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We show that “gravity at cosmological distances: explaining the accelerating expansion without dark
energy” recently proposed by J. Harada [Phys. Rev. D 108, 044031 (2023)] is equivalent to the Einstein
equation extended by the presence of an arbitrary conformal Killing tensor. This turns Harada’s equations
of third order in the derivatives of the metric tensor to second order, and offers a strategy of solution that
covariantly shortcuts Harada’s derivation and obtains both modified Friedmann equations. Another
illustration is presented for the case of flat space and constant curvature.
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I. INTRODUCTION

In the recent paper [1] in this journal, Junpei Harada
posed three theoretical criteria for gravitational theories:
(1) the cosmological constant Λ is obtained as a constant
of integration; (2) the stress-energy conservation law
∇jTjk ¼ 0 is derived as a consequence of the gravitational
field equations, rather than being assumed; (3) a confor-
mally flat metric is not necessarily a solution in the vacuum.
Based on these criteria, he proposed the new gravita-

tional equations:

Hjkl ¼ 8πGTjkl

Hjkl ¼ ∇jRkl þ∇kRlj þ∇lRjk

−
1

3

�
gkl∇jRþ glj∇kRþ gjk∇lR

�
Tjkl ¼ ∇jTkl þ∇kTlj þ∇lTjk

−
1

6

�
gkl∇jT þ glj∇kT þ gjk∇lT

� ð1Þ

Rjk is the Ricci tensor with trace R, Tkl is the stress-energy
tensor with trace T. The Bianchi identity ∇jRj

k ¼ 1
2
∇kR

implies ∇jTj
k ¼ 0. Solutions of the Einstein equation are

solutions of the new theory.
Harada solved them in spherical vacuo and in cosmol-

ogy. In the first case, Hjkl ¼ 0, he searched for a static
spherically symmetric solution ds2 ¼ −eνdt2 þ e−νdr2þ
r2ðdθ2 þ sin2 dϕ2Þ. He obtained eν ¼ 1 − 2M

r − Λ
3
r2 − λ

5
r4

i.e., the Schwarzschild term, a de-Sitter term with cosmo-
logical constant, and a new term that dominates at large

distances. The most general static spherical solution was
shortly after obtained by Alan Barnes [2].
In cosmology, Harada obtained an equation of motion

for the scale factor of a RW spacetime describing the
transition from decelerating to accelerating expansion in a
matter-dominated universe, without dark matter and cos-
mological constant. The analysis is deepened in his
subsequent draft [3] where radiation is also accounted for.
Equation (1) contains third order derivatives of the

metric. This feature was also present in his Cotton gravity
theory [4]. However, we showed in [5] that the Cotton
theory is equivalent to an extended Einstein gravity where
the stress-energy tensor in the Einstein equation is modified
by an arbitrary Codazzi tensor. This amounts to an integ-
ration of the Cotton gravity equation that reduces to second
order with the appearance of a supplemental term. In this
paper we show that Eq. (1) can be recast as an Einstein
equation with the stress-energy tensor modified by an
arbitrary divergence-free conformal Killing tensor.
We then apply a strategy to solve the modified Einstein

equation in a Robertson-Walker spacetime, and obtain the
modified Friedmann equations. We shortly revisit the case
k ¼ 0, Λ ¼ 0 and zero pressure studied by Harada, and
discuss another soluble case: k ¼ 0, Λ ¼ 0 and ∇kR ¼ 0.

II. CONFORMAL KILLING GRAVITY

Conformal Killing tensors are well known in differential
geometry [6–9]. They are symmetric tensors Kij charac-
terized by the condition

∇jKkl þ∇kKlj þ∇lKjk ¼ ηjgkl þ ηkglj þ ηlgjk ð2Þ

where the nonvanishing 1-form ηi is the associated con-
formal vector. Killing tensors are recovered whenever
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ηi ¼ 0. If ηj ¼ ∇jϕ then Kij is a gradient conformal
Killing tensor.
The contraction of (2) with gkl shows that ∇jKjl ¼ 0 if

and only if ηj ¼ 1
6
∇jK, where K is the trace.

