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Pulsars are rapidly rotating neutron stars emitting intense electromagnetic radiation that is detected on
Earth as regular and precisely timed pulses. By exploiting their extreme regularity and comparing the real
arrival times with a theoretical model (pulsar timing), it is possible to deduce many physical properties,
concerning not only the neutron star and its possible companion, but also the properties of the interstellar
medium as well as tests of general relativity. In light of recent works according to which dark energy may
have an astrophysical origin, in this paper we investigate the effect of “matter” on the propagation time
delay of photons emitted by a pulsar orbiting a spinning black hole using the rotational Kiselev metric. We
deduce an analytical formula for the time delay from geodesic equations, showing how it changes as the
type of matter around the black hole (radiation, dust or dark energy) varies with respect to previous results,
where matter has not been taken into account. It turns out that while the spin a only induces a shift in the
phase of the maximum delay without increasing or decreasing the delay, the effect of matter surrounding
the black hole results in a noticeable alteration of it. Our results show that dark energy would give the
strongest effect and that, interestingly, when the pulsar is positioned between the observer and the
black hole a slightly lower pulse delay than in the no-matter case appears. Alterations are practically
imperceptible in the case of pure radiation.

DOI: 10.1103/PhysRevD.108.124027

I. INTRODUCTION

Pulsars are the result of the explosion of massive stars
showing a repeated emission of radio waves which we
detect as an extremely regular series of pulses. Since they are
remarkably precise clocks, pulsars can be used to investigate
many different aspects of physics, like testing theories of
gravity, studying the magnetic field of the Galaxy and the
interior of neutron stars, investigating the effect of the
interstellar medium, and, last but not least, the detection
of the gravitational-wave background (GWB). Most appli-
cations of pulsars involve a technique called “pulsar timing,”
i.e. the measurement of the time of arrival (ToA) of photons
emitted by the pulsar, which are then compared with a
theoretical model. With a collection of ToAs in hand, it
becomes possible to fit a model of the pulsar’s timing
behavior, accounting for every rotation of the neutron star.
Depending on whether the pulsar is isolated or binary, the
multiparameter fit gives several important parameters (so-
called ephemeris), like period, period derivative, orbital

period (if binary), position in the sky, eccentricity, etc.
The first hint of the power of this method was the case of
the binary system PSR B1913þ 16, whose orbital decay
agrees with their predicted values to better than 0.5% [1]; the
observed accumulated shift of periastron is in excellent
agreement with the general theory of relativity, leaving little
room for alternative theories of gravity. Over the years there
have been numerous studies on possible violations of general
relativity (GR) using the timing of the pulsars (e.g. [2]),
revealing that pulsars are a great research tool in this field,
offering also the possibility to test the no-hair theoremaswell
as the cosmic censorship conjecture [3,4].
More recently, pulsar timing has also been used to detect

and characterize the low-frequency gravitational-wave uni-
verse through timing an array of approximately 100 milli-
second pulsars using the largest radio telescopes in theworld.
Indeed, gravitational waves will cause changes in the travel
times of pulses between pulsars and the Earth, detectable as
perturbations in pulsar ToA measurements. Most impor-
tantly, this signature will show a characteristic sky correla-
tion, predicted by Einstein’s theory of general relativity,
detectable by correlating the data from all of the pulsars in
the array. Any unmodeled effects will appear in the timing
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residuals, and the timing model is revised and/or extended
accordingly: trends in the residuals are indicative of non-
optimized parameters, while white noise residuals suggest
a good timing model. Generally, the timing models just
require the precise modeling of the pulsar’s rotation, orbital
motion and the signal’s propagation in space, and not the
details of the radiation’s physics or emission mechanism.
In the case of the GWB, the unmodeled residuals would be a
red noise at nHz frequencies [5]. Even if to date there has
not been a discovery of such background, the road looks
promising [6,7].
Usually, the timing model to predict ToAs is based on

Damour and Deruelle’s approach using a post-Newtonian
expansion to treat the relativistic two-body problem [8],
and its corresponding relativistic effects are described by
a set of post-Keplerian parameters; see e.g. [9]. However,
the validity of the post-Newtonian approximation (that
assumes a weak field) is no longer guaranteed for a pulsar
orbiting close to a supermassive black hole (SMBH), in
particular if the pulsar, black hole and observer are (nearly)
aligned. When the weak-field approximation holds, then
three distinct delay terms arise: the Roemer delay, the
Shapiro delay and the Einstein delay. The Roemer delay is
the difference of arrival time between the case in which
the Earth is “on the same side” of the pulsar and the one
in which it is on the other side during the orbit around the
Sun. In order to avoid the modulation induced by Earth’s
orbit, ToAs are calculated with respect to the Solar System
barycenter, where coordinate time is defined as tSSB ¼
tem þ ð1=cÞjrp − rbj, where tem is the time of photon
emission, and rp;b is the position of the pulsar or SSB
(usually calculated using distant quasars). The Shapiro
delay is the (always positive) additional delay to take into
account the deviation of light caused by the gravitational
field of the Solar System and it is easily obtained by solving
the geodetic equations in the weak-field approximation, as
in the case of the Solar System. Finally, the Einstein delay
is due to the difference between coordinate time t of the
pulses and the proper time τ of observation, which is
different because of a relative motion with respect to the
pulsar. In the case of a binary pulsar, there will also be
Roemer, Shapiro and Einstein delays for the binary
system,1 with the difference that, in the case of a binary
pulsar, general-relativistic effects are much more important
than in the Solar System, being a relativistic system. This
implies that the expressions for the above three different
delays become more complex, since we have to treat a full
general-relativistic two-body problem. The two-body prob-
lem does not have an exact solution in GR and hence
solving it requires a perturbative post-Newtonian expan-
sion, whose coefficients (post-Keplerian parameters) can be
inferred by pulsar timing. They are linked not only to the

shape of the orbit (like the eccentricity and semimajor axis),
but also to other non-Newtonian effects, such as the above-
mentioned Shapiro and Einstein delays or the decay of the
orbit due to gravitational radiation labeled with Ṗ. First
post-Newtonian order terms are usually sufficient, but if a
data set is accurate, higher-order contributions can in
principle be added in order to get even more information
on the binary system (for a review see e.g. [10]).
Among the various non-Keplerian parameters, recently

the effect of dragging was studied: a compact companion
induces a delay in the ToAs due to the frame dragging on the
pulsar’s radiation, if the latter rotates closely enough. In [11],
a comparison between an exact analytical result for the frame
dragging timedelay and twopost-Newtonianderivationswas
analyzed. The exact formula was derived as the difference
between the exact geodesic solution for a Kerr black hole
(the compact companion) and the equivalent solution for a
Schwarzschild black hole [12]. The conclusion is that post-
Newtonian–based treatments overestimate the frame drag-
ging effect on the lightlike signals, in particular around and
after superior conjunction, and hence the analytical solution
provides a more reliable and accurate approach, especially in
extreme-mass-ratio binary configurations, as in the case of a
pulsar orbiting Sagittarius A� (SgrA�). In this type of setup,
where the pulsar is considered as a test particle, the effect of
the spin is not negligible and analytical formulas for the
propagation delay are necessary, since fully nonlinear
numerical approaches suggest that easier post-Newtonian
treatments may not be very accurate [13,14].
In thewake of these results and since recently evidence has

emerged that dark energy could have an astrophysical origin
[15,16], in this paper we study the further effect of the
presence of matter (radiation, dust or dark energy) in the
surroundings of the central massive black hole. The aim of
this work is to investigate how the propagation time delay is
affected by the type ofmatter, whose presence is certainly not
negligible in the case of SgrA�. This could serve, in principle,
to understand the environment in which the binary system is
located by exploiting the timing of the pulsars, provided that
this effect is separable from the others. The outline of the
paper is as follows. In Sec. II we derive the equations of
motion for lightlike geodesics using a rotational Kiselev
metric, and characterize the corresponding parameter space
ðλ; qÞwhere λ is the adimensional angular momentum and q
is the Carter constant. In Sec. III we analytically solve them
using the Mino time and the elliptic functionals, while in
Sec. IV we apply the results to three different types of matter
(radiation, dust and dark energy; see later) and compare them
to the simpler Kerr case. Finally, we close the paper with a
summary and an outlook in Sec. V.

