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We present SEOBNRv5HM, a more accurate and faster inspiral-merger-ringdown gravitational wave-
form model for quasicircular, spinning, nonprecessing binary black holes within the effective-one-body
(EOB) formalism. Compared to its predecessor, SEOBNRv4HM, the waveform model (i) incorporates
recent high-order post-Newtonian results in the inspiral, with improved resummations, (ii) includes the
gravitational modes ðl; jmjÞ ¼ ð3; 2Þ; ð4; 3Þ, in addition to the (2,2), (3,3), (2,1), (4,4), (5,5) modes already
implemented in SEOBNRv4HM, (iii) is calibrated to larger mass ratios and spins using a catalog of 442
numerical-relativity (NR) simulations and 13 additional waveforms from black-hole perturbation theory,
and (iv) incorporates information from second-order gravitational self-force in the nonspinning modes and
radiation-reaction force. Computing the unfaithfulness against NR simulations, we find that for the
dominant (2,2) mode the maximum unfaithfulness in the total mass range 10–300M⊙ is below 10−3 for
90% of the cases (38% for SEOBNRv4HM). When including all modes up to l ¼ 5we find 98% (49%) of
the cases with unfaithfulness below 10−2 (10−3), while these numbers reduce to 88% (5%) when using
SEOBNRv4HM. Furthermore, the model shows improved agreement with NR in other dynamical
quantities (e.g., the angular momentum flux and binding energy), providing a powerful check of
its physical robustness. We implemented the waveform model in a high-performance Python

package (pySEOBNR), which leads to evaluation times faster than SEOBNRv4HM by a factor of 10 to
50, depending on the configuration, and provides the flexibility to easily include spin-precession and
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eccentric effects, thus making it the starting point for a new generation of EOBNR waveform models
(SEOBNRv5) to be employed for upcoming observing runs of the LIGO-Virgo-KAGRA detectors.

DOI: 10.1103/PhysRevD.108.124035

I. INTRODUCTION

Gravitational-wave (GW) astronomy has rapidly
advanced since the first detection of GWs from a binary
black-hole (BBH) merger in 2015 [1], recording about ten
events in the initial and second observing runs [2,3] and
about 100 events in the third observing run [4–8] of the
LIGO-Virgo detectors [9–13]. With upcoming upgrades of
existing detectors and new facilities on the ground, such as
Einstein Telescope [14] and Cosmic Explorer [15,16], and
the space-based mission LISA [17], it is expected that the
merger rates of compact binaries will significantly increase.
Accurately modeling the GWs emitted by binary systems is
essential to take full advantage of the discovery potential of
ever more sensitive GW detectors, enriching our knowl-
edge of astrophysics, cosmology, gravity, and fundamental
physics.
Numerical relativity (NR) simulations [18–20] can pro-

vide the most accurate waveforms, but they are computa-
tionally expensive, which makes it important to develop
waveform models that combine analytical approximation
methods with NR results. The most commonly used
approaches to build complete inspiral-merger-ringdown
(IMR) waveform models of compact binaries are the NR
surrogate, phenomenological, and effective-one-body
(EOB) families. NR surrogate models [21–30] interpolate
NR waveforms in a reduced-order representation; thus they
provide us with the most accurate models for higher
multipoles [24] and spin precession [23,25], but they are
limited to the region of parameter space where NR
simulations exist. Furthermore, their length currently
restricts their use to binaries with total masses ≳60M⊙,
unless the NR surrogates are hybridized to an inspiral
approximant, such as EOB or post-Newtonian (PN) wave-
forms [24,30]. Inspiral-merger-ringdown phenomenological
models (IMRPhenom) [31–50] combine PN and EOB
waveforms for the inspiral with fits to NR results for the
late inspiral and merger-ringdown parts of the waveform,
and aim to be as fast as possible for data-analysis purposes.
The EOB formalism [51–55] combines information from
several analytical approximation methods with NR results.
It maps the dynamics of a compact binary to that of a test
mass (or test spin) in a deformed Schwarzschild (or Kerr)
background, with the deformation parameter being the
symmetric mass ratio. EOB waveform models of BBHs
have been constructed for nonspinning [51–53,56–64],
spinning [54,55,65–85], and eccentric binaries [86–92].
Matter effects have also been incorporated in EOB models
in Refs. [93–99]. To reduce the computational cost of
EOB waveforms, surrogate or reduced-order models have

been developed in Refs. [100–109]. Parameter-estimation
codes based on machine-learning methods, notably neural
posterior estimation, are also available to speed up inference
studies [110,111]. More specifically, there are currently
two state-of-the-art families of EOB waveform models:
SEOBNR (e.g., see Refs. [77,78,81,91,105,112]) and
TEOBResumS (e.g., see Refs. [64,83,85,88,113,114]).
Here, we focus on the former.
The expected increase in sensitivity during the fourth

observing run (O4) [115] of the LIGO-Virgo-KAGRA
(LVK) Collaboration [9,10,116], which is planned to start
in May 2023, will likely allow us to observe events in
unexplored regions of parameter space with high spins
and large mass ratios. In these regions of parameter
space state-of-the-art waveform models tend to disagree
[49,77,81,117,118], as they are mostly calibrated to NR
simulations having both moderate spins, say ≲0.5, and
comparable mass ratios, say 1 − 4, and waveform modeling
systematics could be comparable to statistical errors. In order
to improve the accuracy of EOB models, one takes advan-
tage of the strong-field information from NR simulations,
and also includes the latest results from the main analytical
approximation methods, that is PN, post-Minkowskian, and
gravitational self-force theory [119–125].
Within the SEOBNR family of EOB models, we present

SEOBNRv5HM,1 a new IMR multipolar waveform model
for quasicircular, spinning, nonprecessing BBHs. In
SEOBNRv5HM we employ the most recent PN results
for the three main components of the dynamics and
gravitational radiation: the Hamiltonian [73,74,126], the
radiation-reaction (RR) force, and waveform modes [127].
Furthermore, we directly incorporate information from
second-order self-force (2GSF) [125,128,129] in the
modes and RR force. SEOBNRv5HM includes the gravi-
tational modes ðl; jmjÞ ¼ ð3; 2Þ; ð4; 3Þ, in addition to the
ðl; jmjÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ; ð4; 4Þ; ð5; 5Þ modes already
implemented in SEOBNRv4HM [78], and models the
mode mixing in the merger ringdown of the (3,2), (4,3)
modes. We calibrate SEOBNRv5HM to 442 NR wave-
forms, all produced with the pseudo-Spectral Einstein
code (SpEC) of the Simulating eXtreme Spacetimes (SXS)
Collaboration [21,22,24,25,30,77,130–140], except for
a simulation with mass ratio and (dimensionless spins)

1SEOBNRv5HM is publicly available through the Python
package pySEOBNR https://git.ligo.org/waveforms/software/
pyseobnr. Stable versions of pySEOBNR are published through
the Python Package Index (PyPI), and can be installed via pip
install pyseobnr.
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q ¼ 8; χ1 ¼ 0.85; χ2 ¼ 0.85 produced with the Einstein

Toolkit code [78,141]. We also incorporate information
from 13 waveforms computed by solving the Teukolsky
equation in the framework of black hole (BH) perturbation
theory [142,143], with mass ratio q ¼ 103 and dimension-
less spins values in the range −0.99 ≤ χ ≤ 0.99. This
greatly extends the NR calibration coverage with respect
to SEOBNRv4 [77], which used 140 NR waveforms,
especially toward larger mass ratios and spins. Indeed,
we include several NR simulations with mass ratios
between 10 and 20, in a region of parameter space where
no simulations were available when SEOBNRv4 was
developed.
We validate the model by computing the unfaithfulness

against NR simulations, and by comparing several
dynamical quantities, such as the angular-momentum
flux and binding energy, providing an important check
of its physical robustness and giving confidence of its
reliability when extrapolating it outside the NR calibration
region. Computational efficiency is also a key aspect of
waveform models, as Bayesian parameter estimation of
GW events with stochastic sampling techniques typically
requires millions of waveform evaluations. For this
purpose, we implemented SEOBNRv5HM in a flexible,
high-performance Python package (pySEOBNR [144]), which
leads to evaluation times faster than SEOBNRv4HM. We
then show that the SEOBNRv5HM model can be employed
for GW parameter estimation with standard stochastic
samplers thanks to its high computational efficiency. We
perform Bayesian inference studies using SEOBNRv5HM
by injecting synthetic NR signals in zero noise, and by
reanalyzing GW events from previous observing runs.
Further speedup in waveform evaluation time of about 1
order of magnitude can be obtained by surrogate models.
We build a frequency domain reduced-order model of
SEOBNRv5, following Ref. [105].
This work is part of a series of articles [125,126,144,145]

describing the SEOBNRv5 family for O4 [115], and
it is organized as follows. After an introduction to the
notation used in this paper, in Sec. III we describe the
SEOBNRv5 aligned-spin Hamiltonian and equations of
motion. In Sec. IV we outline the construction of the
multipolar waveform modes, highlighting improvements
and differences with respect to SEOBNRv4HM, and in
Sec. V we illustrate how SEOBNRv5HM is calibrated against
442 NR simulations. In Sec. VI we compare the accuracy of
SEOBNRv5HM, and of other state-of-the-art waveform
models, against NR simulations, and investigate the regions
of parameter space where they exhibit the largest differences
from NR waveforms and from each other. We also present
comparisons against NR results for the angular-momentum
flux and binding energy of SEOBNRv4 and SEOBNRv5. In
Sec. VII we study the model’s accuracy in Bayesian
inference analyses, by performing a synthetic NR injection
in zero noise and by analyzing GW events observed by the

LVK detectors. In Sec. VIII we outline the performance of a
frequency-domain reduced-order model of SEOBNRv5.
Section IX summarizes our main conclusions and discusses
future work. Finally, Appendixes A and B provide the
complete expression for the Hamiltonian and the multipolar
waveform modes used for this work. In Appendixes C
and D, we provide all expressions for the fits to NR
simulations entering the construction of the waveform
modes. Appendix E presents some tests of the robustness
of the calibration pipeline to NR waveforms, and in
Appendix F we check the potential impact of including
additional corrections in the RR force for a specific binary
configuration. Finally, in Appendix G, we extend the
comparison of Sec. VI to the state-of-the-art time-domain
phenomenological model IMRPhenomTHM [47,48].

II. NOTATION

We use natural units in which c ¼ G ¼ 1. We consider a
binary with masses m1 and m2, with m1 ≥ m2, and define
the following combinations of the masses:

M ≡m1 þm2; μ≡m1m2

M
; ν≡ μ

M
;

δ≡m1 −m2

M
; q≡m1

m2

: ð1Þ

For binaries with nonprecessing spins of magnitude S1 and
S2, we define the dimensionless spins

χi ≡ ai
mi

¼ Si
m2

i

; ð2Þ

where i ¼ 1, 2, and define the following spin variables:

χS ≡ χ1 þ χ2
2

; χA ≡ χ1 − χ2
2

;

χeff ≡ ðm1χ1 þm2χ2Þ
m1 þm2

;

a� ≡ a1 � a2 ¼ m1χ1 �m2χ2: ð3Þ

The relative position and momentum vectors, in the
binary’s center-of-mass frame, are denoted r and p, with

p2 ¼ p2
r þ

L2

r2
; pr ¼ n · p; L ¼ r × p; ð4Þ

where n≡ r=r, and L is the orbital angular momentumwith
magnitude L. Since in this work we discuss nonprecessing
(or aligned-spin) BHs, we consider equatorial orbits, and
use polar-coordinate phase-space variables ðr;ϕ; pr; pϕÞ,
where the angular momentum reduces to L ¼ pϕ.
The orbital frequency is denoted Ω, and we define the

dimensionless frequency parameter vΩ ≡ ðMΩÞ1=3. We
also often use u≡M=r instead of r.
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III. THE SEOBNRv5 ALIGNED-SPIN
HAMILTONIAN AND EQUATIONS OF MOTION

In the EOB formalism [51–55], the two-body dynamics
is mapped onto the effective dynamics of a test body in a
deformed Schwarzschild or Kerr background, with the
deformation parametrized by the symmetric mass ratio ν.
The energy map relating the effective HamiltonianHeff and
the two-body EOB Hamiltonian HEOB is given by

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð5Þ

The generic-spin Hamiltonian we use in SEOBNRv5
is based on that of a test mass in a deformed Kerr back-
ground [54,66,67,71–74,126]. In contrast, the SEOBNRv4
[77,78,81] Hamiltonian was based on the one of a test spin in
a deformed Kerr background [70,146,147].
The SEOBNRv5 Hamiltonian includes most of the 5PN

nonspinning contributions, together with spin-orbit (SO)
information up to the next-to-next-to-leading order
(NNLO), spin-spin (SS) information to NNLO, as well
as cubic- and quartic-in-spin terms at leading order (LO),
corresponding to all PN information up to 4PN order for
precessing spins. More details about the derivation of the
generic-spin Hamiltonian, together with the full expres-
sions, are given in Ref. [126]. Here, we summarize the
structure of the aligned-spin Hamiltonian, and its zero-spin
limit, highlighting where NR calibration parameters enter
the expressions.

A. Nonspinning effective Hamiltonian

The effective Hamiltonian for nonspinning (noS) bina-
ries can be written as

HnoS
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r� þ AnoSðrÞ

�
μ2 þ p2

ϕ

r2
þQnoSðr; pr� Þ

�s
; ð6Þ

where we use the tortoise coordinate pr� instead of pr,
since it improves the stability of the equations of motion
during the plunge and close to merger [67,148]. For
nonspinning binaries, r� is defined by

dr�
dr

¼ 1

ξðrÞ ; ξðrÞ≡ AnoSðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̄noSðrÞ

q
; ð7Þ

with the conjugate momentum pr� given by

pr� ¼ prξðrÞ: ð8Þ

For the potentials AnoSðrÞ and D̄noSðrÞ, we use the 5PN
results of Refs. [149,150], which are complete except for
two quadratic-in-ν coefficients. The 5PN Taylor-expanded
AnoS is given by

ATay
noSðuÞ ¼ 1 − 2uþ 2νu3 þ ν

�
94

3
−
41π2

32

�
u4

þ
�
ν

�
2275π2

512
−
4237

60
þ 128γE

5
þ 256 ln 2

5

�

þ
�
41π2

32
−
221

6

�
ν2 þ 64

5
ν ln u

�
u5

þ
�
νa6 þ

�
−
144ν2

5
−
7004ν

105

�
ln u

�
u6; ð9Þ

where u≡M=r, and we replace the coefficient of u6,
except for the log part, by the parameter a6, which is
calibrated to NR simulations.
The 5PN Taylor-expanded D̄noSðrÞ potential is given by

Eq. (A1) in Appendix A. The 5.5PN contributions to
AnoSðrÞ and D̄noSðrÞ are known from Refs. [63,150];
however, since we Padé resum these potentials (as
explained in Sec. V), we find it more convenient to stop
at 5PN. For the QnoSðrÞ potential, we use the full 5.5PN
expansion, which is also expanded in eccentricity toOðp8

rÞ,
as given by Eq. (A2).
The calibration parameter a6 is a function of ν; to

determine its value in the limit ν → 0, we use the GSF
results of Refs. [151–153] for the frequency shift of the
innermost stable circular orbit (ISCO), which is given by

MΩ1SF
ISCO ¼ 6−3=2ð1þ CΩ=qÞ;
CΩ ¼ 1.25101539� 4 × 10−8: ð10Þ

The ISCO can be computed from the EOB Hamiltonian
by solving ð∂H=∂rÞjpr¼0

¼ 0 ¼ ð∂2H=∂r2Þjpr¼0
for r and pϕ.

We find the value of a6 that gives the best agreement with
Ω1SF

ISCO is

a6jν→0 ≃ 39.0967: ð11Þ

The fit we use for a6ðνÞ is given by Eq. (78) below.

B. Aligned-spin effective Hamiltonian

For aligned spins, the effective Hamiltonian reduces
to the equatorial Kerr Hamiltonian in the test-particle
limit (TPL), with the Kerr spin a mapped to the binary’s
spins via a ¼ a1 þ a2 ≡ aþ. To include 4PN information
for spinning binaries and arbitrary mass ratios, we use the
following Ansatz [126]:
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Halign
eff ≡Hodd þHeven;

¼ Mpϕðgaþaþ þ ga−δa−Þ þ SOcalib þGalign
a3

r3 þ a2þðrþ 2MÞ

þ
�
Aalign

�
μ2 þ p2 þ Balign

np p2
r

þ BKerr eq
npa

p2
ϕa

2þ
r2

þQalign

��
1=2

; ð12Þ

where the first term on the right-hand side only includes
the odd-in-spin contributions (in the numerator), while
the second term (square root) includes the even-in-spin
contributions.
The gyrogravitomagnetic factors gaþðrÞ and ga−ðrÞ in

the SO part of the Hamiltonian (12) are sometimes chosen
to be in a gauge such that they are functions of 1=r and p2

r
only [66,71], though Refs. [69,70] made different choices.
In building the SEOBNRv5 model, we find better agree-
ment with NR waveforms when using a gauge in which
gaþðrÞ and ga−ðrÞ depend only on 1=r and p2

ϕ=r
2. The

4.5PN SO coupling was derived in Refs. [154–157], and
can be included in the gyrogravitomagnetic factors [see
Eqs. (30a) and (30b) in Ref. [126]]. However, when
calibrating to NR simulations, we find that using a
calibration term at 5.5PN has a small effect on the
dynamics, and thus we only include the 3.5PN SO
information [given in Eq. (A3)] with a 4.5PN SO calibra-
tion term of the form

SOcalib ¼ νdSO
M4

r3
pϕaþ: ð13Þ

Furthermore, the function Galign
a3

ðrÞ in Eq. (12) contains S3

corrections. The nonspinning and SS contributions are
included in AalignðrÞ, Balign

np ðrÞ, and QalignðrÞ, with no S4

corrections needed since the Kerr Hamiltonian reproduces
all even-in-spin leading PN orders for binary BHs [158].
Explicit expressions for the functions in the Hamiltonian
are provided in Appendix A (and also in Ref. [126]).
When using tortoise coordinates for spinning binaries, a

convenient choice for ξðrÞ is

ξðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
D̄noS

p
ðAnoS þ a2þ=r2Þ
1þ a2þ=r2

; ð14Þ

which is similar to what was used in SEOBNRv4 [67,75]
except for the different resummation and PN orders in AnoS

and D̄noS. In the ν → 0 limit, ξ reduces to the Kerr
value ðdr=dr�Þ ¼ ðr2 − 2Mrþ a2þÞ=ðr2 þ a2þÞ.

C. Equations of motion and radiation-reaction force

The equations of motion for aligned spins, in terms of
pr� , are given by Eq. (10) of Ref. [61], and read as

ṙ ¼ ξ
∂H
∂pr�

; ṗr� ¼ −ξ
∂H
∂r

þ pr�
pϕ

Fϕ;

ϕ̇ ¼ ∂H
∂pϕ

; ṗϕ ¼ Fϕ; ð15Þ

where the RR force Fϕ is obtained by summing the GW
modes in factorized form [58,59,148,159], hFlm, which we
define in Sec. IVA, that is,

Fϕ ≡ −
Ω
8π

X8
l¼2

Xl
m¼1

m2jdLhFlmj2; ð16Þ

where Ω is the orbital frequency, and dL is the luminosity
distance of the binary to the observer.
The equations of motion can be written more explicitly

as follows:

ṙ ¼ MAalign

2HEOBHeven

�
2pr�
ξ

ð1þ Balign
np Þ þ ξ

∂Qalign

∂pr�

�
; ð17aÞ

ϕ̇¼ M
HEOB

�
pϕ

∂H̄odd

∂pϕ
þ H̄odd þ

Aalign

Heven

pϕ

r2
ð1þBKerr eq

npa a2þÞ
�
;

ð17bÞ

ṗr� ¼ −
Mξ

HEOB

�
∂Heven

∂r
þ pϕ

∂H̄odd

∂r

�
þ pr�

pϕ
Fϕ; ð17cÞ

where we define H̄odd ≡Hodd=pϕ. The derivative of Heven

is given by

∂Heven

∂r
¼ 1

2Heven
ðK0p2

ϕ þ K1Þ; ð18aÞ

K0 ≡ Aalign

�
−

2

r3
ð1þ BKerr eq

npa a2þÞ þ
a2þ
r2

dBKerr eq
npa

dr

�

þ dAalign

dr

�
1

r2
þ a2þ

r2
BKerr eq
npa

�
; ð18bÞ

K1 ≡ Aalign

�
p2
r�

ξ2

�
dBalign

np

dr
−
2

ξ

dξ
dr

ð1þ Balign
np Þ

�
þ ∂Qalign

∂r

�

þ dAalign

dr

�
μ2 þ p2

r�

ξ2
ð1þ Balign

np Þ þQalign

�
: ð18cÞ

When evolving the equations of motion, we use the
same quasicircular adiabatic initial conditions derived in
Ref. [55], and then integrate numerically Eq. (15) to solve
for the binary dynamics.
In SEOBNRv5, one can also employ the postadiabatic

(PA) approximation for the inspiral dynamics, which allows
for speeding up the evaluation of the model, especially for
very long waveforms [62,160]. This technique has been
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used extensively with great success in the TEOBResumS
family of models (see, e.g., Refs. [85,113,114,160,161]),
and recently also in the SEOBNRv4HM_PA model [112].
To obtain explicit algebraic equations for the momenta, we
follow the same procedure as described in Refs. [160,161],
which results in the following equations:

pr� ¼
ξ

2ð1þBalign
np Þ

�
Fϕ

�
dpϕ

dr

�
−1 2HEOBHeven

MAalign − ξ
∂Qalign

∂pr�

�
;

ð19Þ

K0p2
ϕ þ 2Heven

∂H̄odd

∂r
pϕ þ K1

þ 2HevenHEOB

Mξ

�
dpr�
dr

dr
dt

−
pr�
pϕ

Fϕ

�
¼ 0: ð20Þ

Here, the only unknowns are the explicit pr� in the left-
hand side of the first equation, and the explicit p2

ϕ and pϕ in
the second; all the other instances of pr� and pϕ are
obtained from previous orders. We employ the PA approxi-
mation at eighth order.

IV. THE SEOBNRv5 MULTIPOLAR WAVEFORM

In this section, we describe the building blocks used in
the construction of the multipolar spinning, nonprecessing
waveform modes hlm of the SEOBNRv5HM model. We
closely follow the construction of the SEOBNRv4HM
model [78] and highlight differences when needed.
In general, the complex linear combination of GW

polarizations, hðtÞ≡ hþðtÞ − ih×ðtÞ, can be expanded in
the basis of −2 spin-weighted spherical harmonics [61] as
follows:

hðt; λ; ι;φ0Þ ¼
X
l≥2

X
jmj≤l

−2Ylmðι;φ0Þhlmðt; λÞ; ð21Þ

where λ denotes the intrinsic parameters of the compact
binary source, such as masses (m1;2) and spins (χ1;2). The
waveform modes hlm depend on only three parameters
ðq; χ1; χ2Þ, since the waveform scales trivially with the total
mass M. The parameters ðι;φ0Þ describe the binary’s
inclination angle (computed with respect to the direction
perpendicular to the orbital plane) and the azimuthal
direction to the observer, respectively.2

In the EOB framework, the GW modes defined in
Eq. (21) are decomposed into inspiral-plunge and merger-
ringdown modes. In SEOBNRv5HM, we model the (2,2)

and the largest subdominant modes [78]: (3,3), (2,1),
(4,4), (3,2), (5,5), and (4,3). For aligned-spin binaries
hlm ¼ ð−1Þlh�l−m, therefore we restrict the discussion to
ðl; mÞ modes with m > 0. We have

hlmðtÞ ¼
8<
: hinsp-plungelm ðtÞ; t < tlmmatch

hmerger-RD
lm ðtÞ; t > tlmmatch

; ð22Þ

where we define tlmmatch as

tlmmatch¼

8>><
>>:
t22peak; ðl;mÞ¼ ð2;2Þ;ð3;3Þ;ð2;1Þ;

ð4;4Þ;ð3;2Þ;ð4;3Þ
t22peak−10M; ðl;mÞ¼ ð5;5Þ;

ð23Þ

where t22peak is the peak of the (2,2)-mode amplitude. The
choice of a different attachment point for the (5,5) mode is
motivated, as in Ref. [78], by the fact that at late times the
error in some of the NR waveforms used to calibrate the
model is too large to accurately extract the quantities that are
needed to build the full inspiral-merger-ringdown wave-
forms (see below). For the same reason, since typically
tlmpeak − t22peak > 0 [61,142], we emphasize that the merger-
ringdown attachment for all other modes is done at the peak
of the (2,2) mode, rather than at each mode’s peak time as in
other EOB models [61,113].

