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We numerically test quasiperiodic oscillations using three theoretically motivated models of spacetime,
adopting neutron star sources. Then, we compare our findings with a spherically symmetric spacetime
inferred from FðRÞ gravity, with constant curvature, showing that it fully degenerates with our previous
metrics that have been adopted in the context of general relativity. To do so, we work out eight neutron stars
in low-mass x-ray binary systems and consider a Reissner-Nordström solution plus a de Sitter phase with
unspecified sign for the cosmological constant term. In particular, we investigated three hierarchies, i.e., the
first dealing with a genuine Schwarzschild spacetime, the second with de Sitter phase whose sign is not
fixed a priori, and, finally, a Reissner-Nordström spacetime with an additional cosmological constant
contribution. We perform Markov chain Monte Carlo analyses, based on the Metropolis-Hastings
algorithm and infer 1-σ and 2-σ error bars. For all the sources, we find suitable agreement with spherical
solutions with nonzero cosmological constant terms, i.e., with either de Sitter or anti–de Sitter solutions.
From our findings, we notice that the existence of topological contribution to the net charge, suggested
from FðRÞ extensions of gravity, seems to be disfavored. Finally, we focus on the physics of the
cosmological constant term here involved, investigating physical consequences and proposing possible
extensions to improve our overall treatments.
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I. INTRODUCTION

Interest in the physics of black holes (BHs) has recently
increased after the detection of gravitational waves [1]
and BH shadows [2]. The latter has put a step toward
probing BHs in regimes where Einstein’s theory may break
down. All the above outcomes have strengthened the idea
that a possible epoch of “BH precision astronomy” could
start [3].
More broadly, by adopting compact objects, instead of

BHs only, such as neutron stars (NSs), white dwarfs, etc. as
possible sources of new data, one can find evidence about
how stars evolve and configure, how gravity behaves in a
strong field regime, and, more generally, hints about
cosmological epochs in which the aforementioned objects
have been formed [4]. Indeed, joint gravitational and
electromagnetic observations from NS mergers have pro-
vided unprecedented insight into astrophysics, dense matter
physics, gravitation, and cosmology [5].
In addition to the above, low-mass x-ray binaries, where at

least one compact object is a NS, as well as microquasars,

exhibit analogous quasiperiodic oscillations (QPOs) in their
x-ray flux [6–8], identified as narrow peaks of excess energy
in the corresponding power spectra [9–13]. These peaks are
associated with the process of matter accretion into the
compact objects; therefore, the investigation of QPOs can
reveal the nature of the system under exam and/or direct
NS properties and the underlying gravity models [14–19].
Based on the frequency strength, QPOs can be classified as
(1) high-frequency QPOs, within the domain of [0.1; 1] kHz
or (2) low-frequency QPOs, showing frequencies smaller
than 0.1 kHz.
Several models of QPOs exist. Naively, at very high

frequencies, the QPO characteristic frequencies appear
close to the value of those of the test particle, geodesic
epicyclic oscillations around the gravitating compact
object, suggesting that the scenario involving the innermost
stable circular orbit of test particles could be the most
accredited to explain QPO nature1 [20,21]. While the exact
mechanisms behind QPOs are unclear yet and can vary
depending on the specific system, several proposed mech-
anisms have been studied and are still the subject of active
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1Very likely, the timescales of particle orbital motions near the
compact object under exam provides the QPO frequencies.
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debate. Some of the mechanisms that have been suggested
to explain QPOs include the following:

Beat frequency model. In certain systems, the QPO
frequency could be associated with the beat frequency
between the frequency of matter orbiting the compact
object and a frequency related to the rotation or
oscillation of the compact object itself [22,23].

Resonance in accretion disks. QPOs might arise due to
resonance effects in the accretion disk [24–26].

Lense-Thirring precession. The Lense-Thirring effect
(frame dragging) causes the precession of the accre-
tion disk, which can lead to periodic modulations in
the observed emission, resulting in QPOs [27,28].

Disk-Comptonization instabilities. In some cases, QPOs
may be associated with oscillations in the Compto-
nization process, where high-energy photons scatter
off hot electrons in the accretion flow, producing x
rays. Oscillations in this process can cause variations
in the emitted x-ray flux [29–31].

Oscillations excited in toroidal disk. QPOs in such disks
are believed to be caused by various physical proc-
esses, such as the interaction between the matter in the
disk and the strong gravitational field of the compact
object [32–35].

Alfvén wave model. QPOs can be induced in the
accreted plasma by the magnetic field of a compact
object [36–39].

Transition layer diskmodel. In thismodel, themillisecond
variability in the x-ray emission from low-mass x-ray
binaries is explained by means of dynamics of the
centrifugal barrier, a hot boundary region around a
neutron star [40,41].

Relativistic precession. This model suggests that QPOs
arise from motion of inhomogeneities due to accretion
mechanisms, say from blobs or vortexes [6–8,42].