II. GEODESIC EQUATIONS

A. The Kiselev metric

The solution of Einstein’s field equation for a
Schwarzschild black hole surrounded by quintessence

1In the case of a binary pulsar, the time of emission is localized
at the binary barycenter.
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(a type of dark energy) has been obtained in Refs. [17,18].
Even if in these works only quintessence was considered,
the Kiselev solution contemplates any type of energy-
matter, once a state parameter has been established. Indeed,
a rotational Kiselev black hole looks like [19]

ds2 ¼−
�
1−

2Mrþ cr1−3ω

Σ2

�
dt2þΣ2

Δ
dr2

−
2asin2θð2Mrþ cr1−3ωÞ

Σ2
dφdtþΣ2dθ2

þ sin2θ

�
r2þa2þa2sin2θ

2Mrþ cr1−3ω

Σ2

�
dφ2 ð1Þ

where we defined

Δ ¼ r2 − 2Mrþ a2 − cr1−3w; Σ2 ¼ r2 þ a2cos2θ:

M is the mass of the black hole and a is the spin parameter.
Moreover, c is the strength parameter and w defines the
equation of state, p ¼ wρ. Equation (1) is the rotational
symmetry solution for a black hole wrapped in any kind of
energy-matter definable by the equation of state. In general,
for dark energy, we would expect w < 0. In the following,
we investigate dust (w ¼ 0) and radiation (w ¼ 1=3), as
well as a dark-energy-like component with w ¼ −1=3 [20].
The number of horizons depends on the value of w.

For −1 ≤ w < −1=3, Δ ¼ 0 has three positive solutions,
corresponding to a Cauchy horizon, an event horizon and
a cosmological horizon. For w ¼ �1=3 and w ¼ 0, the
cosmological horizon disappears and only two horizons,
r�, exist. As an upper limit on the strength parameter c for
the cases we want to study, we choose c < 1, compatibly
with [21]. We decide not to make a perturbation for small
values c ≪ 1, since the presence of matter around a
supermassive black hole might not be negligible, as also
shown by the image of the SMBH in the center of M87�
[22]. Notice, finally, that the drag effect is higher at higher
jwj values, and, when w is fixed, is stronger at higher c
values; when c ≪ 1, the dependence on c is approximately
linear. Therefore, these effects could combine with the
nonzero spin parameter a and create a degeneracy between
different parameters.

B. Geodesic equations

Using the metric components gμν from the line element
ds, geodesic equations are given by

gμν
dxμ

dλ
dxν

dλ
¼ ϵ ð2Þ

where λ is an affine parameter and ϵ ¼ 0;−1. While in
Schwarzschild spacetime orbits starting in the plane
(for example θ ¼ π=2) remain planar, in the Kerr and
hence Kiselev metric this is not true and an additional
motion constant is needed. Here, to find equations of

motion, we adopt the well-known Hamilton-Jacobi equa-
tion and Carter constant separable method2 [24]. Therefore,
action S must satisfy

∂S
∂λ

¼ 1

2
kλ − Etþ Lφþ SrðrÞ þ SθðθÞ ð3Þ

where pα ≐ ∂S=∂xα, L ≐ pφ, E ≐ −pt, k ¼ 0 for photons
and k ¼ −m2 for massive particles. The inverse metric
components are

gμν ¼

0
BBBBB@

gtt 0 0 − að2Mrþcr1−3wÞ
ΣΔ

0 Δ
Σ 0 0

0 0 1
Σ 0

− að2Mrþcr1−3wÞ
ΣΔ 0 0 gφφ

1
CCCCCA ð4Þ

where

gtt ¼ a2Δsin2θ − ða2 þ r2Þ2
ΔΣ

;

gφφ ¼ Δ − a2

sin2θ
ΣΔsin2θ: ð5Þ

After rearranging, Eq. (3) comes down to two separated
equations, namely

E2a2cos2θ þ ka2cos2θ −
�
∂S
∂θ

�
2

− L2cot2θ ¼ C;

kr2 − ðaE − LÞ2 − Δ
�
∂S
∂r

�
2

þ 1

Δ
½Eðr2 þ a2Þ − aL�2 ¼ C

ð6Þ

where C is a separation constant. From definitions of energy
E and angular momentum L, the following relations hold:

ṫ ¼ −
E
gtt

�
1þ gtφ

�
λþ gtφ

gtt

��
gφφ −

g2tφ
gtt

�−1�

φ̇ ¼ E

�
λþ gtφ

gtt

��
gφφ −

g2tφ
gtt

�−1
; ð7Þ

where λ ≐ L=E. Hence, the geodesic equations are

ṫ ¼ ðr2 þ a2Þðr2 þ a2 − aλÞ
Δ

− aða − λÞ þ a2 cos2 θ; ð8Þ

φ̇ ¼ aðr2 þ a2 − aλÞ
Δ

− aþ λ

sin2 θ
; ð9Þ

2A similar treatment has been done for a specific state
parameter value (w ¼ −2=3) in [23].
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θ̇2 ¼ qþ cos2θ

��
1þ k

E2

�
a2 −

λ2

sin2θ

�
¼ ΘðθÞ; ð10Þ

ṙ2 ¼ −Δ
�
q−

k
E2

r2 þ ðλ− aÞ2
�
þ ðr2 þ a2 − λaÞ2 ¼ RðrÞ:

ð11Þ

Here, a dot means a derivative with respect to the so-
called Mino time γ, which satisfies the condition dxμ ¼
ðΣ=EÞpμdγ, while q ≐ C=E2. The quantities m, E, L, C are
constants of motion for the equations of motion (8)–(11).
Notice that when c ¼ 0 Eqs. (8)–(11) are equal to the
Kerr case [11], although they formally remain similar
even when c is nonzero. Furthermore, as for a Kerr metric,
Θðπ=2Þ ¼ 0 ↔ q ¼ 0, i.e. a geodetic lies entirely in the
equatorial plane if and only if q ¼ 0. One difference is the
passage for a point with r ¼ 0 and θ ≠ π=2 when w ¼ 1=3.
Indeed, the condition Rð0Þ ≥ 0 for w ¼ 1=3 implies

q ≤
cða − λÞ2
ða2 − cÞ ≥ 0 ð12Þ

where we assumed c ≪ 1. In this regime, r ¼ 0 is
approachable for both negative and positive values of q,
while for w∈ f−1;−2=3;−1=3; 0g this happens only for
negative values (q < 0), as in the Kerr metric. On the other
hand, from the positivity condition ΘðθÞ ≥ 0, motion is
allowed only when [25]

q ≥
�
0 jλj ≥ a;

−ðjλj − aÞ2 jλj ≤ a
ð13Þ

which border an allowed region for the parameter space
ðq; λÞ and is independent of the new parameter c.

C. Roots of the radial potential

The calculation and classification of the roots of the
radial potential RðrÞ proceed in a similar way to the Kerr
case [25]. We consider here the most interesting cases for
our scope, i.e. w∈ f�1=3; 0g. When w ¼ −1=3, the
solutions of the equation RðrÞ ¼ 0 are given by

r1 ¼ −z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 þ B

4
z2

r
;

r2 ¼ −zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 þ B

4

r
;

r3 ¼ z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 −

B
4z

r
;

r4 ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 −

B
4z

r
ð14Þ

where

A ¼ a2 − q − λ2 þ cχ; B ¼ 2Mχ;

C ¼ −a2q; χ ¼ qþ ðλ − aÞ2 ≥ 0:

A very similar computation is required for the remaining
two values of w that we consider, and hence we omit it
for brevity. As we expect, the discrepancy between the
Kerr and Kiselev radial potential roots increases as the
strength parameter c increases. The effect is more evident
for negative values of w. When w ¼ 0, the additional term
that appears always competes with the mass termMr, being
therefore almost negligible.
In order to find quadruple roots of the potential, we

impose the formRðrÞ ¼ ðr − r0Þ4 and after comparing with
its explicit expression, we obtain

q ¼ 0; λ ¼ a ð15Þ
besides that r0 ¼ 0. Here, we assumed a ≠ 0. Triple
solutions satisfy the relations RðrÞ ¼ R0ðrÞ ¼ R00ðrÞ ¼ 0,
whose solution is

q ¼ 8r3

2M
− ðλ − aÞ2; λ ¼ Mða2 þ 3r2Þ − 2r3ð1 − cÞ

aM
ð16Þ

and hence

r ¼ M − ½MðM2 − ð1 − cÞa2Þ�1=3
ð1 − cÞ : ð17Þ

Finally, double solutions [R0ðrÞ ¼ RðrÞ ¼ 0] occur when

q ¼ r3

a2

�
4MΔ

ðM − rð1 − cÞÞ2 − r

�
;

