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We study analytically the superradiant instability properties of the hydrodynamic vortex model, an
asymptotically flat acoustic geometry which, like the spinning Kerr black-hole spacetime, possesses an
effective ergoregion. In particular, we derive a compact analytical formula for the complex resonant
frequencies that characterize the long-wavelength dynamics of sound modes in this physically interesting
acoustic spacetime.
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I. INTRODUCTION

The canonical Kerr black-hole solution of the vacuum
Einstein field equations [1] is known to possess an
ergoregion [2], a spacetime region which extends
from the horizon rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
to rergo ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2cos2θ
p

, in which all physical observers are inevi-
tably dragged by the rotation of the black hole [Here fM; ag
are respectively the mass and angular-momentum per unit
mass of the Kerr black hole and θ is the polar angle of the
stationary axisymmetric spacetime].
As pointed out by Zel’dovich [3] and by Press and

Teukolsky [4,5], a corotating bosonic wave field that
propagates in the black-hole ergosphere can be super-
radiantly amplified (that is, can extract rotational energy
from the central spinning black hole) if its proper frequency
is bounded from above by the relation ω < mΩH, where m
is the azimuthal harmonic index of the bosonic field mode
andΩH is the angular velocity of the black-hole horizon [2].
It is interesting to emphasize the fact that, although

bosonic fields can be superradiantly amplified in the
ergoregion, the asymptotically flat Kerr black-hole space-
time is known to be stable under perturbations of massless
bosonic fields [5,6]. This important physical property
of the composed Kerr-black-hole-massless-bosonic-field
system is closely related to the well known absorption
properties (ingoing boundary conditions) that characterize
the classical black-hole horizon. In particular, the central
black hole swallows (and also scatters away to infinity) the
potentially dangerous amplified bosonic fields before they
have the chance to develop exponentially growing insta-
bilities inside the ergosphere.
It is worth mentioning that, in order to trigger super-

radiant instabilities in the spacetime of a spinning Kerr
black hole, some additional confinement mechanism
(which can be provided, for example, by a reflecting mirror
which is placed around the central black hole [4,7] or, as in

the case of amplified massive bosonic fields, by the mutual
gravitational attraction between the central black hole and
the fields [8]) is required in order to prevent the super-
radiantly amplified bosonic fields from radiating their
energies to infinity [7,8].
Intriguingly, Friedman [9] has pointed out the physically

important fact that, as opposed to the Kerr black-hole
spacetime, spinning horizonless spacetimes (and, in gen-
eral, rotating physical systems that have no absorptive
boundaries) that possess ergoregions in which bosonic
fields can be superradiantly amplified may generally be
unstable to corotating bosonic perturbation fields.
In order to demonstrate this interesting physical phe-

nomenon in the analogous setup of fluid dynamics [10,11],
the physical properties of the hydrodynamic vortex model
have recently been studied numerically in the physically
important work [12]. This composed physical system
describes a two-dimensional purely circulating flow of a
vorticity free ideal fluid that can be described by a non-
trivial effective spacetime metric [see Eq. (3) below]. In
particular, this rotating acoustic spacetime has no absorp-
tive horizons but, like the familiar spinning Kerr spacetime,
it is characterized by the presence of an effective acoustic
ergoregion whose radial boundary is defined by the circle
at which the tangential velocity of the fluid equals the
speed of propagating sound waves in the fluid [13] [see
Eq. (4) below].
The highly interesting numerical results presented

in [12] for the physical properties of the hydrodynamic
vortex model have established the fact that, in accord with
the prediction of [9], this horizonless physical system may
develop exponentially growing instabilities due to the
superradiant amplification phenomenon of linearized sound
waves in the ergoregion of the effective spinning acoustic
spacetime.
The main goal of the present paper is to explore, using

analytical techniques, the superradiant instability spectrum
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that characterizes the physically interesting hydrodynamic
vortex model. In particular, as we shall explicitly prove
below, the complex resonant frequencies that characterize
the dynamics of linearized sound waves in the spinning
acoustic spacetime can be determined analytically in the
dimensionless regime Cω ≪ 1 of small field frequencies,
where C is the radius of the effective acoustic ergoregion.