Motivated by the fact that general relativity (GR) in a strong
gravity regime can be tested by QPOs, we here consider a
static spherical configuration provided by three physically
distinct cases. The first case assumes a widely consolidated
Schwarzschild spacetime, namely, the simplest approach that
one can consider; the second case is its natural extension,
adding a unfixed sign of cosmological constant energy-
momentum term, namely, the Schwarzschild–de Sitter or
anti–de Sitter solutions; last, we envisage a (quasi) Reissner-
Nordström solution, where the charge is reinterpreted either
as electric or topological. We then consider eight sources of
NSs in the low-mass x-ray binaries fromwhichwe employ the
most recent QPO datasets. We thus apply a Markov chain
Monte Carlo (MCMC) analysis, deriving the best-fit param-
eters and the corresponding 1-σ and 2-σ errors, for each
involved model, showing the most suitable ones capable of
describing the aforementioned sources.
In particular, we notice that, from extended fourth-order

gravity, it is possible to recover the form of the three
involved spacetimes with a different physical meaning than

the one inferred from GR. In extended scenarios, the charge
is not given by the external electromagnetic field, but rather
it is a topological charge. Even though the two frameworks
fully degenerate, considerations about the physics of our
findings are discussed in both GR and extended theories of
gravity. As a final conclusion, we notice that no charges are
expected to be significant in the analyses, whereas the best
treatments are those involving Schwarzschild–de Sitter
(or anti–de Sitter) spacetimes. Further, evidence for no
need of extending gravity, at this level, is also discussed and
critically analyzed.
The paper is organized as follows. In Sec. II, we describe

QPOs in detail and how to compute them. The proposed
spacetimes are reported and the physical motivations behind
themare emphasized. InSec. III, the case of extended theories
of gravity, in particular, FðRÞ paradigms, are discussed. We
emphasize thedegeneracy betweenour approaches inGRand
the corresponding results obtained in that context. In Sec. IV,
we perform MCMC analyses and discuss the physical
interpretations of our findings. Further, we argue plausible
consequences of our outcomes. Finally, Sec. V summarizes
conclusions and perspectives of our work.

II. QUASIPERIODIC OSCILLATION

Evidence for QPOs have been emphasized in the power
spectra of the flux from x-ray binary pulsars, and soon after
this first discovery, investigations in accretion disks were
carried on [43]. Consequently, QPOs point out how to test
gravity and, in general, how to argue information from
compact objects and more broadly for cosmological pur-
poses [44]. Indeed, current observational data taken from
accretion disks around compact objects put tight frequency
measures on QPOs, showing which model for astrophysical
processes around compact gravitating objects is the most
suitable one [45].
In particular, QPOs depend on the background field

equations involved through the use of the underlying
spacetime. To clarify it better, assuming a given symmetry
and a classical field theory that describes gravity, i.e., GR or
alternatives to GR, it is possible to infer the spacetime that
fulfills the symmetry itself. This spacetime will depend on
the free parameters induced by the field theory that we are
employing. For instance, in the case of the Schwarzschild
metric, the free term is a pointlike massM only, describing
the mass singularity or generally the compact object mass
that we model through it. Thus, it appears evident that, in
order to test a gravitational theory by virtue of QPO data,
one first has to fix the spacetime, getting it from prime
principles applied to the alternative field equations, and
then, second, one can check how to fix the free parameters
of the theory itself.
Motivated by the above considerations, we start with a

generic spherically symmetric static spacetime composed of
threemain parameters: (i) a pointlikemassM, (ii) an effective
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vacuum energy term that modifies the energy-momentum
tensor by adding a constant contribution to the rest energy,
and (iii) a possible charge, acting as the net charge con-
tribution provided by the compact object.
We also reinterpret this metric by means of extended

fourth-order FðRÞ theories of gravity, where this metric
can represent a viable solution that fully degenerates with
GR if one assumes a Reissner-Nordström spacetime with a
de Sitter and/or anti–de Sitter nonvanishing term.

A. Theoretical setup

To get the spherically symmetric gravitational field
providing both charge and vacuum energy, we adopt a
generic static spherically symmetric spacetime by [46]

ds2¼−eνðrÞdt2þeλðrÞdr2þ r2ðdθ2þ sin2θdϕ2Þ: ð1Þ

Fixing 8πG ¼ 1 and having the Einstein equations under
the form

Tt
t ¼ −e−λ

�
1

r2
−
λ0

r

�
þ 1

r2
; ð2aÞ

Tr
r ¼ −e−λ

�
1

r2
þ ν0

r

�
þ 1

r2
; ð2bÞ

Tθ
θ ¼ −

e−λ

2

�
ν00 þ ν02

2
þ ν0 − λ0

r
−
ν0λ0

2

�
; ð2cÞ

Tϕ
ϕ ¼ Tθ

θ; ð2dÞ

where the above Tμ
ν components refer to the energy-

momentum tensor, we can get several classes of solutions
if λ ¼ −ν, including the standard vacuum solution by
Schwarzchild, the Reissner-Nordström solution for a
charged BH, and, last but not least, the de Sitter solution,
corresponding to a uncharged singularity with a constant
nonzero contribution to the energy-momentum tensor.
To be more general, assuming the above mathematical

structure of our solution, we propose

λ ¼ −ν ¼ − ln

�
1 −

2M
r

− Λr2 þ C
r2

�
; ð3Þ

giving rise to a charged solution with a vacuum energy
term, i.e., with a nonzero constant value entering the
energy-momentum tensor. The spacetime therefore reads

ds2 ¼ −
�
1 −

2M
r

− Λr2 þ C
r2

�
dt2

þ
�
1 −

2M
r

− Λr2 þ C
r2

�
−1
dr2 þ r2dΩ2; ð4Þ

whereM is the source mass, Λ is the cosmological constant
term that acts as the energy of the ground state in the
energy-momentum tensor, C is a constant related to the net
charge Q that reduces the Reissner-Nordström to C≡Q2,
and finally dΩ2 ≡ dθ2 þ sin2θdϕ2.
We consider three hierarchies of the above metric:
(i) Model 1 with Λ ¼ C ¼ 0, leading to the simplest

Schwarzschild solution.
(ii) Model 2 with C ¼ 0 but Λ ≠ 0, which turns out to be

a de Sitter solution with the sign unspecified2;
(iii) Model 3 with Λ ≠ 0 and C ≠ 0, i.e., the full metric

prompted in Eq. (4).
The physical meaning of the above scenarios is

explained in the details below.
(1) We consider, in GR, the most general spherically

symmetric spacetime, in a static configuration.
(2) We test whether the energy-momentum tensor pro-

vides or not a nonvanishing (constant) contribution
associated with the compact object.