The gravity theory proposed by Harada is deeply
connected with conformal Killing tensors. Equation (1)
is easily rewritten (hereafter we set 8πG ¼ 1) as

∇j

�
Rkl −

R
2
gkl − Tkl

�
þ∇k

�
Rlj −

R
2
glj − Tlj

�

þ∇l

�
Rjk −

R
2
gjk − Tjk

�

¼ −
1

6

�
gkl∇jðRþ TÞ þ glj∇kðRþ TÞ þ gjk∇lðRþ TÞ�:

ð3Þ

The equation defines Kjk ¼ Rjk − R
2
gjk − Tjk, with trace

K ¼ −R − T, as a gradient conformal Killing tensor with
associated conformal vector ηj ¼ 1

6
∇jK.

Equation (1) is thus equivalent to

Rjk −
R
2
gjk ¼ Tjk þ Kjk ð4Þ

∇jKkl þ∇kKlj þ∇lKjk

¼ 1

6

�
gkl∇jK þ glj∇kK þ gjk∇lK

�
: ð5Þ

Harada’s gravitational equation (1) is equivalent to the
Einstein equation in which the stress-energy tensor is
modified by a divergence-free conformal Killing tensor.

(i) The property ∇jKjl ¼ 0 ensures that ∇jTjl ¼ 0.
(ii) The third order character of Eq. (1) reduces to

second order in (4) with the appearance of a
conformal Killing tensor in the Einstein equation.

We may name the new theory conformal Killing gravity.
Being appropriate, the name was adopted by Harada in his
subsequent paper on cosmology [3].
Two interesting remarks:
(1) The vacuum equation of conformal Killing gravity is

Hjkl ¼ 0, i.e., the Ricci tensor is itself conformal
Killing. An example are the Sinyukov spacetimes,
defined by ∇jRkl ¼ 1

18
ð4gkl∇jRþgjl∇kRþgjk∇lRÞ.

They have zero Cotton tensor, and were studied by
Formella [10]. They are one of the seven symmetry
classes in Gray’s decomposition of ∇jRkl [11].

(2) Theorem 1 in [8] gives the explicit construction of
conformal Killing tensors from conformal Killing
vectors, ∇iXj þ∇jXi ¼ 2ψgij, where the function
ψ is named conformal factor. With a single vector,
the tensor is

Kij ¼ αXiXj þ βgij ð6Þ

where α is a constant and β is a function. The
additional condition ∇iKi

j ¼ 0 constrains β.
Such vectors frequently characterize spacetimes,

with a wide range of possibilities. For example
Bang-Yen Chen characterized generalized Robert-
son-Walker spacetimes through a time-like vector
∇iXj ¼ ψgij [12]. Ramos et al. characterized the
ample class of doubly warped spacetimes by con-
formal Killing vectors [13,14].

III. CONFORMAL KILLING TENSOR
FOR COSMOLOGY

To find solutions of Eq. (4) we apply the same strategy in
our study of Cotton gravity [5]. We first fix a physically
appropriate form of the conformal Killing tensor (5).
This fixes the spacetime, where the form of the Ricci tensor
is then determined. Finally, the stress-energy tensor is
obtained by Eq. (4).
In doing so for a cosmological solution, we obtain in

natural and easy fashion the results by Harada.
The cosmological principle stages any gravitational

theory in a Robertson-Walker spacetime, which is quasi-
Einstein, i.e., the Ricci tensor has the perfect fluid form. We
then consider a tensor of the same form, and pretend that it
is a conformal Killing tensor,

Kij ¼
K − λ

3
gij þ

K − 4λ

3
uiuj

with ujuj ¼ −1, ∇juk ¼ ∇kuj. K is the trace and λ is an
eigenvalue: Kijuj ¼ λui. We also require that the associ-
ated conformal vector is ηj ¼ 1

6
∇jK.