II. DESCRIPTION OF THE SYSTEM

We shall analyze the dynamics of linearized sound waves
in a vorticity free barotropic ideal fluid. The background
(unperturbed) fluid velocity of a two-dimensional purely
circulating flow is characterized by the relations [12]

vr ¼ vz ¼ 0; vϕ ¼ vϕðrÞ; ð1Þ

where fr;ϕg are the radial and azimuthal coordinates in the
plane of flow, and z denotes the third spatial coordinate
which is perpendicular to the plane (the xy plane) of flow. A
locally irrotational (vorticity free) fluid flow is character-
ized by the simple functional relation [12]

vϕ ¼ C
r

ð2Þ

for the tangential component of the velocity field, where the
proportionality constant C characterizes the strength of
circulation in the fluid flow. The angular momentum
conservation law yields the relation [12] ρvϕr ¼ constant,
which implies that the background density ρ of the fluid is a
constant [see Eq. (2)]. The assumption of a barotropic fluid
system then implies that the speed c of linearized sound
waves in the fluid and the background pressure P of the
fluid are also constants.
The circulating flow of the fluid in the hydrodynamic

vortex model produces an acoustic spacetime whose
effective two-dimensional geometry is described by the
line-element [12–15]

ds2 ¼ −c2
�
1−

C2

c2r2

�
dt2 þ dr2 − 2Cdtdϕþ r2dϕ2 þ dz2:

ð3Þ

Interestingly, this rotating acoustic geometry is character-
ized by the presence of an effective ergoregion whose
radius [12–15]

rergo ¼
jCj
c

ð4Þ

is determined by the circle at which the tangential velocity
of the fluid [see Eq. (2)] equals the speed c of propagating
sound waves in the fluid. We shall henceforth use natural
units in which c ¼ 1 [16].

As shown in [11,12,17], the dynamics of linearized
perturbation fields (sound modes) in the effective acoustic
spacetime (3) is mathematically governed by the familiar
Klein-Gordon wave equation [18]

∇ν∇νΨ ¼ 1ffiffiffiffiffijgjp ∂μ

� ffiffiffiffiffi
jgj

p
gμν∂νΨ

�
¼ 0; ð5Þ

where g is the determinant of the effective line element (3).
Substituting the field decomposition [19]

Ψðt; r;ϕ; zÞ ¼ 1ffiffiffi
r

p
X∞

m¼−∞
ψmðr;ωÞeimϕe−iωt ð6Þ

into the Klein-Gordon wave equation (5) and using the line
element (3) of the effective two-dimensional acoustic
spacetime, one finds that the radial acoustic eigenfunctions
ψmðr;ωÞ are determined by the ordinary differential
equation [20,21]

�
d2

dr2
þ
�
ω −

Cm
r2

�
2

−
m2 − 1

4

r2

�
ψmðr;ωÞ ¼ 0: ð7Þ

III. BOUNDARY CONDITIONS

Taking cognizance of the relation (2) for the tangential
velocity field of the background fluid, one immediately
realizes that the hydrodynamic description breaks down
on the symmetry axis r ¼ 0 of the spacetime. In order to
describe a physically realistic system, it has been suggested
in [12] to place an infinitely long supporting cylinder of
finite proper radius R0 at the center of the dynamical fluid
system. In particular, as discussed in [12,17], the physically
motivated boundary condition for the effective scalar
eigenfunction Ψ at the surface of the central supporting
cylinder is given by the functional relation [12,17]

dΨ=dr
Ψ

ðr ¼ R0Þ ¼ −
iρω
Zω

; ð8Þ

where Zω is the frequency-dependent impedance of the
cylinder [22], a physical parameter that quantifies the
interaction of the propagating sound wave with the material
of the scattering cylinder [12,17,22].
In addition, an asymptotically flat acoustic geometry is

characterized by the physical boundary condition of purely
outgoing waves at asymptotic infinity [see Eq. (6)]:

Ψðr → ∞Þ ∼ eiωrffiffiffi
r

p : ð9Þ

That is, we consider purely outgoing waves at large
distances from the central cylinder.
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Interestingly, the Schrödinger-like ordinary differential
equation (7), supplemented by the physically motivated
boundary conditions (8) and (9), determine the complex
resonant frequencies fωðC;R0; mÞg which characterize the
dynamics of linearized sound waves in the effective
acoustic spacetime (3). It is worth emphasizing that
resonant field frequencies with ℑω > 0 [see Eq. (6)] are
associated with superradiantly unstable modes that grow
exponentially in time. As we shall explicitly show in the
next section, the complex resonant frequencies of the
hydrodynamic vortex model can be studied analytically
in the dimensionless regime Cω ≪ 1 of small field
frequencies.