(3) We explore the possibility that globally NS sources
exhibit a nonzero net charge, being not perfectly
neutral from the outside, as a consequence of C ≠ 0.

The main limitations of the above approach are the
following:
(a) Commonly speaking, a NS is not perfectly static, but

rather it is supposed to rotate.
(b) The sign of Λ is not fixed a priori, leaving open the

issue of being a de Sitter or an anti–de Sitter
framework to describe the energy-momentum tensor.

(c) The NS, in general, locally or globally neutral, may
exhibit a nonspecified net charge Q showing slight
deviation from the overall neutrality of the star.

Consequently, a more refined approach would include
effects of rotation, providing an explanation about the sign
of the rest energy, specifying better how the charge is
associated with the NS.
It should be noted that rotation is crucial in astrophysical

objects and in the processes taking place in their vicinity.
In this regard, the inclusion of rotation will make a
noticeable change in the structure of compact objects
and in the spacetime around them, respectively. The natural
generalization of the line element (4), which describes the
spacetime around the rotating object, will include angular
momentum or, equivalently, the Kerr parameter. However,
it should be stressed that the spacetime around compact
objects is more complicated with respect to the ones around
black holes, due to the infinite number of parameters,
which take into account the deformation of a compact
object. Only in a static case can both neutron stars and
black holes be described by a similar line element. For
simplicity, we will not focus on the effects of rotation here.

2In other words, we assume that both de Sitter (positive
energy) and anti–de Sitter (negative energy) are possible.
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However, as a first toy model treatment, we motivate
our choice since the standard Schwarzschild metric has
been extensively exploited to match the QPO data with
encouraging results. So it appears natural to extend first the
scenario of static configurations, rather than working out
nonstatic frameworks.

B. QPOs from dynamics of test particles

Bearing all the above in mind, we start with the
Lagrangian of the test particles,

L ¼ 1

2
mgμνẋμẋν; ð5Þ

in which m is the test particle mass and xμðτÞ are
the worldlines. Here, ẋμ ¼ dxμ=dτ represents their four-
velocities and so, since the metric is static, the conserved
quantities are the (specific) energy and angular momen-
tum, namely, gttṫ ¼ −E and gϕϕϕ̇ ¼ L, where E and L are
the energy and the angular momentum per unit mass of the
test particle, respectively. Moreover, we introduce the
normalization parameter ϵ ¼ gμνẋμẋν that describes null
geodesics of massless particles for ϵ ¼ 0, whereas it
corresponds to massive particles with timelike geodesics
for ϵ ¼ −1.
As m ≠ 0, the equations of motion are

ṫ ¼ −
E
gtt

; ϕ̇ ¼ L
gϕϕ

; grrṙ2 þ gθθθ̇
2 ¼ Veff ; ð6Þ

where the effective potential Veff is

VeffðrÞ ¼ −
�
1þ E2gϕϕ þ L2gtt

gttgϕϕ

�
: ð7Þ

For circular orbits in the equatorial plane, one has
ṙ ¼ θ̇ ¼ 0. Thus, the equations for orbital parameters are
given as follows:

Ωϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

∂rgtt
∂rgϕϕ

s
; ð8aÞ

ṫ ¼ ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − gϕϕΩ2

ϕ

q ; ð8bÞ

E ¼ −
gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − gϕϕΩ2
ϕ

q ; ð8cÞ

L ¼ gϕϕΩϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − gϕϕΩ2

ϕ

q ; ð8dÞ

where the sign is þ (−) for corotating (counterrotating)
orbits [47]. The energy and angular momentum for the
metric we have adopted are

E ¼ C þ rðr − r3Λ − 2mÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C þ rðr − 3mÞp ; ð9aÞ

L ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−C þmr − r4Λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C þ rðr − 3mÞp : ð9bÞ

Thus, the fundamental frequencies of test particles
around a compact object are easily computable and they
can be converted to seconds, say Hz≡ s−1, very easily in
order to compare them with data.
In the regime of small oscillations, the displacements

from equilibrium positions are r ∼ r0 þ δr and θ ∼ π=2þ
δθ and thus oscillations occur as

d2δr
dt2

þ Ω2
rδr ¼ 0;

d2δθ
dt2

þ Ω2
θδθ ¼ 0; ð10Þ

with the frequencies

Ω2
r ¼ −

1

2grrðutÞ2
∂
2
rVeffðr; θÞ

����
θ¼π=2

; ð11Þ

Ω2
θ ¼ −

1

2gθθðutÞ2
∂
2
θVeffðr; θÞ

����
θ¼π=2

; ð12Þ

for radial and angular oscillations, respectively.
So, adopting our spacetime, we get

Ω2
ϕ ¼ m

r3
−

C
r4

− Λ; ð13aÞ

Ω2
θ ¼ Ω2

ϕ; ð13bÞ

Ω2
r ¼

mðr − 6mÞ
r4

þ Λð15m − 4rÞ
r

þ 3Cð3m − 4r3ΛÞ
r5

−
4C2

r6
; ð13cÞ

where Ωϕ represents the particle angular velocity measured
by an asymptotic observer placed at infinity.
From the above angular frequencies, we define the