A. Inspiral-plunge hlm modes

The inspiral-plunge EOB waveform modes can be
written as

hinsp-plungelm ¼ hFlmNlm; ð24Þ

where hFlm is a factorized, resummed form of the
PN-expanded GW modes for aligned spins in circular
orbits [59,148,159], while Nlm is the nonquasicircular
(NQC) correction, aimed at incorporating relevant radial
effects during the plunge, toward the merger.
The factorized inspiral modes are written as

hFlm ¼ hNlmŜeffTlmflmeiδtm : ð25Þ

The first factor, hðN;ϵlmÞ
lm is the leading (Newtonian) order

waveform, and its explicit expression is [59,159]

hNlm ¼ νM
dL

nlmclþϵlmðνÞvlþϵlm
ϕ Yl−ϵlm;−m

�
π

2
;ϕ

�
: ð26Þ

Here dL is the luminosity distance of the binary to the
observer, Ylm is the scalar spherical harmonic, ϵlm is the
parity of the mode, such that

2In general, the GW polarizations emitted by a quasicircular
BBH depend on its masses and spins λ ¼ fm1; m2; χ 1;2g, the
angles ðι;φ0Þ, the luminosity distance of the binary to the
observer dL, and the time of arrival tc. Inserting back units,
the modes scale as ∼GM=ðc2dLÞ.
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ϵlm ¼
�
0; lþm is even

1; lþm is odd
; ð27Þ

and the functions nlm and ckðνÞ are given by

nlm¼

8><
>:

8πðimÞl
ð2lþ1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ1Þðlþ2Þ

lðl−1Þ
q

; lþm is even

−16iπðimÞl
ð2lþ1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðlþ2Þðl2−m2Þ
ð2l−1Þðlþ1Þlðl−1Þ

q
; lþm is odd;

ð28Þ

and

ckðνÞ ¼
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

2

!
k−1

þ ð−1Þk
 
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

2

!
k−1

:

ð29Þ

Finally, vϕ in Eq. (26) is given by

vϕ ¼ MΩrΩ; ð30Þ

where Ω is the orbital frequency and

rΩ ¼
�
∂HEOB

∂pϕ

�
−2=3

				
pr¼0

: ð31Þ

The (dimensionless) effective source term Ŝeff is
given by either the effective energy Eeff or the orbital
angular momentum pϕ, both expressed as functions of
vΩ ≡ ðMΩÞ1=3, such that

Ŝeff ¼
8<
:

EeffðvΩÞ
μ ; lþm even;

vΩ
pϕðvΩÞ
Mμ ; lþm odd;

ð32Þ

where Eeff is related to the total energy E via the EOB
energy map E ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðEeff=μ − 1Þp

.
The factor Tlm in Eq. (25) resums an infinite number of

leading logarithms entering the tail contributions [162], and
is given by

Tlm ¼ Γðlþ 1 − 2ik̂Þ
Γðlþ 1Þ eπk̂e2ik̂ lnð2mΩr0Þ; ð33Þ

where Γð…Þ is the Euler gamma function, k̂≡mΩE, and
the constant r0 takes the value 2M=

ffiffiffi
e

p
to give agreement

with waveforms computed in the test-body limit [159].
The remaining part of the factorized modes (25) is

expressed as an amplitude flm and a phase δlm, which
are computed such that the expansion of hFlm agrees with
the PN-expanded modes. For nonspinning binaries, flm is
further resummed as [59] flm ¼ ðρlmÞl to reduce the
magnitude of the 1PN coefficient, which grows linearly
with l. Following Refs. [75,76,159], for spinning binaries

we separate the nonspinning and spin contributions for the
odd m modes, such that

flm ¼
�
ρllm; m even;

ðρNSlmÞl þ fSlm; m odd;
ð34Þ

where ρNSlm is the nonspinning part of ρlm, while fSlm is the
spin part of flm.
The explicit expressions for ρlm, flm and δlm

that are used in the SEOBNRv5HM model are provided
in Appendix B, and are mostly similar to those in
SEOBNRv4HM as derived in Refs. [75,77,78,159]. The
main differences are as follows:
(1) We correct the Oðv5δχAνÞ coefficient in ρ22, whose

value is 19=42, but was mistakenly replaced in the
SEOBNRv4 code by 196=42.

(2) We add in ρ22 the next-to-leading order (NLO) spin-
squared contribution at 3PN and the LO spin-cubed
part at 3.5PN, which are given by Eq. (4.11a) of
Ref. [127].

(3) We add all the known spin terms in the (3,2) and
(4,3) amplitudes [Eqs. (B2a) and (B5b) from
Ref. [127]].

(4) We correct the expressions for the (2,1) mode. As
pointed out in Ref. [127], the Oðv6χ2ν2Þ terms in the
(2,1) mode in the SEOBNRv4HM model [78] are not
correct, as well as the Oðνv5Þ nonspinning part of
δ21, whose coefficient had the value−493=42 [59,61]
instead of −25=2, due to an error in the (2,1) mode in
Ref. [163], which was later corrected in an erratum.

(5) We consistently include the high-order PN terms
from Appendix A of Ref. [78] in the RR force, and
not just in the waveform modes.

The new terms we add in the modes were derived in
Ref. [127], which was made public when the model was
close to being finalized; hence, we only added the terms we
considered most important, and we will add in a future
update of the model all the 3.5PN contributions to the
waveform modes, as derived in Refs. [127,164]. We remark
that adding additional PN information in the waveform
modes (except for the phases) modifies the energy flux (i.e.,
the RR force), and would require a recalibration of the EOB
dynamics to NR simulations.
As discussed in the SEOBNRv4HM model of Ref. [78],

the presence of minima, close to merger, in the amplitude of
some modes, leads to the introduction of additional cali-
bration parameters before applying the NQC corrections.
The modes for which this is needed are the (2,1), (5,5), and
(4,3). The minima occur for q ∼ 1 and large jχAj, and can
lead to unphysical features in the amplitude after applying
the NQC corrections if they occur close to the attachment
point t ∼ tmatch. For the (2,1) mode, this behavior is also
found in NR simulations, while for the (5,5) and (4,3) we do
not observe it in the NR waveforms at our disposal, and is
likely an artifact of the PN-expanded modes [78].
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Calibration terms in the modes take the form clmv
βlm
Ω , and

are added in flm, with βlm being the lowest PN order not
already included. The calibration parameter clm is deter-
mined by imposing the following condition:

jhFlmðtlmmatchÞj≡ jhNlmŜeffTlmeiδlmflmðclmÞjt¼tlmmatch
;

¼ jhNRlmðtlmmatchÞj;
for ðl; mÞ ¼ ð2; 1Þ; ð5; 5Þ; ð4; 3Þ; ð35Þ

where jhNRlmðtlmmatchÞj is the amplitude of the NR modes at
the matching point, given by fits in parameter space in
Appendix C.
The remaining Nlm factor in the inspiral-plunge modes

(24) is the NQC correction and reads as

Nlm ¼
�
1þ p̂2

r�

ðrΩÞ2
�
ahlm1 þ ahlm2

r̂
þ ahlm3

r̂3=2

��

× exp

�
i

�
bhlm1

p̂r�
rΩ

þ bhlm2

p̂3
r�

rΩ

��
; ð36Þ

where r̂≡ r=M and p̂r� ≡ pr�=μ. The use of the NQC
corrections guarantees that the modes’ amplitude and
frequency agree with NR input values (see below), given
in Appendix C, at the matching point tlmmatch. In particular,

one fixes the five constants (ahlm1 , ahlm2 , ahlm3 , bhlm1 , bhlm2 ) by
requiring the following [76–78]:
(1) The amplitude of the EOB modes is the same as that

of the NR modes at the matching point tlmmatch:

jhinsp-plungelm ðtlmmatchÞj ¼ jhNRlmðtlmmatchÞj: ð37Þ

We note that this condition is different from that in
Eq. (35) because it affects hinsp-plungelm ðtlmmatchÞ and not
hFlmðtlmmatchÞ. Because of the calibration parameter in
Eq. (35), for the modes (2,1), (5,5), and (4,3), this
condition becomes simply jNlmj ¼ 1.

(2) The first derivative of the amplitude of the EOB
modes is the same as that of the NR modes at the
matching point tlmmatch:

djhinsp-plungelm ðtÞj
dt

				
t¼tlmmatch

¼ djhNRlmðtÞj
dt

				
t¼tlmmatch

: ð38Þ

(3) The second derivative of the amplitude of the EOB
modes is the same as that of the NR modes at the
matching point tlmmatch:

d2jhinsp-plungelm ðtÞj
dt2

				
t¼tlmmatch

¼ d2jhNRlmðtÞj
dt2

				
t¼tlmmatch

: ð39Þ

(4) The frequency of the EOB modes is the same as that
of the NR modes at the matching point tlmmatch:

ωinsp-plunge
lm ðtlmmatchÞ ¼ ωNR

lmðtlmmatchÞ: ð40Þ

(5) The first derivative of the frequency of the EOB
modes is the same as that of the NR modes at the
matching point tlmmatch:

dωinsp-plunge
lm ðtÞ

dt

				
t¼tlmmatch

¼ dωNR
lmðtÞ
dt

				
t¼tlmmatch

: ð41Þ

The rhs of Eqs. (37)–(41) (usually called input values), is
given as fitting formulas for every point of the parameter
space ðν; χ1; χ2Þ in Appendix C. These fits are produced
using the NR SXS catalog [130,131], and BH-perturbation-
theory waveforms described in Sec. V. We point out that the
NQC corrections and the clm calibration coefficients are
not included in the SEOBNRv5HM radiation-reaction force.
In the SEOBNRv5 model, the input values are enforced

at t ¼ tlmmatch, given in Eq. (23) as a function of t
22
peak. We take

t22peak ¼ tISCO þ Δt22ISCO; ð42Þ

where tISCO is the time at which r ¼ rISCO, with rISCO the
radius of the geodesic ISCO in Kerr spacetime [165] with
the same mass and spin as the remnant, computed with NR
fitting formulas [166,167], and Δt22ISCO is a calibration
parameter, to be determined by comparing against NR
simulations. In the SEOBNRv4model, the merger time was
given by

t22peak ¼ tΩpeak þ Δt22peak; ð43Þ

with tΩpeak being the peak of the orbital frequency. The
purpose of Δt22peak is still to introduce a time delay between
the peak of the orbital frequency and the peak of the (2,2)
mode, as observed in the test-body limit [142,143,168].
However, we find the new definition to be more robust,
since it is independent of features in the late dynamics, like
the existence of a peak in the orbital frequency, which is not
necessarily present for all BBH parameters when the
Hamiltonian and modes are not the same as the ones used
in the SEOBNRv4model. More specifically, in the latter the
A potential was designed (log resummation) [69,70] in such
a way as always to guarantee the presence of the light ring
(the peak in the orbital frequency) for aligned-spin binaries.
This is no longer the case when the Padé resummation of the
A potential is employed, as done in SEOBNRv5 (see below).
Another notable improvement in the SEOBNRv5HM

waveforms is the addition of 2GSF calibration coefficients
in the nonspinning modes and RR force from Ref. [125]. In
that work, one defines
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ρlm ¼ ρð0Þlm þ νρð1Þlm þOðν2Þ; ð44Þ

and augments the ρð1Þ;EOBlm by adding an extra polynomial

Δρð1Þlm in v2Ω starting at the lowest order in v2Ω not

already included. The Δρð1Þlm are determined by fitting to

the numerical ρð1Þ;GSFlm results, leading to the following
expressions:

Δρð1Þ22 ¼ 21.2v8Ω − 411v10Ω ; ð45aÞ

Δρð1Þ21 ¼ 1.65v6Ω þ 26.5v8Ω þ 80v10Ω ; ð45bÞ

Δρð1Þ33 ¼ 12v8Ω − 215v10Ω ; ð45cÞ

Δρð1Þ32 ¼ 0.333v6Ω − 6.5v8Ω þ 98v10Ω ; ð45dÞ

Δρð1Þ44 ¼ −3.56v6Ω þ 15.6v8Ω − 216v10Ω ; ð45eÞ

Δρð1Þ43 ¼ −0.654v4Ω − 3.69v6Ω þ 18.5v8Ω; ð45fÞ

Δρð1Þ55 ¼ −2.61v4Ω þ 1.25v6Ω − 35.7v8Ω: ð45gÞ

In the 2GSF calibration, terms Δρð1Þlm are then added
directly to the full (not ν expanded) ρlm coefficients. In
Ref. [125], it is also found beneficial to include additional
terms in the (3,2) and (4,3) modes obtained by matching to
the PN expansions of the test-mass limit (TML) GWenergy
flux. Thus, we add the following terms:

Δρð0Þ;TML
32 ¼

�
−
1312549797426453052

176264081083715625

þ 18778864

12629925
eulerlogð2; vΩÞ

�
v10Ω ; ð46aÞ

Δρð0Þ;TML
43 ¼

�
−
2465107182496333

460490801971200

þ 174381

67760
eulerlogð3; vΩÞ

�
v8Ω; ð46bÞ

where we define

eulerlogðm; vΩÞ≡ γE þ log ð2mvΩÞ; ð47Þ

in which γE is the Euler constant.

B. Merger-ringdown hlm modes

The merger-ringdown modes are constructed with a
phenomenological Ansatz, using information from NR
simulations and TML waveforms. The Ansatz we employ
for the modes (2,2), (3,3), (2,1), (4,4), (5,5), which show

monotonic amplitude and frequency evolution, is the same
as the one implemented in Refs. [77,78] and reads as

hmerger-RD
lm ðtÞ ¼ νÃlmðtÞeiϕ̃lmðtÞe−iσlm0ðt−tlmmatchÞ; ð48Þ

where σlm0 ¼ σRlm − iσIlm is the complex frequency of the
least-damped quasinormal mode (QNM) of the remnant
BH. The QNM frequencies are obtained for each ðl; mÞ
mode as a function of the BH’s final mass and spin using the
QNM Python package [169]. The BH’s mass and spin are in
turn computed using the fitting formulas of Refs. [166,167],
respectively. The Ansätze for the two functions Ãlm and
ϕ̃lm in Eq. (48) are the following [77,78]:

ÃlmðtÞ ¼ clm1;c tanh ½clm1;fðt − tlmmatchÞ þ clm2;f � þ clm2;c ; ð49Þ

ϕ̃lmðtÞ ¼ ϕlm
match − dlm1;c log

"
1þ dlm2;fe

−dlm
1;fðt−tlmmatchÞ

1þ dlm2;f

#
; ð50Þ

where ϕlm
match is the phase of the inspiral-plunge mode ðl; mÞ

at t ¼ tlmmatch. The coefficients dlm1;c and clmi;c (i ¼ 1, 2) are
constrained by the requirement that the amplitude and phase
of hlmðtÞ in Eq. (22) are continuously differentiable at
t ¼ tlmmatch, and can be written in terms of clm1;f , c

lm
2;f , σ

R
lm,

jhinsp-plungelm ðtlmmatchÞj, ∂tjhinsp-plungelm ðtlmmatchÞj, as follows:

clm1;c ¼ 1

clm1;fν

h
∂t

			hinsp-plungelm ðtlmmatchÞ
			

−σRlm
			hinsp-plungelm ðtlmmatchÞ

			icosh2ðclm2;fÞ; ð51Þ

clm2;c ¼

			hinsp-plungelm ðtlmmatchÞ
			

ν
−

1

clm1;fν

h
∂tjhinsp-plungelm ðtlmmatchÞ

			
−σRlm

			hinsp-plungelm ðtlmmatchÞ
			icoshðclm2;fÞsinhðclm2;fÞ; ð52Þ

or in terms of dlm1;f; d
lm
2;f ; σ

I
lm;ω

insp-plunge
lm ðtlmmatchÞ for dlm1;c

dlm1;c ¼
h
ωinsp-plunge
lm ðtlmmatchÞ − σIlm

i 1þ dlm2;f
dlm1;fd

lm
2;f

: ð53Þ

The remaining parameters in Eqs. (49) and (50) are the
free coefficients clmi;f and dlmi;f , i ¼ 1, 2.
The NQC corrections ensure that the waveform’s ampli-

tude and frequency coincide with the NR input values at
t ¼ tlmmatch, and make the merger-ringdown modes indepen-
dent of the EOB inspiral modes, allowing for an indepen-
dent calibration of the two. To obtain clmi;f and dlmi;f , we first
extract them from each NR and TML waveform by least-
square fits, and then interpolate the values obtained across
the parameter space using polynomial fits in ν and χ. While
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in Ref. [78] the same polynomial was used for most of the
free coefficients, in this work we use a recursive-feature-
elimination (RFE) [170] algorithm with polynomial fea-
tures of third and fourth order, depending on the quantity to
fit. Applying a log transformation to some of the coef-
ficients is also beneficial, both to improve the quality of the
fits and to ensure the positivity of those quantities when
extrapolating outside of the region where NR data are
available. Finally, we apply a similar RFE strategy to most
of the fits for the input values, the only exceptions being the
fits of the amplitude of the odd-m modes and their
derivatives. The odd-m modes vanish in the equal-mass
and equal-spin limit, since they need to satisfy the sym-
metry under rotation φ0 → φ0 þ π; therefore, the corre-
sponding amplitudes are better captured by ad hoc
nonlinear Ansätze that enforce this limit by construction
(see also Appendix D).

C. Mode mixing in the (3,2) and (4,3) merger-ringdown
hlm modes

The merger-ringdown (3,2) and (4,3) modes show post-
merger oscillations [56,171], mostly related to the mismatch
between the spherical harmonic basis used for extraction in
NR simulations, and the spheroidal harmonics adapted to
the perturbation theory of Kerr BHs. Because of this, it is
not possible to use the same Ansatz of Eqs. (48)–(50)
straightforwardly.
Equation (21) can be formulated in terms of −2 spin-

weighted spheroidal harmonics as

hðt;λ; ι;φ0Þ¼
X
l0≥2

X
jmj≤l0

X
n≥0

−2Sl0mnðι;φ0ÞShlmnðt;λÞ; ð54Þ

where Slmn ≡ SlmðafσlmnÞ are the −2 spin-weighted
spheroidal harmonics associated with the QNM frequencies
σlmn, and with afMf being the spin angular momentum of
the final BH of mass Mf [172]. The superscript S denotes
that the Shlmn modes are expanded in the spheroidal
harmonics basis.
One can switch from the spherical harmonic basis to the

spheroidal harmonic basis via

−2Sl0mn ¼
X
l≥jmj

μ�mll0n−2Ylm; ð55Þ

where μmll0n are mode-mixing coefficients, which we
compute using fits provided in Ref. [173] (more complex
fits can be found in Ref. [174]), and the star denotes the
usual complex conjugation. Inserting Eq. (55) in Eq. (54)
for the spheroidal harmonics we get

hðt; ι;φ0Þ ¼
X
l0≥2

X
jmj≤l0

X
n≥0

X
l≥jmj

−2Ylmðι;φ0ÞShlmnðtÞμ�mll0n;

ð56Þ

where we have suppressed the λ parameter from the
expression to ease the notation. Comparing Eq. (56) with
Eq. (21), we obtain the following relation between spheri-
cal and spheroidal modes,

hlmðtÞ ¼
X
l0≥jmj

X
n≥0

Shl0mnðtÞμ�mll0n: ð57Þ

Starting from Eq. (57), we can model the mode-mixing
behavior [48,175] to obtain monotonic functions that can
be fitted by the Ansatz already used for the other modes.
Practically, it is not feasible to sum over all the spheroidal
modes to get each spherical mode, so we make a few
reasonable approximations. First, we neglect the overtone
(n > 0) contributions in the right-hand side of Eq. (57),
because their decay times are ≳3 times smaller than the
dominant overtone n ¼ 0. Second, for a given ðl; mÞmode,
we neglect the contributions from the spheroidal modes
with l0 > l since their amplitudes are subdominant com-
pared to the ðl; m; 0Þmode. With these approximations, we
can rewrite Eq. (57) as

hlmðtÞ ≃
X
l0≤l

Shl0m0ðtÞμ�mll00: ð58Þ

Writing it explicitly for the modes of interest,

h22ðtÞ ≃ μ�2220
Sh220ðtÞ; ð59aÞ

h33ðtÞ ≃ μ�3330
Sh330ðtÞ; ð59bÞ

h32ðtÞ ≃ μ�2320
Sh220ðtÞ þ μ�2330

Sh320ðtÞ; ð59cÞ

h43ðtÞ ≃ μ�3430
Sh330ðtÞ þ μ�3440

Sh430ðtÞ: ð59dÞ

From these equations, we can solve for the Shlm0 modes
to obtain

Sh320ðtÞ ≃
h32ðtÞμ�2220 − h22ðtÞμ�2320

μ�2330μ
�
2220

; ð60aÞ

Sh430ðtÞ ≃
h43ðtÞμ�3440 − h33ðtÞμ�3430

μ�3330μ
�
3440

: ð60bÞ

We show in Fig. 1 the characteristics of the Shlm0 mode
obtained from the spherical mode hlm via Eqs. (60a)
and (60b) for the NR waveform SXS:BBH:2138. The
h32 mode shows oscillations in its amplitude and frequency,
while the Sh320 mode obtained from Eq. (60a) has a nearly
monotonic behavior. Most importantly, the frequency of the
Sh320 mode oscillates around the QNM frequency predicted
in BH perturbation theory for the spheroidal (3,2,0) mode.
Thus, we model the spheroidal Shlm0 modes using the

Ansatz of Eq. (48), where in Eq. (50) ϕmatch
lm is replaced by

Sϕmatch
lm0 , which is the phase of Shlm0 at t ¼ tmatch

lm . In Eqs. (51)
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and (52) we replace hlm by Shlm0, and in Eq. (53) we replace
ωlm by Sωlm0. Once we have a model for Sh320 and Sh430, it
is straightforward to obtain the (3,2) and (4,3) modes by
combining them with the (2,2) and (3,3) ones previously
obtained by inverting Eqs. (60a) and (60b).
The NQC corrections for the inspiral-plunge hlm modes

require the values for the spherical NR modes hNRlmðtmatch
lm Þ,

and those are the quantities that we fit and interpolate
across the parameter space. However, we need the input
values for Shmatch

lm0 ≡ Shlm0ðtmatch
lm Þ and its derivative in order

to fix the coefficients clmi;c and dlmi;c . They can be derived
from Eqs. (60a) and (60b) starting from the hlm input
values.
First, we introduce the following quantities:

ρ ¼ jμmll00j
jhmatch

l0m j
jμml0l00jjhmatch

lm j ; ð61aÞ

δϕ ¼ ϕl0m
match − ϕlm

match − argðμmll00Þ þ argðμml0l00Þ; ð61bÞ

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ cosðδϕÞÞ2 þ ρ2 sin2ðδϕÞ

q
; ð61cÞ

ρ̇ ¼ jμmll00j
�
∂tjhmatch

l0m j
jhmatch

lm j −
jhmatch

l0m j
jhmatch

lm j2 ∂tjh
match
lm j

�
; ð61dÞ

δϕ̇ ¼ ∂tϕ
l0m
match − ∂tϕ

lm
match; ð61eÞ

Ḟ ¼ ðρρ̇þ ρ sinðδϕÞδϕ̇ − ρ̇ cosðδϕÞÞ
F

; ð61fÞ

where jhmatch
lm j≡ jhinsp-plungelm ðtlmmatchÞj. Then,

jShmatch
lm0 j ¼ jhmatch

lm jF
jμmll0j

; ð62aÞ

Sϕlm0
match ¼ ϕlm

match þ argðμmll0Þ þ arctan

�
−ρ sinðδϕÞ

1 − ρ cosðδϕÞ
�
;

ð62bÞ

∂tjShmatch
lm0 j ¼ ð∂tjhmatch

lm jF þ jhmatch
lm jḞÞ

jμmll0j
; ð62cÞ

Sωmatch
lm0 ¼ωmatch

lm þðρ2δϕ̇−ρcosðδϕÞδϕ̇− ρ̇sinðϕÞÞ
F2

; ð62dÞ

FIG. 1. Mode mixing in the NR simulation SXS:BBH:2138 (q ¼ 3.0; χ1 ¼ −0.6; χ2 ¼ 0.4). Upper panel: amplitude of the modes
jhlmj and of jShlm0j, after the mode-mixing removal [Eqs. (60a) and (60b)]. We denote with t ¼ 0 the time of the peak of the (2,2)-mode
amplitude. Lower panel: frequencies of the modes hlm and of Shlm0. The ringdown frequencies of the Sh320 and Sh430 modes are well
approximated by the (3,2,0) and (4,3,0) QNM frequencies (dashed horizontal lines) after the mode-mixing removal.
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where for the (3,2) mode m ¼ 2;l ¼ 3;l0 ¼ 2, and for
the (4,3) mode m ¼ 3;l ¼ 4;l0 ¼ 3.