λ ¼ aþ r
a

�
r −

2Δ
rð1 − cÞ −M

�
: ð18Þ

We then evaluate these relations on the border of the
admissible region (13), i.e. q ¼ 0 and q ¼ −ðλ� aÞ2. In
the first case, three real solutions for r are possible:

r ¼ e cos

�
1

3
arccos

�
2a2ð1 − cÞ −M2

M2

�
þ 2πk

3

�
þ e ð19Þ

with k¼ 0, 1, 2 and e¼ 2M=ð1− cÞ. When q¼ −ðλþ aÞ2,
four real and distinct solutions for r are allowed; their
structure is similar to (14) and we omit them for brevity.
Finally, in the last case, q ¼ −ðλ − aÞ2, in addition to
the analogous Kerr case solution, i.e. r�, other options
appear, namely rN ¼ �a=

ffiffiffi
c

p
. Since double solution curves

separate the parametric ðq; λÞ regions with two or four
real solutions, once the values of mass M, spin a and
strength of matter c have been fixed, different behaviors
of the roots are delimited by such curves, which, indeed,
border the range of the radial coordinate r for which (13)
holds, i.e. motion is allowed. In particular, when q ¼ 0,
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the corresponding λ values on the double-roots curve, λ�,
coincidewith the impact parameters of the so-called unstable
circular photon orbits (counter-rotating and corotating). The
radii of such (equatorial) orbits are simply given by the
largest roots (19), and in the case w ¼ −1=3 they are

r�ph ¼ e cos

�
1

3
arccos

�
2a2ð1 − cÞ −M2

M2

�
þ k�

4π

3

�
þ e

where kþ ¼ 0, k− ¼ 2.When c ¼ 0, they reduce to thewell-
known Kerr results. Notice that with this notation λþ ≡
λðrþphÞ and λ−≡ λðr−phÞ, it will be λþ < λ−. A possible trend
for the three different types of matter is shown in Fig. 1,
where each point of the curves corresponds to a choice of
parameters (λ, q) for which two roots for the potential RðrÞ
coincide (r3 ¼ r4 > rþ). Above the curve, four real roots of
the potential are allowed, two of which are outside of the
horizons. Conversely, below the curve (λþ < λ < λ− when
q ¼ 0) no real roots outside of the horizons exist. Since
RðrÞ> 0 at infinity, the radial potential is positive in the
ranges r < r1, r2 < r < r3 and r > r4. Therefore, only in
the first case do photons enter from infinity, reach a turning
point outside of the horizons (at r ¼ r4), and return to
infinity3; in the second case, photons move directly between
infinity and the horizon (there may be turning points inside

the horizon). The presence of matter also reduces the para-
metric region corresponding to four real roots all inside the
horizons (not shown in Fig. 1). As we expect, the effect is
more evident for larger values of c, but it is more pronounced
in the presence of radiation rather than dark energy.
In what follows, we deal with a beam of photons from a

pulsar orbiting a black hole in the equatorial plane. In this
case, the trajectory followed can be of only two types:
either the photons move directly from the pulsar to the
observer, or they first encounter a turning point outside of
the horizons (r4) and then move from it to the observer. The
parametric region corresponding to the first case (direct
trajectory) is made up of all points below the curve (even
for q < 0), while the second case (flyby) describes trajec-
tories for photons with motion parameters above the curve.
Overall, the presence of matter attached to a rotating black
hole increases the region of parameter space in which a
direct trajectory towards a distant observer is possible, at
the expense of a flyby. More precisely, it is easy to find out
the behavior of the emitted photons from considerations
on the potential shape and its positivity ranges [25]. The
computation of quadruple, triple, and double roots for
the remaining two cases w ¼ 0, w ¼ 1=3 are reported in
Appendix A.

III. TIME DELAY

In this section we analytically solve Eqs. (8)–(11) using
elliptic integrals in the Legendre form, following the
strategy used in [11]. As in the previous section, for brevity
we show here only the case w ¼ −1=3. Final results for
different cases are however summarized in Appendix B.

A. The exact time delay

Combining Eqs. (8)–(11), one gets an equation for t in
integral form, i.e.

cðta − teÞ ¼
Z
γr

GðrÞ
Δ

ffiffiffiffiffiffiffiffiffi
RðrÞp drþ

Z
γθ

a2 cos2 θffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ ð20Þ

where c is the speed of light (not to be confused with c) and
we have defined

GðrÞ ¼ r2ðr2 þ a2 þ acða − λÞÞ þ 2Mraða − λÞ: ð21Þ

We notice that the term proportional to c is the novelty
with respect to the Kerr case (as well as the different
definition of Δ). On the other hand, the angular integral
remains unchanged. The integral path γr starts at the
radial point of emission re and either runs directly to
infinity (direct trajectory) or first decreases in radius
towards a turning point outside of the horizons (r4) and
then returns to infinity (flyby), according to the motion
parameters of photons (see Fig. 1). Therefore, we split the
radial integral as

FIG. 1. Curves, in the parameter space (λ,q), of double roots
outside of the horizons for the radial potential RðrÞ in the case of
radiation (orange), dust (gray) and dark energy (blue) orbiting a
central black hole, when a ¼ 0.9 and c ¼ 0.1 (M ¼ 1). A Kerr
black hole (black) with no matter is also shown. When q ¼ 0, the
corresponding λ values, λ�, on the double-roots curve, coincide
with the impact parameter of the unstable circular photon orbits.
Above each curve, photons enter from infinity, reach a turning
point outside of the horizons and returns to infinity (flyby); below
each curve, photons move directly between infinity and the
horizon, with no turning points (direct trajectory). The latter
behavior also occurs when q < 0 (not shown in figure).

3In addition to this motion (flyby), for parameter space points
above the curve a bound orbit is also possible, but that is not
interesting for our purposes.
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�Z
∞

r4

�
Z

re

r4

�
GðrÞ

Δ
ffiffiffiffiffiffiffiffiffi
RðrÞp dr ð22Þ

where we choose the minus sign for a direct trajectory4 and
the plus sign for a flyby motion. Similarly, the angular
integral in Eq. (20) can be written as [11]

�Z
ue

0

�
Z

ua

0

�
a2u

2
ffiffiffiffiffiffiffiffiffiffiffi
UðuÞp du ð23Þ

where we defined

UðuÞ ¼ uðqþ uða2 − λ2 − qÞ − a2u2Þ

and we changed the integration variable to u ¼ cos2 θ.
Hence, ue and ua represent the emission and the observer
latitudinal positions, respectively. Here, we choose the plus
sign if the equatorial plane is crossed and the negative sign
otherwise.5 The above equation strictly only holds in the
absence of latitudinal turning points u� [the nonzero roots
of UðuÞ]. If latitudinal turning points are encountered, we

have to add complete integrals in the form
R uþ
0 if q > 0 orR

uþ
u−

if q < 0. However, below we assume that we are not in
these cases.
The integral (22) can then be solved exactly in terms of

elliptic integrals. We notice that similar expressions for the
time evolution of lightlike geodesics in the Kerr metric have
been derived before, in slightly different ways than the one
used here and in [11]. For example, [26] gave an expression
partly using Carlson’s elliptic integrals. Expressions in
terms of Weierstrass functions have been derived in [12],
while in [25] Jacobi elliptic integrals in “Jacobi form”
(instead of the Legendre form employed here) were used.
Here, we are not concerned with the optimal choice; what is
certain is that having an analytical solution allows to avoid
divergences which would be impossible to avert in a purely
numerical calculation. The result is (details in Appendix B)

cðta − teÞ ¼ Trð∞; λe; qeÞ � Trðre; λe; qeÞ
þ jTuðue; λe; qeÞ � Tuðua; λe; qeÞj ð24Þ

with the definitions

Tuðu; λ; qÞ ¼
Z

u

0

a2

2

uduffiffiffiffiffiffiffiffiffi
Uλ;q

p
¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ − u−
p

"
u−Fðv; wÞ þ ðuþ − u−ÞEðv; wÞ −

uþv
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2v2

p
#

ð25Þ

and

Trðr; λ; q; cÞ ¼ δ ·

�
Fðx; kÞ ·

�
4M2γ−3 − a2c2γ−2 − acλγ−1 þ 2Mr3γ−2 þ

1

2
γ−1 · ½r1ðr3 − r4Þ þ r3ðr3 þ r4Þ� þ

Bþl
lþ

þ B−l
l−

�

þ Eðx; kÞ ·
�
−
1

2
γ−1 · ðr4 − r2Þðr3 − r1Þ

�
þΠðx; l; kÞ · ð2Mr4γ−2 − 2Mr3γ−2Þ

þΠðx; lþ; kÞ ·
�
Bþ −

lBþ
lþ

�
þΠðx; l−; kÞ ·

�
B− −

lB−

l−

��
þ

ffiffiffiffiffiffiffiffiffi
RðrÞp

r− r3
γ−1 ð26Þ

where r1;…;4 are the radial potential roots (13), u� are the
nonzero roots of U, r� are the horizons, and for brevity, we
defined (for v, w, x, k and B� see Appendix B)