IV. THE RESONANCE EQUATION
AND ITS REGIME OF VALIDITY

In the present section we shall analyze the Schrödinger-
like differential equation (7) which determines the radial
behavior of the acoustic eigenfunctions ψmðrÞ. As we shall
explicitly prove below, the characteristic radial equation (7)
can be solved analytically in the two asymptotic radial
regions r ≪ m=ω and r ≫ C. We shall then show that, for
small resonant frequencies in the regime

Cω ≪ 1; ð10Þ

one can use a functional matching procedure in the over-
lapping region C ≪ r ≪ m=ω in order to determine ana-
lytically the complex resonance spectrum fωðC;R0; m; nÞg
that characterizes the dynamics of linearized sound waves
in the hydrodynamic vortex model.
We shall first solve the Schrödinger-like differential

equation (7) in the radial region

r ≪ m=ω; ð11Þ

in which case one may approximate (7) by

�
d2

dr2
þ
�
Cm
r2

�
2

−
m2 − 1

4

r2

�
ψm ¼ 0: ð12Þ

Here we have used the strong inequality ω2 ≪ m2=r2 [see
Eq. (11)]. In addition, we have used the strong inequality
Cmω=r2 ≪ m2=r2 which stems from the small-frequency
assumption Cω ≪ 1 ≤ m [see Eq. (10)].
The general mathematical solution of (12) can be

expressed in terms of the Bessel functions of the first
and second kinds (see Eq. 9.1.53 of [23]):

ψmðrÞ ¼ A1r
1
2 · Jm

�
Cm
r

�
þ A2r

1
2 · Ym

�
Cm
r

�
; ð13Þ

where the normalization constants fA1; A2g are determined
by the physical boundary condition (8) of the wave field
at the surface r ¼ R0 of the central supporting cylinder.

In particular, substituting (13) into (8), one finds the
dimensionless ratio [see Eq. (6)]

A2

A1

¼ −
J0mðCmR0

Þ − iρωR2
0

ZωCm
· JmðCmR0

Þ
Y 0
mðCmR0

Þ − iρωR2
0

ZωCm
· YmðCmR0

Þ
; ð14Þ

where a prime 0 denotes a derivative of the Bessel function
with respect to its argument Cm=r. Using Eq. (9.1.27c)
of [23], one can express the dimensionless ratio (14) in the
form

A2

A1

¼ −
R0

C ð1þ iρωR0

Zωm
Þ · JmðCmR0

Þ − Jm−1ðCmR0
Þ

R0

C ð1þ iρωR0

Zωm
Þ · YmðCmR0

Þ − Ym−1ðCmR0
Þ : ð15Þ

Using the small argument,

Cm
r

≪ 1; ð16Þ

asymptotic behaviors of the Bessel functions (see
Eqs. (9.1.7) and (9.1.9) of [23]), one finds from (13) the
expression

ψmðrÞ ¼ A1ðm!Þ−1
�
Cm
2

�
m
r−mþ1

2

− A2π
−1ðm − 1Þ!