V. CALIBRATION TO NUMERICAL-RELATIVITY
WAVEFORMS

The inspiral-plunge modes described in Sec. VI are
functions of the binary parameters ðq; χ1; χ2Þ, the initial
orbital frequency Ω0 at which the evolution is started, and a
set of calibration parameters, which are determined as a
function of ðq; χ1; χ2Þ such that we maximize the agree-
ment between the waveform model and NR simulations of
BBHs. In the SEOBNRv5 model we employ the following
calibration parameters:
(1) a6: a 5PN, linear in ν, parameter that enters the

nonspinning AnoSðuÞ potential of Eq. (9).
(2) dSO: a 4.5PN spin-orbit parameter, that enters the

odd-in-spin part of the effective Hamiltonian [see
Eqs. (12) and (13)].

(3) Δt22ISCO: a parameter that determines the time shift
between the Kerr ISCO, computed from the final
mass and spin of the remnant [166,167], and the
peak of the (2,2)-mode amplitude, as given by
Eq. (42). We remark that this quantity is different
from Δt22peak used in the SEOBNRv4 model, where it
corresponded to the time difference between the
peak of the orbital frequency (light ring) and the
peak of the (2,2)-mode amplitude.

The resummation of the analytical information that enters
the EOB potentials is critical in determining the model’s
flexibility to reduce differences with NR waveforms. In the
SEOBNRv5model we perform a (1,5) Padé resummation of
the Taylor-expanded potential ATay

noSðuÞ, given by Eq. (9),
while treating lnu as a constant, i.e., we use

AnoSðuÞ ¼ P1
5½ATay

noSðuÞ�: ð63Þ

The Padé resummation of AnoS was originally introduced in
Ref. [53] to guarantee the presence of an ISCO in the EOB
dynamics at 3PN order for any mass ratio. It was then
adopted in nonspinning and initial spinning EOBNR models
(e.g., see Refs. [57,61,67]), and in all TEOBResumSmodels
(e.g., see Refs. [58,66,83,85,113]). For D̄noSðuÞ we perform
a (2,3) Padé resummation of the 5PN Talyor-expanded
D̄Tay

noSðuÞ given by Eq. (A1) in Appendix A, such that

D̄noSðuÞ ¼ P2
3½D̄Tay

noSðuÞ�: ð64Þ

This resummation of D̄noSðuÞ was recently explored in
Ref. [176], although combined with different choices for
AnoSðuÞ and QnoSðuÞ than the ones used in SEOBNRv5.
TEOBResumS includes information through 3PN order in
D̄noSðuÞ, which is Taylor expanded [DnoSðuÞ≡ 1=D̄noSðuÞ
is inverse-Taylor resummed] [113,114].

The SEOBNRv4 model adopted a log resummation for
these potentials, which was designed to guarantee the
presence of a light ring (a peak in the orbital frequency) for
aligned-spin binaries. The light ring was needed to
determine the point at which to attach the merger-ring-
down waveforms, based on Δt22peak. The use of Δt22ISCO as
reference for the attachment of the merger ringdown in the
SEOBNRv5 model eliminates the dependence on the
existence of a peak in the orbital frequency. This enables
us to use resummed potentials that may not necessarily
exhibit a light ring, but lead to a better agreement with NR
simulations compared to the log-resummed ones in
SEOBNRv4.3

Similarly, the different resummation of the generic-spin
Hamiltonian in SEOBNRv5, based on that of a test mass in a
deformed Kerr background [54,73,74,126], instead of on
the one of a test spin [70,146,147] as in SEOBNRv4, is a
crucial factor in achieving high faithfulness compared to NR
simulations. Notably, this change allows us to reach higher
accuracy with just one spin-dependent calibration parameter
in the Hamiltonian (dSO), surpassing what could be obtained
by tuning three such parameters in SEOBNRv4.
We calibrate SEOBNRv5HM to 442 NR waveforms, all

produced with the SpEC code of the SXS Collaboration
[21,22,24,25,30,77,130–140], except for a simulation with
mass ratio and dimensionless spins q ¼ 8; χ1 ¼ 0.85; χ2 ¼
0.85 produced with the Einstein Toolkit code [78,141]. We also
incorporate information from 13 waveforms computed by
solving the Teukolsky equation in the framework of BH
perturbation theory [142,143], with mass ratio q ¼ 103 and
dimensionless spin values in the range −0.99 ≤ χ ≤ 0.99.4

In Fig. 2 we show the coverage of NR and BH-
perturbation-theory waveforms projected on the binary’s
parameters ν and χeff ¼ ðχ1m1 þ χ2m2Þ=M, separated in
different regions. In the first region 1 ≤ q ≤ 3 there is a
large number of configurations with both BHs carrying spin.
The spins’ magnitude reach χ1;2 ¼ 0.998 in the equal-mass
limit, while they are limited to χ1;2 ¼ 0.85 for q ¼ 3. The
NR coverage in this region is mostly comparable to
SEOBNRv4HM. The second region is 3 < q ≤ 10. This
region includes a significant number of configurations, with
primary spins −0.9 ≤ χ1 ≤ 0.85, and is much more densely
populated than for SEOBNRv4HM. The third region is
10 < q ≤ 20, and it includes simulations with spins only
on the heavier BH, with spin magnitudes only up to

3An updated NR calibration of the SEOBNRv4 nonspinning
Hamiltonian, using the SEOBNRv5 RR force and gravitational
modes, is presented in Appendix A of Ref. [125], confirming that
the improvements observed can be predominantly attributed to
the updated Hamiltonian.

4The full list of simulations is provided as an ancillary file
in https://arxiv.org/src/2303.18039v1/anc/NR_simulations.json.
For each simulation we list the mass-ratio q, the dimensionless
spins χ1;2, the initial orbital frequency Ω0, the initial eccentricity
e0, and the number of orbits Norb up to the merger.
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χ1 ¼ 0.5, or nonspinning waveforms. SEOBNRv4HM was
not calibrated to any NR simulation in this region. Finally,
the fourth region covers the 13 Teukolsky-code waveforms,
with q ¼ 103 and dimensionless spin values in the range
−0.99 ≤ χ ≤ 0.99.
The rest of this section explains how we determine the

calibration parameters by comparing the SEOBNRv5wave-
form model to NR waveforms. We closely follow the
procedure adopted in Ref. [77] and highlight differences
when needed.

A. Calibration requirements

In order to calibrate the waveform model to NR we first
need to establish when two waveforms are close to each
other. Given two waveforms h1ðtÞ and h2ðtÞ, we introduce
the match, which is defined as the noise-weighted inner
product [177,178]

ðh1jh2Þ≡ 4Re
Z

fh

fl

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df; ð65Þ

where h̃1ðfÞ and h̃2ðfÞ indicate Fourier transforms, and
SnðfÞ is the one-sided power spectral density of the
detector noise, which we assume to be the design zero-
detuned high-power noise power spectral density (PSD) of
Advanced LIGO [179]. The faithfulness is then defined as
the overlap between the normalized waveforms, maximized
over the relative time and phase shift, that is,

hh1jh2i ¼ max
ϕc;tc

ðh1ðϕc; tcÞjh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p : ð66Þ

In Eq. (65), we fix fh ¼ 2048 Hz and choose fl to be
fl ¼ 1.35fstart, where we identify the start of the NR
simulation fstart as the peak of the NR waveform in the
frequency domain. The choice of a buffer factor of 1.35 is
needed to exclude features caused by the Fourier transform,
which would spoil the match. This is particularly important
when comparing a time-domain signal and a frequency-
domain approximant, as will be done in the following
sections.5 We fix fh ¼ 2048 Hz. We taper the time-domain
waveforms using a Planck window function [180], before
transforming them in the frequency domain.
Given the binary parameters

Λ≡ fq; χ1; χ2g; ð67Þ

and calibration parameters

θ≡ fa6; dSO;Δt22ISCOg; ð68Þ

we define the unfaithfulness (or mismatch) of hEOB to hNR,
for the same physical parameters Λ, and as a function of the
calibration parameters θ, as

MðθÞ ¼ 1 − hhEOBðΛ; θÞjhNRðΛÞi: ð69Þ

The goal that we set for the calibration of the SEOBNRv5
model is to find values of the calibration parameters θðΛÞ
such that the (2,2) mode matches with the NR (2,2) mode
above 99.9% (for the SEOBNRv4model the goal was set to
99%). The 10−3 requirement as maximum mismatch is
challenging, but still reasonable, considering that other
state-of-the-art aligned-spin approximants [44,47,83] can
reach mismatches of 10−3 or smaller against most of the NR
configurations. More importantly, we need to push the
accuracy of the SEOBNR models in view of more sensitive
runs with current facilities and new detectors on the ground
and in space [181]. A 10−4 goal would be extremely
challenging, and would demand a more sophisticated
calibration with additional parameters, as well as a careful
treatment of NR errors, which are often of this order of
magnitude (as estimated, for example, by comparing
different resolutions or extrapolation orders of the same
simulation). We also require, as in the SEOBNRv4 model,
that the difference in merger time δtmerger [defined as the
peak of the (2,2)-mode amplitude] after a low-frequency
phase alignment is smaller than 5M, as the mismatch alone
is not very sensitive to such differences.

FIG. 2. NR and BH-perturbation-theory waveforms used to
calibrate SEOBNRv5HM, projected on the binary’s parameters ν
and χeff ¼ ðχ1m1 þ χ2m2Þ=M. We highlight four regions as
explained in the text, and use different markers to distinguish
between 327 simulations from the public SXS catalog [131], 114
private SXS waveforms, one Einstein Toolkit simulation, and 13
Teukolsky-code waveforms. We refer to private waveforms as all
those which cannot be downloaded from the SXSwebsite [130] at
the time of this publication.

5If fl < 10 Hz, or when comparing different waveform
models between each other, we instead take fl ¼ 10 Hz.
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B. Nested-sampling analysis

Given the dimensionality of the problem and the large
number of NR simulations at our disposal, it is especially
important to devise a computationally efficient and flexible
calibration procedure. For this work, we improve on the
strategy adopted in the SEOBNRv4 model, which consisted
of a Markov-chain Monte Carlo (MCMC) analysis to obtain
a posterior distribution for the calibration parameters for
each NR simulation. MCMC methods allow one to easily
explore high-dimensional parameter spaces, and have the
advantage of providing information on the structure of the
calibration space, particularly on the correlations between
calibration parameters. For our problem, we find the best
computational performance with nested sampling [182],
using the sampler NESSAI [183] through Bilby [184]. We
compare our result to other samplers available in Bilby and to
the EMCEE [185] MCMC sampler used to calibrate
SEOBNRv4 for a few cases, finding consistent results.
We define the likelihood function to be

PðhNRjθÞ ∝ exp

�
−
1

2

�
MmaxðθÞ

σM

�
2

−
1

2

�
δtmergerðθÞ

σt

�
2
�
;

ð70Þ

where MmaxðθÞ is the maximum unfaithfulness between
EOB and NR waveforms over the total mass range
10M ≤ M⊙ ≤ 200M, σM is chosen to be 10−3, and σt
is chosen to be 5M, to impose our calibration require-
ments. We carry out the calibration for 441 SXS NR
waveforms plus 1 Einstein Toolkit NR waveform, as sum-
marized above. We take uniform priors for all calibration
parameters, specifically a6 ∈ ½−500; 500�, Δt22ISCO ∈
½−100; 40�, dSO ∈ ½−500; 500�.
For each NR simulation we obtain a posterior distri-

bution PðθjhNRÞ whose mean and variance (and mutual
correlations between the parameters) relate to the calibra-
tion requirements. The next step in the calibration pro-
cedure is to compute a fit for the calibration parameters as
functions of the binary parameters θðΛÞ, starting from the
set of calibration posteriors. In some cases, the correla-
tions between the parameters lead to a secondary mode. To
obtain a more regular fit, we select only one mode of each
calibration posterior, based on continuity considerations.
After this step, we discard samples that do not satisfy the
calibration requirements for each posterior. If this would
discard more than 50% of the points, we instead keep half
of the original samples of the selected mode with the best
likelihood values. We do this since, for a few of the
most challenging NR simulations, like SXS:BBH:1124
with q ¼ 1; χ1 ¼ χ2 ¼ 0.998, we do not find values of the
calibration parameters that satisfy both requirements on
Mmax and δtmerger. In Fig. 3 we show an example of a
calibration posterior for the NR simulation SXS:
BBH:2420.

As done for the SEOBNRv4model, we find it convenient
to perform the calibration hierarchically, starting from noS
and then moving to aligned-spin waveforms. First, we
sample over 18 nonspinning configurations (the remaining
21 nonspinning simulations are only used for validation)
using as calibration parameters

θnoS ≡ fa6;Δt22ISCO;noSg: ð71Þ

We then fix a6ðνÞ, Δt22ISCO;noSðνÞ by the respective fits, as
described in the next section, and sample over the remain-
ing 403 aligned-spin configurations using as calibration
parameters

θS ≡ fdSO;Δt22ISCO;Sg; ð72Þ

where

Δt22ISCO ¼ Δt22ISCO;noS þ Δt22ISCO;S; ð73Þ

and Δt22ISCO;S is assumed to vanish in the nonspinning limit.
We investigate the possibility of adding a spin dependence
to a6, or adding a spin-spin calibration parameter dSS at
5PN order similar to the one used in the SEOBNRv4model,
but we find no significant improvements—for example by

FIG. 3. Posterior for the calibration parameters fdSO;Δt22ISCO;Sg,
obtained by comparing to the NR simulation SXS:BBH:2420
(q ¼ 1.0; χ1 ¼ 0.2; χ2 ¼ 0.2). The blue posterior is the result of
the nested-sampling analysis described in Sec. V B, and shows
values mostly clustered around two distinct regions or modes.
The green posterior is what we obtain after removing one of the
two modes and keeping only the points with Mmax < 10−3 and
δtmerger < 5M. We use these processed posteriors to obtain fits
for the calibration parameters across parameter space.
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comparing the mismatch and time to merger against NR
taking the maximum likelihood points of the calibration
posteriors. On the other hand, limiting the sampling to two
dimensions makes it faster, and produces more Gaussian-
like posteriors which are significantly simpler to fit.

C. Calibration-parameter fits and extrapolation

We now discuss how we obtain fits for the calibration
parameters θ ¼ fa6;Δt22ISCO; dSOg as functions of the binary
parametersΛ ¼ fq; χ1; χ2g, given the calibration posteriors.
To help with the extrapolation, we also use some knowledge
of the conservative dynamics in the ν → 0 limit. For a6 we
employ Eq. (11), which is obtained by requiring that the
ISCO shift predicted by the SEOBNRv5Hamiltonian agrees
with the 1GSF ISCO shift, as explained is Sec. III A. For
Δt22ISCO we estimate the test-mass values, for different spin
magnitudes, using the results of Ref. [143]. We do so by
imposing that the difference between the peak of the (2,2)
mode and the peak of the orbital frequency in the EOB test-
mass-limit waveforms matches the one measured in the
Teukolsky-code waveforms (see, e.g., Fig. 13 of Ref. [143]).
We then convert the corresponding value to the difference
between the ISCO and the peak of the (2,2)-mode ampli-
tude. Since the Teukolsky-code waveforms were produced
using a different EOB dynamics, we prefer to relate those
quantities closer to merger, and not directly match the
difference between the ISCO and the peak of the (2,2) mode
of Teukolsky-code and EOB waveforms. Nevertheless, we
find that the difference is not very large.
In the nonspinning limit, the data for θnoS ¼

fa6;Δt22ISCO;noSg are simple enough to allow for an inde-
pendent direct fit of the maximum-likelihood point of the
calibration posteriors and TML values, using least square
fits. For a6 we use a quartic polynomial in ν, while for
Δt22ISCO;noS, that is an Ansatz of the form

Δt22ISCO;noS ¼ ða0 þ a1νþ a2ν2 þ a3ν3Þν−1=5þa4ν; ð74Þ

where the ν−1=5 factor ensures the expected test-mass
scaling for ðt22peak − tISCOÞ [52], and provides a better
extrapolation of the fit in the ν → 0 limit. Figure 4 shows
the fa6;Δt22ISCO;noSg data and the resulting fits.
For the aligned-spin fit of θS ¼ fdSO;Δt22ISCO;Sg, we use a

similar approach as in the SEOBNRv4 model [77], with a
few important differences. We fit the median of the
calibration posteriors, instead of the mean, as this provides
better unfaithfulness when comparing against NR. In
principle, fitting the maximum-likelihood also for
aligned-spin cases would give the best result, but does
not turn out to be a viable option due to the lack of regularity
in the data. We use three variables in the fit ðν; aþ; a−Þ,
instead of just ðν; χÞ, where χ ¼ χS þ χAδ=ð1 − 2νÞ, as this
provides a better result, also when using a subset of NR

simulations for the fit (see also Appendix E), or when
comparing to independent sets of NRHybSur3dq8 [24]
waveforms not used in the calibration. We rescale Δt22ISCO;S
by ν1=5 to ensure the correct test-mass scaling.
More specifically, after removing secondary modes and

discarding samples that do not meet the calibration
requirements, and after rescaling Δt22ISCO;S by ν1=5, we
consider the medians hθSiðnÞ and covariance matrices CSðnÞ
of the calibration posteriors, with n labeling each of the
442 NR simulations. We parametrize dSO by a cubic
polynomial in ðν; aþ; a−Þ and Δt22ISCO;Sν1=5 by a cubic
polynomial in ðν; aþ; a−Þ with an additional a4þ feature.
We determine the coefficients of these polynomials by
minimizing the following function, using a Sequential
Least Squares Programming minimization algorithm [77],

χ2s ≡
X
n∈Ss

w
2
ðθS − hθSiðnÞÞðC−1

S ÞðnÞðθS − hθSiðnÞÞT þ χ2TML;

ð75Þ

where χ2TML is a term that penalizes deviations from the
test-mass limit of Δt22ISCO;S and takes the form

FIG. 4. Fits for the nonspinning calibration parameters
θnoS ¼ fa6;Δt22ISCO;noSg. The parameters are obtained by least-
square fits of the maximum likelihood points (blue dots) of the
calibration posteriors (shaded violins), for a set of NR simulations
with different mass ratios ν, together with estimates of the test-
mass limit values (green dots). We rescale Δt22ISCO;noS by ν1=5 to
improve its extrapolation in the ν → 0 limit. No processing is
needed for the nonspinning calibration posteriors, as the maxi-
mum likelihood point lies in the same mode for all configurations.
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χ2TML ¼
X
χi≠0

ðΔt22ISCO;S − Δt22;TML
ISCO;χi

Þ2
σ2TML

; ð76Þ

in which Δt22;TML
ISCO;χi

are the estimated test-mass values of
Δt22ISCO;S, for different spin magnitudes χi for which
Teukolsky waveforms are available, and we take
σTML ¼ 5M. As for the SEOBNRv4 model, the function
w is a weighting function of the form

w≡ χ21 þ χ22 þ
jχj
2ν

; ð77Þ

which accounts for the inhomogeneous distribution of NR
simulations in the BBH parameter space.
We finally list the calibration-parameter fits:

a6 ¼ 329523.262ν4 − 169019.14ν3 þ 33414.4394ν2

− 3021.93382νþ 41.787788; ð78Þ

Δt22ISCO;noS¼ ν−1=5þ10.051322νð55565.2392ν3−9793.17619ν2

−1056.87385ν−59.62318Þ; ð79Þ

Δt22ISCO;S ¼ ν−1=5ð−6.789139a4þ þ 5.399623a3þ þ 6.389756a2þa− − 132.224951a2þνþ 49.801644a2þ
þ 8.392389aþa2− þ 179.569825aþa−ν − 40.606365aþa− þ 384.201019aþν2 − 141.253182aþν

þ17.571013aþ − 16.905686a2−νþ 7.234106a2− þ 144.253396a−ν2 − 90.192914a−νþ 14.22031a−Þ; ð80Þ

dSO ¼ −7.584581a3þ − 10.522544a2þa− − 42.760113a2þνþ 18.178344a2þ − 17.229468aþa2−
þ 362.767393aþa−ν − 85.803634aþa− − 201.905934aþν2 − 90.579008aþνþ 49.629918aþ
− 7.712512a3− − 238.430383a2−νþ 69.546167a2− − 1254.668459a−ν2 þ 472.431938a−ν

− 39.742317a− þ 478.546231ν3 þ 679.52177ν2 − 177.334832ν − 37.689778: ð81Þ

To ensure a robust behavior of the fits between the last
calibration points and extreme-mass-ratio limit, we perform
exhaustive checks of the sanity of the waveform model
across a broad range of the parameter space (q∈ ½1; 100�,
covering the full spin range). The tests include visual
inspections of thewaveforms, assessing stability in response
to perturbations of the intrinsic parameters, verifying the
monotonicity of the amplitude and frequency of the (2,2)
mode up its peak and confirming that the higher modes
consistently maintain amplitudes smaller than the (2,2)
mode, up to the merger.

VI. PERFORMANCEOF THE SEOBNRv5HMMODEL
AGAINST NUMERICAL-RELATIVITY

SIMULATIONS

To assess the impact of the improvements introduced in
the SEOBNRv5HM waveform model, we compare it to the
set of NR simulations described in Sec. V, and to other
state-of-the-art aligned-spin approximants. We do so by
performing unfaithfulness computations, as well as com-
parisons of angular-momentum flux and binding energy
against NR. Finally, we assess the computational efficiency
of the model for GW data-analysis purposes, providing
benchmarks.