There are two useful facts proven in the survey [15]. The
first one is
Lemma 1 (Lemma 4.2 in [15]). Let Kij a conformal

Killing tensor and Kijuj ¼ λui, ujuj ¼ �1. If uk∇kuj ¼ 0

then the associated conformal vector is ηj ¼ ∇jλ.
The Lemma implies the important relation 1

6
∇jK ¼ ∇jλ,

i.e., K ¼ 6λþ 2Λ, where Λ is an integration constant. The
updated conformal Killing tensor

Kij ¼
5λþ 2Λ

3
gij þ

2λþ 2Λ
3

uiuj ð7Þ

by construction fulfils (5) and ∇jKjl ¼ 0.
The other useful statement characterises the spacetime

that hosts this conformal Killing tensor. Let us recall that a
generalized Robertson-Walker (GRW) spacetime is char-
acterized by the metric

ds2 ¼ −dt2 þ a2ðtÞg⋆ρνðxÞdxρdxν

where aðtÞ is the scale function, g⋆ρν is the metric tensor
of the Riemannian space submanifold. An equivalent
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description is the existence of a velocity field uj, ujuj ¼ −1
that is shear, rotation, and acceleration free:

∇iuj ¼ Hðuiuj þ gijÞ ð8Þ

with H a scalar function such that ∇jH ¼ −Ḣuj. In co-
ordinates ðt;xÞ, H is only a function of time: HðtÞ ¼ ȧ=a,
and has the same role as the Hubble parameter in
Robertson-Walker (RW) spacetimes. A RW spacetime is
the special case where the Weyl tensor is zero.
Note that the velocity is closed, so that the acceleration

uk∇kuj is zero.
Theorem 2 (Theorem 4.3. in [15]). A Lorentzian mani-

fold is a GRW spacetime if and only if there is a conformal
Killing tensor of the form Kij ¼ Agij þ Buiuj, where A, B
are scalar fields, B ≠ 0, ujuj ¼ −1, and ∇juk ¼ ∇kuj. The
associated conformal vector is ηj ¼ ∇jAþ Ḃuj.

The velocity field satisfies ∇juk ¼ Ḃ
2B ðujuk þ gjkÞ,

and ∇jB ¼ −Ḃuj.
According to the theorem, Kij in (7) is a conformal

Killing tensor if and only if the spacetime is a GRW. In this
circumstance the Hubble parameter is

H ¼ ȧ
a
¼ λ̇

2λþ 2Λ

and ∇jλ ¼ −λ̇uj. The conformal vector is ηj ¼ 1
3
∇jð5λÞ þ

1
3
ð2λ̇Þuj ¼ ∇jλ as expected. The equation for H has the

solution (C is a constant):

2λþ 2Λ ¼ C a2 ð9Þ

In a GRW spacetime the Ricci tensor is [[15], Eq. (17)]

Rkl ¼
R − 4ξ

3
ukul þ

R − ξ

3
gkl − 2Cjklmujum ð10Þ

The last term is the electric component of the Weyl tensor,
that vanishes in a RW spacetime. ξ ¼ 3ðḢ þH2Þ ¼ 3ä=a
is the eigenvalue (Rijuj ¼ ξui) and the curvature scalar is

R ¼ R⋆

a2
þ 6

ȧ2

a2
þ 6

ä
a

ð11Þ

where R⋆ is the curvature scalar of the space submanifold.
The Ricci and the conformal Killing tensors in eq. (4) give
the stress-energy tensor:

Tjk ¼ Rjk −
R
2
gjk − Kjk

¼ −
1

3

�
R
2
þ ξþ 5λþ 2Λ

�
gjk

þ 1

3
ðR − 4ξ − 2λ − 2ΛÞujuk ð12Þ

The tensor describes a “cosmological” perfect fluid cor-
rected by the geometry of the new theory. Comparison with
the fluid parametrization Tjk ¼ pgjk þ ðpþ ρÞujuk gives
the first and second modified Friedmann equations, where
we reintroduce Newton’s constant:

8πGp ¼ −
R
6
−
ξ

3
−
5

3
λ −

2Λ
3

¼ −
R⋆

6a2
−
ȧ2

a2
− 2

ä
a
þ Λ −

5

6
Ca2 ð13Þ

8πGρ ¼ R
2
− ξþ λ

¼ R⋆

2a2
þ 3

ȧ2

a2
− Λþ 1

2
Ca2 ð14Þ

WithC ¼ 0 they are the standard Friedmann equations with
cosmological constant Λ, that here entered as an integration
constant.
Elimination of C gives Eq. (32) by Harada [1]

4πG
5ρþ 3p

3
¼ R⋆

3a2
þ 2

ȧ2

a2
−
ä
a
−
Λ
3

ð15Þ

with the identification R⋆=6 ¼ k.
With an equation of state p ¼ wρ, the equation of

continuity gives ρðaÞ ¼ ρ0ða0=aÞ3ðwþ1Þ. With að−t0Þ ¼ 0,
að0Þ ¼ a0, D≡ 8πGρ0a30, Eq. (14) is formally integrated:

tþ t0 ¼
Z

a

0

dx

�
Da3w0
x3wþ1

−
R⋆

6
þ Λ

3
x2 −

1

6
Cx4

	−1
2 ð16Þ

Remark 3. The conformal Killing tensor (7) may be
obtained through Eq. (6) from the timelike conformal
Killing vector Xi ¼ Fui ([16], thrm 1). The equation im-
plies ψ ¼ FH ¼ Ḟ i.e. F ¼ caðtÞ. In Kij ¼ ðαF2Þuiuj þ
βgij the condition of zero-divergence poses β ¼ 5

2
αF2 − Λ:

Kij ¼ ðαF2Þuiuj þ
�
5

2
αF2 − Λ

�
gij

that is (7) with K ¼ 9αF2 − 4Λ and λ ¼ 3
2
αF2 − Λ.

In a GRW space-time the torse-forming vector field ui
with Ḣ ≠ 0 is unique ([17] thrm.B). Then the timelike
conformal Killing vector is unique.

A. Model p = 0 (matter dominated universe)

There is consensus that the large scale universe is charac-
terized by a spatial curvature R⋆ very near zero [18,19].
Harada studied the continuity equation and (15) in the case
p ¼ 0 (dust matter M), R⋆ ¼ 0 and Λ ¼ 0.
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We rewrite Eq. (13) for p ¼ 0 without restrictions:

0 ¼ 2
d
dt

ðȧ ffiffiffi
a

p Þ þ 5

6
Ca7=2 − Λa3=2 þ R⋆

6
ffiffiffi
a

p

Multiplication by ȧ
ffiffiffi
a

p
gives a total derivative. Then:

H2ðaÞ ¼ −
C
6
a2 þ Λ

3
−

R⋆

6a2
þ D
a3

ð17Þ

where D is an integration constant. With Λ ¼ R⋆ ¼ 0

it is Eq. (41) in [1]. Equation (13) becomes: ä
a ¼ Λ

3
−

1
3
Ca2 − D

2a3. The results for H
2 and ä=a in Eq. (14) give, as

expected: 8
3
πGρ ¼ D=a3. With present time values a0, H0,

ρ0 it is D ¼ 8
3
πGρ0a30.

The integral (16) with w ¼ 0, R⋆ ¼ 0 and Λ ¼ 0 gives
Harada’s result:

tþ t0 ¼
2

3
ffiffiffiffi
D

p a3=22F1

�
1

2
;
3

10
;
13

10
;
C
6D

a5
�
: ð18Þ

With the (standard) definitions in [1] the constants are

C
6
¼ H2

0

a20
ðΩM − 1Þ; C

6D
¼ 1

a50

ΩM − 1

ΩM
:

In [3] Harada solved the modified Friedmann equa-
tions (4) (5) by also including radiation. He finds that the
far future evolution is dominated by the conformal Killing
term, with a phantom energy w ¼ −5=3.