δ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr4 − r2Þðr3 − r1Þ
p ; γ ¼ 1 − c;

l ¼ r1 − r4
r1 − r3

; l� ¼ lðr3 − r�Þ
r4 − r�

:

The functions F, E andΠ appearing in Eq. (26) are the well-
known elliptic functions of the first, second and third kind,
respectively (see again Appendix B). To obtain Eq. (26) we
also used the vanishing rule

P
4
i¼1 ri ¼ 0. The above equa-

tions reduce to Kerr ones [11] when c → 0. As in Kerr, some
divergences appear in Eq. (26), specifically in Πðx; l; kÞ and
in the last term, which create computational problems if not
properly treated first. In Eq. (24), the constants of motion λ
and q only depend on the emission point, sincewe have fixed
the arrival point at infinity. Furthermore, in the case of
equatorial orbits (θ ¼ π=2) the angular integral in Eq. (20),
and hence Tu in Eq. (25), are vanishing.
To avoid divergences, it is usual to subtract the time

delay with respect to a fixed reference point from the actual
time delay (24), namely

4Notice that, in this case, r4 is just a generic point between the
emission and the observer position, which we fixed at infinity, i.e.
ra ¼ ∞. Therefore re < r4 < ∞.

5We adopt the usual convention that θ ¼ 0 corresponds to the
north pole. In thisway, θ¼ π=2 corresponds to the equatorial plane.
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Δtexðte;φe;ue;cÞ¼ðta− teÞ−ðta− trefÞ

¼1

c
½Trð∞;λe;qeÞ�Trðre;λe;qeÞ

þjTuðue;λe;qeÞ�Tuðua;λe;qeÞj�

−
1

c
½Trð∞;λref ;qrefÞ�Trðrref ;λref ;qrefÞ

þjTuðuref ;λref ;qrefÞ�Tuðua;λref ;qrefÞj�;
ð27Þ

where λref , qref are the angular momentum and Carter
constants at the reference point and c on the rhs means
that the expression is evaluated in the presence of matter.6

The ascending node with respect to the plane of the sky
(ϕ ¼ −w) is used as the reference point, since the time
delay is zero for photons leaving the pulsar in such a
position. Actually, the Roemer, first-order Shapiro (when
e ¼ 0) and geometric delays all vanish at the ascending
node (ϕ ¼ −w), but other delays, like the Einstein delay,
second-order Shapiro delay, as well as the exact for-
mula (27) do not vanish at the ascending node, and the
addition of an individual offset to each of these latter types
of delay is usually needed to have a vanishing delay point.

B. Orbital parameters

In order to fully calculate Eq. (24), we need the
coordinates of the emission point (re; θe;φe; te) on the
pulsar orbit as well as the observer latitude θa (ra ¼ ∞ and
we assume, for simplicity, φa ¼ 0). The position of the
emission point follows the pulsar’s orbit around the black
hole (see Fig. 2); for each point of the orbit, we need the
motion parameters (λe, qe) of geodesics going to infinity.
As pointed out by [11], there is no general analytical
solution to such a problem (emitter-observer problem). To
obtain λ and q, in general, one needs to numerically solve
both the equationsZ

γr

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼

Z
γθ

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð28Þ

φa−φe ¼
Z
r

2Mra−a2λþacr2

Δ
ffiffiffiffiffiffiffiffiffi
RðrÞp drþ

Z
γθ

λ

sin2ðθÞ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ

ð29Þ

where the first integral in Eq. (28) is still convergent, since
given any r4 < s < ∞ (no problems for r → ∞), then

Z
s

r4

2Mra − a2λþ acr2

Δ
ffiffiffiffiffiffiffiffiffi
RðrÞp dr ≤ δMFðxs; kÞ < ∞

where M is the maximum of the function ð2Mra − a2λþ
acr2Þ=Δ in the range of the integral and xs is the variable x
(see Appendix B) evaluated at r ¼ s. Proceeding similarly
to what was done for Eq. (26) and assuming φa ¼ 0 and
q ¼ 0 for both the pulsar and observer (the pulsar, black
hole and observer lie on the equatorial plane), from Eq. (29)
we get

−φe ¼
ac
γ
δ · ½Fð∞;kÞ�Fðre;kÞ�

þδaða2c−2MrþþaλγÞ
γ2ðr− − rþÞðr4−rþÞ

��
1−

l
lþ

�
Πð∞; lþ;kÞ

þ
�
�1∓ l

lþ

�
Πðre;lþ;kÞþ

l
lþ

Fð∞;kÞ� l
lþ

Fðre;kÞ
�

þδað2Mr− −a2c−aλγÞ
γ2ðr− − rþÞðr4− r−Þ

��
1−

l
l−

�
Πð∞; l−;kÞ

þ
�
�1∓ l

l−

�
Πðre;l−;kÞþ

l
l−
Fð∞;kÞ� l

l−
Fðre;kÞ

�

þ2λ½Fð∞;kÞ�Fðre;kÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr4− r2Þðr3−r1Þ
p ð30Þ

where we choose the upper or lower sign for the flyby or
direct trajectory, respectively. We also note that, in general,
the angular integral in Eq. (29) can be computed using

FIG. 2. Orientation of the black hole–pulsar system in the sky
with respect to an observer sitting at infinity. The blue shaded
region around the black hole reflects the possible environment of
dark energy, radiation or dust investigated in this work.

6In the following, we simply denote Eq. (27) with ΔtexðcÞ.
This implies that Δtexðc ¼ 0Þ reproduce same results of [11], i.e.
in absence of surrounding matter.
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Z
ue;a

0

λ

sin2ðθÞ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ ¼ � λffiffiffiffiffiffi

u−
p Π

� ffiffiffiffiffiffiffiffi
ue;a
uþ

r
; uþ;

ffiffiffiffiffiffi
uþ
u−

r �
;

but, under the assumption of an equatorial orbit (i.e.
θ ¼ π=2) and using Eq. (28), it simply reduces to a radial
integral Z

γθ

λ

sin2ðθÞ ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ ¼

Z
γr

λffiffiffiffiffiffiffiffiffi
RðrÞp

q¼0

dr

and this gives the last term in Eq. (30).
Generally, the particular case in which everything is

restricted to the equatorial plane is simpler and, at the same
time, more interesting, as this case corresponds to the
strongest relativistic effects. Before schematizing the pro-
cedure we have followed, let us first explain how to relate
metric coordinates to the coordinates of a pulsar orbiting a
black hole. To this end, we adopt the geometrical setup
already introduced in [12]. Due to the big difference in
mass between the pulsar and (supermassive) black hole, we
may consider the pulsar as a test particle, i.e. the center of
mass coincides with the BH center. Of course, the pulsar
will not remain, in general, in a fixed plane due to the
frame dragging, and the same orbit would rotate because of
the relativistic precession of the periapsis. Nevertheless, we
will assume a Keplerian orbit in first approximation, with
(almost all) relativistic effects encoded in post-Newtonian
orbital parameters, as is usual in pulsar-timing models.
However, here we are not interested in individual post-
Keplerian effects, since Eq. (27) is a full relativistic formula
for time delay; what we need to do is just to compare
Eq. (27) with the analogue one without the surrounding
matter (c ¼ 0, i.e. Kerr), in order to highlight the effect
of the latter. This is a difference with [11], where the
relativistic effect of frame dragging has been studied and
compared to weak-field post-Newtonian approximations.