A. Faithfulness for multipolar waveforms

The GW signal emitted by a quasicircular aligned-spin
BBH system depends on 11 parameters: the masses and
spins λ ¼ fm1;2; χ1;2g, the direction of the observer from
the source described by ðι;φ0Þ, the luminosity distance dL,
the polarization angle ψ , the location in the sky of the
detector ðθ;ϕÞ, and the time of arrival tc. The strain in the
detector caused by a passing GW can be expressed as

hðtÞ≡ Fþðθ;ϕ;ψÞhþðt; ι;φ0; dL; λ; tcÞ
þ F×ðθ;ϕ;ψÞh×ðt; ι;φ0; dL; λ; tcÞ; ð82Þ

where Fþ;× are the antenna pattern functions [177,178].
The strain in Eq. (82) can be expressed in terms of an
effective polarization angle κðθ;ϕ;ψÞ as

hðtÞ ¼ Aðθ;ϕÞðhþ cos κ þ h× sin κÞ; ð83Þ

where the dependences of κ, hþ, and h× have been removed
to ease the notation, and the definition of the coefficient
Aðθ;ϕÞ can be found in Refs. [78,81].
To assess the agreement between two waveforms with

higher-order multipoles [46,78,81], which we denote as the
signal, hs and the template, ht, observed by a detector, we
define the faithfulness function [78,81],
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F ðMs; ιs;φ0s; κsÞ ¼ max
tc;φ0t;κt

� hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p 				

ιs¼ιt
λsðts¼t0s Þ¼λtðtt¼t0t Þ

�
;

ð84Þ

where the inner product is defined in Eq. (65). Typically,
we set the inclination angle of the template and the signal to
be the same, while the coalescence time, azimuthal, and
effective polarization angles of the template, ðt0t ;φ0t

; κtÞ,
are adjusted to maximize the faithfulness of the template.
The maximizations over the coalescence time tc, and
coalescence phase φ0t are performed numerically, while

the optimization over the effective polarization angle κt is
done analytically as described in Ref. [186].
To reduce the dimensionality of the faithfulness function

it is useful to define the sky-and-polarization-averaged
faithfulness [80,81] as

F̄ ðMs; ιsÞ≡ 1

8π2

Z
2π

0

dκs

Z
2π

0

dφ0sF ðMs; ιs;φ0s; κsÞ: ð85Þ

We also define the sky-and-polarization-averaged, signal-
to-noise-ratio (SNR)-weighted faithfulness as [78,81]

F̄ SNRðMs; ιsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
2π
0 dκs

R
2π
0 dφ0sF 3ðMs; ιs;φ0s; κsÞSNR3ðιs;φ0s; κsÞR
2π
0 dκs

R
2π
0 dφ0sSNR3ðιs;φ0s; κsÞ

3

s
; ð86Þ

FIG. 5. (2,2)-mode mismatch over a range of total masses between 10 and 300M⊙, between different aligned-spin approximants and
the 442 NR simulations used in this work. The colored lines highlight cases with the worst maximum mismatch for each model. Note
that SEOBNRv5 has no outliers beyond 0.3% and many more cases at lower unfaithfulness, especially compared to SEOBNRv4 and
TEOBResumS-GIOTTO.
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where the SNRðιs;φ0s
; θs;ϕs; κs; dLs; λs; tcsÞ is defined as

SNRðιs;φ0s
; θs;ϕs; κs; dLs; λs; tcsÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs; hsÞ

p
: ð87Þ

The weighting by the SNR in Eq. (87) takes into account
the dependence on the phase and effective polarization of
the signal at a fixed distance. Finally, we define the sky-
and-polarization-averaged, SNR-weighted unfaithfulness
(or mismatch) as

MSNR ¼ 1 − F̄ SNR: ð88Þ

B. Accuracy of SEOBNRv5 (2,2) mode

We start by considering (2,2)-mode only mismatches. In
this case, the result does not depend on the inclination, and
the mismatch definition reduces to the one used in Sec. V.
Figure 5 shows the (2,2)-mode mismatch over a range of
total masses between 10 and 300M⊙ using the 442 NR
simulations summarized in Sec. V for different state-of-
the-art aligned-spin approximants: SEOBNRv5, its pre-
decessor SEOBNRv4 [77], the aligned-spin model from
the other EOB family TEOBResumS [64,83,113,114],
and IMRPhenomXAS [44], from the fourth generation of
Fourier-domain phenomenological waveform models. All
approximants are called through LALSimulation, except for
SEOBNRv5 and for TEOBResumS, for which we use the
latest available public version TEOBResumSv4.1.4-
GIOTTO.6

The colored lines highlight cases with the worst maxi-
mum mismatch for each model: as expected, the most
challenging cases have high mass ratio and high spins, as
all models have been calibrated to few NR simulations in
this region of parameter space. We note that SEOBNRv5
has no outliers beyond 0.3% and many more cases at lower
unfaithfulness, especially compared to SEOBNRv4 and
TEOBResumS-GIOTTO. Comparing the two upper panels
of Fig. 5, we can see in particular that SEOBNRv5 yields
unfaithfulnesses almost 1 order of magnitude smaller than
those of its predecessor SEOBNRv4 model.
The top panel of Fig. 6 shows histograms of the

maximum (2,2)-mode mismatch over the same range of
total masses. We also show an estimate of the NR error
computed as the mismatch between NR simulations with the
highest and second-highest resolutions, if available. The
mismatch between NR simulations of the highest resolution
and different extrapolation order is typically 1 order of
magnitude smaller than the one obtained comparing differ-
ent resolutions; hence we do not show it in these compar-
isons. The vertical dashed lines correspond to the medians

of the distributions. Overall IMRPhenomXAS achieves the
lowest median unfaithfulness (1.31 × 10−4), while still
having two outliers above 0.3%, with SEOBNRv5 closely
following with median mismatch 1.99 × 10−4, but a larger
tail of cases with low unfaithfulness approaching 10−5.
TEOBResumS-GIOTTO is slightly less accurate with
median mismatch 5.12 × 10−4, while SEOBNRv4 is the
least faithful model with median value 1.44 × 10−3, almost
1 order of magnitude larger than SEOBNRv5. These results
are summarized in Table I, together with the fraction of
cases falling below 10−3 and 10−4 for each approximant.
The NR error is about 1 order of magnitude smaller than

the SEOBNRv5 modeling error, with median value
∼2 × 10−5. Still, there are a few cases where the two are
comparable, and improving the accuracy of the NR simu-
lations used to calibrate the model would be critical to
reducing the modeling errors by another order of magnitude.
The bottom panel of Fig. 6 provides a complementary

FIG. 6. Top panel: histogram of the maximum (2,2)-mode
mismatch over a range of total masses between 10 and 300M⊙,
between different aligned-spin approximants and the 442 NR
simulations used in this work. The NR error is estimated by
computing the mismatch between NR simulations with the
highest and second-highest resolutions. The vertical dashed lines
show the medians. Bottom panel: distribution of the maximum
(blue), median (orange), and minimum (green) mismatch over the
same range of total masses for the different models.

6This corresponds to the commit fc4595df72b2eff4b36e563-
f607eab5374e695fe of the public bitbucket repository https://
bitbucket.org/eob_ihes/teobresums, and it is the latest tagged
version at the time of this publication.
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summary of the unfaithfulness calculation, by showing the
distribution of the maximum (blue), median (orange), and
minimum (green) mismatch over the same range of total
masses for the different models.
We find that 10% of the cases are above 0.1% maximum

mismatch for SEOBNRv5: most of those correspond, as
expected, to high spins, both for large mass ratios and for
q ≃ 1where spin magnitudes can reach values up to 0.998.
In a future update of the model, the description of these
cases could be improved by suitably including the full
5PN spin contributions [next-to-next-to-next-to-leading
order (NNNLO) SO and SS, NLO S3 and S4] to the
conservative dynamics recently obtained in Refs. [154–
157,187–192], by including all spin-contributions up to
3.5PN to the waveform modes, as derived in
Refs. [127,164], or by additional spin-dependent calibra-
tion coefficients other than dSO.
Other challenging cases for SEOBNRv5 are those with

large mass ratio, small aþ, but large secondary spin, for
example SXS:BBH:1430, with parameters ðq; χ1; χ2Þ ¼
ð8.0; 0.284;−0.751Þ. The calibration term, which has the
form ∼aþdSO, is suppressed, and deviations of the model
from NR are only partially captured by having dSO itself
depending also on the spin difference a−. To understandwhat
could be the error when one has exactly aþ ¼ 0, but a− is
large, we can compare the model to NRHybSur3dq8
waveforms: taking q ¼ 8 and varying χ2, while fixing χ1
so that aþ ¼ 0, we see at most mismatches around 0.004
for large negative secondary spin χ2 < −0.9, where
NRHybSur3dq8 is also extrapolating from its training
region (χi ≤ 0.8). While additional calibration terms with a
different spin dependence could improve these cases, this
shows that for the moment the analytical spin information
captures the correct behavior at a level comparable to other
modeling errors.

C. Accuracy of SEOBNRv5HM modes

We now turn to mismatches for the full polariza-
tions, including higher multipoles. Figure 7 shows
the sky-and-polarization averaged, SNR-weighted mis-
match, for inclination ι ¼ π=3, over a range of total
masses between 20 and 300M⊙ between the 441
SXS NR simulations used in this work and different
multipolar aligned-spin approximants: SEOBNRv4HM [78],
SEOBNRv5HM, TEOBResumS-GIOTTO [64,83,113,114],

and IMRPhenomXHM [46]. For each approximant we
include all modes available,7 while for NR waveforms we
use modes up to lmax ¼ 5. The modes included are
specifically ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ for
SEOBNRv4HM; ðl; jmjÞ¼ ð2;2Þ;ð2;1Þ;ð3;3Þ;ð3;2Þ;ð4;4Þ;
ð4;3Þ;ð5;5Þ for SEOBNRv5HM; ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ;
ð3; 3Þ; ð3; 2Þ; ð4; 4Þ for IMRPhenomXHM; and ðl; jmjÞ ¼
ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð3; 1Þ; ð4; 4Þ; ð4; 3Þ; ð4; 2Þ for
TEOBResumS-GIOTTO.
In this comparison we omit the Einstein Toolkit simulation,

for which we only have the (2,2) mode. As in the previous
results, we highlight with a different color cases with the
worst maximum mismatch for each model: unsurprisingly
the worst cases are at the corners of the NR parameter
space, and correspond to configurations with very high q
and nonzero spins, where the impact of higher multipoles is
substantial, also due to the significant inclination ι ¼ π=3.
First of all, we note that all models perform worse

compared to the (2,2)-mode only case, as expected due to
the limited alignment freedom with a global phase and time
shift, but also because the higher modes are available today
at lower PN order than the dominant one, and their
modeling close to merger is complicated by numerical
noise in NR simulations.
Focusing on the upper panels, comparing SEOBNRv4HM

and SEOBNRv5HM, we see an overall improvement,
with many more cases between 10−4 and 10−3 for
SEOBNRv5HM, and just a few outliers above 1% for large
values of the total mass. The improvement for low total
mass, where an accurate inspiral is primarily important, is
particularly significant, and SEOBNRv5HM is always well
below 1%, never exceeding 0.3%. On the other hand the
increase of the mismatch with the total mass for
SEOBNRv5HM, absent in the (2,2)-mode only comparison,
points to limitations in the merger-ringdown modeling of
the higher modes, as in other models. A related limitation is
the absence of some of the higher modes in the waveform
models, which contribute significantly to the ringdown
signal for high mass-ratio systems at a high inclination,
as we quantify below. Focusing on the bottom panels, we

TABLE I. Summary of the (2,2)-mode mismatch over a range of total masses between 10 and 300M⊙, between
different aligned-spin approximants and the 442 NR simulations used in this work. We display the median of the
maximum mismatch across total mass, and the fraction of cases falling below 10−3 and 10−4.

Approximant SEOBNRv4 SEOBNRv5 IMRPhenomXAS TEOBResumS-GIOTTO

MedianmaxMM 1.44 × 10−3 1.99 × 10−4 1.31 × 10−4 5.12 × 10−4

%maxM M < 10−3 38% 90% 97% 76%
%maxM M < 10−4 1% 27% 29% 1%

7For TEOBResumS-GIOTTO we do not include the (5,5)
mode, after finding that, in the version of the code used for these
comparisons, it has an unphysically large amplitude close to
merger in some corners of the parameter space (equal-mass, large
opposite spins, as for example SXS:BBH:2132).
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see that IMRPhenomXHM also has many cases between
10−4 and 10−3, but reaches high values of the unfaithfulness
when compared to high mass-ratio, spinning configurations,
in which higher-mode content is more significant.
Specifically, the unfaithfulness exceeds 10% for the most
challenging configurations with q ¼ 15. We point out that
IMRPhenomXHM has not been calibrated to q ¼ 15 SXS
simulations, which became only recently available [30], but
was calibrated to private q ¼ 18 BAM waveforms, with
different spin values, which have not been used for
SEOBNRv5HM. TEOBResumS-GIOTTO achieves unfaith-
fulness between 10−3 and 10−2 for most cases, but also has
an appreciable number of outliers reaching mismatch 10%,
possibly pointing to robustness issues in some of the higher
modes close to merger.
In order to quantify how much the increase of the

mismatch with the total mass is related to the missing
modes, we show in Fig. 8 the sky-and-polarization aver-
aged, SNR-weighted mismatch, for inclination ι ¼ π=3,
over a range of total masses between 20 and 300M⊙ of
NR waveforms with the same modes as SEOBNRv5HM

FIG. 7. The sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι ¼ π=3, over a range of total masses between 20
and 300M⊙ between different aligned-spin multipolar approximants and the 441 SXS NR simulations used in this work. The colored
lines highlight cases with the worst maximum mismatch for each model.

FIG. 8. The sky-and-polarization averaged, SNR-weighted
mismatch, for inclination ι ¼ π=3, over a range of total masses
between 20 and 300M⊙, of NR waveforms with the same modes
as SEOBNRv5HM ðl; mÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ; ð4; 4Þ; ð5; 5Þ;
ð3; 2Þ; ð4; 3Þ against NR waveforms with all (l ≤ 5) modes.
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ðl; mÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ; ð4; 4Þ; ð5; 5Þ; ð3; 2Þ; ð4; 3Þ
against NR waveforms with all (l ≤ 5) modes. As expected
we see an increase of the mismatch with total mass,
indicating that the error due to neglecting some higher
modes is mostly important in the ringdown, and we see it

can reach more than 0.4% for high q and large spins. This
tells us that to reach the same accuracy of just the (2,2) mode
(< 0.3%) for the full polarizations at high ι one would need
to include additional modes in SEOBNRv5HM.
Figure 9 summarizes the comparison of Fig. 7: in the top

panel we show histograms of the maximum unfaithfulness
over the same range of total masses, with the vertical lines
corresponding to the medians of the distributions, and an
estimate of the NR error computed as the mismatch
between NR simulations with different resolutions. As
for the (2,2)-mode only case, the NR error is about 1 order
of magnitude smaller than the SEOBNRv5HM modeling
error, with median ∼1 × 10−4. Overall SEOBNRv5HM
achieves a lower unfaithfulness than SEOBNRv4HM,
IMRPhenomXHM, and TEOBResumS-GIOTTO, with
the median value 1.01 × 10−3 and only seven cases above
1%, as summarized in Table II. The violin plots in the
bottom panel provide a further comparison by showing the
distribution of the maximum (blue), median (orange), and
minimum (green) mismatch for each model.
We note that in the unfaithfulness computation we

include all modes up to lmax ¼ 5 in the NR waveforms,
while the (5,5) mode is not included in IMRPhenomXHM
and TEOBResumS-GIOTTO. To check the impact of
neglecting the (5,5) mode in these two models, we also
repeat the comparison presented in this section using only
multipoles up to lmax ¼ 4, in both the models and the NR
waveforms. We find a result very similar to what is shown
above, with all models displaying a slightly better perfor-
mance, due to fewer missing modes, and the same
hierarchy for the accuracy of different approximants.
To validate SEOBNRv5HM, we compare it to the multi-

polar aligned-spin surrogate model NRHybSur3dq8 [24].
This model was built for binaries with mass ratios 1–8 and
spin magnitudes up to 0.8, and provides waveforms with
errors comparable to the NR accuracy in the region where
the model was trained. NRHybSur3dq8 waveforms were
not used in the construction of SEOBNRv5HM, so this is an
important validation check of the NR calibration pipeline.
We point out that NRHybSur3dq8 is trained on NR
waveforms hybridized with PN and SEOBNRv4 wave-
forms in the early inspiral. In the following comparisons,
we generate waveforms from an initial geometric frequency

FIG. 9. Top panel: histogram of the maximum sky-and-polari-
zation averaged, SNR-weighted mismatch, for inclination
ι ¼ π=3, over a range of total masses between 20 and 300M⊙,
between different aligned-spin multipolar approximants and the
441 SXS NR simulations used in this work. The NR error is
estimated by computing the mismatch between NR simulations
with the highest and second-highest resolutions. The vertical
dashed lines show the medians. Bottom panel: distribution of the
maximum (blue), median (orange), and minimum (green) mis-
match over the same range of total masses for the different
models.

TABLE II. Summary of the sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι ¼ π=3,
over a range of total masses between 20 and 300M⊙, between different aligned-spin multipolar approximants and
the 441 SXS NR simulations used in this work. We display the median of the maximum mismatch across total mass,
and the fraction of cases falling below 10−2 and 10−3.

Approximant SEOBNRv4HM SEOBNRv5HM IMRPhenomXHM TEOBResumS-GIOTTO

MedianmaxMM̄SNR 3.11 × 10−3 1.01 × 10−3 2.50 × 10−3 4.59 × 10−3

%maxM M̄SNR < 10−2 88% 98% 86% 74%
%maxM M̄SNR < 10−3 5% 49% 23% 0%
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of 0.015, for which the impact of the hybridization should
not be large.
Figure 10 compares SEOBNRv4HM and SEOBNRv5HM

against NRHybSur3dq8, showing a kernel density esti-
mation of the distribution of the maximum mode-by-mode
mismatches between them. We use 5000 random configu-
rations with q∈ ½1; 8�; jχij ≤ 0.9, allowing some extrapo-
lation outside of the surrogate’s training region, as to also
test the extrapolation of the SEOBNRv5HM calibration.
First, we notice that the (2,2)-mode median mismatch

∼3 × 10−4 is comparable to the one against NR, only
slightly higher because of the larger number of challenging
cases with high q and high spin in this comparison. The
maximum unfaithfulness for the (2,2) mode, which is
reached, as expected, for large mass ratios and positive
spins, remains below 0.01, if we limit the comparison to the
region q∈ ½1; 8�; jχij ≤ 0.8where the surrogate was trained,
and can be only slightly above 0.01 if going up to jχij ¼ 0.9
in the surrogate’s extrapolation region. This confirms a
good extrapolation of the SEOBNRv5HM fits. Comparing to
SEOBNRv4HM, we have as expected fewer cases above
0.01, and much lower median unfaithfulness.
Going to the higher multipoles, we see larger errors for

the smaller higher modes, as for most other state-of-the-art
models. The subdominant higher modes in NR simulations
are noisier, and more difficult to model (both for EOB
models and for NRHybSur3dq8). Some of the higher
modes also include considerably less analytical information
compared to the (2,2) mode (see Appendix B), and adding
the full 3.5PN contributions from Refs. [127,164] would
likely bring a significant improvement to some of them.
Nonetheless, we see a consistent improvement comparing
SEOBNRv5HM to SEOBNRv4HM, mostly due to the
enhanced calibration and merger-ringdown description.

The (2,1) mode shows a tail of cases with large
mismatches for both SEOBNRv5HM and SEOBNRv4HM:
as also discussed in Ref. [78] those are cases with a
minimum in the amplitude close to merger, which can be
especially difficult to model given that the current merger-
ringdown Ansatz assumes a monotonic postmerger ampli-
tude evolution. Nonetheless, these are configurations
where the (2,1) mode is highly suppressed, and would
not impact significantly in the full polarizations. We also
compare the (3,2) and (4,3) modes of SEOBNRv5HM
against NRHybSur3dq8 (these modes are not included
in SEOBNRv4HM). We see that these modes show the
largest modeling errors, which is expected considering
they are among the smallest modes for most configura-
tions, and also keeping in mind that the mode-mixing
modeling in the ringdown is approximated.
Figure 11 shows a similar comparison against

NRHybSur2dq15 [30], limited to the modes modeled
by the surrogate. This model was built for binaries with
mass-ratios 1–15, primary spin up to 0.5 and no secondary
spin. We consider 5000 random configurations with
q∈ ½1; 15�; jχ1j ≤ 0.6; χ2 ¼ 0, allowing again some extra-
polation outside of the surrogate’s training region, as to also
test the extrapolation of the SEOBNRv5HM calibration fits.
We see a similarly large improvement for all the modes
comparing SEOBNRv5HM to SEOBNRv4HM, and the (2,2)
mode result, with maximum value 2.3 × 10−3 and median
1.5 × 10−4, confirms the robustness of the calibration
procedure.
In Fig. 12 we show the sky-and-polarization averaged,

SNR-weighted mismatch, for inclination ι ¼ π=3, between
SEOBNRv5HM and NRHybSur3dq8, for 2000 random
configurations with q∈ ½1; 8�; jχij ≤ 0.8. In particular, we
plot the maximum mismatch as a function of the mass ratio
q and the primary spin χ1. The unfaithfulness grows with

FIG. 10. Mode-by-mode mismatches between SEOBNRv4HM,
SEOBNRv5HM, and NRHybSur3dq8, for 5000 random con-
figurations with q∈ ½1; 8�; jχij ≤ 0.9. For each mode we show the
maximum mismatch over a range of total masses between 10 and
300M⊙. The horizontal lines show the medians.

FIG. 11. Mode-by-mode mismatches between SEOBNRv4HM,
SEOBNRv5HM, and NRHybSur2dq15, for 5000 random con-
figurations with q∈ ½1; 15�; jχ1j ≤ 0.6; χ2 ¼ 0. For each mode we
show the maximum mismatch over a range of total masses
between 10 and 300M⊙. The horizontal lines show the medians.
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mass ratio and spin, with the highest unfaithfulness reach-
ing 0.04. This effect also is enhanced by the fact that we
start all the waveforms at the same frequency, and for
higher mass ratios, the number of cycles in band grows
as ∼1=ν.
We plot in Fig. 13 a similar comparison between

SEOBNRv5HM and IMRPhenomXHM, for 2000 random
configurations with q∈ ½1; 20�; jχij ≤ 0.99 in order to
examine the behavior of the models outside of the region
in which they were calibrated to NR. As in the previous
comparison, the unfaithfulness grows with mass ratio and
spin, and can reach very large values for q ≃ 20 and high
χeff . This confirms that waveform systematics are impor-
tant, even for aligned-spin systems observed by current
detectors, in the region where waveform models are not
calibrated to NR simulations.

D. Accuracy of SEOBNRv5 angular-momentum flux
and binding energy

The performance of waveform models is typically
assessed by computing the unfaithfulness between the
waveforms produced by the model and NR waveforms
with corresponding parameters, as the waveform itself is
the relevant quantity used in data analysis. In EOB models,

however, the knowledge of the binary’s dynamics allows us
to complement the waveform comparison with other
dynamical quantities. Since the calibration of the model
to NR is based on the waveforms, seeing an improvement
in different dynamical quantities is a powerful check of the
physical robustness of the model. In particular, we examine
the angular-momentum flux radiated at infinity [193,194],
and the binding energy [195–197].
We compute the NR angular-momentum flux at infinity

from the waveform modes using

J̇ ¼ −
1

8π

Xlmax

l¼2

Xl
m¼−l

mℑðḣlmh�lmÞ; ð89Þ

where we assume lmax ¼ 8. For clarity, we normalize the
flux by the leading (Newtonian) one for circular orbits,

J̇N ¼ 32

5
ν2ðMΩÞ7=3; ð90Þ

where we estimate the NR orbital frequency ΩNR from the
NR (2,2)-mode frequency as

FIG. 12. Sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι ¼ π=3, between SEOBNRv5HM and NRHyb-
Sur3dq8, for 2000 random configurations with q∈ ½1; 8�; jχij ≤ 0.8. We show maximum mismatch over a range of total masses
between 20 and 300M⊙ as a function of the mass-ratio q and the primary spin χ1.