Keplerian frequency fϕ ¼ Ωϕ=ð2πÞ and the radial epicyclic
frequency of the Keplerian motion fr ¼ Ωr=ð2πÞ. The
relativistic precession model identifies the lower QPO
frequency fL with the periastron precession, namely,
fL ¼ fϕ − fr, and the upper QPO frequency fU with
the Keplerian frequency, namely, fU ¼ fϕ.
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Another physical quantity that is of great interest is the
radius of the innermost circular stable orbit (ISCO) rISCO. It
is determined from the following conditions:

dE
dr

¼ 0;
dL
dr

¼ 0: ð14Þ

For the Schwarzschild spacetime rISCO ¼ 6M, for the
Reissner-Nordström metric rISCO is calculated in Ref. [48]
and for other solutions rISCO is cumbersome. Nevertheless,
for our three hierarchies, we estimate rISCO numerically
instead of computing it analytically. This choice has been
made due to the complexity of rISCO with the involved
metrics. Thus, numerical results are reported in Table I. As
a matter of fact, these outcomes certify that model 3 appears
mainly disfavored with respect to model 2, in general.
Indeed, for two sources (Cir X-1 and 4U1614þ 091)
ISCOs become unphysical, in agreement with large mass
predictions taken from MCMC analyses, clearly incom-
patible with current bounds on NS masses.

III. THE CASE OF FðRÞ THEORIES

The search for departures from GR represents an open
challenge for both cosmology and astrophysics [49].
Alternatives to Einstein’s gravity can be split into

“extended” theories of gravity and “modified” theories
of gravity, see, e.g., [50]. We here limit our attention to
the extended class of models named FðRÞ, corresponding
to analytical functions that extend the Ricci scalar in
the gravitational Lagrangian, fulfilling the equivalence
principle [51].
We motivate our choice, noting that the most recent

Planck satellite results seem to indicate that the most
suitable inflationary potential is conformally invariant with
FðRÞ ¼ Rþ αR2, i.e., with the simplest polynomial exten-
sion to GR3 [53].
The gravitational action of FðRÞ gravity is given by

I ¼ R
d4x

ffiffiffiffiffiffi−gp ½FðRÞ=2þ Lm�, where FðRÞ is a function of
the Ricci scalar R and Lm is the matter Lagrangian.4

The field equations become

FRðRÞGμν ¼ κ2Tμν þ
1

2
gμν½FðRÞ − RFRðRÞ�

þ
�
∇μ∇ν − gμν□

�
FRðRÞ; ð15Þ

where FRðRÞ≡ dFðRÞ=dR and Gμν ≡ Rμν − ð1=2ÞgμνR,
the Einstein tensor. For FðRÞ → R, GR is recovered.
Recalling that R ¼ 0 for spherical vacuum solution in

GR, it is noteworthy that FðR0Þ ¼ FRðR0Þ ¼ 0 in FðRÞ
theories, where R ¼ R0 is a real positive or negative
constant.
This framework can account for different classes of

models and, following Ref. [61] and assuming a convenient
B ¼ BðrÞ, we write

ds2 ¼ −Bdt2 þ dr2

B
þ r2dρ2

1 − kρ2
þ r2ρ2dϕ2: ð16Þ

So, from the above relation, considering the extended field
equations, easily one can compute the Ricci scalar curva-
ture that reads

R ¼ −B00 −
4B0

r
−
2B
r2

þ 2k
r2

; ð17Þ

TABLE I. Numerical values of ISCO and inner and outer disk
radii for each source, computed from best-fit results of Table II.
Model 3 appears to be disfavored with respect to model 2, which
turns out to be optimal. For two sources, namely, Cir X-1 and
4U1614þ 091, the ISCO of model 3 does not provide physical
results.

Source Model ISCO (km) Inner (km) Outer (km)

Cir X-1 1 19.62 30.79 52.16
2 16.32 28.84 48.29
3 � � � 30.39 53.65

GX 5 − 1 1 19.06 21.33 31.70
2 20.73 22.15 33.35
3 20.16 21.47 31.93

GX 17þ 2 1 18.32 18.33 22.94
2 16.01 17.04 21.09
3 15.89 16.85 20.81

GX 340þ 0 1 18.54 21.52 29.07
2 18.88 21.71 29.38
3 18.50 21.15 28.44

Sco X1 1 17.33 17.72 20.98
2 15.60 16.67 19.58
3 16.23 17.43 20.64

4U1608 − 52 1 17.29 17.65 21.75
2 15.82 16.77 20.50
3 16.83 18.30 22.97

4U1728 − 34 1 15.30 16.06 18.93
2 13.37 14.91 17.43
3 14.06 16.35 19.46

4U0614þ 091 1 16.80 16.95 20.05
2 14.34 15.60 18.30
3 � � � 17.66 21.45

3Alternatively, a Higgs inflation, neglecting the kinetic term
during inflation, is equivalent to FðRÞ ¼ Rþ αR2 [52].