In this case we can express the coordinate ðx; y; zÞ as
follows: x ¼ re cosðωþ ϕÞ, y ¼ re sinðωþ ϕÞ, z ¼ 0,
whereω is the argument of the periastron. A rotation around
the x axis by the inclination angle i suffices to transform to
the ðX; Y; ZÞ system. For the case of an edge-on equatorial
pulsar orbit, which we discuss later in the paper, the desired
angle between the pulsar and observer is then given by the
angle ϑ in spherical coordinates X ¼ r cosψ sinϑ, Y ¼
r cosψ sin ϑ,Z ¼ r cos ϑ. In the common plane of the pulsar
and observer, the angleϕe is then determined byφe ¼ ϑwith
cosϑ¼−sin i sinðωþϕÞ and therefore

cosφe ¼ − sin i sinðωþ ϕÞ: ð31Þ

IV. RESULTS

First of all, we assume an extreme binary system of a
pulsar orbiting a SMBH with a mass of M ¼ 4 × 106M⊙
(solar masses), i.e. GM⊙=c2 ¼ 1476M. Therefore, the

propagation time delay will be expressed in seconds and
the corresponding adimensional value can be recovered by
dividing by a factor of GM=c3 ≈ 19.7 s. Different black
hole masses (say M2) lead to time delays multiplied by a
factor of M2=M.
First, we notice that by choosing c ≈ 0, the effects of

matter are negligible and we are able to reproduce the
results of [11] from our Eq. (27). Just to give an example,
we show a single plot for this case in Fig. 3, where we also
show the cases of rotating and nonrotating Kiselev black

FIG. 3. Exact time delay Δtex − ΔtR for a Schwarzschild black
hole (black line), a Kerr black hole with a ¼ 0.9 (dashed blue
line), a nonrotating Kiselev black hole surrounded by dark energy
with c ¼ 0.01 (dashed green line) and a rotating one with a ¼ 0.9
and c ¼ 0.01 (red line) for a circular edge-on orbit with a
Schwarzschild radius rS ¼ 100M. Bottom panels are a zoom-
in of the top panel. At this distance, the additional time delay
when the pulsar is behind the BH (superior conjunction) is more
than 30 seconds, while it is reduced by a few seconds when the
pulsar is in front of the BH (inferior conjunction).
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holes in the presence of dark energy. It turns out that while
the spin a induces a shift in the phase of the maximum
delay without increasing or decreasing the delay, the effect
of matter surrounding the black hole results in a noticeable
alteration of the delay, which increases as the strength
parameter c increases. Interestingly, when the pulsar is
positioned between the observer and the black hole (θ ≈ 0)
we predict a slightly lower pulse delay than in the no-matter
case. The differences with Schwarzschild and Kerr cases
are less evident (but still appreciable) in the presence of
dust (see Fig. 4) and practically imperceptible in the case of
pure radiation (see Fig. 5).

We also may isolate the only effect of matter by making
the subtraction

Δtmatter ¼ ΔtexðcÞ − Δtexðc ¼ 0Þ ð32Þ

whereΔtexðc ¼ 0Þ is obtained by putting c ¼ 0 in Eq. (27).
Here a comment is necessary. If one identifies Δtexðc ¼ 0Þ
in Eq. (32) with the exact time delay in the Kerr metric,
then, in order to compare results derived in different space-
times (Kiselev vs Kerr), we first need to identify a physical
invariant. The common idea is to fix the circumference of a
circle, which is an invariant characteristic. In particular,

FIG. 4. Exact time delay Δtex − ΔtR for a Schwarzschild black
hole (black line), a Kerr black hole with a ¼ 0.9 (dashed blue
line), a nonrotating Kiselev black hole surrounded by dust with
c ¼ 0.01 (dashed green line) and a rotating one with a ¼ 0.9 and
c ¼ 0.01 (red line) for a circular edge-on orbit with a Schwarzs-
child radius rS ¼ 100M. The bottom panels are a zoom-in of the
top panel.

FIG. 5. Exact time delay Δtex − ΔtR for a Schwarzschild black
hole (black line), a Kerr black hole with a ¼ 0.9 (dashed blue
line), a nonrotating Kiselev black hole surrounded by radiation
with c ¼ 0.01 (dashed green line) and a rotating one with a ¼ 0.9
and c ¼ 0.01 (red line) for a circular edge-on orbit with a
Schwarzschild radius rS ¼ 100M. The bottom panels are a
zoom-in of the top panel.
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in Kerr space-time, such a circumference is given by
Ckerr ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2kerr þ a2 þ 2Ma2=rkerr

p
, while our metric (1)

leads to the (equatorial) circumference

Ckis ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2kis þ a2 þ a2

�
2M
rkis

þ cr−1−3wkis

�s
: ð33Þ

Then the equality is achieved with

rkerr ¼ 2
ffiffiffiffiffiffiffi
−Q

p
cos

�
θ

3

�
ð34Þ

where Q depends on the type of matter

Qde¼−
r3kisþa2ð2MþcrkisÞ

3rkis
; Qdust¼−

r3kisþa2ð2MþcÞ
3rkis

;

Qrad¼−
r4kisþa2ð2MrkisþcÞ

3r2kis
; θ¼arccos

�
−

Ma2ffiffiffiffiffiffiffiffiffi
−Q3

p �
:

However, to make things easier, one could decide to use
only Eq. (27) to calculate the matter delay (32), for both the
contributionsΔtexðcÞ, Δtexðc ¼ 0Þ. This is also justified by
the fact that Eq. (34) gives very convergent rkerr, rkis values
as long as c is far from 1, as we are assuming.

A. Effect of the black hole environment on the
propagation time delay

Given the Roemer delay ΔtR which is given by [27]

ΔtR ¼ Að1 − e2Þ sin i sinðωþ ϕÞ
cð1þ e cosϕÞ ð35Þ

where i is the inclination of the orbital plane with respect to
the plane of the sky and ω is the argument of periapsis, ϕ is
the argument of the pulsar’s position and e is the eccen-
tricity of the orbit, we show in Fig. 3, the time delay Δtex −
ΔtR [see Eq. (27)] for a Schwarzschild and a Kerr black
hole both in the case where they are in a vacuum as well as
surrounded by dark energy with c ¼ 0.01. We choose a
simple pulsar trajectory of an edge-on (i ¼ π=2) circular
orbit. The ascending node with respect to the plane of the
sky is used as the reference point i.e. φref ¼ π=2, which
with ω ¼ −π=2 simplifies to φref ¼ ϕref ¼ π=2. Note that
all exact propagation time delays Δtex include a consid-
erable offset. Therefore we correct them by adding global
constants to the individual delays such that they exactly
vanish at ϕref ¼ π=2. As expected for a circular edge-on
orbit in spherical symmetry, the curve representing the
Schwarzschild black hole (a ¼ 0, c ¼ 0) is symmetric with
respect to the superior conjunction at ϕ ¼ π. Once the
black hole rotates this symmetry is broken with a slight
shift in the top of the curve which corresponds to the switch
from counter-rotating to corotating lightlike geodesics

emitted from the pulsar to the observer which was already
discussed in detail in [11]. However, if the dark energy is
present (w ¼ −1=3), a considerable additional amount of
time delay (more than 30 seconds if the pulsar is at a distance
rs ¼ 100 M) is induced if the pulsar comes behind the black
hole along its trajectory. On the other side, dark energy
contributes negatively to the time delay (with an advance of a
few seconds) once the pulsar is in front of the observer. This
behavior is seen for both a Schwarzschild and a Kerr black
hole as illustrated in the bottom panel of Fig. 3.
Surprisingly, in the case where the dust is present in the

vicinity of the black hole (w ¼ 0), the same above feature is
observed as in the case of dark energy but with a very small
amplitude (see Fig. 4). This finding appears to contradict
the expected behavior, in which the dust would induce a
constant time delay for a circular pulsar orbit, regardless of
its position with respect to the black hole.
In Fig. 5, the propagation time delay of light geodesics

emitted from the pulsar in the presence of radiation
(w ¼ 1=3) is investigated. As is expected, the radiation
contributes positively to the propagation time delay along
the pulsar trajectory around the black hole. However this
contribution is maximal once the pulsar is at a superior
conjunction and minimal at the inferior conjunction.