FIG. 13. Sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι ¼ π=3, between SEOBNRv5HM and IMRPhe-
nomXHM, for 2000 random configurations with q∈ ½1; 20�; jχij ≤ 0.99. We show maximum mismatch over a range of total masses
between 20 and 300M⊙ as a function of the mass ratio q and the effective spin χeff .
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ΩNR ≡ ωNR
22

2
: ð91Þ

We denote the normalized flux as

˙̂J ¼ J̇
J̇N

: ð92Þ

We note again that the SEOBNRv5 flux does not include
NQC corrections, and we practically compute it from the
dynamics as J̇ ¼ ṗϕ. In the following, we always consider
it as a function of ΩEOB, which is read from the orbital
dynamics.
As an example, in Fig. 14 we compare the SEOBNRv4

and SEOBNRv5 angular-momentum fluxes against the one
extracted from the NR simulation BFI:q2-3d-95:001
with parameters ðq; χ1; χ2Þ ¼ ð1.0;−0.95;−0.949Þ. We
plot the fluxes as a function of v ¼ ðMΩÞ1=3, where it is
intended that v ¼ ðMΩNRÞ1=3 for NR, and v ¼ ðMΩEOBÞ1=3
for the EOB models, and we highlight with the triangle,
square, and diamond where 3, 1, and 0 GW cycles before
merger (taken as the peak of jh22j) are. The SEOBNRv5 flux
shows a better agreement, thanks to the additional PN
information summarized in Sec. IVA and the calibration to
2GSF. As highlighted in Ref. [125], the latter seems to be
the most significant source of improvement.
To quantify the improvement of the SEOBNRv5 model

with respect to SEOBNRv4 across parameter space, we
show in Fig. 15 the fractional difference between the

Newtonian-normalized angular-momentum flux ˙̂J of
SEOBNRv4 and SEOBNRv5, and the one obtained from
the NR simulations described in Sec. V, evaluated two
cycles before merger. The median fractional difference goes
from 4.83% to 1.15%, and while the difference can be as
high as 18% for the SEOBNRv4 model, it is always below
9% for the SEOBNRv5 model.

The other comparison we consider is of the binding
energy [195–197]. The NR binding energy data used here
were obtained in Ref. [197], while the EOB binding energy
is simply computed by evaluating

Ebind
EOB ¼ HEOB −M; ð93Þ

along the EOB dynamics. Henceforth, to ease the notation,
we will refer to EEOB instead of Ebind

EOB. The EOB orbital
frequency is obtained from ΩEOB ¼ ∂HEOB=∂pϕ, to be
consistent with the gauge-invariant definition used for NR
in Ref. [197].
In Fig. 16 we show the fractional difference between the

NR binding energy for nonspinning configurations, and the
one of SEOBNRv4 and SEOBNRv5, for different mass
ratios. The gray region is an estimate of the NR error
obtained from the q ¼ 1 data. Both EOB models show
minor errors during most of the inspiral, and stay within the
NR uncertainty until around 3 GW cycles before merger.
The SEOBNRv5 model shows, however, a much better
agreement in the late inspiral, between 3 and 1 cycles
before merger, and remains within the error until v ≃ 0.45
for all mass ratios. As highlighted in Ref. [125], this
improvement is mostly a consequence of the calibration to
2GSF results.
We now turn to aligned-spin cases, and as a starting point

we compare different spin contributions to the binding
energy, which can be extracted by combining results for
various spin combinations as in Refs. [74,197,198]:

FIG. 15. Fractional difference between the Newtonian-
normalized angular-momentum flux ˙̂J of SEOBNRv4 and
SEOBNRv5, and the one obtained from the NR simulations used
in this work, evaluated 2 cycles before merger.

FIG. 14. Comparison of the Newtonian-normalized
angular-momentum flux between SEOBNRv4, SEOBNRv5,
and the NR simulation SXS:BBH:0156. The triangle, square,
and diamond correspond, respectively, to 3, 1, and 0 GW cycles
before merger, which is taken as the peak of the (2,2)-mode
amplitude for each model.
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ESO¼−
1

6
ð−0.6;0Þþ8

3
ð0.3;0Þ−2ð0;0Þ−1

2
ð0.6;0Þ; ð94aÞ

ES2 ¼
3

2
ð−0.6;0Þ−2ð0;0Þþ3

2
ð0.6;0Þ− ð0.6;−0.6Þ; ð94bÞ

ES3 ¼ −
5

6
ð−0.6; 0Þ − 8

3
ð0.3; 0Þ þ 3ð0; 0Þ − 1

2
ð0.6; 0Þ

þ 1

2
ð0.6;−0.6Þ þ 1

2
ð0.6; 0.6Þ; ð94cÞ

where the numbers in brackets correspond to the dimen-
sionless spins ðχ1; χ2Þ of the BHs. The spin-squared
contributions to the binding energy ES2 refer to both S2i
and S1S2 interactions, and similarly the spin-cubic con-
tributions ES3 refer to both S3i and S2i Sj. Among these
contributions the spin-orbit term dominates throughout the
inspiral, while the quadratic and cubic-in-spin terms have
comparable magnitudes, with the quadratic terms growing
larger close to the merger.
We begin by considering the spin-orbit effects. In Fig. 17

we compare the NR data to SEOBNRv4 and SEOBNRv5.
In both cases, we consider calibrated and uncalibrated
models, where by uncalibrated we mean that we set to zero
all calibration parameters entering the Hamiltonian (the
values of Δt22ISCO or Δt22peak, on the other hand, do not affect
these comparisons, as they only determine the time at
which the merger-ringdown waveformmodes are attached).
SEOBNRv5 has a better agreement with NR compared to
SEOBNRv4, and remains within the NR error almost until
the merger. Moreover, the calibrated SEOBNRv5 model
performs better than the uncalibrated model during the
entire inspiral, whereas in SEOBNRv4 the calibration
degrades the agreement after v ≃ 0.45.

The results for the spin-spin term are shown in the left
panel of Fig. 18: again, SEOBNRv5 clearly outperforms
SEOBNRv4, and has differences compatible with the NR
uncertainty almost up to the merger. An interesting differ-
ence is that, while uncalibrated SEOBNRv4 has a smaller
difference with NR compared to the calibrated model, the
same trend is not present in SEOBNRv5. This shows that the
calibration of the model, which focuses on producing
accurate waveforms, is not guaranteed to provide a better
description of the conservative dynamics in the strong-field
regime. A possible reason for this difference might be the
additional presence of a spin-spin calibration parameter dSS
in SEOBNRv4, breaking the symmetry underlying the
extraction of the terms used here. It is also possible that,
due to degeneracies between changes in the dissipative and
conservative dynamics, the less accurate flux of SEOBNRv4
is compensated for by the calibration of the Hamiltonian,
and results in an overall worse agreement of the
conservative dynamics with NR.
We consider cubic-in-spin contributions to the binding

energy in the right panel of Fig. 18. These effects are minor,

FIG. 16. Fractional difference between the EOB and NR
nonspinning binding energy as a function of v, for SEOBNRv5
and SEOBNRv4. The gray region represents an estimate of
the NR error. Notice the improvement in the agreement of
SEOBNRv5 compared to SEOBNRv4, especially between 3
and 1 cycles before the merger.

FIG. 17. Spin-orbit contribution to the binding energy as a
function of v for SEOBNRv4 (blue), SEOBNRv5 (green), and NR
(gray). The uncalibrated models are obtained by setting to zero the
calibration parameters entering the Hamiltonian. The dashed
vertical line represents the merger of the NR configuration in
Eq. (94a) that merges at the lowest frequency, and the numbers of
cycles also refer to the same simulation, while the EOB curves
terminate at the EOB merger. The shaded regions represent the
NR error. SEOBNRv5 has a better agreement with NR compared
to SEOBNRv4, and remains within the NR error almost until
the merger.
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and contribute little to the overall disagreement; however
one can see similarly to the spin-squared contributions that
for SEOBNRv4 the calibration worsens the agreement with
NR, making it the only model that does not stay within the
NR error.
We finally quantify the improvement across parameter

space by computing the fractional energy difference in the
binding energy jEEOB − ENRj=ENR at a fixed frequency
v ¼ ffiffiffiffiffiffiffi

0.2
p

≃ 0.45 for several configurations. Constructing
the binding energy curves is not a straightforward process,
as one needs to take into account a shift of the curves due to
the presence of junk radiation in NR waveforms; therefore
we only focus on the simulations examined in Ref. [197]. In
Fig. 19 we show such a comparison for the SEOBNRv4 and
SEOBNRv5 models. In the first case the difference in the
binding energy can reach more than 2.5%, especially for
large values of the effective spin χeff , while for SEOBNRv5
we always find deviations from the NR binding energy at
the subpercent level. The median relative difference is also
considerably smaller, going from 1.15% for SEOBNRv4 to
only 0.16% for the SEOBNRv5 model.
As highlighted in Ref. [125], an improved modeling of

the binding energy and angular momentum flux does not
necessarily correspond to a higher faithfulness of the
waveforms in the regime where they are calibrated to
NR, due to a significant degeneracy between the calibration
terms in the EOB Hamiltonian and changes in the RR force.
Nevertheless, achieving a more accurate representation of
both the conservative and dissipative dynamics improves
the overall consistency and naturalness of the model.

This reduces the model’s reliance on NR calibration and
provides greater confidence that SEOBNRv5 will maintain
a certain faithfulness to NR when extrapolated beyond its
calibration region, in particular for higher mass ratios.

FIG. 18. Same as Fig 17, but for spin-spin contributions (left panel) and for cubic-in-spin contributions (right panel).

FIG. 19. Fractional difference between the EOB and NR bind-
ing energy, for SEOBNRv5 and SEOBNRv4, at v ¼ ffiffiffiffiffiffi

0.2
p

≃ 0.45.
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E. Computational performance

The fifth generation of SEOBNR models, starting from
SEOBNRv5HM, is implemented in pySEOBNR, a Python

package for developing and using waveform models within
the SEOBNR framework. As described in Ref. [144],
pySEOBNR offers a simple, object-oriented interface for
building, calibrating, deploying, and profiling waveform
models in both the time and frequency domain. The
pySEOBNR package moves the development core of the
SEOBNR framework from the previously used C-based

LALSuite [199] to a much more flexible, modern and widely
used Python infrastructure, setting a new standard for
developing waveform models for current and future GW
detectors. The user interface is implemented in pure Python,
to facilitate ease of use and quick adoption by other
researchers. The backend of the package relies on well-
known, regularly maintained packages under open-soft-
ware licenses, including Cython [200] and NUMBA [201] for
fast Hamiltonian evaluation and waveform generation, and
NUMEXPR [202] for efficient NumPy [203] vectorized
operations.
In this section we discuss the computational performance

of the SEOBNRv5HM implementation in pySEOBNR, in terms
of walltime for generating a waveform, and compare the
model to other time-domain aligned-spin approximants that
include higher modes, SEOBNRv4HM, with and without
PA approximation, TEOBResumS-GIOTTO, which also
employs the PA approximation, and IMRPhenomTHM.
Figure 20 shows the walltime for generating a waveform

in the time domain, including interpolation on a constant
time step, for total masses between 10 and 100M⊙, at
starting frequency of 10 Hz, for three values of the mass
ratio q ¼ 1, 3, 10 and spins χ1 ¼ 0.8, χ2 ¼ 0.3. For all
approximants we include all modes up to l ¼ 4, and keep
all other settings as default. We choose the sampling rate
such that the Nyquist criterion is satisfied for the l ¼ 4
multipoles.8

Comparing the SEOBNRv5HM and SEOBNRv4HM
models without the use of the PA approximation (dashed
lines), we find a major performance improvement across
all values of the total mass M. The speedup is most
significant for lower total mass ð∼50×Þ, and decreases for
higher total mass to ∼10×. The difference between
SEOBNRv5HM and SEOBNRv4HM_PA, with the PA
approximation being used in both cases (plotted in solid
lines), is less drastic. Nonetheless, SEOBNRv5HM is
consistently faster, despite including two additional
modes. The speedup is up to ∼70% for low total-mass
binaries. When using the PA approximation, a significant
improvement in SEOBNRv5HM is the use of analytic

equations for the momenta [see Eqs. (19) and (20)],
whereas these quantities are determined numerically in
SEOBNRv4HM. We note that the difference between
SEOBNRv4HM with and without the PA approximation
is not limited to the use of the PA approximation, since
SEOBNRv4HM_PA features several optimizations, such as
the use of analytic derivatives of the Hamiltonian, which
have also been implemented in the SEOBNRv5HM
model independently of the use of the PA approximation.
This is one of the reasons why the difference between

FIG. 20. Walltimes for SEOBNRv5HM and SEOBNRv4HM, with
PA approximation (solid lines) and without (dashed lines),
TEOBResumS-GIOTTO and IMRPhenomTHM, starting from
fstart ¼ 10 Hz, as a function of the total mass M. SEOBNRv5HM
outperforms SEOBNRv4HM, particularly for low total mass
systems, both with and without the PA approximation, and
shows walltimes close to TEOBResumS-GIOTTO. IMRPhe-
nomTHM is the fastest model for low total masses due to its use of
closed-form expressions, with the gap narrowing for lower total
masses. The analytic PA approximation and several optimiza-
tions, such as the use of analytic derivatives of the Hamiltonian,
play a crucial role in the SEOBNRv5HM performance.

8All benchmarks were performed on the Hypatia computer
cluster at the Max Planck Institute for Gravitational Physics in
Potsdam, on a compute node equipped with a dual-socket 64-core
AMD EPYC (Rome) 7742 CPU.
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SEOBNRv5HM with and without PA is not as large as in the
previous generation of SEOBNR models. It can reach up to
∼2× for low total mass systems, while it is between 10% and
40% forM ∼ 100M⊙, for cases where the cost of integrating
the dynamics is less high. Comparing SEOBNRv5HM to a
different EOB model, TEOBResumS-GIOTTO, employing
in both cases the PA approximation, we see that
TEOBResumS-GIOTTO is faster for high total-mass bina-
ries, with a difference ranging from∼3× for q ¼ 1 to ∼1.5×
for q ¼ 10, while the two are comparable for low total
masses. The time-domain phenomenological model
IMRPhenomTHM outperforms all EOB models, for large
total-mass systems, by over 1 order of magnitude. This is
due to its use of fast closed-form expressions, rather than
ordinary differential equation (ODE) integration. The gap
between the models narrows as the total mass decreases, as
the mode interpolation on a constant time step needed for the
Fast-Fourier-Transform becomes a major cost for long
inspirals (excluding SEOBNRv4HM without PA approxima-
tion, where ODE integration remains by far the main cost
factor).

VII. PARAMETER-ESTIMATION STUDY

One of the most relevant applications of waveform
models is to perform parameter inference for GW signals.
Current parameter-estimation codes for inferring the prop-
erties of compact-binary coalescences are based on
Bayesian inference, where the posterior probability distri-
bution PðλjdjÞ for the parameters λ, given a signal d, is
given by the Bayes theorem [204]

PðλjdÞ ¼ πðλÞLðdjλÞ
Z

; ð95Þ

where LðdjλÞ is the likelihood of reproducing the data
given a set of parameter values and a model for the signal,
πðλÞ is the prior probability, and Z ¼ R dλπðλÞLðdjλÞ is the
evidence of the model reproducing the data. The posterior
distribution is stochastically sampled across the model
parameter space, typically using nested sampling [182]
or MCMC methods, which require from millions to
hundreds of millions of waveform evaluations (see, e.g.,
Refs. [183,205,206]). Therefore, besides requiring that the
waveform models accurately reproduce the data, it is also
important that they are computationally efficient, to per-
form parameter estimation with reasonable resources and in
a reasonable time. In this section we study the performance
of SEOBNRv5HM for the recovery of parameters with a
synthetic signal and three GW events observed during O1,
O2, and O3.

A. Inference with a numerical-relativity synthetic signal

We begin by examining the parameter recovery on a
synthetic signal injected in a network of three detectors, at
the locations of LIGO Hanford, LIGO Livingston, and

Virgo, with a zero-noise configuration, to decouple the
impact of the model’s accuracy from any particular noise
realization. We inject the NR waveform SXS:BBH:2464
from the SXS Collaboration with intrinsic parameters
1=q ¼ m2=m1 ¼ 0.067, χ1 ¼ 0.5, and χ2 ¼ 0, choosing
a detector-frame total mass of 162M⊙, inclination ι ¼ π=3
in order to emphasize the higher harmonics of the signal,
and a luminosity distance of 700 Mpc to give a network
SNR of ∼16.6. These and the selected injected values for
the phase and the sky-location parameters are listed in the
left column of Table III.
We employ the Bilby parameter-estimation code [184],

with version 2.0.0 and the nested sampler DYNESTY [207]
using the acceptance-walk method, which is well-
suited for executing on a multicore machine; in particular,
we run on 1 node of 64 CPUs. For the sampler settings for
the recovery, we employ a number of accepted jumps
during each MCMC chain naccept ¼ 20 and a total number
of live points nlive ¼ 1000. We employ the sky para-
metrization option H1L1, which enables us to sample the
sky position in azimuth and zenith, converted in

TABLE III. Injected and median values of the posterior dis-
tributions for the synthetic NR injection, corresponding to the NR
simulation SXS:BBH:q15Sur002 from the SXS Collabora-
tion, recovered with IMRPhenomXHM and SEOBNRv5HM. The
binary parameters correspond to the total massM, chirp massM,
individual masses m1;2, inverse mass ratio 1=q, effective spin
parameter χeff, individual spin components χ1z;2z, inclination
angle ι, luminosity distance dL, coalescence phase ϕref , polari-
zation angle ψ , right ascension α, declination δ, matched-filtered
SNR for LIGO-Hanford/Livingston and Virgo detectors ρH1;L1;V1mf ,
and signal-versus-noise log Bayes factor logBF .

Parameter
Injected
value

IMRPhenomXHM
recovery

SEOBNRv5HM
recovery

M=M⊙ 162.0 139.6þ9.55
−10.93 160.58þ11.57

−12.91
M=M⊙ 29.53 29.65þ1.46

−0.94 29.7þ1.07
−0.9

m1=M⊙ 151.88 128.09þ9.95
−11.81 150.27þ12.12

−13.64
m2=M⊙ 10.13 11.54þ1.26

−0.86 10.32þ0.98
−0.78

1=q 0.067 0.09þ0.02
−0.01 0.07þ0.01

−0.01
χeff 0.469 0.37þ0.06

−0.07 0.47þ0.05
−0.06

χ1z 0.50 0.4þ0.07
−0.07 0.5þ0.05

−0.06
χ2z 0.0 0.02þ0.56

−0.49 0.03þ0.59
−0.51

ι=rad 1.047 1.08þ0.2
−0.23 0.98þ0.2

−0.2
dL=Mpc 700.0 792.04þ262.38

−222.3 798.97þ198.04
−180.23

ϕref=rad 0.80 3.57þ1.98
−2.1 3.05þ2.92

−2.73
ψ=rad 2.17 2.29þ0.3

−0.28 2.33þ0.22
−0.23

α=rad 3.81 3.84þ0.09
−0.09 3.84þ0.07

−0.07
δ=rad 0.63 0.6þ0.09

−0.11 0.59þ0.06
−0.09

ρH1mf 8.42 8.05þ0.08
−0.15 8.26þ0.07

−0.14
ρL1mf 9.98 9.54þ0.09

−0.17 9.79þ0.08
−0.17

ρV1mf 10.18 9.67þ0.08
−0.16 9.98þ0.08

−0.16
logBF 91.26� 0.20 97.53� 0.21
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postprocessing to right ascension and declination, since this
typically improves the convergence of the sampler, and we
enable distance marginalization, to further improve con-
vergence. We leave the rest of the sampler parameters with
their default values.
The prior distributions are uniform for most of the

parameters, except for the individual dimensionless spin
values, which follow a distribution implied by the isotropic
spin prior commonly employed in GW parameter estima-
tion. Though a nonuniform prior could shift the posterior
from the true values for moderate SNR in a zero-noise
setup, we decide to employ this spin prior as it is commonly
employed in actual analyses [2,4–6,208].
We perform two parameter estimation runs on this

injected signal, one with the SEOBNRv5HM model pre-
sented in this paper, and a run with the state-of-the-art
waveform model IMRPhenomXHM from the fourth gen-
eration of Fourier-domain phenomenological waveform
models, to crosscheck the results. For SEOBNRv5HM, we
employ the conditioning routine implemented in pySEOBNR,
which closely mimics the procedure of LALSimulation [199].
The median recovered values for both models, and the

90% confidence intervals, are listed in Table III, and some
relevant 2D contours are highlighted in Fig. 21. The results
show that the SEOBNRv5HM model is able to recover
better the synthetic signal, especially for the intrinsic
parameters, with the injected value of all the parameters
inside the 90% confidence intervals and very small
deviations between the median values of the posterior
distributions and the actual injected values (the main
deviation is in the reference phase parameter, whose
recovered distribution is prior dominated). On the contrary,
the results inferred by the IMRPhenomXHMmodel contain
important biases in most of the intrinsic parameters, with
the injected values outside the 90% confidence intervals
for the component masses, the total mass, the mass ratio,
and the effective-spin parameter χeff. For the extrinsic
parameters, both models recover the injected values within
the 90% confidence intervals, with small but similar
deviations in the median values for the distance and the
inclination. The improved accuracy of SEOBNRv5HM in
this challenging region of parameter space (high asym-
metric masses and spinning primary black hole) is also
reflected in the recovered matched-filter SNR in the three
detectors and the Bayes factor of the inference run, which
are consistently higher than the corresponding values for
IMRPhenomXHM. These results are consistent with the
fact that SEOBNRv5HM has lower unfaithfulness than
IMRPhenomXHM against this NR simulation, 0.5% and
6.7% respectively, for the injected value of the total mass.

B. Inference of real gravitational-wave events

We then perform parameter estimation on three real GW
events: GW150914 [1], the first detection which has
become a benchmark for testing new waveform models;

GW170729 [209], an interesting event from O2, which has
been analyzed with multimode waveform models; and
GW190412 [210], the first confident mass-asymmetric
binary reported during O2. For each event, we employ the
strain data, detector calibration uncertainties, and PSD
provided by the Gravitational Wave Open Science
Center [211]. We perform the runs using Bilby [184]
version 2.0.0 with the nested sampler DYNESTY [207],
and we employ the same settings as in the previous section,
except for the number of accepted jumps during each
MCMC chain that we set to naccept ¼ 60. For each GW
signal, we perform a run with SEOBNRv5HM, employing
the PA approximation, and a cross checking run with the
IMRPhenomXHM waveform model.
In Fig. 22 we show some relevant 2D posterior distri-

butions for the parameters, and observe good agreement
between waveform models. These results are also consistent
with the published results for the events, taking into account
that LVK catalog results employ precessing-spin waveform
models, and therefore minor differences are expected.
The good agreement between the SEOBNRv5HM and
IMRPhenomXHM posteriors is consistent with the fact that,
for the events considered here, the recovered parameters are
within the NR calibration region of both models. As in the
case of the NR-injected signal, we observe a slight improve-
ment in the matched-filter SNR and Bayes factor for
SEOBNRv5HM with respect to IMRPhenomXHM, more
pronounced for the two more massive events, as seen in
Fig. 23. Although the improvement is not drastic, these
results suggest that SEOBNRv5HM describes the data more
accurately, which is consistent with the unfaithfulness
results discussed in Sec. VI A.
In Table IV we report the real time spent on the inference

for the parameters of these events for the waveform model
SEOBNRv5HM. Employing Bilby on a single computing
node (of 64 cores) requires less than a day for GW150914
and GW170729, and less than two days for GW190412,
with a moderately low chirp mass. Therefore, the model is
sufficiently efficient to be employed with the preferred
parameter estimation pipeline by the LVK Collaboration.