4Those theories may reproduce, although with several draw-
backs, the cosmological epochs of inflation and dark energy [54].
However, simpler versions making use of scalar fields in GR
seem to be promising examples of unified dark energy models
(see, e.g., [55–59]), being consistent with low data [60].
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where B0 ¼ ∂rB and B00 ¼ ∂rrB. Thus, as FðRÞ gravity
leads to fourth-order differential equations of motion,
assuming R ¼ R0, we recover a second-order differential
equation whose solution depends upon two integration
constants. So, taking the simplest case R ¼ R0 we get

BðrÞ ¼ k −
c0
r
þ c1

r2
−
R0

12
r2: ð18Þ

A. Degeneracy problem

In the above picture, the free parameters are k, c0, c1, and
R0. It appears clear that c1 > 0 provides a (topological)
Reissner-Nordström–de Sitter or anti–de Sitter metric,
respectively, for R0 > 0 and R0 < 0. In this picture,
however, c1 does not correspond exactly to the charge
of an external electric field, but it appears as a consequence
of the complexity of the fourth-order theories of gravity that
we are considering. To say it differently, c1 turns out to be
an integration constant for the vacuum solution from which
we started in FðRÞ theories.
This spacetime, for k ¼ 1, fully recovers the broadly

general class of metrics that we have proposed in Eq. (4).
There, the net charge is exactly provided by an external
electric field, while Λ is here reexpressed by virtue of the
constant Ricci scalar R0. In other words, the two metrics
strongly degenerate, albeit the physics associated with them
may differ. On the one hand, at large distances, the case
Λ → 0 immediately provides that k ¼ 1without the need of
further cases, k ≠ 1. So, without losing generality, it
appears evident that it can be fixed as k ¼ 1, having that
the metric can act as a BH, once the event horizon is located
for a given real positive value of radius rH, with BðrÞ to
vanish. On the other hand, the free c0 term is positive
definite in order to avoid repulsive gravity effects [62–65],
so that one can conclude

k ¼ 1; ð19aÞ

c0 ¼ 2M; ð19bÞ

c1 ¼ Q2; ð19cÞ

R0 ¼ 12Λ; ð19dÞ

in order to recover our previous solution.
The scenario with c1 > 0 is equivalent to a topological

Reissner-Nordström–de Sitter or anti–de Sitter spacetime.
However, a crucial distinction arises as c1 is not associated
with the charge of an external electric field, but solely
represents an integration constant inherent to the vacuum
solution. The corresponding metric characterizes a BH if
we can identify an event horizon where it becomes real and
positive, signifying the point where the function BðrÞ
becomes zero. Moreover, the condition that B0ðrHÞ > 0
might be ensured to get a positive temperature and surface

gravity. For example, in the case of a spherical geometry
with k ¼ 1 and neglecting the contribution of the last term
in BðrÞ, our solution depicts a black hole when c0 > 0.
Additionally, when c1 > 0, the Reissner-Nordström BH
exhibits an internal Cauchy horizon with B0ðrHÞ < 0. In
this respect, recent researches have demonstrated that such
a horizon is prone to instabilities [66]. However, in our
scenario, we have the flexibility to select c1 < 0 to avoid
the existence of additional positive roots for BðrÞ. A similar
analysis can be extended to the topological cases with
k ¼ 0 or k ¼ −1.
An interesting point is also that R0 ≠ 0 has no specified

sign, leading to a de Sitter or anti–de Sitter solution.5

However, in GR this appears tricky: choosing anti–de
Sitter instead of de Sitter would modify the physics
associated with the NS net energy.
Consequently, our outcomes would indicate whether

robust departures from the physical expectations of GR
can be found by adopting our eight sources and Eq. (4).

IV. MONTE CARLO ANALYSIS
AND THEORETICAL DISCUSSION

We perform a MCMC analysis by means of the
Metropolis-Hastings algorithm, searching for the best-fit
parameters that maximize the log-likelihood,

lnL ¼ −
XN
k¼1

�½fkL − fLðp; fkUÞ�2
2ðσfkLÞ2

þ lnð
ffiffiffiffiffiffi
2π

p
σfkLÞ

	
; ð20Þ

with N data for each source, sampled as lower frequencies
fkL, attached errors σfkL, and upper frequencies fkU. The
theoretically computed frequencies, denoted as fLðp; fkUÞ,
also depend on combinations of the parameters p, where p
includesM, R0, and C. This dependence varies according to
the specific scenario under consideration.
We modify the Wolfram Mathematica code from

Ref. [67] and adapt it to the case of QPO data, computing
the widest possible parameter spaces over the free coef-
ficients of our metric.6 In particular, we consider the
following priors over the coefficients:

M∈ ½0; 5�M⊙; ð21aÞ

R0 ∈ ½−50; 50� × 10−5 km−2; ð21bÞ

C∈ ½−60; 60� km2: ð21cÞ

5In extended theories of gravity, this appears easier to account
for as one needs anti–de Sitter with R0 < 0, choosing k ¼ −1.
This would preserve the metric signature. In GR, a different sign
of Λ implies different properties of the ground state energy.

6Several applications of this code in cosmology, with different
log-likelihoods, have been performed, e.g., in Refs. [68–71].
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For each source we perform:
(i) three MCMC analyses for each hierarchy;
(ii) the computation of the log-likelihood from N ≃ 105

total number of iterations;
(iii) the search of the best-fit parameters providing the

absolute and real maximum of the log-likelihood;
(iv) contours and statistical analyses of the errors, dis-

played up to 2-σ confidence levels.
To assess the best-fit model out of the three scenarios

derived from the underlying metric, we use the Aikake and
the Bayesian Information Criterion, respectively, AIC and
BIC [72]. Thus, considering our likelihood function from
Eq. (20), we define

AIC ¼ −2 lnLmax þ 2p; ð22aÞ

BIC ¼ −2 lnLmax þ p lnN; ð22bÞ

where lnLmax is the maximum value of the log-likelihood,
p is the number of estimated parameters in the model, and
N is the number of the sample size. Recognizing the model
with the lowest value of the AIC and BIC tests, say AICf

and BICf, as the fiducial (best-suited) model, the statistical
evidence in support of the reference model is underlined by
the difference ΔAIC=ΔBIC ¼ AIC=BIC − AIC=BICf.
Precisely, when comparing models, the evidence against
the proposed model or, equivalently, in favor of the
reference model can be naively summarized as follows:

ΔAIC and ΔBIC∈ ½0; 3�, weak evidence;
ΔAIC and ΔBIC∈ ð3; 6�, mild evidence;
ΔAIC and ΔBIC > 6, strong evidence.
The results, summarized in Table II, are statistically,

observationally, and theoretically analyzed below, for each
source. The contour plots of the best-suited model param-
eters are shown in Fig. 1. For each source, the fits of the
QPO lower fL and upper fU frequencies for the three
models considered in this work are shown in Fig. 2.

