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The physical and mathematical properties of nonequatorial (m # [) scalar clouds that are supported by
extremal Kerr black holes are studied analytically in the dimensionless large-mass My > 1 regime (here
M is the mass of the central supporting black hole and {u, I, m} are respectively the proper mass, the
spheroidal harmonic index, and the azimuthal harmonic index of the linearized scalar field). In particular,
we determine the discrete resonant spectrum m/l = m/I(Mu) that characterizes the composed black
hole nonequatorial-scalar-field cloudy configurations. Interestingly, we reveal the existence of a critical
dimensionless angular ratio, (m/I),, = (1 + ﬁg)_l < 1, above which maximally spinning Kerr black

holes cannot support spatially regular bound-state configurations of the stationary massive scalar fields.
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I. INTRODUCTION

Classical black-hole spacetimes posses engulfing hori-
zons that act as one-way absorbing membranes for external
matter fields. As first discussed by Wheeler [1,2], the
presence of these absorbing boundaries suggests that
asymptotically flat black-hole spacetimes with spatially
regular horizons cannot support external static matter
configurations.

Wheeler’s influential no-hair conjecture [1,2], which
suggests that static bound-state matter fields cannot be
supported by black holes, has attracted much attention
from physicists and mathematicians. In particular, early
investigations of the composed Einstein-scalar field
equations have yielded mathematically elegant no-hair
theorems [3-6] that, in accord with the spirit of the no-
hair conjecture, ruled out the existence of static spatially
regular bound-state scalar configurations around central
black holes.

However, later investigations (see [7—18] and references
therein) of the composed Einstein-matter field equations
have revealed the intriguing fact that, in some nontrivial
field theories, curved black-hole spacetimes with spatially
regular horizons are not necessarily bald; they can support
static bound-state external matter configurations.

In addition, using analytical techniques it has been
explicitly proved [19,20] that the physically intriguing
phenomenon of superradiant scattering of scalar (and,
in general, bosonic) fields in spinning black-hole space-
times [21,22] allows central spinning black holes with
spatially regular horizons to support stationary (rather
than static) linearized massive scalar fields whose proper
frequencies are in resonance [19,20,23-26],
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with the angular velocity that characterizes the horizon
of the central supporting black hole, where m > 1 is the
azimuthal harmonic index of the stationary scalar field.
The supported stationary bound-state scalar configurations,
which are characterized by the compact black-hole-field
resonance relation (1), have received the nickname scalar
‘clouds’ in the linearized regime [19,20,23,24].

Interestingly, using direct numerical computations it
was later demonstrated explicitly in the highly important
works [23,24] that the nonlinearly coupled Einstein-scalar
field equations are characterized by the existence of
genuine nonvacuum (hairy) black-hole solutions in which
self-gravitating (nonlinear) matter configurations that
respect the black-hole-field resonance condition (1) are
supported by central-spinning black holes with spatially
regular horizons.

The proper frequencies of the stationary (marginally
stable) bound-state scalar configurations are bounded
by the inequalities p/v?2 < wpeq < 4 [27,28] which,
taking cognizance of the resonance relation (1), imply
that composed extremal-Kerr-black-hole-stationary-
massive-scalar-field cloudy configurations are character-
ized by the mathematically compact dimensionless
inequalities [19,29,30]

m
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Intriguingly, using numerical computations it has recently
been revealed [31] that maximally spinning (extremal) Kerr
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black holes cannot support spatially regular equatorial [32]
scalar clouds with the property

l=m2>3, (3)

where [ is the spheroidal harmonic index of the supported
scalar field.

In particular, it has been shown [19,31] that extremal
Kerr black holes can support stationary massive scalar
clouds with the marginally allowed property Mu — m/2
[see (2)] in the restricted dimensionless regime
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where

m (5)

The main goal of the present paper is to study, using
analytical techniques, the physical and mathematical prop-
erties of nonequatorial (with m < [) scalar clouds that are
supported in maximally spinning Kerr black-hole space-
times. In particular, below we shall determine the max-
imally allowed value of the dimensionless angular ratio m
which is consistent with the existence of spatially regular
stationary bound-state scalar clouds around maximally-
spinning Kerr black holes.