VIII. FREQUENCY DOMAIN
REDUCED-ORDER MODEL

The requirement of integrating a system of ODEs to
solve for the dynamics of the binary in EOB models
increases the time needed for generating a waveform.
Surrogate or reduced-order modeling (ROM) techniques
[21–25,100–102,104–106,109,212,213] have been applied
in several contexts to accelerate slow waveform compu-
tation, in both EOB and NR models. These techniques
involve decomposing the waveforms from a training set in
orthonormal bases on sparse grids in time or frequency
and then interpolating or fitting the resulting waveform
data pieces over the binary parameter space. The result
is a highly accurate, yet fast, method for generating
waveforms for data analysis applications, which can
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reduce computational time by orders of magnitude com-
pared to ODE-based waveform models.
A frequency domain (FD) ROM of SEOBNRv4HM

was built in Ref. [105], with modeling error introduced
in building the ROM below the unfaithfulness of
SEOBNRv4HM against NR simulations used to calibrate
the model, and waveform evaluation times reduced by 2
orders of magnitude. In this section we show the perfor-
mance of SEOBNRv5_ROM, a FD ROM of SEOBNRv5,

built following the same techniques of SEOBNRv4HM_ROM
[101,102,105]. These mostly involve modeling in FD the
phase of a carrier signal, based on the time-domain orbital
phase, and the “co-orbital modes” obtained after extracting
the carrier phasing from each FD mode. The co-orbital
modes have an almost constant phase in the inspiral, and
allow us to avoid zero crossings in the subdominant
harmonics which would complicate the interpolation
of the training data. As for SEOBNRv4HM_ROM, the

FIG. 21. 2D and 1D posterior distributions for some relevant parameters measured from the synthetic BBH signal with mass ratio
q ¼ 15, total source-frame mass of 162M⊙, dimensionless spins χ1z ¼ 0.5, and χ2z ¼ 0.0. The inclination with respect to the line of
sight of the binary is ι ¼ π=3 rad. The other parameters are specified in the text and in Table III. The injected signal is the SXS NR
waveform SXS:BBH:2464. In the 2D posteriors the solid contours represent the 90% credible intervals and black dots show the values
of the parameters of the injected signal. In the 1D posteriors they are represented by dashed and solid vertical lines, respectively. The
parameter estimation is performed with the SEOBNRv5HM model (green) and the IMRPhenomXHM model (orange).
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FIG. 23. Network matched-filter SNR recovered by IMRPhenomXHM and SEOBNRv5HM for the three analyzed GW events.

(a) GW150914.

(b) GW170729.

(c) GW190412.

FIG. 22. 1D and 2D posterior distributions for several parameters for the GW events GW150914, GW170729, and GW190412.
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SEOBNRv5_ROM model combines a higher resolution
high-frequency ROM, starting from 20 Hz for binaries
with total mass of 50M⊙, and a lower resolution low-
frequency ROM, starting from 20 Hz for binaries with
total mass of 5M⊙, and can be extended to arbitrarily
low frequencies by hybridizing it with multipolar PN
waveforms. SEOBNRv5_ROM can be generated for mass
ratios between 1 and 100, dimensionless spins between
½−0.998; 0.998�, and includes only the dominant ðl; jmjÞ ¼
ð2; 2Þ mode. A multipolar reduced-order model of
SEOBNRv5HM (SEOBNRv5HM_ROM), including the
ðl; jmjÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ; ð4; 4Þ; ð5; 5Þ; ð3; 2Þ; ð4; 3Þ
modes, is also under development, and will be presented in
near future work. Despite the speed of SEOBNRv5HM
being sufficient for many GW data analysis applications,
using a ROM can still lead to a significant increase in
efficiency. Additionally, there are several applications for
which it is desirable to be able to generate clean FD
waveforms of any length.
In Fig. 24 we show a histogram of the unfaithfulness

between SEOBNRv5_ROM and SEOBNRv5, for different
values of the total mass, for 105 configurations with mass
ratios between 1 and 100 and dimensionless spins between
½−0.998; 0.998�. We observe an excellent agreement, with
median values ≲10−5. The unfaithfulness increases with
the total mass of the system, as in previous ROM

models [77,105], because the ROM modes are generated
up to a maximum frequency that scales with the inverse of
the total mass. In particular, the mismatch is larger for cases
with high mass ratio and negative spins, as the maximum
frequency of each mode is proportional to its least damped
QNM frequency [105], which decreases in this region of the
parameter space. Nonetheless, the modeling error intro-
duced in the construction of the ROM is negligible
compared to the inaccuracy of the SEOBNRv5 waveforms
with respect to the NR simulations.
Figure 25 highlights the speedup of the ROM with

respect to SEOBNRv5, by comparing walltimes of the
two models for generating a FD waveform with the same
parameters (q ¼ 1; χ1 ¼ 0.8; χ2 ¼ 0.3), as a function of the
total mass M. For SEOBNRv5 we also employ the PA
approximation. As for Fig. 20, we use a starting frequency
fstart ¼ 10 Hz, and we choose the sampling rate for the time
domain model such that the Nyquist criterion is satisfied for
the l ¼ 2 multipoles. The FD SEOBNRv5_ROM model is
instead generated up to a maximum frequency equal to the
corresponding Nyquist frequency. Notably, we obtain an
improvement from a factor ∼7 for low total-mass binaries,
to more than ∼20 for M ∼ 100M⊙. Overall, we can
appreciate that SEOBNRv5_ROM can be generated in less
than 10 ms for M ≳ 20M⊙.

IX. CONCLUSIONS

In this paper we have presented SEOBNRv5HM, a new
EOBNR waveform model for quasicircular, spinning, non-
precessing BBHs, which improves the previous generation,
SEOBNRv4HM [78], on both speed and accuracy against
NR simulations. The waveform model includes the modes
ðl; jmjÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ; ð4; 4Þ; ð5; 5Þ; ð3; 2Þ; ð4; 3Þ,
and models the mode mixing in the merger ringdown
for the modes (3,2),(4,3), which were not included in
SEOBNRv4HM.

FIG. 24. Mismatch of SEOBNRv5_ROM against SEOBNRv5
for different values of the total mass, for 105 random configu-
rations. The dashed vertical lines show the medians.

FIG. 25. Walltime comparison between SEOBNRv5 and
SEOBNRv5_ROM, using a starting frequency fstart ¼ 10 Hz, as
a function of the total mass M. For the time domain SEOBNRv5
model this also includes the conversion in the Fourier domain.

TABLE IV. Evaluation time for the different parameter esti-
mation runs on real GW events with the SEOBNRv5HM model.
The time reported is actual real time, while the total computa-
tional cost in CPU hours can be obtained by multiplying this time
by the reported number of CPU cores employed.

Run=event GW150914 GW170729 GW190412

SEOBNRv5HM
Bilby (64 cores)

23 h 20 h 1 d 18 h
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Sections III and IV have outlined the building blocks
of the waveform model. The aligned-spin SEOBNRv5
Hamiltonian is based on a deformation of the equatorial
Kerr Hamiltonian, and includes most of the known 5PN
nonspinning and full 4PN information for spinning bina-
ries, with improved resummations [126]. The factorized
waveform modes and RR force of SEOBNRv4HM have
been enhanced by additional PN information (as well as
corrections to some of the terms) from Ref. [127], and have
been calibrated to 2GSF fluxes in the nonspinning limit in
Ref. [125]. To improve the accuracy of the model in the
inspiral, we have refined the calibration pipeline employed
by Ref. [77], and largely upgraded its efficiency, in order to
be able to tune the model to a large catalog of 442 NR
simulations as shown in Sec. V. We have also improved the
modeling of the merger and ringdown using the full NR
dataset at our disposal, as well as 13 waveforms from BH
perturbation theory.
In Sec. VI we compared SEOBNRv5HM and other state-

of-the-art waveform approximants to NR simulations, using
mismatch calculations. The results showed that the domi-
nant (2,2) mode of SEOBNRv5 is, on average, more
accurate than SEOBNRv4 [77] by 1 order of magnitude;
it is more accurate than the other state-of-the-art EOB
model, TEOBResumS-GIOTTO [64,83,113,114], by more
than a factor of 2 and is overall comparable to the Fourier-
domain phenomenological model IMRPhenomXAS [44].
By computing mismatches of the full polarizations at
inclination ι ¼ π=3, we noted that all models become less
accurate; nonetheless SEOBNRv5HM outperforms both
SEOBNRv4HM [78] and TEOBResumS-GIOTTO, as well
as the phenomenological model IMRPhenomXHM [46],
both considering average values and the number of
cases above 0.01. We have validated the model against
the NR surrogate models NRHybSur3dq8 [24] and
NRHybSur2dq15 [30] and found results consistent with
the NR comparison, demonstrating the robustness of our
calibration procedure. Further tests of the calibration
pipeline are described in Appendix E. In particular, we
show that the accuracy of the model against the entire NR
dataset of 442 waveforms does not change appreciably
when using only 137 to calibrate the model. This confirms
that the significant improvement over SEOBNRv4 is
largely due to the improved analytical prescriptions,
particularly for the EOB Hamiltonian, but even if not
all NR data are used directly, they remain extremely
valuable for a detailed assessment of the effectiveness of
different analytical choices. Direct use of the new NR data
is particularly useful when considering high mass ratio,
high spin configurations in the region of parameter space
previously uncovered by simulations, and in modeling
higher modes in the merger-ringdown phase, which
benefits greatly from simulations with higher resolution.
We also show that our calibration pipeline is robust with
respect to changes in the shape of the PSD used, as the

unfaithfulness of the model against NR remains very
similar when using a white noise curve, the Einsten
Telescope [214], and Cosmic Explorer [16] PSDs.
Nonetheless, such a comparison is limited by the length
of the available NR simulations, which do not cover the
entire bandwidth of next-generation GW detectors,
and more detailed studies will be needed to assess the
accuracy of SEOBNRv5HM in such a context. Comparing
SEOBNRv5HM and IMRPhenomXHM against each other
in a larger parameter space, we have seen instead that the
mismatches can become very large in the region where
both models are not calibrated to NR waveforms, in
particular for both high mass ratio, say ≥ 5, and high
positive spin, say ≥ 0.8, configurations. Thus, producing
new NR simulations for these parameters would be critical
to reduce modeling systematics. Comparing the angular-
momentum flux and binding energy of SEOBNRv5 and
SEOBNRv4 against NR, we have highlighted a similar
improvement, also thanks to the 2GSF information [125],
despite the fact that these quantities do not directly enter
the calibration. This is a powerful check of the physical
robustness of the model, and provides confidence in its
reliability when extrapolating outside of the NR calibra-
tion region. We have implemented SEOBNRv5HM in a
flexible, high-performance, Python package pySEOBNR, and
we have shown that the model is fast enough for typical
GW data-analysis applications: it is more than 10 times
faster than SEOBNRv4HM without using the PA approxi-
mation, up to 2 times faster than SEOBNRv4HM_PAwhen
using it, and overall close to TEOBResumS-GIOTTO.
In Sec. VII we have demonstrated that the model can be

reliably used for GW parameter estimation, by performing
a recovery on a NR injection, and by analyzing three events
observed by LIGO and Virgo, GW150914, GW170729,
and GW190412. For the three events, we have found
consistent results when comparing the parameters recov-
ered by SEOBNRv5HM and by IMRPhenomXHM, while
still observing a slight improvement in matched-filter SNR
and Bayes factor for SEOBNRv5HM with respect to
IMRPhenomXHM. On the other hand, the NR injection
in a challenging region of parameter space (high asym-
metric masses and spinning primary black hole) shows
more significant differences. SEOBNRv5HM accurately
recovers all the binary parameters, while the results inferred
by the IMRPhenomXHM model contain biases in most of
the intrinsic parameters due to larger modeling errors. The
use of waveform models that include both higher modes
and spin-precession is now the standard in GW parameter
estimation [4–6]. SEOBNRv5HM would still be useful, for
example, to study evidence for spin precession, by analyz-
ing the data including or not this effect in the model, and in
tests of general relativity (GR), in which the additional
computational cost of accounting for beyond-GR param-
eters often makes it convenient to employ a simpler and
more efficient aligned-spin model [215–219].
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In Sec. VIII we have finally shown the performance of a
FD ROM model (SEOBNRv5_ROM) developed following
the techniques used in Ref. [105], which allows for a
significant speedup in evaluation time, while retaining
identical accuracy against NR. Matched filter GW searches
often use FD aligned-spin models such as SEOBNRv4_ROM
[2,4–6], and SEOBNRv5_ROM could be a valuable replace-
ment for such applications.
The pySEOBNR code infrastructure [144] is a framework

developed with the goal of facilitating the development of
future SEOBNR waveform models, and upcoming work
would naturally revolve around adding more physical
effects to the SEOBNRv5 family, as well as improving
its efficiency and accuracy by including ever more infor-
mation from both NR simulations and different analytical
frameworks. The first extension of SEOBNRv5HM, as far as
additional physical effects are concerned, involves model-
ing spin precession, and such a model (SEOBNRv5PHM)
has been developed in parallel to this work in Ref. [145].
An upcoming extension would also involve eccentric

and hyperbolic orbits (SEOBNRv5EHM), following similar
strategies adopted in the SEOBNRv4EHM model of
Ref. [91]. The more efficient, flexible, and parallelized
calibration pipeline described in this work would allow for
having a more accurate eccentric model, with a consistent
treatment of eccentric corrections in the waveform modes
and RR force, after appropriately recalibrating the quasi-
circular limit of the model. Moreover, the efficiency of
SEOBNRv5HM compared to SEOBNRv4HM without PA
approximation, which is slow to use when adding eccen-
tricity, means that one could expect a significant speedup of
SEOBNRv5EHM compared to SEOBNRv4EHM. Further
ongoing developments in the SEOBNRv5 family involve
the modeling of tidal effects, already incorporated in
SEOBNRv4 models [94,95,98,104], and the addition of
parametrized GR deviations to perform theory agnostic
tests of GR [217–219].
Another direction for improvements revolves around

pushing the accuracy of the model against NR even further.
Exploring different ways to incorporate and resum infor-
mation from the PN, Post-Minkowskian, and 2GSF approx-
imations, while still retaining flexibility in the calibration,
would be crucial, and an efficient calibration code
(pySEOBNR [144]) is essential to understand the impact
of different modeling and resummation choices. At the
same time, more and better NR simulations, especially in
currently unexplored regions of the binary parameter space,
are also critical to reach the accuracy requirements of next-
generation detectors [181,220]. A limitation of all state-of-
the-art approximants is the modeling of the higher modes,
and a straightforward improvement to be done in future
work would be to add all terms through 3.5PN to the
waveform modes and RR force from Refs. [127,164].
Further work should also go into improving the modeling
of the higher modes through the merger and ringdown, as

well as including additional modes. Finally, a calibration
pipeline similar to the one developed here could be used to
calibrate SEOBNRv5PHM [145] to spin-precessing NR
simulations.

SEOBNRv5_ROM is publicly available through LALSuite

[199].
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APPENDIX A: HAMILTONIAN COEFFICIENTS

We summarize here results that were derived in Ref. [126]. In the nonspinning limit, the Hamiltonian is given by Eq. (6).
The 5PN-expanded D̄noS, which enters the Hamiltonian through Eq. (8), is given by [149,150]

D̄Tay
noSðuÞ ¼ 1þ 6νu2 þ ð52ν − 6ν2Þu3 þ
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where we set the remaining unknown coefficient dν
2

5 to zero. To improve agreement with NR, we perform a (2,3) Padé

resummation of D̄Tay
noSðuÞ.

For QnoS, we use the full 5.5PN expansion derived in Refs. [150,223], which is expanded in eccentricity to Oðp8
rÞ.

Instead of using pr, we write QnoS in terms of pr� using Eq. (8), then PN expand to 5.5PN order, leading to
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In the aligned-spin Hamiltonian, the 3.5PN SO gyrogravitomagnetic factors in Eq. (12) are given by
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where the square brackets collect different PN orders, and we defined L̃≡ L=ðMμÞ≡ pϕ=ðMμÞ. The cubic-in-spin term
Ga3 reads as

Galign
a3

¼ Mpϕ

4r2
ðδa−a2þ − a3þÞ: ðA4Þ

The potentials in the even-in-spin part of the effective Hamiltonian in Eq. (12) include the 4PN SS information, and are
given by

Aalign ¼ a2þ=r2 þ AnoS þ Aalign
SS
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; ðA5aÞ
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APPENDIX B: EXPRESSIONS FOR THE FACTORIZED WAVEFORM MODES

In this appendix, we list the expressions for ρlm, flm, and δlm, which are used in the factorized modes [see Eqs. (25)
and (34)].
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In the (2,2) mode, ρ22 and δ22 are given by

ρ22 ¼ 1þ v2Ω
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3

�
χS −

4

3
δχA þ 428

105
π

�
þ ðΩHEOBÞ3

�
1712

315
π2 −

2203

81

�
− 24νv5Ω; ðB1bÞ

where eulerlogðm; vΩÞ is defined by Eq. (47). The coefficient 19=42 ofOðv5ΩδχAνÞ in ρ22 corrects a typo in the SEOBNRv4
code, and we added in ρ22 the NLO spin-squared and LO spin-cubed contributions, which are given by Eq. (4.11a) of
Ref. [127].
The (2,1) mode reads as

ρNS21 ¼ 1þ v2Ω

�
23

84
ν −

59

56

�
þ v4Ω

�
617

4704
ν2 −

10993

14112
ν −

47009

56448

�
þ v6Ω

�
7613184941

2607897600
−
107

105
eulerlogð1; vΩÞ

�

þ v8Ω

�
−
1168617463883

911303737344
þ 6313

5880
eulerlogð1; vΩÞ

�
þ v10Ω

�
−
63735873771463

16569158860800
þ 5029963

5927040
eulerlogð1; vΩÞ

�
; ðB2aÞ

fS21 ¼ −
3

2
vΩ

�
χA
δ
þ χS

�
þ v3Ω

��
131

84
νþ 61

12

�
χA
δ
þ
�
79

84
νþ 61

12

�
χS

�
þ v4Ω

�
ð−2ν− 3Þχ2A þ

�
21

2
ν− 6

�
χAχS
δ

þ
�
1

2
ν− 3

�
χ2S

�

þ v5Ω

��
−
703

112
ν2þ 8797

1008
ν−

81

16

�
χA
δ
þ
�
613

1008
ν2 þ 1709

1008
ν−

81

16

�
χS þ

�
3

4
− 3ν

�
χ3A
δ
þ
�
9

4
− 6ν

�
χAχ

2
S

δ

þ
�
9

4
− 3ν

�
χ2AχSþ

3

4
χ3S

�
þ v6Ω

��
5

7
ν2 −

9287

1008
νþ 4163

252

�
χ2Aþ

�
139

72
ν2 −

2633

1008
νþ 4163

252

�
χ2S

þ
�
9487

504
ν2 −

1636

21
νþ 4163

126

�
χAχS
δ

�
; ðB2bÞ

δ21 ¼
2

3
ΩHEOB þ 107

105
πðΩHEOBÞ2 þ

�
214

315
π2 −

272

81

�
ðΩHEOBÞ3 −

25

2
νv5Ω; ðB2cÞ

where theOðv6Ωχ2ν2Þ terms in fS21 correct those used in the SEOBNRv4HMmodel [78]. We also fixed the coefficient −25=2
of Oðνv5ΩÞ in δ21, which was the result of an error in Ref. [163], which was later corrected in an erratum, as noted in
Ref. [127].
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The (3,3) mode is given by

ρNS33 ¼ 1þ v2Ω

�
2

3
ν −

7

6

�
þ v4Ω

�
−
6719

3960
−
1861

990
νþ 149

330
ν2
�

þ v6Ω

�
3203101567

227026800
þ
�
−
129509

25740
þ 41π2

192

�
ν −

274621

154440
ν2 þ 12011

46332
ν3 −

26

7
eulerlogð3; vΩÞ

�

þ v8Ω

�
−
57566572157

8562153600
þ 13

3
eulerlogð3; vΩÞ

�
þ v10Ω

�
−
903823148417327

30566888352000
þ 87347

13860
eulerlogð3; vΩÞ

�
; ðB3aÞ

fS33 ¼ v3Ω

��
19

2
ν − 2

�
χA
δ
þ
�
5

2
ν − 2

�
χS

�
þ v4Ω

��
3

2
− 6ν

�
χ2A þ ð3 − 12νÞ χAχS

δ
þ 3

2
χ2S

�

þ v5Ω

��
407

30
ν2 −

593

60
νþ 2

3

�
χA
δ
þ
�
241

30
ν2 þ 11

20
νþ 2

3

�
χS

�

þ v6Ω

��
−12ν2 þ 11

2
ν −

7

4

�
χ2A þ

�
44ν2 − ν −

7

2

�
χAχS
δ

þ
�
6ν2 −

27

2
ν −

7

4

�
χ2S

�

þ iðΩHEOBÞ2
��

7339

540
ν −

81

20

�
χA
δ
þ
�
593

108
ν −

81

20

�
χS

�
; ðB3bÞ

δ33 ¼
13

10
ðHEOBΩÞ þ

39π

7
ðHEOBΩÞ2 þ

�
−
227827

3000
þ 78π2

7

�
ðHEOBΩÞ3 −

80897

2430
νv5Ω; ðB3cÞ

where the imaginary part of fS33 is included in δ33 in Ref. [127], but we moved it to fS33 to facilitate the implementation in the
equal-mass limit, for which we pull the factor δ from the leading order hN33 into flm to cancel the divergent 1=δ.
For the (4,4) mode, we use