�
Cm
2

�
−m

rmþ1
2 ð17Þ

for the radial acoustic eigenfunction that characterizes the
linearized perturbation modes of the hydrodynamic vortex
model in the intermediate radial region [see Eqs. (11)
and (16)]

Cm ≪ r ≪ m=ω: ð18Þ

We shall next solve the Schrödinger-like radial differ-
ential equation (7) in the region

r ≫ C; ð19Þ

in which case one may approximate (7) by

�
d2

dr2
þ ω2 −

m2 − 1
4

r2

�
ψm ¼ 0: ð20Þ

Here we have used the strong inequalityC2m2=r4 ≪ m2=r2

[see Eq. (19)]. In addition, we have used the strong
inequality Cmω=r2 ≪ m2=r2 which stems from the
small-frequency assumption Cω ≪ 1 ≤ m [see Eq. (10)].
The general mathematical solution of (20) can be

expressed in terms of the Bessel functions of the first
and second kinds (see Eq. (9.1.49) of [23]):
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ψmðrÞ ¼ B1r
1
2 · JmðωrÞ þ B2r

1
2 · YmðωrÞ; ð21Þ

where fB1; B2g are normalization constants which, as we
shall explicitly show below, can be determined by a
functional matching procedure. Using the small argument,

ωr ≪ 1; ð22Þ

asymptotic behaviors of the Bessel functions (see
Eqs. (9.1.7) and (9.1.9) of [23]), one finds from (21) the
expression

ψmðrÞ ¼ B1ðm!Þ−1
�
ω

2

�
m
rmþ1

2

− B2π
−1ðm − 1Þ!

�
ω

2

�
−m

r−mþ1
2 ð23Þ

for the radial acoustic eigenfunction that characterizes the
linearized perturbation modes of the hydrodynamic vortex
model in the intermediate radial region [see Eqs. (19)
and (22)]

C ≪ r ≪ 1=ω: ð24Þ

Interestingly, from Eqs. (18) and (24) one learns that, for
small resonant frequencies, there is an overlap radial region
which is determined by the strong inequalities

Cm ≪ ro ≪ 1=ω; ð25Þ

in which the expressions (17) and (23) for the radial
acoustic eigenfunction ψmðrÞ of the hydrodynamic vortex
model are both valid. Note, in particular, that the two
expressions (17) and (23) for the eigenfunction ψmðrÞ share
the same radial functional behavior. One can therefore
determine the coefficients fB1; B2g of the characteristic
radial eigenfunction (21) by matching the expressions (17)
and (23) in their overlap radial region (25). This functional
matching procedure yields the expressions

B1 ¼ −A2π
−1ðm − 1Þ!m!

�
Cmω

4

�
−m

ð26Þ

and

B2 ¼ A1A2B−1
1 ð27Þ

for the normalization constants of the radial acoustic
eigenfunction (21).
We are now in a position to derive the characteristic

resonance equation which determines the complex resonant
frequencies of the hydrodynamic vortex model. Using
Eqs. (9.2.1) and (9.2.2) of [23], one finds that the radial
eigenfunction (21) is characterized by the large-r asymp-
totic behavior

ψðr → ∞Þ ¼ B1

ffiffiffiffiffiffiffiffiffiffiffi
2=πω

p
· cosðωr −mπ=2 − π=4Þ

þ B2

ffiffiffiffiffiffiffiffiffiffiffi
2=πω

p
· sinðωr −mπ=2 − π=4Þ: ð28Þ

Taking cognizance of the boundary condition (9), which
characterizes the asymptotic spatial behavior of the radial
eigenfunctions of the hydrodynamic vortex model, one
deduces from (28) the simple relation

B2 ¼ iB1: ð29Þ

Substituting (29) into (27), one finds the relation

iB2
1 ¼ A1A2; ð30Þ

which yields the compact resonance equation [see Eq. (26)]

�
Cmω

4

�
2m

¼ i

�ðm − 1Þ!m!

π

�
2

·
A2

A1

ð31Þ

for the complex resonant frequencies that characterize the
dynamics of linearized perturbation modes in the hydro-
dynamic vortex model. It is worth emphasizing again that
the analytically derived resonance condition (31) is valid in
the low frequency regime [see Eq. (25)]

Cmω ≪ 1; ð32Þ

which corresponds to the small dimensionless ratio

A2

A1

≪ 1: ð33Þ

Since each inequality in (25) roughly corresponds to
an order-of-magnitude difference between two physical
quantities [that is, Cm=ro ≲ 10−1 and ro=ð1=ωÞ ≲ 10−1],
the analytically derived resonance condition (31) for the
characteristic resonant frequencies of the hydrodynamic
vortex model is expected to be valid in the dimensionless
low frequency regime Cmω≲ 10−2.