V. CONCLUSIONS

Most applications of pulsars involve a technique called
“pulsar timing,” i.e. the measurement of the ToA of photons
emitted by the pulsar, which is then compared with a
theoretical model. With a collection of ToAs in hand, it
becomes possible to fit a model of the pulsar’s timing
behavior, accounting for every rotation of the neutron star.
Depending on whether the pulsar is isolated or binary, the
multiparameter fit gives several important parameters (so-
called ephemeris), like the period, period derivative, orbital
period (if binary), position in the sky, eccentricity, etc. Over
the years there have been numerous studies on possible
violations of GR using the timing of pulsars (e.g. [2]),
revealing that pulsars are a great research tool in this field,
offering also the possibility to test the no-hair theorem as
well as the cosmic censorship conjecture [3,4]. More
recently, pulsar timing was also used to detect and
characterize the low-frequency gravitational-wave universe
through timing an array of approximately 100 millisecond
pulsars using the largest radio telescopes in the world.
Usually, the timing model to predict ToAs is based on
Damour and Deruelle’s approach using a post-Newtonian
expansion to treat the relativistic two-body problem [8],
and its corresponding relativistic effects are described by a
set of post-Keplerian parameters. However, the validity of
the post-Newtonian approximation (which assumes a weak
field) is no longer guaranteed for a pulsar orbiting close
to an SMBH, in particular if the pulsar, black hole and
observer are (nearly) aligned. This means that full general-
relativistic computations are sometimes necessary.
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In this paper we studied, from an analytical point of view
the further effect of the presence of matter (radiation, dust,
dark energy) in the surroundings of the central massive
black hole. Hence, the aim of this work was to investigate if
and how the propagation time delay is affected by different
types of matter, whose presence is certainly not negligible
in the case of SgrA�. We have modeled such a presence
with the (rotational) Kiselev metric, which in addition to
the spin parameter a, depends on the strength parameter c,
as well as on the state parameter w depending on the type of
matter (w ¼ �1=3, 0). Recently, evidence has emerged that
black holes could contribute to the dark energy content of
the Universe, and their growth could depend on the redshift
[15,16]; therefore considering the possibility of dark energy
around SMBHs could give clues in this direction.
We first computed geodesic equations in a general,

rotational Kiselev metric and characterized the correspond-
ing parameter space ðλ; qÞ, where λ is the (adimensional)
angular momentum and q is the (adimensional) Carter
constant, finding that generally the presence of matter
enlarges the region of direct trajectories of photons moving
from the pulsar and a far observer (see Fig. 1), at the expense
of a flyby. This effect is more evident for “dark energy” and
less evident for radiation, and the divergence with the Kerr
case (c ¼ 0) increases as the value of c increases, as we
expected. Then, we analytically solved motion equations
using the Mino time and elliptic integrals, following the
strategy used in [11]. Our main formula, Eq. (26), repro-
duces the Kerr case when c ¼ 0 (regardless of the value
of w). To estimate the magnitude of the effect, we assumed
a Keplerian orbit for the pulsar orbiting an SMBH in the
equatorial plane (q ¼ 0), where relativistic effects are
strongest. Due to the big difference in mass between
the pulsar and BH, we considered the pulsar as a test
particle. We did not deal with individual post-Keplerian
effects, but just compared ourmodel to theKerr case in order
to isolate the effect of matter. We found that a deviation is
real and very pronounced in the presence of dark energy
(w ¼ −1=3): while the spin a only induces a shift in the
phase of the maximum delay without increasing or decreas-
ing the delay, the effect of matter surrounding the black hole
results in a noticeable alteration of the delay, which increases
as the strength parameter c increases. For example, if the
pulsar is at a distance rs ¼ 100 M, the additional time delay
when the pulsar is behind the BH (superior conjunction)
would be more than 30 seconds. Interestingly, when the
pulsar is positioned between the observer and the black hole
(ϕ ≈ 0, i.e. inferior conjunction), we predicted a slightly
lower pulse delay (with an advance of a few seconds) than in
the no-matter case (see Fig. 3). Differences with the
Schwarzschild and Kerr cases are less evident (but still
appreciable) in the presence of dust (see Fig. 4) and practi-
cally imperceptible in the case of pure radiation (see Fig. 5).
Even if at the moment no pulsars close enough to SgrA*

are known, their search is attracting more and more efforts
from the scientific community [28], due to the enormous

implications that such a discovery would have [29]. Since
our delay formulas do not depend on the energy of the
emitted photons, they are also valid for magnetars, which
often show variability at higher energies than radio waves.
This allows us to estimate the delay of SGR J1745-2900,
the closest magnetar orbiting SgrA*. At a distance rs ¼
0.1 pc [30], i.e. rs ≃ 5 × 105M, and assuming an edge-on
orbit,7 it turns out that the difference in delay between the
no-matter case (Kerr metric with a ¼ 0.9) and the dark-
energy case (Kiselev metric with a ¼ 0.9, w ¼ −1=3 and
c ¼ 10−4) is approximately larger than 300 seconds at
superior conjunction and shorter than 40 seconds at inferior
conjunction. When c ¼ 10−5 differences flatten signifi-
cantly and are almost imperceptible (see Fig. 6). For
completeness, when c ¼ 10−3 the delay in the presence
of dark energy would be ∼4000 seconds greater, a value

FIG. 6. Top: exact time delay (Δtex − ΔtR) for SGR J1745-
2900, the closest magnetar orbiting SgrA*, for a Schwarzschild
black hole (black line), a Kerr black hole with a ¼ 0.9 (dashed
blue line), a nonrotating Kiselev black hole surrounded by dark
energy with c ¼ 10−4 (dashed green line) and a rotating one
with a ¼ 0.9 and c ¼ 10−4 (red line) for a circular edge-on orbit
with a Schwarzschild radius rS ¼ 105M, where M¼ 4× 106M⊙.
Bottom: as before, but with c ¼ 10−5. By comparing the
observed magnetar delays at superior and inferior conjunctions
with theoretical predictions, a signature of the presence of dark
energy could appear.

7More observations are needed to determine the orientation of
SGR J1745-2900’s orbit.
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so large as to make us consider c ¼ 10−3 unlikely at
that distance from SgrA*. Finally, we notice that, at the
considered distance, the spinning effects are almost com-
pletely absent and this makes the search for matter effects
even cleaner. By comparing the observed magnetar delays
at superior and inferior conjunctions with theoretical
predictions, a signature of the presence of matter (dark
energy in particular) could appear. However, at the moment
the timing of SGR J1745-2900 has not yet reached
sufficient levels of precision for this purpose, mainly due
to the intrinsic variability of the source.
Beyond the information on any matter present and its

effects on timing, the advantage of this work, as compared
to numerical ray-tracing methods, is the possibility to
isolate diverging terms providing at the same time non-
approximate results. Besides, our formulas could be inte-
grated into a new relativistic timing model that is suitable
for extreme binary systems where the presence of matter is
non-negligible. However, this may not be an easy task,
since it requires knowing the environment around the black
hole. Conversely, one could exploit pulsar timing to
constrain w in the vicinity of the black hole, if the pulsar
is close enough. The difficulty in this case would be
isolating the matter effect from all other effects, which is
impossible in strong-field situations, where the (nonlinear)
full relativistic equations must be used.
Possible extensions of this work include the study of

nonequatorial orbits, the addition of a pulsar’s spin, and the
treatment of the pulsar as a timelike geodesic. Parallel
works, on the other hand, may concern the use of other
metrics, such as the Kerr-Newman and Kerr-Sen ones. In
principle, the equations ofmotion for lightlike geodesics are
solvable in terms of elliptic or hyperelliptic integrals. Such
investigations would probe the possibility to test the no-hair
theorem by predicting the time delays induced by the
additional parameters (axion, charge, etc.). A degeneracy
between different parameters, however, could arise, invali-
dating an accurate measurement of single parameters. In
particular, in light of the results found here, the presence of
matter surrounding the black hole could affect accurate
measurements of the spin parameter a by pulsar-timing
methods.
In conclusion, our results could serve, in principle, to

better understand the environment in which the binary
system is located by exploiting the timing of the pulsar,
provided that this effect is separable from the others.
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APPENDIX A: MULTIPLE ROOTS

In this appendix we report quadruple, triple and double
roots for the radial potential RðrÞ for a Kiselev metric, in
the presence of dust and radiation. We omit the compu-
tation of simple roots, since it is entirely equivalent to
Eq. (14). Furthermore, quadruple roots remain unchanged
and, hence, equal to the Kerr metric.
For radiation (w ¼ 1=3), the triple roots are

q ¼ 8r3

2M
− ðaþ λÞ2; λ ¼ aþ r2

a

�
3 −

2r
M

�

with the only nonzero real radial coordinate

r ¼ M − ½MðM2 − a2 þ cÞ�1=3:

Double solutions are obtained for

q¼ r2

a2ðM− rÞ2 ½4a
2ðMrþ cÞ− ð3Mr− r2þ 2cÞ2�; ðA1Þ

λ ¼ aþ r2

a

�
1 −

2Δ
rðr −MÞ

�
:

On the boundary of the allowable region (13), q ¼ 0 or
q ¼ −ðλ� aÞ2. The first condition is realized for four real
and distinct radial values, two of which are always positive.
The second condition (q ¼ −ðλþ aÞ2) gives

r ¼ 3M2 þ c
3M

cos

�
1

3
θ1 þ

2πk
3

�
−
A
3

where θ1 and A satisfy

1þ cos θ1 ¼
54M4ðM2 − a2 þ cÞ

3M2 þ c

3

; A ¼ c − 3M2

2M
:

As in the Kerr case, the last condition (q ¼ −ðλ − aÞ2)
implies that r ¼ r�, where r� is the radial position of the
inner and outer horizons.
In the presence of dust (w ¼ 0), for triple roots we get

q ¼ r3

a2

�
8a2ðcþ 2MÞ − rð6M þ 3c − 4rÞ2

ð2M þ cÞ2
�
;

λ ¼ aþ r2

a

�
6M þ 3c − 4r

2M þ c

�
ðA2Þ

as well as

r ¼ 1

2
½2M þ cþ n1=3�;

with n ¼ ð4a2c − c3 þ 8a2M − 6c2M − 12cM2 − 8M3Þ.
Finally, double solutions occur when
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q ¼ a2½16a2Δ − ð4Δþ rð2M − 2rþ cÞÞ2�
a2ð2M − 2rþ cÞ2 ;

λ ¼ aþ r2

a
−

4rΔ
að2r − 2M − cÞ

which leads to two cubic equations when q ¼ 0 and
q ¼ −ðλþ aÞ2, as well as r ¼ r� when q ¼ −ðλ − aÞ2.
Their solutions are, respectively

r ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðcþMÞ

p
cos

�
θ2
3
þ 2πk

3

�
þ 2M þ c;

r ¼ cþ 2M
2

cos

�
θ3
3
þ 2πk

3

�
þ 2M þ c

4
ðA3Þ

where

cos θ2 ¼
ðcþ 2MÞð2a2 þ 2c2 − cM −M2Þ

ðM2 þ cM þ c2Þ3=2 ;

cos θ3 ¼ 1 −
8a2

ðcþ 2MÞ2 :

APPENDIX B: TIME-DELAY INTEGRALS

In the following, we summarize the computation of the
time-delay integral (26) in the presence of a dark energy
component. We also report the final formulas for dust and
radiation, the steps being completely analogous. For the
angular integral (25) we refer to [11].

1. Dark energy

To analytically solve the integral (22), we start with the
change of variable

x2 ¼ ðr − r4Þðr3 − r1Þ
ðr − r3Þðr4 − r1Þ

ðB1Þ

where ri are the roots of the radial potential RðrÞ. This leads
the integral into the form

Tðr;λ;q;cÞ ¼
Z

r

r4

GðrÞ
Δ

ffiffiffiffiffiffiffiffiffi
RðrÞp dr

¼ δ ·
Z

xðrÞ

0

GðxÞ
ΔðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− x2Þð1− k2x2Þ

p dx ðB2Þ

where GðrÞ is defined in Eq. (21) and

k2 ¼ ðr3 − r2Þðr4 − r1Þ
ðr3 − r1Þðr4 − r2Þ

:

We then expand the quantity GðxÞ
Δ in partial fractions:

GðxÞ
Δ

¼ 1

γ3
½4M2 þ ð2Mr − a2c2Þγ þ ðr2 − acλÞγ2�

þ AðrÞ þ BðrÞ

where we have defined

AðrÞ ¼ 8M3rþ − 4a2MðM þ crþÞ þ a3cλ − 2ãrþMλ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2γ

p
ðr − rþÞγ3

;

BðrÞ ¼ −8M3r− þ 4a2MðM þ cr−Þ − a3cλþ 2ãMλr−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2γ

p
ðr − r−Þγ3

:

where ã ¼ að1 − 2cÞ. We then use the following well-
known closed integrals:

Fðx; kÞ ¼
Z

x

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ;

Eðx; kÞ ¼
Z

x

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p dx;

Πðx; l; kÞ ¼
Z

x

0

dx

ð1 − lx2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p ;

having defined the constant l ¼ r1−r4
r1−r3

. Noting that

Z
x

0

−x2

ð1− lx2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− x2Þð1− k2x2Þ

p ¼ 1

l
½Fðx;kÞ−Πðx; l; kÞ�;

and since [31]

1

ð1 − lx2Þ2yðxÞ ¼ C1

d
dx

�
xyðxÞ
1 − lx2

�
þ C2

yðxÞ þ
C3ð1 − k2x2Þ

yðxÞ
þ C4

yðxÞð1 − lx2Þ

(to be integrated), one obtains Eq. (26) (for w ¼ −1=3),
where we also called

Bþ ¼ 8M3rþ−4a2MðMþcrþÞþa3cλ−2ãrþMλ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2γ

p
ðr4− rþÞγ3

; ðB3Þ

B−¼
−8M3r−þ4a2MðMþcr−Þ−a3cλþ2ãMλr−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2γ

p
ðr4−r−Þγ3

ðB4Þ

where

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2γ

p
γ

are the positions of the horizons in the case w ¼ −1=3. The
presence of diverging parts for r → ∞ in Πðx; l; kÞ andffiffiffiffiffiffiffi

RðrÞ
p
r−r3

can be isolated by exploiting the relation
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Πðx; l; kÞ ¼ Fðx; kÞ − Π
�
x;
k2

l
; k

�
þ lnðZÞ

2P
ðB5Þ

with

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þð1 − k2x2Þ

p
þ Pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − x2Þð1 − k2x2Þ
p

− Px
;

P2 ¼ ðl − 1Þðl − k2Þ
l

¼ ðr3 − r4Þ2
ðr4 − r2Þðr3 − r1Þ

: ðB6Þ

Therefore, Eq. (26) becomes

Trðr; λ; q; cÞ ¼ δ ·

�
Fðx; kÞ ·

�
4M2γ−3 − a2c2γ−2 − acλγ−1 þ 2Mr3γ−2 þ

1

2
γ−1½r1ðr3 − r4Þ þ r3ðr3 þ r4Þ�

þ Bþl
lþ

þ B−l
l−

þ 2Mðr4 − r3Þγ−2
�
þ Eðx; kÞ

�
−
1

2
γ−1ðr4 − r2Þðr3 − r1Þ

�

− Π
�
x;
k2

l
; k

�
ð2Mr4γ−2 − 2Mr3γ−2Þ þ Πðx; lþ; kÞ

�
Bþ −

lBþ
lþ

�
þ Πðx; l−; kÞ

�
B− −

lB−

l−

��

þ 2Mδγ−2ðr4 − r3Þ
lnðZÞ
2P

þ
ffiffiffiffi
R

p

r − r3
γ−1; ðB7Þ

where the last two terms are divergent when r → ∞,

ffiffiffiffiffiffiffiffiffi
RðrÞp

r − r3
¼ rþ r3 þO

�
1

r

�
; ðB8Þ

lnðZÞ ¼ ln

�
2

r3 þ r4

�
þ lnðrÞ þO

�
1

r

�
: ðB9Þ

For the angular integral (25) as well as for the constants v and w we directly refer to Eqs. (A17)–(A19) in [11].