ρ44 ¼ 1þ v2Ω

�
1614 − 5870νþ 2625ν2

1320ð−1þ 3νÞ
�
þ v3Ω

��
2

3
−
41ν

15
þ 14ν2

5

�
1

ð−1þ 3νÞ χS þ δ

�
2

3
−
13ν

5

�
1

ð−1þ 3νÞ χA
�

þ v4Ω

�
−

14210377

8808800ð1 − 3νÞ2 þ
32485357ν

4404400ð1 − 3νÞ2 −
1401149ν2

1415700ð1 − 3νÞ2 −
801565ν3

37752ð1 − 3νÞ2 þ
3976393ν4

1006720ð1 − 3νÞ2

þ 1

2
χ2A − 2νχ2A þ δχAχS þ

1

2
χ2S

�
þ v5Ω

��
−
69

55
þ 16571ν

1650
−
2673ν2

100
þ 8539ν3

440
þ 591ν4

44

�
1

ð1 − 3νÞ2 χS

þ δ

�
−
69

55
þ 10679ν

1650
−
1933ν2

220
þ 597ν3

440

�
1

ð1 − 3νÞ2 χA
�
þ v6Ω

�
16600939332793

1098809712000
−
12568

3465
eulerlogð4; vΩÞ

�

þ v8Ω

�
−
172066910136202271

19426955708160000
þ 845198

190575
eulerlogð4; vΩÞ

�
þ v10Ω

�
−
17154485653213713419357

568432724020761600000

þ 22324502267

3815311500
eulerlogð4; vΩÞ

�
; ðB4aÞ

δ44 ¼
ð112þ 219νÞ
120ð1 − 3νÞ ðΩHEOBÞ þ

25136π

3465
ðΩHEOBÞ2 þ

�
201088

10395
π2 −

55144

375

�
ðΩHEOBÞ3; ðB4bÞ

and for the (5,5) mode,

ρNS55 ¼ 1þ v2Ω

�
487

390ð−1þ 2νÞ −
649ν

195ð−1þ 2νÞ þ
256ν2

195ð−1þ 2νÞ
�
−
3353747

2129400
v4Ω

þ v6Ω

�
190606537999247

11957879934000
−
1546

429
eulerlogð5; vΩÞ

�
þ v8Ω

�
−
1213641959949291437

118143853747920000
þ 376451

83655
eulerlogð5; vΩÞ

�

þ v10Ω

�
−
150082616449726042201261

4837990810977324000000
þ 2592446431

456756300
eulerlogð5; vΩÞ

�
; ðB5aÞ
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fS55 ¼ v3Ω

��
−

70ν

3ð−1þ 2νÞþ
110ν2

3ð−1þ 2νÞþ
10

3ð−1þ 2νÞ
�
χA
δ
þ
�

10

3ð−1þ 2νÞ−
10ν

−1þ 2ν
þ 10ν2

−1þ 2ν

�
χS

�

þ v4Ω

��
−
5

2
þ 5ν

�
1

ð−1þ 2νÞχ
2
S þð−5þ 30ν− 40ν2Þ 1

ð−1þ 2νÞ
χSχA
δ

þ
�
−
5

2
þ 15ν− 20ν2

�
1

ð−1þ 2νÞχ
2
A

�
; ðB5bÞ

δ55 ¼
ð96875þ 857528νÞ
131250ð1 − 2νÞ ðΩHEOBÞ þ

3865π

429
ðΩHEOBÞ2 þ

−7686949127þ 954500400π2

31783752
ðΩHEOBÞ3; ðB5cÞ

which are both the same as in SEOBNRv4HM [78].
The (3,2) mode is given by

ρ32 ¼ 1þ vΩ
4νχS

3ð1− 3νÞþ v2Ω

�
− 32

27
ν2þ 223

54
ν− 164

135

1− 3ν
−

16ν2χ2S
9ð1− 3νÞ2

�
þ v3Ω

��
13

9
νþ 2

9

�
δχA

1− 3ν

þ
�
607

81
ν3 þ 503

81
ν2 −

1478

405
νþ 2

9

�
χS

ð1− 3νÞ2þ
320ν3χ3S

81ð1− 3νÞ3
�
þ v4Ω

�77141
40095

ν4 − 508474
40095

ν3 − 945121
320760

ν2 þ 1610009ν
320760

− 180566
200475

ð1− 3νÞ2

þ
�
4ν2 − 3νþ 1

3

�
χ2A

1− 3ν
þ
�
−
50

27
ν2 −

88

27
νþ 2

3

�
δχAχS

ð1− 3νÞ2 þ
�
−
2452

243
ν4 −

1997

243
ν3þ 1435

243
ν2 −

43

27
νþ 1

3

�
χ2S

ð1− 3νÞ3
�

þ v5Ω

��
−
1184225

96228
ν5 −

40204523

962280
ν4 þ 101706029

962280
ν3 −

14103833

192456
ν2þ 20471053

962280
ν−

2788

1215

�
χS

ð1− 3νÞ3

þ
�
608

81
ν3 þ 736

81
ν2 −

16

9
ν

�
δχAχ

2
S

ð1− 3νÞ3 þ
�
889673

106920
ν3 −

75737

5346
ν2þ 376177

35640
ν−

2788

1215

�
δχA

ð1− 3νÞ2

þ
�
96176

2187
ν5þ 43528

2187
ν4 −

40232

2187
ν3þ 376

81
ν2 −

8ν

9

�
χ3S

ð1− 3νÞ4 þ
�
−
32

3
ν3 þ 8ν2 −

8

9
ν

�
χ2AχS

ð1− 3νÞ2
�

þ v6Ω

�
5849948554

940355325
−
104 eulerlogð2; vΩÞ

63

�
þ v8Ω

�
17056 eulerlogð2; vΩÞ

8505
−
10607269449358

3072140846775

�

þ v10Ω

�
−
1312549797426453052

176264081083715625
þ 18778864 eulerlogð2; vΩÞ

12629925

�
; ðB6aÞ

δ32 ¼
�
11

5
νþ 2

3

�
ΩHEOB

1 − 3ν
þ 52

21
πðΩHEOBÞ2 þ

�
208

63
π2 −

9112

405

�
ðΩHEOBÞ3; ðB6bÞ

where we added all spin contributions beyond the LO spin orbit in ρ32, as well as the test-mass limit terms given
in Eq. (46a).
The (4,3) mode is given by

ρNS43 ¼ 1þ v2Ω
1 − 2ν

�
−
10

11
ν2 þ 547

176
ν −

111

88

�
−
6894273

7047040
v4Ω þ v6Ω

�
1664224207351

195343948800
−
1571

770
eulerlogð3; vΩÞ

�

þ v8Ω

�
−
2465107182496333

460490801971200
þ 174381

67760
eulerlogð3; vΩÞ

�
ðB7aÞ

fS43 ¼
vΩ

1 − 2ν

�
5

2
νχS −

5

2
ν
χA
δ

�
þ v3Ω
1 − 2ν

��
887

44
ν −

3143

132
ν2
�
χA
δ
þ
�
−
529

132
ν2 −

667

44
ν

�
χS

�

þ v4Ω
1 − 2ν

��
12ν2 −

37

3
νþ 3

2

�
χ2A þ

�
137

6
ν2 − 18νþ 3

�
χAχS
δ

þ
�
35

6
ν2 þ 1

3
νþ 3

2

�
χ2S

�
; ðB7bÞ

δ43 ¼
�
4961

810
νþ 3

5

�
ΩHEOB

1 − 2ν
þ 1571

385
πðΩHEOBÞ2; ðB7cÞ

where we added all spin contributions beyond the LO spin orbit in fS43, and the test-mass limit terms of Eq. (46b) in ρNS43 .
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All other modes, which are used in the RR force in Eq. (16), are the same as in SEOBNRv4HM. They are written in
Refs. [75,159], but we also list them here for completeness:

ρNS31 ¼ 1 − v2Ω

�
2

9
νþ 13

18

�
þ v4Ω

�
−

829

1782
ν2 −

1685

1782
νþ 101

7128

�
þ v6Ω

�
11706720301

6129723600
−
26

63
eulerlogð1; vΩÞ

�

þ v8Ω

�
169

567
eulerlogð1; vΩÞ þ

2606097992581

4854741091200

�
; ðB8Þ

fS31 ¼ v3Ω

��
11

2
ν − 2

�
χA
δ
þ
�
13

2
ν − 2

�
χS

�
; ðB9Þ

δ31 ¼
13

30
ΩHEOB þ 13

21
πðΩHEOBÞ2 þ

�
26

63
π2 −

227827

81000

�
ðΩHEOBÞ3; ðB10Þ

ρ42 ¼ 1þ 285ν2 − 3530νþ 1146

1320ð3ν − 1Þ v2Ω −
v3Ω

15ð1 − 3νÞ ½ð78ν
2 − 59νþ 10ÞχS þ ð10 − 21νÞδχA�

þ −379526805ν4 − 3047981160ν3 þ 1204388696ν2 þ 295834536ν − 114859044

317116800ð1 − 3νÞ2 v4Ω

þ
�
848238724511

219761942400
−
3142

3465
eulerlogð2; vΩÞ

�
v6Ω; ðB11Þ

δ42 ¼
�
7

15
þ 14

5
ν

�
ΩHEOB

1 − 3ν
þ 6284

3465
πðΩHEOBÞ2; ðB12Þ

ρNS41 ¼ 1þ 288ν2 − 1385νþ 602

528ð2ν − 1Þ v2Ω −
7775491

21141120
v4Ω þ

�
1227423222031

1758095539200
−
1571

6930
eulerlogð1; vΩÞ

�
v6Ω; ðB13Þ

fS41 ¼
5

2
ν

vΩ
1 − 2ν

�
χS −

χA
δ

�
; ðB14Þ

δ41 ¼
�
1

5
þ 507

10
ν

�
ΩHEOB

1 − 2ν
þ 1571

3465
πðΩHEOBÞ2; ðB15Þ

ρ54 ¼ 1þ 33320ν3 − 127610ν2 þ 96019ν − 17448

13650ð5ν2 − 5νþ 1Þ v2Ω

−
16213384

15526875
v4Ω; ðB16Þ

δ54 ¼
8

15
ΩHEOB; ðB17Þ

ρ53 ¼ 1þ 176ν2 − 850νþ 375

390ð2ν − 1Þ v2Ω −
410833

709800
v4Ω; ðB18Þ

δ53 ¼
31

70
ΩHEOB; ðB19Þ

ρ52 ¼ 1þ 21980ν3 − 104930ν2 þ 84679ν − 15828

13650ð5ν2 − 5νþ 1Þ v2Ω

−
7187914

15526875
v4Ω; ðB20Þ

δ52 ¼
4

15
ΩHEOB; ðB21Þ

ρ51 ¼ 1þ 8ν2 − 626νþ 319

390ð2ν − 1Þ v2Ω −
31877

304200
v4Ω; ðB22Þ

δ51 ¼
31

210
ΩHEOB; ðB23Þ

ρ66 ¼ 1þ 273ν3 − 861ν2 þ 602ν − 106

84ð5ν2 − 5νþ 1Þ v2Ω −
1025435

659736
v4Ω;

ðB24Þ

δ66 ¼
43

70
ΩHEOB; ðB25Þ

ρ65 ¼ 1þ 220ν3 − 910ν2 þ 838ν − 185

144ð3ν2 − 4νþ 1Þ v2Ω; ðB26Þ

δ65 ¼
10

21
ΩHEOB; ðB27Þ
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ρ64 ¼ 1þ 133ν3 − 581ν2 þ 462ν − 86

84ð5ν2 − 5νþ 1Þ v2Ω −
476887

659736
v4Ω;

ðB28Þ

δ64 ¼
43

105
ΩHEOB; ðB29Þ

ρ63 ¼ 1þ 156ν3 − 750ν2 þ 742ν − 169

144ð3ν2 − 4νþ 1Þ v2Ω; ðB30Þ

δ63 ¼
2

7
ΩHEOB; ðB31Þ

ρ62 ¼ 1þ 49ν3 − 413ν2 þ 378ν − 74

84ð5ν2 − 5νþ 1Þ v2Ω −
817991

3298680
v4Ω;

ðB32Þ

δ62 ¼
43

210
ΩHEOB; ðB33Þ

ρ61 ¼ 1þ 124ν3 − 670ν2 þ 694ν − 161

144ð3ν2 − 4νþ 1Þ v2Ω; ðB34Þ

δ61 ¼
2

21
ΩHEOB; ðB35Þ

ρ77 ¼ 1þ 1380ν3 − 4963ν2 þ 4246ν − 906

714ð3ν2 − 4νþ 1Þ v2Ω; ðB36Þ

δ77 ¼
19

36
ΩHEOB; ðB37Þ

ρ76¼1þ6104ν4−29351ν3þ37828ν2−16185νþ2144

1666ð7ν3−14ν2þ7ν−1Þ v2Ω;

ðB38Þ

ρ75 ¼ 1þ 804ν3 − 3523ν2 þ 3382ν − 762

714ð3ν2 − 4νþ 1Þ v2Ω; ðB39Þ

δ75 ¼
95

252
ΩHEOB; ðB40Þ

ρ74 ¼ 1þ 41076ν4 − 217959ν3 þ 298872ν2 − 131805νþ 17756

14994ð7ν3 − 14ν2 þ 7ν − 1Þ v2Ω; ðB41Þ

ρ73 ¼ 1þ 420ν3 − 2563ν2 þ 2806ν − 666

714ð3ν2 − 4νþ 1Þ v2Ω; ðB42Þ

δ73 ¼
19

84
ΩHEOB; ðB43Þ

ρ72 ¼ 1þ 32760ν4 − 190239ν3 þ 273924ν2 − 123489νþ 16832

14994ð7ν3 − 14ν2 þ 7ν − 1Þ v2Ω; ðB44Þ

ρ71 ¼ 1þ 228ν3 − 2083ν2 þ 2518ν − 618

714ð3ν2 − 4νþ 1Þ v2Ω; ðB45Þ

δ71 ¼
19

252
ΩHEOB; ðB46Þ

ρ88 ¼ 1þ 3482 − 26778νþ 64659ν2 − 53445ν3 þ 12243ν4

2736ð−1þ 7ν − 14ν2 þ 7ν3Þ v2Ω; ðB47Þ

ρ87 ¼ 1þ 23478 − 154099νþ 309498ν2 − 207550ν3 þ 38920ν4

18240ð−1þ 6ν − 10ν2 þ 4ν3Þ v2Ω; ðB48Þ

ρ86 ¼ 1þ 1002 − 7498νþ 17269ν2 − 13055ν3 þ 2653ν4

912ð−1þ 7ν − 14ν2 þ 7ν3Þ v2Ω; ðB49Þ

ρ85 ¼ 1þ 4350 − 28055νþ 54642ν2 − 34598ν3 þ 6056ν4

3648ð−1þ 6ν − 10ν2 þ 4ν3Þ v2Ω; ðB50Þ
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ρ84 ¼ 1þ 2666 − 19434νþ 42627ν2 − 28965ν3 þ 4899ν4

2736ð−1þ 7ν − 14ν2 þ 7ν3Þ v2Ω; ðB51Þ

ρ83 ¼ 1þ 20598 − 131059νþ 249018ν2 − 149950ν3 þ 24520ν4

18240ð−1þ 6ν − 10ν2 þ 4ν3Þ v2Ω; ðB52Þ

ρ82 ¼ 1þ 2462 − 17598νþ 37119ν2 − 22845ν3 þ 3063ν4

2736ð−1þ 7ν − 14ν2 þ 7ν3Þ v2Ω; ðB53Þ

ρ81 ¼ 1þ 20022 − 126451νþ 236922ν2 − 138430ν3 þ 21640ν4

18240ð−1þ 6ν − 10ν2 þ 4ν3Þ v2Ω: ðB54Þ

APPENDIX C: FITS OF NONQUASICIRCULAR
INPUT VALUES

In this appendix we provide fits for the NQC input values,
jhlmðtlmmatchÞj, ∂tjhlmðtlmmatchÞj, ∂

2
t jhlmðtlmmatchÞj, ωlmðtlmmatchÞ,

∂tωlmðtlmmatchÞ. To produce the fits we used NR simulations
with the highest level of resolution available and extrapo-
lation order N ¼ 2. Depending on the mode, we excluded a
different number of NR waveforms from the fits, where
numerical errors prevented us from fitting them accurately.
As in Ref. [78] we define the following combinations ofm1,
m2, χ1, χ2 to be used in the fits:

δ ¼ ðm1 −m2Þ
ðm1 þm2Þ

; ðC1Þ

χ33 ¼ χSδþ χA ðC2Þ

χ21A ¼ χS
1 − 1.3ν

δþ χA ðC3Þ

χ44A ¼ ð1 − 5νÞχS þ χAδ ðC4Þ

χ21D ¼ χS
1 − 2ν

δþ χA ðC5Þ

χ44D ¼ ð1 − 7νÞχS þ χAδ ðC6Þ

χ ¼ χS þ χA
δ

1 − 2ν
: ðC7Þ

The variables χ33, χ21A, χ21D vanish by construction for
equal-mass equal-spin configurations, and are used to
enforce that the odd-m modes also vanish in the same limit
as required by symmetry.

1. Amplitude’s fits

jhNR22 ðtmatch
22 Þj
ν

¼ j0.430147χ3ν − 0.084939χ3 þ 0.619889χ2ν2 − 0.020826χ2 − 13.357614χν3 þ 7.194264χν2

− 1.743135χνþ 0.18694χ þ 71.979698ν4 − 46.87586ν3 þ 12.440405ν2 − 0.868289νþ 1.467097j ðC8Þ

jhNR33 ðtmatch
33 Þj
ν

¼ j − 0.088371χ233δνþ 0.036258χ233δþ 1.057731χ33ν2 − 0.466709χ33νþ 0.099543χ33 þ 1.96267δν2

þ 0.027833δνþ 0.558808δj ðC9Þ

jhNR21 ðtmatch
21 Þj
ν

¼ j − 0.033175χ321Aδþ 0.086356χ221Aδν − 0.049897χ221Aδþ 0.012706χ21Aδþ 0.168668χ21Aν

− 0.285597χ21A þ 1.067921δν2 − 0.189346δνþ 0.431426δj ðC10Þ

jhNR44 ðtmatch
44 Þj
ν

¼ j0.031483χ244A − 0.180165χ44Aνþ 0.063931χ44A þ 6.239418ν3 − 1.947473ν2 − 0.615307νþ 0.262533j
ðC11Þ
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jhNR55 ðtmatch
55 Þj
ν

¼ j − 7.402839χ33ν3 þ 3.965852χ33ν2 − 0.762776χ33νþ 0.062757χ33 þ 1.093812δν2 − 0.462142δν

þ 0.125468δj ðC12Þ

jhNR32 ðtmatch
32 Þj
ν

¼ j0.022598χ2 þ 0.307803χν − 0.020771χ þ 8.917771ν3 − 2.194506ν2 − 0.387911νþ 0.155446j ðC13Þ

jhNR43 ðtmatch
43 Þj
ν

¼ j − 0.071554χ233δνþ 0.021932χ233δ − 1.738079χ33ν2 þ 0.436576χ33ν − 0.020081χ33 þ 0.809615δν2

− 0.273364δνþ 0.07442δj ðC14Þ

2. Amplitude-first-derivative’s fits

1

ν

djhNR22 ðtÞj
dt

				
t¼tmatch

22

≡ 0 ðC15Þ

1

ν

djhNR33 ðtÞj
dt

				
t¼tmatch

33

¼ χ233δð0.004941ν − 0.002094Þ

þ 0.001781jχ233 þ χ33δð39.247538ν − 2.986889Þ þ δ2ð85.173306νþ 4.637906Þj1=2 ðC16Þ

1

ν

djhNR21 ðtÞj
dt

				
t¼tmatch

21

¼ χ21Dδð0.023534ν − 0.008064Þ þ δð0.006743 − 0.0297νÞ

þ 0.008256jχ21D − δð5.471011ν2 þ 1.235589νþ 0.815482Þj ðC17Þ

1

ν

djhNR44 ðtÞj
dt

				
t¼tmatch

44

¼ −0.001251χ344D þ 0.006387χ244Dν − 0.001223χ244D − 0.034308χ44Dν2

þ 0.014373χ44Dν − 0.000681χ44D þ 1.134679ν3 − 0.417056ν2 þ 0.024004νþ 0.003498 ðC18Þ

1

ν

djhNR55 ðtÞj
dt

				
t¼tmatch

55

¼ χ233δð0.008568ν − 0.00155Þ þ χ33δð0.002705ν − 0.001015Þ

þ δð0.002563 − 0.010891νÞ þ 0.000284jχ33 þ δð32.459725νþ 0.165336Þj ðC19Þ

1

ν

djhNR32 ðtÞj
dt

				
t¼tmatch

32

¼ −0.000806χ3 − 0.011027χ2νþ 0.002999χ2 − 0.14087χν2 þ 0.063211χν

− 0.006783χ þ 1.693423ν3 − 0.510999ν2 þ 0.020607νþ 0.003674 ðC20Þ

1

ν

djhNR43 ðtÞj
dt

				
t¼tmatch

43

¼ χ233δð0.001773 − 0.012159νÞ þ χ33δð0.022249ν − 0.004295Þ

þ δð0.012043ν − 0.001067Þ þ 0.00082jχ33 þ δð3.880171 − 20.015436νÞj ðC21Þ

3. Amplitude-second-derivative’s fits

1

ν

d2jhNR22 ðtÞj
dt2

				
t¼tmatch

22

¼ 0.000386χ2 þ 0.003589χνþ 0.001326χ − 0.003353ν2 − 0.005615ν − 0.002457 ðC22Þ
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1

ν

d2jhNR33 ðtÞj
dt2

				
t¼tmatch

33

¼ χ33δð0.000552νþ 0.001029Þ − 0.000218

· jχ33 þ δð−2188.340923ν4 þ 1331.981345ν3 − 289.772357ν2 þ 32.212775νþ 3.396168Þj ðC23Þ

1

ν

d2jhNR21 ðtÞj
dt2

				
t¼tmatch

21

¼ 0.00015δ − j0.000316χ321D − χ221Dδð−0.043291ν2 þ 0.005682νþ 0.000502Þ

þ0.000372χ21Dδ − δð0.003643νþ 2.8 × 10−5Þj ðC24Þ

1

ν

d2jhNR44 ðtÞj
dt2

				
t¼tmatch

44

¼ −0.000591χ2νþ 0.000174χ2 − 0.000501χνþ 0.000318χ þ 0.138496ν3

− 0.047008ν2 þ 0.003899ν − 0.000451 ðC25Þ

1

ν

d2jhNR55 ðtÞj
dt2

				
t¼tmatch

55

¼ χ233 · ð0.000278ν−5.6×10−5Þþ χ33δð0.000246ν−6.8×10−5Þþδð0.000118−5.9×10−5νÞ ðC26Þ

1

ν

d2jhNR32 ðtÞj
dt2

				
t¼tmatch

32

¼ −0.002882χ2νþ 0.000707χ2 − 0.027461χν2 þ 0.008481χν − 0.000691χ

þ 0.20836ν3 − 0.053191ν2 þ 0.001604ν − 5.6 × 10−5 ðC27Þ

1

ν

d2jhNR43 ðtÞj
dt2

				
t¼tmatch

43

¼ χ33δð0.00291ν − 0.000348Þ − 5.0 × 10−6

· jχ33 þ δð−25646.358742ν4 þ 12647.805787ν3 þ 291.751053ν2 − 531.965263νþ 23.849357Þj
ðC28Þ

4. Frequency and frequency-derivative fits

ωNR
22 ðtmatch

22 Þ ¼ −0.015259χ4 þ 0.241948χ3ν − 0.066927χ3 − 0.971409χ2ν2 þ 0.518014χ2ν

− 0.087152χ2 þ 3.751456χν3 − 1.697343χν2 þ 0.250965χν − 0.091339χ

þ 5.893523ν4 − 3.349305ν3 þ 0.285392ν2 − 0.317096ν − 0.268541 ðC29Þ

ωNR
33 ðtmatch

33 Þ ¼ −0.045141χ3 þ 0.346675χ2ν − 0.119419χ2 − 0.745924χν2 þ 0.478915χν

− 0.17467χ þ 8.887163ν3 − 4.226831ν2 − 0.427167 ðC30Þ

ωNR
21 ðtmatch

21 Þ ¼ −0.01009χ3 þ 0.077343χ2ν − 0.02411χ2 − 0.168854χν2 þ 0.159382χν

− 0.047635χ − 1.965157ν3 þ 0.53085ν2 − 0.237904ν − 0.176526 ðC31Þ

ωNR
44 ðtmatch

44 Þ ¼ −0.042529χ3 þ 0.415864χ2ν − 0.155222χ2 − 0.768712χν2 þ 0.592568χν

− 0.244508χ þ 13.651335ν3 − 5.490329ν2 − 0.574041 ðC32Þ

ωNR
55 ðtmatch

55 Þ ¼ −0.091629χ3 þ 0.802759χ2ν − 0.246646χ2 − 3.04576χν2 þ 1.43471χν

− 0.329591χ þ 13.81386ν3 − 6.61611ν2 þ 0.472474ν − 0.589341 ðC33Þ

ωNR
32 ðtmatch

32 Þ ¼ −0.045647χ2 − 2.758635χν2 þ 0.811353χν − 0.112477χ − 2.346024ν3

þ 1.57986ν2 − 0.317756ν − 0.331141 ðC34Þ
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ωNR
43 ðtmatch