Cir X-1. Model 3 is strongly preferred over the other
ones. However, from model 3 we get only a lower
limit on the mass, i.e., M > 3M⊙, which is incom-
patible with the NS interpretation supported by
Ref. [73]. Model 2, instead, performs better than
model 1 and provides a well-constrained mass up
to 2-σ. In view of these considerations, model 2 is
considered the best one. The data points for this source
have been taken from Ref. [74].

GX 5-1 [75,76], GX 17+2 [77], and GX 340+0 [78]. For
these sources, models 2 and 3 provide good fits to the
data, with model 2 weakly favored with respect to
model 3. However, in all the cases, model 3 does not
constrain at all C, being compatible with zero within
1-σ. The only difference is a quite unexpected large
value (in modulus) of R0 for GX 17þ 2, while error

bars and the corresponding relative errors are all
similar. Therefore, being C ≈ 0, model 2 can be
considered the best fit for these sources.

Sco X1. Models 2 and 3 provide good fits to the data of this
source, with model 3 weakly favored with respect to
model 2. This source shows intriguing results, since it
seems not to exclude a priori either a net topological
charge or possible deviations from GR due to a
large value of R0 for both models 2 and 3. However,
model 3 provides a mass much higher than the range
1.40–1.52M⊙ obtained bymodeling optical light curves
of ScoX1 [79],whereas themodel 2mass is closer to the
above observational range. Therefore, we conclude that
model 2 best fits the data of this source. The data points
for this source have been taken from Ref. [80].

4U1608-52. In this case, model 3 is mildly preferred over
model 2 and provides a NS mass that is considerably
higher than (and inconsistent with) 2.07þ0.25

−0.15M⊙,
recently taken from QPO data [81]. On the other hand,
within 2-σ, the charge parameter C is consistent with
zero and the mass is consistent with the estimate from
model 2, which is closer to the above recent finding
from QPOs [81]. These considerations lead us to
consider model 2 as the best suited to describe the
data of 4U1608-52. The data points for this source have
been taken from Ref. [82].

4U1728-34. Model 2 is only weakly preferred over
model 3. However, model 3 does not constrain at all C,
being compatible with zero within 1-σ and, therefore,
we conclude that model 2 is the best fit of the source.
The data points for this source have been taken
from Ref. [83].

4U0614+091. Model 3 is strongly preferred over the
other ones, but provides a lower limit on the source
mass of 3.5M⊙, which is incompatible with the NS
interpretation. This value is also incompatible with the
above-mentioned finding from QPOs [81]. For this
reason, we conclude that a suitable fit for the data is
provided by model 2. The data points for this source
have been taken from Ref. [84].

Thus, in view of the above, we can summarize our
findings as follows:

(i) The best metric is either Schwarzschild–de Sitter or
anti–de Sitter for all the sources.

(ii) The Reissner-Nordström term is always (sta-
tistically, observationally, or theoretically) disfa-
vored, indicating either no charge contribution or
the absence of departures from extension of gravity.
Indeed, we anticipate that the combined influence of
the magnetic field and rotation will significantly
modify rISCO=M, fL, and fU. This aspect is in-
triguing since it could impact our findings, sug-
gesting the presence of a nonzero magnetic charge
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contribution that does not invalidate model 3, as
previously suggested. This issue clearly warrants
further investigation. Nevertheless, to maintain fo-
cus on our primary research objectives, we have
limited our current study to the specific approxima-
tions we have made.

In particular, our results may suggest the presence of:
(a) no topological or standard electric charge, showing a

global neutrality of NS, i.e., although the local neutral-
ity is not excluded, it seems that globally the compact
object does not exhibit effective charge;

(b) an effective constant energy term, acting as a cosmo-
logical constant, but with huge orders of difference.

This may be interpreted as a constant energy contri-
bution to the net energy of the NS that modifies its
stress energy-momentum and is necessary to describe
in toto the NS.

For the sake of completeness, we cannot avoid discus-
sing possible drawbacks associated with the statistical
analyses we performed. In particular, the results may
appear weak and/or biased due to the following reasons:

(i) The sign of the effective cosmological constant
remains unclear even within the bounds of our
experimental constraints. It depends on the analyses
conducted on the sources and, in general, does
not align with zero. To provide a comprehensive

TABLE II. Best-fit parameters with the associated 1-σ (2-σ) error bars. For each source, the first, second, and third lines list the results
of the MCMC fits for model 1, 2, and 3, respectively. ΔAIC and ΔBIC are computed with respect to the reference model, i.e., the model
with the highest value of lnLmax.