Interestingly, we shall explicitly prove below that, in the
large-mass My > 1 regime with My > m/2, the critical
(maximally allowed) value of the dimensionless angular ratio
m is a monotonically increasing function of the dimension-
less field mass My with an asymptotic value 7, (Mu —
m/~/2) which is larger than /2/3 [see Eq. (4)]. The
analytically derived asymptotic value 7y, (Mu — m/+/2)
is proved to be smaller than 1 [see Eq. (40)], which rules
out the existence of composed extremal-Kerr-black-hole-
stationary-massive-scalar-field cloudy configurations with
the equatorial property [ = m > 1.

II. DESCRIPTION OF THE SYSTEM

We analyze the physical and mathematical properties of
a physical system which is composed of a spatially regular
stationary massive scalar field which is linearly coupled
to a maximally rotating (extremal) Kerr black hole. The
curved spacetime of an extremal Kerr black hole of mass M
is described, using the Boyer-Lindquist spacetime coor-
dinates (z,r,8,¢), by the line element [33,34]

A 2
ds> = — = (dr — Msin®0dep)? + ”K dr? + p*de?
P

s1n29

[Mdt = (r* + M?)dg)?, (6)

where the spatially-dependent metric functions in (6)
are given by the functional expressions A = (r — M)? and
p? =r* + M? cos? 6.

Extremal Kerr black-hole spacetimes are characterized
by the degenerate functional relations

r_=r,=—=M, (7)

where {M,J,r,} are respectively the mass, angular
momentum, and horizon radii of the black hole. The
angular velocity that characterizes the black-hole degen-
erate horizon is given by the compact dimensionless
relation [33,34]

1
MQy = —. 8
h=3 (8)
The Klein-Gordon equation
(V'V, —p*)¥ =0 ©)

determines the dynamics of the linearized massive scalar
field ¥ in the black-hole spacetime. Taking cognizance
of the curved line element (6) and using the field
decomposition [35]

¥(1,r,0,0) /Z im S, (0;€)R, (r;e,w)e” ™ dw (10)
with the dimensionless physical quantity

€= M\/u* — w?, (11)

one obtains the coupled angular and radial scalar
equations [36—41]

1 d dSl . m2
sin6 o < do ) + < n + €781 sin20> b
(12)

and

d ([ dR,,
A <A - > + [[(r2+M2)w—mM}2

+A[2mMa)—ﬂ2(r2+M2)—sz”le =0. (13)

The discrete set of angular eigenvalues {K,(¢)}, which
effectively act as separation constants in Eqs. (12) and (13),
can be determined from the angular differential equa-
tion (12) with the physically motivated requirement of
regularity of the corresponding angular eigenfunctions
Sim(0;€) at the poles & = 0 and 6 = = [40].
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In the next section we shall use the large-mass (or,
equivalently, the large-m) angular eigenvalues {K,,(Mu)}
[see Eq. (32)] [42] in order to analyze, using the differential
equation (13), the spatial behavior of the radial eigenfunc-
tions {R;,,(r; Mu)} that characterize the stationary bound-
state scalar clouds.

III. RESONANT SPECTRUM OF THE COMPOSED
EXTREMAL-KERR-BLACK-HOLE
NONEQUATORIAL-MASSIVE-SCALAR-FIELD
CLOUDY CONFIGURATIONS

In the present section we shall explore the physical and
mathematical properties of the nonequatorial (m < [) scalar
clouds (stationary bound-state linearized massive scalar
field configurations) that are supported in the maximally-
spinning Kerr black-hole spacetime (6). The proper fre-
quencies of these spatially regular scalar configurations are
characterized by the dimensionless functional relation (the
black-hole-field resonance condition) [see Egs. (1) and (8)]

m
Mo =—. 14
=" (14)