43 Þ ¼ −0.037919χ3 þ 0.226903χ2ν − 0.087288χ2 − 0.905919χν2 þ 0.291092χν

− 0.1198χ − 55.534105ν3 þ 23.913277ν2 − 3.487986ν − 0.34306 ðC35Þ

ω̇NR
22 ðtmatch

22 Þ ¼ 0.000614χ3 − 0.008393χ2νþ 0.001948χ2 þ 0.07799χν2 − 0.028772χν

þ 0.001705χ − 0.237126ν3 þ 0.092215ν2 − 0.03104ν − 0.005484 ðC36Þ

ω̇NR
33 ðtmatch

33 Þ ¼ 0.001697χ3 − 0.016231χ2νþ 0.003985χ2 þ 0.154378χν2 − 0.050618χν

þ 0.002721χ þ 0.255402ν3 − 0.08663ν2 − 0.027405ν − 0.009736 ðC37Þ

ω̇NR
21 ðtmatch

21 Þ ¼ 0.00149χ3 − 0.008965χ2νþ 0.002739χ2 þ 0.033831χν2 − 0.005752χν

þ 0.002003χ − 0.204368ν3 þ 0.120705ν2 − 0.035144ν − 0.006579 ðC38Þ

ω̇NR
44 ðtmatch

44 Þ ¼ 0.001812χ3 − 0.024687χ2νþ 0.00568χ2 þ 0.162693χν2 − 0.061205χν

þ 0.003623χ þ 0.536664ν3 − 0.094797ν2 − 0.045406ν − 0.013038 ðC39Þ

ω̇NR
55 ðtmatch

55 Þ ¼ 0.001509χ3 − 0.01547χ2νþ 0.002802χ2 þ 0.164011χν2 − 0.056516χν

þ 0.002072χ þ 0.043963ν3 þ 0.048045ν2 − 0.045197ν − 0.008688 ðC40Þ

ω̇NR
32 ðtmatch

32 Þ ¼ −0.036711χ2νþ 0.005532χ2 þ 0.09192χν2 − 0.030713χνþ 0.005927χ

− 2.494788ν3 þ 0.995116ν2 − 0.10163ν − 0.010763 ðC41Þ

ω̇NR
43 ðtmatch

43 Þ ¼ 0.000537χ3 − 0.009876χ2νþ 0.003279χ2 þ 0.13296χν2 − 0.060884χν

þ 0.008513χ − 5.160613ν3 þ 2.180781ν2 − 0.292607ν − 0.005308 ðC42Þ

APPENDIX D: FITS FOR AMPLITUDE AND PHASE OF MERGER-RINGDOWN MODEL

In this appendix we provide fits across parameter space for the free coefficients in the merger-ringdown Ansatz given by
Eqs. (49) and (50). To produce the fits we use NR simulations with the highest level of resolution available and
extrapolation order N ¼ 2. They read as

c221;f ¼ −0.001777χ4 þ 0.062842χ3ν − 0.018908χ3 þ 0.013161χ2ν2 þ 0.049388χ2ν

− 0.019314χ2 þ 1.867978χν3 − 0.702488χν2 þ 0.033885χν − 0.011612χ

− 4.238246ν4 þ 2.043712ν3 − 0.406992ν2 þ 0.053589νþ 0.086254 ðD1Þ

c222;f ¼ 1.021875χ3ν − 0.20348χ3 − 3.556173χ2ν2 þ 1.970082χ2ν − 0.264297χ2

þ 2.002947χν3 − 5.585851χν2 þ 1.837724χν − 0.27076χ − 63.286459ν4

þ 44.331389ν3 − 9.529573ν2 þ 1.155695ν − 0.528763 ðD2Þ

d221;f ¼ −0.013321χ4 þ 0.047305χ3ν − 0.024203χ3 þ 1.033352χ2ν2 − 0.254351χ2ν

− 0.007847χ2 þ 4.113463χν3 − 1.652924χν2 þ 0.090834χν − 28.423701ν4

þ 20.719874ν3 − 6.075679ν2 þ 0.780093νþ 0.135758 ðD3Þ

d222;f ¼ expð−0.163113χ4 − 3.398858χ3νþ 0.728816χ3 þ 23.975132χ2ν2 − 10.064954χ2ν

þ 1.2115χ2 þ 9.057306χν3 − 5.268296χν2 þ 0.464553χνþ 0.56269χ

− 352.249383ν4 þ 275.843499ν3 − 81.483314ν2 þ 11.184576νþ 0.03571Þ ðD4Þ
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c331;f ¼ −0.00956χ3 þ 0.029459χ2ν − 0.020264χ2 − 0.494524χν2 þ 0.169463χν

− 0.026285χ − 5.847417ν3 þ 1.957462ν2 − 0.171682νþ 0.093539 ðD5Þ

c332;f ¼ −0.057346χ3 þ 0.237107χ2ν − 0.094285χ2 − 4.250609χν2 þ 1.763105χν

− 0.315826χ þ 14.801916ν3 − 7.060581ν2 þ 1.158627ν − 0.646888 ðD6Þ

d331;f ¼ −0.016524χ3 þ 0.221466χ2ν − 0.066323χ2 þ 0.678442χν2 − 0.261264χν

þ 0.006664χ þ 2.316434ν3 − 2.192227ν2 þ 0.424582νþ 0.161577 ðD7Þ

d332;f ¼ expð0.275999χ3 − 1.830695χ2νþ 0.512734χ2 þ 29.072515χν2 − 10.581319χν

þ 1.310643χ þ 324.310223ν3 − 124.681881ν2 þ 13.200426νþ 0.410855Þ ðD8Þ

c211;f ¼ 0.173462χ2ν − 0.028873χ2 þ 0.197467χν2 − 0.026139χ − 2.934735ν3

þ 1.009106ν2 − 0.112721νþ 0.099889 ðD9Þ

c212;f ¼ 0.183489χ3 þ 0.10573χ2 − 20.792825χν2 þ 6.867746χν − 0.484948χ

− 54.917585ν3 þ 16.466312ν2 þ 0.426316ν − 0.92208 ðD10Þ

d211;f ¼ 0.018467χ4 þ 0.398621χ3ν − 0.050499χ3 − 0.877201χ2ν2 þ 0.414553χ2ν

− 0.068277χ2 − 10.648526χν3 þ 4.104918χν2 − 0.723576χνþ 0.039227χ

þ 42.715534ν4 − 18.280603ν3 þ 2.236592ν2 − 0.048094νþ 0.16335 ðD11Þ

d212;f ¼ expð0.814085χ3 − 1.197363χ2νþ 0.560622χ2 þ 6.44667χν2 − 5.630563χν

þ 0.949586χ þ 91.269183ν3 − 27.329751ν2 þ 1.101262νþ 1.040761Þ ðD12Þ

c441;f ¼ 4.519504χν2 − 1.489036χνþ 0.068403χ − 1656.065439ν4 þ 817.835726ν3

− 127.055379ν2 þ 6.921968νþ 0.009386 ðD13Þ

c442;f ¼ 0.964861χ3ν − 0.185226χ3 − 12.647814χ2ν2 þ 5.264969χ2ν − 0.539721χ2

− 254.719552χν3 þ 105.698791χν2 − 12.107281χνþ 0.2244χ − 393.727702ν4

þ 145.32788ν3 − 15.556222ν2 þ 1.592449ν − 0.677664 ðD14Þ

d441;f ¼ −0.020644χ3 þ 0.494221χ2ν − 0.127074χ2 þ 4.297985χν2 − 1.284386χν

þ 0.062684χ − 44.280815ν3 þ 11.021482ν2 − 0.162943νþ 0.166018 ðD15Þ

d442;f ¼ expð37.735116χν2 − 12.516669χνþ 1.309868χ − 528.368915ν3 þ 155.115196ν2

− 6.612448νþ 0.787726Þ ðD16Þ

c551;f ¼ −0.009957χ3 þ 0.059748χ2ν − 0.02146χ2 − 0.206811χν2 þ 0.055078χν

− 0.014528χ − 5.966891ν3 þ 1.76928ν2 − 0.055272νþ 0.080368 ðD17Þ

c552;f ¼ 0.119703χ4 þ 1.638345χ2ν2 − 0.064725χ2 − 28.499278χν3 þ 3.73034χν2

þ 1.853723χν − 0.225283χ − 1887.591102ν4 þ 794.134711ν3 − 107.010824ν2

þ 6.32117ν − 1.507483 ðD18Þ
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d551;f ¼ −0.021537χ3 þ 0.168071χ2ν − 0.050263χ2 þ 0.871799χν2 − 0.230057χν

þ 9.018546ν3 − 5.009488ν2 þ 0.606313νþ 0.150622 ðD19Þ

d552;f ¼ expð28.839035χν2 − 9.726025χνþ 0.901423χ þ 143.745208ν3 − 64.478227ν2

þ 6.223833νþ 2.058139Þ ðD20Þ

c321;f ¼ −0.133035χ3 þ 0.641681χ2ν − 0.111865χ2 þ 8.987763χν2 − 1.582259χν

þ 0.095604χ − 26.991806ν3 þ 13.716801ν2 − 1.63083νþ 0.157543 ðD21Þ

c322;f ¼ 0.121608χ3 − 1.590623χ2νþ 0.167231χ2 − 25.544931χν2 þ 10.127968χν

− 0.999062χ − 51.469773ν3 þ 46.209833ν2 − 6.484571ν − 0.716883 ðD22Þ

d321;f ¼ expð−0.764015χ3 − 8.684722χ2νþ 0.691946χ2 − 0.518291χν2 − 1.407934χν

þ 0.236427χ þ 81.222175ν3 − 18.040529ν2 þ 2.216406ν − 1.879455Þ ðD23Þ

d322;f ¼ expð−1.819822χ3 − 24.501503χ2νþ 3.287882χ2 − 39.324579χν2 þ 14.379901χν

− 215.372399ν3 þ 136.20936ν2 − 16.842816νþ 1.463485Þ ðD24Þ

c431;f ¼ 0.041585χ3 þ 4.188908χν2 − 1.365732χνþ 0.058908χ þ 44.311948ν3

− 22.114177ν2 þ 3.386082ν − 0.035315 ðD25Þ

c432;f ¼ 0.125764χ3 þ 0.337235χ2νþ 0.146202χ2 − 9.803187χν2 þ 3.995199χν

− 0.240976χ − 57.968821ν3 þ 7.820929ν2 þ 3.364741ν − 1.121716 ðD26Þ

d431;f ¼ expð−0.888286χ3 þ 3.97869χ2ν − 1.047181χ2 − 14.823391χν2 þ 6.940856χν

− 0.367801χ þ 366.645645ν3 − 161.732513ν2 þ 19.564699ν − 2.29578Þ ðD27Þ

d432;f ¼ expð−0.950676χ3 − 0.31428χ2 þ 39.21796χν2 − 10.651167χνþ 1.339732χ

þ 730.42296ν3 − 312.960598ν2 þ 37.402567ν − 0.061894Þ: ðD28Þ

APPENDIX E: ROBUSTNESS
OF THE CALIBRATION PIPELINE

In this appendix we demonstrate that the calibration
pipeline described in Sec. V is robust with regard to the
number of NR waveforms and the PSD used in the
calibration likelihood.
For the first point, we repeat the procedure for the

aligned-spin calibration parameters θS ≡ fdSO;Δt22ISCO;Sg,
by using a representative subset of 119 aligned-spin NR
simulations, selected with a greedy algorithm following
Ref. [100]. We do not change the nonspinning fits for
θnoS ≡ fa6;Δt22ISCO;noSg (which already used a subset of 18
simulations out of 39), and the fits for the merger-ringdown
and NQC corrections. This brings the total number of
waveforms used to 137, which is comparable to the 141
used in the calibration of SEOBNRv4. As in Sec. VI, we

compute the (2,2)-mode mismatch of this model against the
entire set of 442 cases summarized in Sec. V. Figure 26
shows the maximum mismatch across a range of total
masses between ½10; 300�M⊙ for SEOBNRv5 calibrated to
442 simulations, SEOBNRv5 calibrated to 137 simulations,
and SEOBNRv4. The median (dashed vertical line) goes
only from 1.99 × 10−4 for SEOBNRv5 calibrated to 442
simulations, to 2.74 × 10−4 for SEOBNRv5 calibrated to
137 simulations, which is more than 5 times smaller than
SEOBNRv4 (1.44 × 10−3). Moreover for SEOBNRv5 cali-
brated to 137 simulations there is only a single case with
mismatch just above 0.003 (BFI:q8-7d:0080, with
parameters ðq; χ1; χ2Þ ¼ ð8.0; 0.0;−0.8Þ). As already
pointed out in Sec. VI, even the default SEOBNRv5 model
can have mismatches slightly above 10−3 against similar
cases, with high mass ratio, small aþ, but large individual
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spins, as the calibration term ∝ aþdSO does not tend to be
very effective. This shows that the calibration pipeline does
not rely on using the entire NR dataset described in Sec. V.
Although we added some critical new NR simulations,
especially for high mass ratios, the improvement with
respect to SEOBNRv4 is also largely due to the improved
analytical prescriptions, for the waveformmodes, RR force,
and Hamiltonian, and the more effective calibration
procedure.

The calibration likelihood of Eq. (70) also depends on
the Advanced LIGO [179] PSD. To show that our
calibration pipeline is robust with respect to changes in
the shape of the PSD used, we compute again (2,2)-mode
mismatches against NR simulations (as this is the metric
used in the likelihood) using a white noise curve, the
Einsten Telescope [214], and Cosmic Explorer [16] PSDs.
For this purpose we use the original fits of fdSO;Δt22ISCO;Sg
given in Eqs. (80) and (81). Figure 27 shows again the
maximum mismatch, across a range of total masses
between ½10; 300�M⊙, of SEOBNRv5 against the 442
NR simulations used in this work, using a white noise
curve and the PSDs of Advanced LIGO, Einstein
Telescope, and Cosmic Explorer. We see that the result
is very similar for all the cases and, despite SEOBNRv5
being calibrated using the Advanced LIGO PSD, it
performs equally well using different noise curves.

APPENDIX F: IMPACT OF NQC CORRECTIONS
IN THE RADIATION-REACTION FORCE

In Sec. IVA we pointed out that we do not include the
NQC corrections in the SEOBNRv5 RR force. Recently,
Refs. [114,194] implemented a fast prescription in
TEOBResumS to include fits of NQC corrections in both
the waveform and RR force, without requiring an iterative
procedure. A similar prescription could also be used in
SEOBNRv5HM. Reference [125] tested it in the nonspin-
ning limit, finding that the inclusion of NQCs corrections
has a smaller effect than the calibration to 2GSF data in
bringing the angular-momentum flux closer to the NR’s
one, except in the last fraction of a GW cycle before the
merger. Moreover, Ref. [125] found that the inclusion of
the nonspinning NQC corrections has a negligible effect on
the waveform after recalibrating the conservative dynamics
to NR, as the degeneracy between changes in the flux and
in the Hamiltonian reabsorbs any imperfection in the flux
with the calibration. The nonspinning limit of the model is
however already very close to the NR error, and the effect
on more challenging aligned-spin cases could be larger.
While for the current work we did not do a systematic

study in the entire aligned-spin parameter space to
include the NQC corrections in the RR force, in this
appendix we try to understand the potential improvement
for one binary configuration and compare the results
with SXS:BBH:1432, having parameters ðq; χ1; χ2Þ ¼
ð5.839; 0.658; 0.793Þ. Thus, we iteratively include the
NQCs in the RR force and repeat the nested sampling
procedure detailed in Sec. V B to find new values for
the aligned-spin calibration parameters fΔt22ISCO;S; dSOg,
which are going to slightly change compared to the default
ones, given the different dissipative dynamics. To do a
comparison without performing fits of the NQCs and of
the calibration parameters across parameter space, we
directly compare the maximum likelihood points of the

FIG. 27. Histogram of the maximum (2,2)-mode mismatch over
a range of total masses between 10 and 300M⊙, between the 442
NR simulations used in this work and SEOBNRv5, using a white
noise curve and the PSDs of Advanced LIGO, Einstein Telescope
and Cosmic Explorer. The vertical dashed lines show the
medians. The (2,2) mode of SEOBNRv5 is calibrated using
the Advanced LIGO PSD, but performs as well using different
noise curves.

FIG. 26. Histogram of the maximum (2,2)-mode mismatch over
a range of total masses between 10 and 300M⊙, between the 442
NR simulations used in this work and SEOBNRv4 (blue),
SEOBNRv5 calibrated to 442 NR simulations (green), and
SEOBNRv5 calibrated to 137 NR simulations (orange). The
vertical dashed lines show the medians.
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calibration posteriors, corresponding to the values
of the parameters giving the best unfaithfulness and time
to the merger.
Figure 28 shows the (2,2)-mode mismatch against NR

for the maximum likelihood points of the SEOBNRv5
calibration posteriors with and without NQCs in the RR
force, together with an estimate of the NR error obtained by
comparing different resolutions. The unfaithfulness is very
similar, as the calibration of the Hamiltonian reabsorbs any
difference in the dissipative dynamics. Moreover, in Fig. 29
we compare to NR the Newtonian normalized angular-
momentum flux between SEOBNRv5 with and without
NQCs in the RR force. The triangle, square, and diamond
correspond respectively to 3, 1, and 0 cycles before the
merger, which for each model is taken as the peak of the
(2,2)-mode amplitude. SEOBNRv5 with NQCs matches
NR at the merger at expected, but does not agree with NR
as well as SEOBNRv5 without NQCs at low frequencies,
showing that the addition of the NQCs does not necessarily
improve the flux.
This behavior could be potentially improved by doing

more iterations, finding new values for the NQCs given the
corrected calibration parameters, and repeating the calibra-
tion, but would be time-consuming and not necessarily
bring a significant improvement in the waveforms.
Nonetheless, a consistent treatment of the NQCs both in
the waveform and the RR force would most likely provide
more faithful representations of the angular-momentum and
energy fluxes, and a more systematic study across param-
eter space will be done in a future update of the model,
together with a recalibration of the conservative dynamics.
Alternative ways to improve the waveform close to merger,
and reduce the impact of the NQC corrections, should be
also investigated, especially in light of the upcoming
eccentric generalization of this model SEOBNRv5EHM,

as past experience in developing SEOBNRv4EHM has
demonstarted [91].

APPENDIX G: COMPARISON AGAINST
TIME-DOMAIN NONPRECESSING
PHENOMENOLOGICAL MODELS

In this appendix we compare the performance of
SEOBNRv5HM and the Fourier domain IMRPhenomXHM
[44] against the time-domain nonprecessing phenomeno-
logical model IMRPhenomTHM [47,48], which includes
the ðl; jmjÞ ¼ ð2; 2Þ; ð3; 3Þ; ð2; 1Þ; ð4; 4Þ; ð5; 5Þ modes. In
particular, we repeat the mismatch calculation against the
NR catalog detailed in Sec. VI, both for the dominant mode
only (Figs. 30 and 31) and for the full polarizations, at
inclination ι ¼ π=3 (Figs. 32 and 33).
Considering the dominant mode mismatches, we see that

IMRPhenomT performs slightly worse than SEOBNRv5,
considering both the median mismatch and the fraction of
cases below 10−4, while IMRPhenomXAS achieves on
average slightly lower values of the maximum unfaithful-
ness, as already noted in Sec. VI. More quantitatively,
IMRPhenomT features 91% of cases with maximum
unfaithfulness below 10−3, 5% of cases below 10−4, and
a median of 2.31 × 10−4 (see also Table I).
Considering the mismatches of the full polarizations at

inclination ι ¼ π=3we note instead that IMRPhenomTHM is
slightly more accurate than SEOBNRv5HM, and both models
are appreciably more accurate than IMRPhenomXHM. More
specifically, IMRPhenomTHM shows maximum unfaithful-
ness below 10−2 for 99% of cases, below 10−3 for 57% of
cases, and a median of 7.49 × 10−4 (see also Table II). The
NR simulation BFI:ExtremeAligned:0003, with
q ¼ 10.0; χ1 ¼ 0.8; χ2 ¼ 0.5, is the only outlier reaching

FIG. 28. (2,2)-mode mode mismatch against the NR simulation
SXS:BBH:1432 for the maximum likelihood points of the
SEOBNRv5 calibration posteriors, with and without NQCs in the
RR force. The unfaithfulness is very similar, as the calibration of
the Hamiltonian reabsorbs any difference in the dissipative
dynamics. We also show an estimate of the NR error obtained
by comparing simulations of different resolutions.

FIG. 29. Comparison of the Newtonian normalized angular-
momentum flux between SEOBNRv5 with and without NQCs in
the radiation reaction, and the NR simulation SXS:BBH:1432.
The triangle, square, and diamond correspond respectively to 3,
1, and 0 cycles before the merger, which for each model is taken
as the peak of the (2,2)-mode amplitude. SEOBNRv5 with NQCs
matches NR at the merger as expected, but does not agree with
NR as well as SEOBNRv5 without NQCs at low frequencies.
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FIG. 31. Histogram of the maximum (2,2)-mode mismatch over a range of total masses between 10 and 300M⊙, between SEOBNRv5,
IMRPhenomXAS, IMRPhenomT, and the 442 NR simulations used in this work. The NR error is estimated by computing the mismatch
between NR simulations with the highest and second-highest resolutions. The vertical dashed lines show the medians.

FIG. 30. (2,2)-mode mismatch over a range of total masses between 10 and 300M⊙, between SEOBNRv5, IMRPhenomXAS,
IMRPhenomT, and the 442 NR simulations used in this work. The colored lines highlight cases with the worst maximum mismatch for
each model.

FIG. 32. The sky-and-polarization averaged, SNR-weighted mismatch, for inclination ι ¼ π=3, over a range of total masses between
20 and 300M⊙ between SEOBNRv5HM, IMRPhenomXHM, IMRPhenomTHM and the 441 SXS NR simulations used in this work. The
colored lines highlight cases with the worst maximum mismatch for each model. This comparison highlights the similarity in
performance of the time-domain models SEOBNRv5HM and IMRPhenomTHM.

LORENZO POMPILI et al. PHYS. REV. D 108, 124035 (2023)

124035-50



3% mismatch at high total mass, for both IMRPhenomTHM
and SEOBNRv5HM, while being at the level of 0.1% when
considering only the (2,2) mode. This suggests common
limitations in the modeling of the higher modes for such
extreme configurations. In Fig. 34 we show the unfaithful-
ness between SEOBNRv5HM, IMRPhenomTHM and BFI:
ExtremeAligned:0003, using multipoles up to lmax ¼
5 and lmax ¼ 4, in both the models and the NR waveform.

We note that the mismatch for high total masses reduces
significantly for both models when removing l ¼ 5 multi-
poles, indicating that part of the disagreement is due to
mismodeling of the (5,5) mode, as well as missing con-
tributions in the models from the ðl ¼ 5; m ≠ 5Þ multi-
poles, which can have a non-negligible impact in the
ringdown of such high mass-ratio binaries. From the
behavior of the unfaithfulness as a function of the total
mass in Fig. 32 we appreciate that SEOBNRv5HM is overall
closer to IMRPhenomTHM than to IMRPhenomXHM, as
expected given the similar merger-ringdown model, and the
comparable NR calibration coverage.
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