Source M ðM⊙Þ R0 ð×10−5 km−2Þ C ðkm2Þ lnLmax AIC BIC ΔAIC ΔBIC

Cir X1 2.224þ0.029ðþ0.058Þ
−0.029ð−0.058Þ

� � � � � � −125.84 254 254 117 115

1.846þ0.045ðþ0.091Þ
−0.045ð−0.090Þ 1.28þ0.12ðþ0.23Þ

−0.12ð−0.24Þ
� � � −70.07 144 145 7 6

>3.00 1.17þ0.12ðþ0.25Þ
−0.12ð−0.24Þ 37.67þ0.81ðþ1.64Þ

−3.50ð−14.01Þ
−65.65 137 139 0 0

GX 5 − 1 2.161þ0.010ðþ0.020Þ
−0.010ð−0.021Þ

� � � � � � −200.33 403 404 187 186

2.397þ0.019ðþ0.038Þ
−0.019ð−0.038Þ −6.46þ0.48ðþ0.95Þ

−0.48ð−0.95Þ
� � � −106.08 216 218 0 0

1.96þ0.78ðþ1.09Þ
−0.68ð−0.91Þ −6.03þ0.50ðþ0.93Þ

−1.09ð−1.96Þ −7.10þ13.7ðþ20.5Þ
−7.50ð−9.0Þ

−105.94 218 221 2 3

GX 17þ 2 2.07678þ0.0002ðþ0.0003Þ
−0.0003ð−0.0007Þ

� � � � � � −1819.02 3640 3641 3543 3543

1.733þ0.011ðþ0.021Þ
−0.011ð−0.022Þ 21.53þ0.45ðþ0.91Þ

−0.45ð−0.90Þ
� � � −46.42 97 98 0 0

1.61þ1.28ðþ1.32Þ
−0.57ð−0.58Þ 21.13þ1.52ðþ2.03Þ

−3.30ð−3.82Þ −1.54þ20.34ðþ21.22Þ
−5.18ð−5.30Þ

−46.42 99 100 2 2

GX 340þ 0 2.102þ0.003ðþ0.007Þ
−0.003ð−0.007Þ

� � � � � � −130.86 264 264 8 7

2.149þ0.015ðþ0.030Þ
−0.015ð−0.031Þ −1.39þ0.45ðþ0.89Þ

−0.44ð−0.89Þ
� � � −126.06 256 257 0 0

1.84þ0.62ðþ1.28Þ
−0.59ð−0.78Þ −1.24þ0.42ðþ0.84Þ

−0.63ð−2.08Þ −4.62þ10.07ðþ23.59Þ
−6.19ð−6.99Þ

−125.95 258 259 2 2

Sco X1 1.9649þ0.0005ðþ0.0011Þ
−0.0005ð−0.0011Þ

� � � � � � −3887.17 7776 7778 7457 7453

1.690þ0.003ðþ0.007Þ
−0.003ð−0.007Þ 21.77þ0.24ðþ0.49Þ

−0.25ð−0.49Þ
� � � −158.61 321 326 2 1

2.229þ0.005ðþ0.010Þ
−0.038ð−0.161Þ 21.88þ0.24ðþ0.54Þ

−0.22ð−0.48Þ 7.60þ0.06ðþ0.09Þ
−0.59ð−2.48Þ

−156.42 319 325 0 0

4U1608 − 52 1.960þ0.004ðþ0.007Þ
−0.004ð−0.008Þ

� � � � � � −235.83 474 474 342 340

1.728þ0.014ðþ0.028Þ
−0.014ð−0.028Þ 17.62þ0.94ðþ1.87Þ

−0.94ð−1.88Þ
� � � −66.14 136 137 4 3

3.057þ0.018ðþ0.033Þ
−0.152ð−2.267Þ 13.43þ1.51ðþ4.25Þ

−0.48ð−1.90Þ 22.19þ0.46ðþ0.76Þ
−3.03ð−30.11Þ

−63.22 132 134 0 0

4U1728 − 34 1.734þ0.003ðþ0.006Þ
−0.003ð−0.006Þ

� � � � � � −212.61 427 427 353 353

1.445þ0.016ðþ0.032Þ
−0.016ð−0.032Þ 30.74þ1.58ðþ3.15Þ

−1.58ð−3.18Þ
� � � −35.15 74 74 0 0

2.54þ0.10ðþ0.11Þ
−1.55ð−1.56Þ 28.23þ4.79ðþ6.68Þ

−2.02ð−3.66Þ 15.41þ1.86ðþ1.96Þ
−19.45ð−19.56Þ

−34.95 76 76 2 2

4U0614þ 091 1.904þ0.001ðþ0.003Þ
−0.001ð−0.003Þ

� � � � � � −842.97 1688 1689 1354 1351

1.545þ0.011ðþ0.021Þ
−0.011ð−0.021Þ 28.39þ0.80ðþ1.59Þ

−0.80ð−1.59Þ
� � � −188.70 381 384 47 46

>3.50 19.67þ0.55ðþ1.71Þ
−0.89ð−2.34Þ 33.291þ0.022ðþ0.174Þ

−0.537ð−2.063Þ
−163.99 334 338 0 0
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perspective, it is essential to remember that our
overarching objective was to explore deviations from
Einstein’s gravity, leading to additional terms, in-
cluding an effective vacuum energy contributionwith
an unspecified sign. This implies the presence of a net
vacuum energy term that predominantly influences
large radii and enhances the stability of our fits.
Regarding the sign issue, it is noteworthy that it

remains unspecified for only two sources, suggesting
that the data or the underlying theoretical framework
may be inadequate. A possible spacetime model that
incorporates a vacuum energy term is statistically
more favored and warrants further investigation.
Consequently, model 2, irrespective of the sign
assigned to vacuum energy, emerges as the most
suitable option for describing these sources.
As a potential insight that can be drawn from our

findings, we propose that the class of generalized
de Sitter spacetimes should be explored to determine
whether the sources establish a well-defined metric
with a specific sign for vacuum energy. This will be
the focus of our upcoming investigations.