Interestingly, as explicitly proved in [19], the radial
equation (13) of the stationary massive scalar field in the
maximally-spinning Kerr black-hole spacetime (6) can be
solved analytically to yield the functional expression [the
notation (f# — —f) means “replace § by —f in the preced-
ing term”] [40,43]

1
R(x) = C; x xtPeexpm <§ +p -k 1+28, 2€x)

+Cy x (f— —p) (15)

for the radial scalar eigenfunction, where {C;,C,} are
normalization constants, M(a, b, 7) is the confluent hyper-
geometric function [40],

1
= K+Z_ 2m?* + 2(Mu)?, (16)
x=2_¢ with a=(Ma))2—m—2 (17)
_6 = c) 4"’
and
r—M
_ 18
x= (18)

is a dimensionless radial coordinate.
We consider supported field configurations that are
spatially bounded (finite) at the black-hole horizon,
R(r=ry) < oo, (19)

and decay asymptotically [19,20,23,24],

1 2 2
R(r = o0) ~—e VK7 - (), (20)

r

at spatial infinity. The boundary condition (20) implies that
the m-dependent proper frequency (14) of the stationary
bound-state massive scalar field configurations should be
characterized by the compact inequality

w? <, (21)

which implies the relation [see Eq. (11)] [44]
0<ereRr. (22)

As we shall now prove explicitly, the radial scalar
function (15), supplemented by the physically motivated
boundary conditions (19) and (20), determine the discrete
resonance spectrum m = m(Mpy; n) [45] that characterizes
the composed extremal-Kerr-black-hole-nonequatorial-
massive-scalar-field cloudy configurations.

From Eq. (15) one finds that, in the near-horizon (x < 1)
region, the spatial functional behavior of the radial scalar
eigenfunction is given by [19,40]

R(x > 0) > C, x x 7P + Cy x x 7P, (23)
which, together with Eq. (19), imply that well-behaved

(spatially bounded) scalar configurations are characterized
by the relations [19]

C,=0 (24)
and [46,47]
1
Np > 3 (25)

The asymptotic functional behavior of the scalar eigen-
function (15) at spatial infinity (x — o) is given by [see
Eq. (24)] [19,40]

R(x - 00) = C; x (2e)< =7 (1 +25)

T3+ p+x)
X xR (1) PR 4 Oy x (2e) K
Fl(l + 2[}) x—l—Keex' (26)
F(§ + ﬂ - K.')

Taking cognizance of the boundary condition (20), which
characterizes the spatially regular bound-state massive
scalar field configurations, one deduces that the coefficient
I'(1+2p)/T(3+ B —«) of the blowing exponent in (26)
must be zero. This observation yields the remarkably
compact resonance equation [19,48]
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1
§+ﬂ—1<:—n with n=0,1,2,... (27)

for the composed extremal-Kerr-black-hole-nonequatorial-
stationary-massive-scalar-field cloudy configurations.

For later purposes we note that Egs. (25) and (27) yield
the characteristic inequality

k>, (28)

or equivalently [see Eq. (17)]

eﬁ%(\/mz—i—l—l). (29)

Intriguingly, the physically important numerical results
presented in [31] indicate that, in the regime (3), the critical
dimensionless angular ratio M, = My, (Mu) above
which extremal Kerr black holes cannot support physically
acceptable scalar clouds (stationary bound-state matter
configurations with spatially regular scalar invariants) is
a monotonically increasing function of the composed
black-hole-scalar-field dimensionless mass parameter My
(or, equivalently, of the spheroidal harmonic index /). Thus,
in order to determine the critical (maximally allowed)
value of the dimensionless angular ratio m which is
consistent with the existence of spatially regular scalar
clouds in maximally-spinning Kerr black-hole spacetimes,
we shall analyze the properties of the composed extremal-
Kerr-black-hole-stationary-bound-state-massive-scalar-field
cloudy configurations in the eikonal large-mass regime

Mpu>1

= I>1 (30)

with the nonequatorial scalar property
m<1. (31)

