatic and resonance effects, in
which both give similarly tight posteriors. We attribute
the enhanced contribution from adiabatic effects for
higher spins primarily to the larger contribution from
Σ̂, which breaks the degeneracies, with a potential further
enhancement due to the resonance occurring at higher
frequency, which increases the importance of the larger
preresonance contribution to Σ̃ðΛ̃; δΛ̃Þ, making the effects
larger overall.

C. Spins inclined at 60°

The system with misaligned spins of χ ¼ 0.005 we
considered has the same resonance frequencies as the case
study of aligned spins with χ ¼ 0.01. However, the other
parameters of these systems differ, which enables us to
study their dependencies for a fixed resonance location.
Specifically, the value of the phase jumps ΔΦ2m from
(3.10) are about 4 times larger for the high-spinm ¼ 1 case
than for m ¼ 2 with low spin. Conversely, in the same
comparison, jΣ̂j is smaller by a factor of about 2 for the
preresonance regime. The pre- and postresonance values of
Σ̃ are the same in the two cases. The outcomes of our
analysis for the m ¼ 2 case with low spins are indeed
qualitatively similar to that with the same resonance
location but aligned spins. Notably, we find that the
gravitomagnetic effects lead to a significant shift in Λ̃
compared to the gravitoelectric baseline and to a nonflat
distribution of δΛ̃. Overall, the effects are larger for aligned
high spins than for the misaligned low-spin case, as can be
seen by comparing, for example, Figs. 7 and 9.

For the case of misaligned spins with χ ¼ 0.01, the
results are similar to those with the lower spin magnitudes,
as seen in Fig. 14. This is in contrast to the aligned-spin
case, where an increasing spin magnitude changes the
importance of different gravitomagnetic contributions and
noticeably improves the measurability as seen in Fig. 12,
for reasons explained above.

VII. CONCLUSION

In this work, we developed an approximate but efficient
adaptation of known results to incorporate more realistic
descriptions of resonant and adiabatic gravitomagnetic tidal
effects in the Fourier-domain GW phasing. Our results
assume slowly rotating neutron stars and focus on the
quadrupolar effects. We discussed the subtleties with
gravitomagnetic adiabatic effects, where calculations based
on relativistic perturbation theory identified two different
characteristic tidal deformability parameters. We derived
the combinations of these parameters that appear together
with a dependence on the spin orientation and the normal-
ized mode frequencies in the GW signals. Interestingly,
these combinations are different before and after a mode
resonance. We also showed how to adapt an existing model
for the resonance-induced GW phase shift to incorporate
the fully relativistic properties of NSs. In general, each NS
passes through two quadrupolar gravitomagnetic resonan-
ces corresponding to the m ¼ 1 and m ¼ 2 modes, which
for spins of χ ≳ 0.005 lie within the sensitive band of third-
generation GW detectors.
We used the above model to perform a data analysis

study of the impact of gravitomagnetic effects on the
measurements of tidal parameters with third-generation
GW detectors, which relied on several simplifying assump-
tions. In particular, we used quasiuniversal relations to
reduce all matter parameters to the two tidal deformabil-
ities, considered neutron stars with slightly unequal masses
but equal spins and orientations such that only one set
of modes is resonantly excited during the inspiral, and
mainly adopted a Bayesian approach restricted to a four-
dimensional subspace of parameters for GW170817-like
events. These case studies enabled us to gain several
quantitative insights and demonstrated that gravitomagnetic
tides can be important to avoid biases in the inferred Λ̃ and
lead to a peaked distribution in δΛ̃, which is flat and thus
uninformative when neglecting gravitomagnetic effects.
To gain further insights into the underlying reasons for

these results, we analyzed the different contributions to the
gravitomagnetic tides, adiabatic versus resonance induced,
and compared the impacts of the m ¼ 1 and m ¼ 2 modes.
In the configurations considered here, the m ¼ 1 (m ¼ 2)
modes were relevant for aligned (60° inclined) spins. We
found that for them ¼ 1modes, increasing the spin leads to
increasingly better measurements of the tidal parameters.
Furthermore, for aligned spins of magnitude χ ¼ 0.005, the
adiabatic effects are most important to avoid biases in the
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parameter Λ̃, while for larger spins of χ ¼ 0.01 it is the
mode resonances. In all cases, the mode resonances have a
significant impact on the measurability of δΛ̃. On the other
hand, for spin orientations where only them ¼ 2modes are
resonant, we found no significant changes in the results
with increasing spins.
We also considered a case with a lower SNR of 400, as is

expected for a larger number of events, and found that
similar qualitative trends persist. Interestingly, we noticed
that, while the broadening of the inferred posterior prob-
ability distribution seems to scale inversely with the SNR,
the broadening of the posterior in δΛ̃ is much less than this
scaling. This is a promising indication for future measure-
ments but will need to be confirmed with more realistic data
analysis studies.

In conclusion, our work represents an exploratory study
based on more realistic modeling of gravitomagnetic tides
than in previous work. We made several simplifying
assumptions and approximations and neglected a number
of additional matter effects that impact the GWs. Our
results about the importance of the gravitomagnetic effects
for measurements motivate more detailed data analysis
studies as well as further advances in the modeling, which
we leave to future work.
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[39] Xisco Jiménez Forteza, Tiziano Abdelsalhin, Paolo Pani,
and Leonardo Gualtieri, Impact of high-order tidal terms on
binary neutron-star waveforms, Phys. Rev. D 98, 124014
(2018).