(ii) More sources are needed to confirm or disfavor the
above results. The classes of sources, here involved,
exhibit different results among them. If the mass
values seem to be almost stable and≲3M⊙; the other
terms appear very different among class of source,
but similar within the same class.

(iii) The contours in Fig. 1 appear extremely tight, at
least for four sources out of eight. The plots in Fig. 2
do not provide fully viable outcomes for all sources,
likely as a consequence of the low number of data
points present in the corresponding catalogs. This
can be responsible for the strange occurrence for that
we cannot conclude that either charge or GR
extensions are not present. Refined analyses require
more data to improve the error bars taken from the
above contours.

(iv) The most general involved metric fully degenerates
with standard cases of GR. In fact, it is possible to
reobtain the same results of fourth-order FðRÞ
theories in GR when the curvature is constant,
suggesting that the most suitable benchmark seems
to be GR.

(v) Model 2, applied to each class of data points,
indicates that there is no consensus on the Λ sign.
Even though this appears licit in FðRÞ, in GR it fixes
the sign of vacuum energy, i.e., modifies the energy-
momentum tensor. Alternatively speaking, the NS
sources seem to require a nonzero contribution to
energy, but whose sign corresponds to either de Sitter
or anti–de Sitter solutions.

Last, but not least, one may draw a tentative conclusion
that model 3 appears to be disfavored, in analogy to the
common disfavoring of fðRÞ gravity compared to GR. It is

worth noting that investigations into the constraints posed
by extended theories of gravity within the Solar System,
context of black hole shadows, and inflationary scenarios
have not definitively ruled out fðRÞmodels. However, they
have placed stringent limits on their viability.
Further, we are operating in regimes of significantly

stronger gravity, and the choice of FðRÞ gravity, along with
the corresponding metric derived from it, is expected to
shed light on whether FðRÞ models can effectively account
for the observed QPOs. To phrase it differently, if the
metric derived from FðRÞ theories had been conclusively
ruled out, it would imply that FðRÞ models are incapable
of accurately describing QPOs. However, our findings,

FIG. 1. Contour plots of the best-fit parameters (black dots) and
the associated 1-σ (dark gray) and 2-σ (light gray) confidence
regions of the sources listed in Table II.
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particularly the superior performance of model 2, suggest
that both FðRÞ gravity and GR with a cosmological
constant are viable approaches for explaining QPOs.
Remarkably, it is worth noting that the physical signifi-

cance of Λ is well established within FðRÞ theories,
whereas, in GR, the presence of a cosmological constant
might be incorporated by hand into Einstein’s energy-
momentum tensor.
So, even if the metric degenerates with a spherically

symmetric solution in GR, we cannot conclude that model 3

is disfavored because the underlying FðRÞ background is
disfavored.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we considered eight NS sources and we
fitted the corresponding frequency data with three QPO
models. In particular, we employed a spherically symmetric
static spacetime constructed as a Reissner-Nordström sol-
ution with the addition of the de Sitter or anti–de Sitter

FIG. 2. Fits of the lower frequencies fL vs the upper frequencies fU from the QPO datasets of the sources considered in this
work (black data with error bars). Fits have been performed by considering Schwarzschild (red curve), Schwarzschild–de Sitter, or
anti–de Sitter (green curve) and Reissner-Nordström (dashed blue curve) spacetimes.
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contribution. The choice of the metric is discussed in
view of both GR and fourth-order extended theories
of gravity. Further, we debated the degeneracy between
the two frameworks and we stressed that the spacetime
describes NSs with a net external charge and a constant
term of energy that contributes to the energy-momentum
tensor.
The statistical analyses were performed through a

MCMC code, based on the Metropolis-Hastings algorithm,
that provided best-fit parameters and 1-σ and 2-σ contour
plots and error bars. We demonstrated, statistically and
theoretically, that the best suite for our results is always
represented by the Schwarzschild–de Sitter and anti–
de Sitter solutions, though weak evidence in favor of the
Reissner-Nordström solution were found.
Given the degeneracy between GR and fourth-order

gravity, we demonstrate that all the sources considered
here align completely with the predictions of GR and
appear to exclude extended gravity theories. However,
numerical analyses have not definitively ruled out depar-
tures from GR, especially when the curvature is not
assumed to be approximately constant, namely, R ¼ R0.
Theoretical discussions have advanced in light of the
absence of consensus regarding the sign of R0, which
leads to de Sitter and anti–de Sitter phases depending on the
specific source under analysis. Furthermore, potential
limitations of our approach have also been explored,
including the need for more data points and sources.
Further considerations will be investigated in future

efforts. In particular, in view of the small number of data

points for each source, we can perform mock compilations
of data, adopting more refined techniques, e.g., machine
learning. Notably, we expect that the combined contribution
of the magnetic field and rotation will drastically modify
parameters like rISCO=M, fL, and fU; we intend to check
whether this effect could influence our rejecting of model 3.
Alternative spacetimes from modified theories of gravity
can be also tested, showing whether they could agree with
these data and improve the standard fits performed using the
Schwarzschild solution. Specifically, further investigations
with different spacetimes obtained from FðRÞ theories,
allowing all free parameters to vary, will show whether
FðRÞ models are suppressed in describing QPOs or if there
exists the possibility to constrain them with this class of
observable. Finally, we will investigate the effects of non-
singular metrics on the overall analysis, checking whether
they can improve the quality of our findings.
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