2. Radiation

In a very similar way we obtain for the radiation case (w ¼ 1=3)

Trðr; λ; q; cÞ ¼ δ ·

�
Fðx; kÞ

�
4M2 þ cþ 2Mr3 þ

1

2
½r1ðr3 − r4Þ þ r3ðr3 þ r4Þ� þ 2Mðr4 − r3Þ þ

Bþl
lþ

þ B−l
l−

�

þ Eðx; kÞ
�
−
1

2
ðr4 − r2Þðr3 − r1Þ

�
− Π

�
x;
k2

l
; k

�
ð2Mðr4 − r3ÞÞ þ Πðx; lþ; kÞ

�
Bþ −

Bþl
lþ

�

þ Πðx; l−; kÞ
�
B− −

B−l
l−

��
þ 2Mδðr4 − r3Þ

lnZ
2P

þ
ffiffiffiffiffiffiffiffiffi
RðrÞp

r − r3
ðB10Þ

where

RðrÞ ¼ ðr2 − 2Mrþ a2 − cÞð−q − λ2 − a2 þ 2aλÞ þ ðr2 þ a2 − λaÞ2; ðB11Þ

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ c

p
;

BðrÞ ¼ c2 þ 4M2ðc − a2Þ þ 4cMrþ 8M3r − aλðcþ 2MrÞ
2ðr4 − rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 þ c

p ;

Bþ ¼ BðrþÞ; B− ¼ −Bðr−Þ: ðB12Þ
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Finally, the φ coordinate is given in the integral form

φa − φe ¼
Z
γr

2Mra − a2λþ ac

Δ
ffiffiffiffiffiffiffiffiffi
RðrÞp drþ 2λFðx; kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr4 − r2Þðr3 − r1Þ

p : ðB13Þ

3. Dust

As done in the previous section, the time delay in the presence of dust (w ¼ 0) reads as

Trðr; λ; q; cÞ ¼ δ ·

�
Fðx; kÞ

�
4M2 þ 4cM þ c2 þ r3ð2M þ cÞ þ ð2M þ cÞðr4 − r3Þ

þ 1

2
½r1ðr3 − r4Þ þ r3ðr3 þ r4Þ� þ

Bþl
lþ

þ B−l
l−

�
þ Eðx; kÞ

�
−
1

2
ðr4 − r2Þðr3 − r1Þ

�

− Π
�
x;
k2

l
; k

�
ð2M þ cÞðr4 − r3Þ þ Πðx; lþ; kÞ

�
Bþ −

lBþ
lþ

�
þ Πðx; l−; kÞ

�
B− −

lB−

l−

��

þ δð2M þ cÞðr4 − r3Þ
lnZ
2P

þ
ffiffiffiffiffiffiffiffiffi
RðrÞp

r − r3
ðB14Þ

where now

RðrÞ ¼ −ðr2 − 2Mrþ a2 − crÞðqþ λ2 þ a2 − 2aλÞ þ ðr2 þ a2 − λaÞ2; ðB15Þ

r� ¼ 1

2
½cþ 2M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − 4a2 þ 4cM þ c2

p
�;

BðrÞ ¼ ðcþ 2MÞ½−a2ðcþ 2MÞ þ ðcþ 2MÞ2r − aλr�
ðr4 − rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M þ cÞ2 − 4a2

p ;

Bþ ¼ BðrþÞ; B− ¼ −Bðr−Þ: ðB16Þ

Finally, the φ coordinate is given in the integral form

φa − φe ¼
Z
γr

ð2Maþ acÞr − a2λ

Δ
ffiffiffiffiffiffiffiffiffi
RðrÞp drþ 2λFðx; kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr4 − r2Þðr3 − r1Þ

p : ðB17Þ
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Petty, J. Afonso, N. Fernandez, K. A. Nishimura, C.
Pearson, L. Wang, D. L. Clements, A. Efstathiou, E.
Hatziminaoglou, M. Lacy, C. McPartland, L. K.
Pitchford, N. Sakai, and J. Weiner, Observational evidence
for cosmological coupling of black holes and its implica-
tions for an astrophysical source of dark energy, Astrophys.
J. Lett. 944, L31 (2023).

[17] V. V. Kiselev, Quintessential solution of dark matter rotation
curves and its simulation by extra dimensions, arXiv:gr-qc/
0303031.

[18] S. G. Ghosh, Rotating black hole and quintessence, Eur.
Phys. J. C 76, 222 (2016).

[19] B. Toshmatov, Z. Stuchlík, and B. Ahmedov, Rotating black
hole solutions with quintessential energy, Eur. Phys. J. Plus
132, 98 (2017).

[20] F. Melia, The cosmic equation of state, Astrophys. Space
Sci. 356, 393 (2015).

[21] A. Carleo, G. Lambiase, and L. Mastrototaro, Energy
extraction via magnetic reconnection in Lorentz breaking
Kerr–Sen and Kiselev black holes, Eur. Phys. J. C 82, 776
(2022).

[22] K. Akiyama et al. (Event Horizon Telescope Collaboration),
First M87 Event Horizon Telescope results. I. The shadow
of the supermassive black hole, Astrophys. J. Lett. 875, L1
(2019).

[23] B. Pratap Singh, Rotating charged black holes shadow in
quintessence, Ann. Phys. (Amsterdam) 441, 168892 (2022).

[24] B. Carter, Global structure of the Kerr family of gravita-
tional fields, Phys. Rev. 174, 1559 (1968).

[25] S. E. Gralla and A. Lupsasca, Null geodesics of the Kerr
exterior, Phys. Rev. D 101, 044032 (2020).

[26] J. Dexter and E. Agol, A fast new public code for computing
photon orbits in a Kerr spacetime, Astrophys. J. 696, 1616
(2009).

[27] R. Blandford and S. A. Teukolsky, Arrival-time analysis for
a pulsar in a binary system, Astrophys. J. 205, 580 (1976).

[28] P. Torne, G. Desvignes, R. P. Eatough, M. Kramer, R.
Karuppusamy, K. Liu, A. Noutsos, R. Wharton, C.
Kramer, S. Navarro, G. Paubert, S. Sanchez, M. Sanchez-
Portal, K. F. Schuster, H. Falcke, and L. Rezzolla, Searching
for pulsars in the galactic centre at 3 and 2 mm, Astron.
Astrophys. 650, A95 (2021).

[29] E. Pfahl and A. Loeb, Probing the spacetime around
Sagittarius A* with radio pulsars, Astrophys. J. 615, 253
(2004).

[30] F. Yusef-Zadeh, R. Diesing, M. Wardle, L. O. Sjouwerman,
M. Royster, W. D. Cotton, D. Roberts, and C. Heinke,
Radio continuum emission from the magnetar sgr J1745-
2900: Interaction with gas orbiting SgrA*, Astrophys. J.
811, L35 (2015).

[31] R. Boas, Jr., Higher transcendental functions, vols. I and II,
Science 120, 302 (1954).

AMODIO CARLEO and BILEL BEN-SALEM PHYS. REV. D 108, 124027 (2023)

124027-16

https://doi.org/10.1111/j.1365-2966.2006.10870.x
https://doi.org/10.1111/j.1365-2966.2006.10870.x
https://doi.org/10.1142/S0218271815300189
https://doi.org/10.1142/S0218271815300189
https://doi.org/10.1093/mnras/stac2337
https://doi.org/10.1093/mnras/stac2337
https://doi.org/10.1007/s10714-019-2517-2
https://doi.org/10.1007/s10714-019-2517-2
https://doi.org/10.3847/1538-4357/aa8f47
https://doi.org/10.1093/mnras/stz845
https://doi.org/10.1093/mnras/stz845
https://doi.org/10.3847/1538-4357/acac2e
https://doi.org/10.3847/2041-8213/acb704
https://doi.org/10.3847/2041-8213/acb704
https://arXiv.org/abs/gr-qc/0303031
https://arXiv.org/abs/gr-qc/0303031
https://doi.org/10.1140/epjc/s10052-016-4051-7
https://doi.org/10.1140/epjc/s10052-016-4051-7
https://doi.org/10.1140/epjp/i2017-11373-4
https://doi.org/10.1140/epjp/i2017-11373-4
https://doi.org/10.1007/s10509-014-2211-5
https://doi.org/10.1007/s10509-014-2211-5
https://doi.org/10.1140/epjc/s10052-022-10751-w
https://doi.org/10.1140/epjc/s10052-022-10751-w
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.1016/j.aop.2022.168892
https://doi.org/10.1103/PhysRev.174.1559
https://doi.org/10.1103/PhysRevD.101.044032
https://doi.org/10.1088/0004-637X/696/2/1616
https://doi.org/10.1088/0004-637X/696/2/1616
https://doi.org/10.1086/154315
https://doi.org/10.1051/0004-6361/202140775
https://doi.org/10.1051/0004-6361/202140775
https://doi.org/10.1086/423975
https://doi.org/10.1086/423975
https://doi.org/10.1088/2041-8205/811/2/L35
https://doi.org/10.1088/2041-8205/811/2/L35
https://doi.org/10.1126/science.120.3112.302.c