B. Model R⋆ = 0 and R constant

In [20] we studied a RW spacetime with R⋆ ¼ 0 and R
constant. Equation (11) is d2

dt2 a
2 ¼ ðR=3Þa2. With the initial

condition að0Þ ¼ 0, the solution is

a2ðtÞ ¼ A2 sinh θ; θ ¼ t

ffiffiffiffi
R
3

r

where A is a constant and the constant curvature R is a
timescale. Then

HðtÞ ¼ ȧ
a
¼ 1

2

ffiffiffiffi
R
3

r
coth θ ð19Þ

This time-evolution is fixed by the RW geometry with
R⋆ ¼ 0 and ∇kR ¼ 0.
The Friedmann equations yield the pressure pðtÞ and

energy density ρðtÞ of the cosmological fluid. The outcome
with Λ ¼ 0, is an equation of state p ¼ wρ with w → 1=3
in the early universe (t

ffiffiffiffi
R

p
≪ 1) and w ¼ −1 in the late

universe (t
ffiffiffiffi
R

p
≫ 1), i.e., a transition from a radiation era to

a dark energy era in a time-lag that, with Planck’s data, is
compatible with the age of the universe.

Now we study the same geometric conditions [yielding
same function a2ðtÞ] in conformal Killing gravity.
Eq. (9) is 2λðtÞ ¼ Ca2ðtÞ. The Friedmann equations are

modified by the conformal Killing tensor by terms propor-
tional to C. They control the late evolution:

8πGρðtÞ ¼ R
4
coth2 θ þ CA2

2
sinh θ ð20Þ

8πGðρðtÞ − 3pðtÞÞ ¼ Rþ 3CA2 sinh θ ð21Þ

The equations describe a radiation dominated universe
p ≈ 1

3
ρ for t

ffiffiffiffi
R

p
≪ 1, and a phantom energy era [21]

p ≈ − 5
3
ρ for t

ffiffiffiffi
R

p
≫ 1, as in Harada’s model [3].

The detailed evolution is obtained by assuming that the
universe is filled with radiation R, matter M, and a dark
fluid D with unknown function DðxÞ, Dð1Þ ¼ 1:

ρRðtÞ
ρR0

¼
�
a
a0

	
−4
;

ρMðtÞ
ρM0

¼
�
a
a0

	
−3
;

ρDðtÞ
ρD0

¼ D

�
aðtÞ
a0

�

The Friedmann equation (14) with ρ ¼ ρR þ ρM þ ρD and
R⋆ ¼ 0 is

H2

H2
0

¼ ΩR

�
aðtÞ
a0

	
−4

þ ΩM

�
aðtÞ
a0

	
−3

þ ΩDD

�
aðtÞ
a0

�

−
Ca20
6H2

0

�
aðtÞ
a0

	
2

ð22Þ

where ΩR ¼ ð8πG=3H2
0ÞρR0 and similar for ΩM and ΩD.

The ratioH=H0 is fixed by the geometry, Eq. (19). Then we
obtain D (here written as a function of θ):

ΩDDðθÞ ¼ th2θ0

�
1þ 1 − α

sinh2θ
−

αΩM

Ω3=4
R ðα −ΩRÞ1=4

1

sinh3=2θ

	

þ Ca20
6H2

0

sinh θ
sinh θ0

where we defined α ¼ ΩR cosh2 θ0 ([20]). The above
equation extends Eq. (24) in [20].
For a ¼ a0 we read in (22) the present-time balance of

the various components:

ΩR þ ΩM þ
�
ΩD −

Ca20
6H2

0

	
¼ 1

In parenthesis is the dark term of the theory, with an explicit
contribution from the conformal Killing term (C ≠ 0) and a
remaining part that emerges from the extended Einstein
equation.
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In this model we used a nonstandard approach by fixing
a priori the geometry with the reasonable constraint R⋆ ¼ 0
and the simple condition ∇kR ¼ 0. The standard approach
to cosmology in GR is to give a specific equation of state
for the dark sector, which together with matter and radiation
determine the ratio HðzÞ=H0. A general discussion, where

the dark sector is described by an equation of state with w a
function of the redshift z is found in [22].

Data Availability: Data sharing is not applicable to this
article as no datasets were generated or analyzed during the
current study.
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