[40] Sarp Akcay, Sebastiano Bernuzzi, Francesco Messina,
Alessandro Nagar, Néstor Ortiz, and Piero Rettegno,
Effective-one-body multipolar waveform for tidally inter-
acting binary neutron stars up to merger, Phys. Rev. D 99,
044051 (2019).

[41] Thibault Damour and Alessandro Nagar, Relativistic tidal
properties of neutron stars, Phys. Rev. D 80, 084035 (2009).

[42] Taylor Binnington and Eric Poisson, Relativistic theory of
tidal Love numbers, Phys. Rev. D 80, 084018 (2009).

[43] Philippe Landry and Eric Poisson, Gravitomagnetic re-
sponse of an irrotational body to an applied tidal field,
Phys. Rev. D 91, 104026 (2015).

[44] Philippe Landry and Eric Poisson, Dynamical response to a
stationary tidal field, Phys. Rev. D 92, 124041 (2015).

[45] Eric Poisson and Jean Doucot, Gravitomagnetic tidal
currents in rotating neutron stars, Phys. Rev. D 95,
044023 (2017).

[46] Paolo Pani, Leonardo Gualtieri, Tiziano Abdelsalhin, and
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Bohé, Frequency-domain gravitational waves from non-
precessing black-hole binaries. II. A phenomenological
model for the advanced detector era, Phys. Rev. D 93,
044007 (2016).

[54] Alessandra Buonanno, Bala Iyer, Evan Ochsner, Yi Pan, and
B. S. Sathyaprakash, Comparison of post-Newtonian tem-
plates for compact binary inspiral signals in gravitational-
wave detectors, Phys. Rev. D 80, 084043 (2009).

[55] Tanja Hinderer, Tidal Love numbers of neutron stars,
Astrophys. J. 677, 1216 (2008).

[56] Justin Vines, Eanna E. Flanagan, and Tanja Hinderer, Post-
1-Newtonian tidal effects in the gravitational waveform
from binary inspirals, Phys. Rev. D 83, 084051 (2011).

[57] Thibault Damour, Alessandro Nagar, and Loic Villain,
Measurability of the tidal polarizability of neutron stars

GUPTA, STEINHOFF, and HINDERER PHYS. REV. D 108, 124040 (2023)

124040-20

https://doi.org/10.1103/PhysRevD.94.104028
https://doi.org/10.1103/PhysRevD.94.104028
https://doi.org/10.1103/PhysRevLett.129.081102
https://doi.org/10.1103/PhysRevLett.129.081102
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1142/S0218271801001062
https://doi.org/10.1142/S0218271801001062
https://doi.org/10.1103/PhysRevD.91.024001
https://doi.org/10.1103/PhysRevD.91.024001
https://doi.org/10.1086/367617
https://doi.org/10.1140/epja/i2016-16038-9
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://adsabs.harvard.edu/full/1981A%26A....94..126P
https://doi.org/10.1046/j.1365-8711.1999.02703.x
https://doi.org/10.1046/j.1365-8711.1999.02703.x
https://doi.org//10.1103/PhysRevD.65.024001
https://doi.org/10.1086/307580
https://doi.org/10.1086/307580
https://doi.org/10.1103/PhysRevD.75.044001
https://doi.org/10.1103/PhysRevD.103.063020
https://doi.org/10.1103/PhysRevD.101.104028
https://doi.org/10.1103/PhysRevD.102.064059
https://doi.org/10.1103/PhysRevD.102.064059
https://doi.org/10.1093/mnras/stx1188
https://doi.org/10.1093/mnras/stx1188
https://doi.org/10.1103/PhysRevD.107.103053
https://doi.org/10.1103/PhysRevD.107.103053
https://doi.org/10.1103/PhysRevD.98.124014
https://doi.org/10.1103/PhysRevD.98.124014
https://doi.org/10.1103/PhysRevD.99.044051
https://doi.org/10.1103/PhysRevD.99.044051
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevD.91.104026
https://doi.org/10.1103/PhysRevD.92.124041
https://doi.org/10.1103/PhysRevD.95.044023
https://doi.org/10.1103/PhysRevD.95.044023
https://doi.org/10.1103/PhysRevD.98.124023
https://doi.org/10.1103/PhysRevResearch.3.013147
https://doi.org/10.1103/PhysRevResearch.3.013147
https://doi.org/10.1103/PhysRevD.89.043011
https://doi.org/10.1103/PhysRevD.89.043011
https://doi.org/10.1103/PhysRevD.96.129904
https://doi.org/10.1103/PhysRevD.97.129901
https://doi.org/10.1103/PhysRevD.97.129901
https://doi.org/10.1103/PhysRevD.52.821
https://doi.org/10.1103/PhysRevD.52.821
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.80.084043
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.83.084051


in late-inspiral gravitational-wave signals, Phys. Rev. D 85,
123007 (2012).

[58] Quentin Henry, Guillaume Faye, and Luc Blanchet, Tidal
effects in the gravitational-wave phase evolution of compact
binary systems to next-to-next-to-leading post-Newtonian
order, Phys. Rev. D 102, 044033 (2020).

[59] Batoul Banihashemi and Justin Vines, Gravitomagnetic tidal
effects in gravitational waves from neutron star binaries,
Phys. Rev. D 101, 064003 (2020).
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