V. THE SUPERRADIANT INSTABILITY
SPECTRUM OF THE HYDRODYNAMIC

VORTEX MODEL

As emphasized above, in the present analytical study we
focus on the low-frequency resonance spectrum which
characterizes the dynamics of sound waves in the hydro-
dynamic vortex model. In particular, in the dimensionless
regime

ωR0 ≪ mZω=ρ ð34Þ

of small resonant frequencies, one can approximate the
dimensionless ratio (15) by (herewe have used Eq. (9.1.27c)
of [23])
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A2

A1

¼ −
J0mðCmR0

Þ
Y 0
mðCmR0

Þ : ð35Þ

It is worth noting that, in general, the frequency-dependent
impedance diverges as an inverse power law of the fre-
quency in the small frequency ω → 0 limit [22]. Thus, one
finds that the ratio ωR0=ðmZω=ρÞ → 0 approaches zero
faster than ω1 in the low frequency regime that we explore
analytically here [22]. Note that the small-frequency relation
(34) corresponds to the Neumann-type boundary condition
dΨ
dr ðr ¼ R0Þ ¼ 0 [12] for the linearized perturbation fields at
the surface r ¼ R0 of the central cylinder [see Eq. (8)].
Substituting the dimensionless ratio (35) into the ana-

lytically derived resonance equation (31), one finds the
simple resonance relation

CωðC;R0;mÞ¼ 4

m

�ðm−1Þ!m!

π

�
1=m

·

				
J0mðCmR0

Þ
Y 0
mðCmR0

Þ
				
1=2m

×e�iπ=4m;

ð36Þ

which characterizes the dynamics of linearized wave fields
in the effective acoustic spacetime (3). The þ=− signs in
the analytically derived functional expression (36) refer
respectively to negative/positive values of the dimension-
less ratio J0mðCm=R0Þ=Y 0

mðCm=R0Þ. Here we have used the
relation �i ¼ eiπð�1

2
þ2nÞ, where the integer n is the reso-

nance parameter of the acoustic field mode.
Since the low frequency resonances of the hydrodynamic

vortex model that we explore in the present paper corre-
spond to the strong inequality (33), one deduces from (35)
that our analytical study is valid for central supporting
cylinders whose radii lie in the vicinity of the discrete
critical radii [24]

R�
0ðC;m; kÞ ¼ Cm

j0m;k
; k ¼ 1; 2; 3;… ð37Þ

for which J0mðCm=R�
0Þ ¼ 0 [and thus also

ω½C;R�
0ðC;m; kÞ; m� ¼ 0, see Eq. (36)], where j0m;k is

the kth positive zero of the function J0mðxÞ [23,25]. As
explicitly shown in [24], the discrete set (37) of critical
cylinder radii support the marginally stable static resonan-
ces (with ℜω ¼ ℑω ¼ 0) of the hydrodynamic vortex
model.
In particular, as shown numerically in [12] and analyti-

cally in [24], the hydrodynamic vortex model is charac-
terized by the existence of a discrete set of critical cylinder
radii, fR�

0ðC;m; kÞgk¼∞
k¼1 , that support spatially regular

static (ℜω ¼ ℑω ¼ 0) acoustic field configurations.
Interestingly, it has been shown [12,24] that, for given
values of the fluid-field parameters fC;mg, these margin-
ally stable field configurations mark the onset of the

exponentially growing superradiant instabilities in the
hydrodynamic vortex model.

VI. SUMMARY AND DISCUSSION

The superradiant instability properties of the hydro-
dynamic vortex model, an asymptotically flat horizon-
ess acoustic geometry that possesses an ergoregion, were
studied analytically. In particular, we have derived the
compact analytical formula (36) for the parameter-
dependent complex resonances of the composed fluid-
cylinder system.
Our analytical matching procedure is valid in the

dimensionless small-frequency regime (10) and it is there-
fore convenient to define the dimensionless physical
quantity

ΔR≡ R0 − R�
0ðC;m; kÞ

R�
0ðC;m; kÞ with ΔR ≪ 1; ð38Þ

in terms of which one can expand the small dimensionless
ratio in Eq. (35) in the form