Interestingly, and most importantly for our analysis, the
angular scalar eigenvalues K;,,(Mu) can be determined
analytically in the double asymptotic regime {m, Mu} > 1
with [ —m < vVm? + € using a standard WKB analy-
sis [49-51]. In particular, using a uniform asymptotic
analysis of the angular differential equation (12) one finds
the remarkably compact functional expression [42]

Kip(€) = m? — >+ 20(1 —m)Vm? + > + 0(m). (32)

From Egs. (16) and (32) one obtains the eikonal large-mass
expression

p= \/62—’7212+2m\/m2+€2~ <;l—1>-[1 +O0(m™)).

(33)

Substituting Eqgs. (17) and (33) into Eq. (27), one finds
the relation

1 2 1
—5\/62—%+2m\/m2+62- <7—1>
m

2

2

:’Z—e—e—n—l—O(l), (34)

which yields the discrete resonance spectrum

£2—ez—l—(ff—gz—e—n)z -

1
1+-2 35
2mvVm? + €2 1 ( )

m(m, e;n) =

for the composed -extremal-Kerr-black-hole-stationary-
bound-state-massive-scalar-field cloudy configurations.

IV. THE CRITICAL VALUE OF THE
DIMENSIONLESS ANGULAR RATIO m

In the present section we shall determine the critical
(maximally allowed) value of the dimensionless angular
ratio m above which the extremal Kerr black holes cannot
support spatially regular stationary scalar clouds. To this
end, we first point out that, for given values of the dimen-
sionless physical parameters {m, ¢}, the expression on the
rhs of (35) is maximized for [see Egs. (29) and (34)]

2

M
n=Z-—e+0(1). (36)

which in the eikonal large-mass (large-m) regime yields

L (e/m) 1

2¢/1+ (e/m)? (37)

m(m,e;n =n*) =

In addition, we note that the expression (37) is a
monotonically increasing function of the dimensionless
ratio ¢/m. Thus, it is maximized by the maximally allowed
ratio [see Eq. (29) in the eikonal m > 1 regime] [52,53]

m

€ 1
(&) =plromnl @
max
which yields the critical (maximally allowed) angular ratio

_ 4/5

Mypax = M(e/m =1/2;n = n*) :m (39)

in the dimensionless large mass Mu > 1 regime.
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V. SUMMARY

Recent analytical [19,20] and numerical [23,24] studies
of the Einstein-scalar field equations have revealed the
intriguing fact that asymptotically flat spinning black holes
can support spatially regular bound-state (linearized as well
as self-gravitating) matter configurations which are made of
minimally coupled scalar fields that are characterized by
the black-hole-field resonance relation (1).

In a very interesting paper [31] (see also [19]) a
remarkable observation was made according to which
maximally-spinning Kerr black holes cannot support spa-
tially regular equatorial field configurations with the
angular property / = m > 3, where {l, m} are respectively
the spheroidal and azimuthal harmonic indices of the field.

Motivated by this intriguing observation, in the present
compact paper we have studied, using analytical tech-
niques, the physical and mathematical properties of non-
equatorial (with m < [) stationary bound-state scalar
clouds that are supported by maximally spinning Kerr
black-hole spacetimes. In particular, solving the Klein-
Gordon differential equation (9) of the composed extremal-
Kerr-black-hole-stationary-massive-scalar-field system in

the dimensionless large-mass My > 1 regime, we have
determined the critical (maximally allowed) value [see
Egs. (5) and (39)] [54]

(D=
) =27 o1 for
) max  1+4V5

of the dimensionless angular ratio.

It is worth stressing the fact that the physical significance
of the analytically derived critical angular ratio (40) in the
Einstein-scalar field theory stems from the fact that, in
the dimensionless large mass My > 1 regime, it deter-
mines the regime of existence of composed extremal-Kerr-
black-hole-stationary-bound-state-massive-scalar-field cloudy
configurations.

Mu>1 (40)
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