J0mðCmR0
Þ

Y 0
mðCmR0

Þ ¼ −j0m;k ·
J00mðj0m;kÞ
Y 0
mðj0m;kÞ

· ΔR · ½1þOðΔRÞ�: ð39Þ

Here we have used the Taylor expansions J0mðCm=R0Þ ¼
J0mðCm=R�

0Þ þ J00mðCm=R�
0Þ · ð−Cm=R�

0Þ · ΔRþO½ðΔRÞ2�
with J0mðCm=R�

0Þ≡ 0 and Y 0
mðCm=R0Þ ¼ Y 0

mðCm=R�
0Þ·

½1þOðΔRÞ�. Using Eq. (9.1.31) of [23], one can

write J0mðCm=R0Þ
Y 0
mðCm=R0Þ ¼ −j0m;k ·

Jm−2ðj0m;kÞ−2Jmðj0m;kÞþJmþ2ðj0m;kÞ
2½Ym−1ðj0m;kÞ−Ymþ1ðj0m;kÞ� · ΔR ·

½1þOðΔRÞ� for the ratio (39), which is now expressed
in terms of the Bessel functions themselves.
Substituting the ratio (39) into (36), one obtains the

functional relation

CωðC;R0; mÞ ¼ 4

m

�ðm − 1Þ!m!

π

�
1=m

·

				j0m;k ·
J00mðj0m;kÞ
Y 0
mðj0m;kÞ

· ΔR
				
1=2m

× e�iπ=4m ð40Þ

for the low frequency resonances that characterize the
dynamics of linearized sound modes in the effective
acoustic spacetime, where the þ=− signs in (40)
refer respectively to negative/positive values of the dimen-
sionless quantity ΔR. It can be checked directly that the

coefficient −j0m;k
J00mðj0m;kÞ
Y 0
mðj0m;kÞ in (39) is a positive definite

expression, which implies that the ratio J0mðCm=R0Þ
Y 0
mðCm=R0Þ is

positive/negative for positive/negative values of the dimen-
sionless quantity ΔR [see Eq. (39)].
Intriguingly, from the analytically derived functional

relation (40) one deduces the characteristic inequality
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ℑω > 0 for ΔR < 0; ð41Þ

which describes exponentially growing supperradiant
instability modes of the hydrodynamic vortex model
[see Eq. (6)].
Finally, it is interesting to point out that the low

frequency resonance expression (40) of the hydrodynamic
vortex model can be further simplified in the following two
asymptotic regimes:
(1) In the m ≫ 1 limit of large harmonic indices, one

finds

Cωðm ≫ 1; kÞ ¼ 4m
e2

· jΔRj1=2m × e�iπ=4m: ð42Þ

Here we have used the relations ðm!Þ1=m → m=e and
jj0m;k · J

00
mðj0m;kÞ=Y 0

mðj0m;kÞj1=2m → 1 in the asymp-
totic m ≫ 1 regime (see Eqs. (9.5.16) and
(9.5.20) of [23]). It is important to note that, taking
cognizance of (10), one finds that the asymptotic
m ≫ 1 formula (42) for the complex resonances of
the hydrodynamic vortex model is valid in the
ΔR ≪ m−2m regime.

(2) In the k ≫ m limit of small cylinder radii, one finds
using Eq. (9.5.13) of [23]

j0m;k ¼ kπ½1þOðm=kÞ� for k ≫ m ð43Þ

[this yields R�
0ðC;m; k ≫ mÞ ¼ Cm

kπ ≪ C, see
Eq. (37)], which yields [see Eq. (40)]

Cωðm; k ≫ mÞ ¼ 4

m
½ðm − 1Þ!m!�1=m

·

				 kπ · ΔR
				
1=2m

× e�iπ=4m: ð44Þ

Here we have used the relation J00mðj0m;kÞ=
Y 0
mðj0m;kÞ → −1 for k ≫ m (see Eqs. (9.2.1) and

(9.2.2) of [23]). It is important to note that, taking
cognizance of (10), one finds that the asymptotic
k ≫ m formula (44) for the complex resonances of
the hydrodynamic vortex model is valid in the
ΔR ≪ k−1 regime.
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