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A new, exact and analytical class of accelerating and charged black holes is built, in the Einstein-
Maxwell theory, thanks to the Harrison transformation. The diagonal metric does not belong to the Petrov
type D classification, therefore it is not part of the Plebanski-Demianski spacetimes. The simplest subcase
of this family recovers the Reissner-Nordstrom black hole in the vanishing acceleration limit and the
standard C-metric in the limit of null electric charge. More general cases can have two independent electric
charges, which can be tuned as desired, even to remain with an uncharged black hole, such as Petrov type I
Schwarzschild, embedded in an accelerating charged Rindler background. These accelerating black holes
can be considered as a limit of charged binary systems. Conical singularities can be possibly removed in
extremal configurations. The entropy of the conformal field theory model dual to the extreme black hole is
obtained from near horizon analysis. Magnetic, dyonic, NUTty and Kerr-like extensions are also discussed.
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I. INTRODUCTION

Accelerating black holes usually are considered to fall
into the Plebanski-Demianski family of solutions [1], thus
they belong to the type D in the Petrov classification.1 Only
recently it has been shown that accelerating Taub-NUT
black holes, first found in [5], are of type I [6]. Then in [7] it
has been shown that actually all the black holes of the
Plebanski-Demianski class can be generalized to type I and
endowed with a NUT charge thanks to the Ehlers trans-
formation. From a physical point of view, it seems that the
Ehlers map also affects the accelerating horizon embedding
the initial black hole into a Rindler-NUT background.
It is worth noting that a subclass of Plebanski-Demianski
metrics can simultaneously have acceleration and NUT
charge; these are the solutions with non-null angular
momentum. However, as shown in [7], NUTTy solutions
with angular momentum and acceleration generated by the
Ehlers transformation are of a different kind with respect to
the usual ones, indeed they differ even on the Petrov type.
This fact does not happen without the accelerating horizon;
for instance, the Harrison transformation maps the Kerr
metric into the Kerr-NUT or maps the Kerr-NUT in itself.
A transformation similar to the Ehlers for axisymmetric

and stationary spacetimes is known, the Harrison trans-
formation. Both transformations are nontrivial Lie-point

symmetries of the Ernst equation, which give an alternative
(and equivalent to the Einstein-Maxwell equations)
description of fields for the theory of general relativity
in the presence of two commuting Killing vectors. These
symmetries of the Ernst equations allow one to generate
basically all solutions of the theory by applying them to an
initial given solution, which is denominated as seed. The
Ehlers transformation is known to rotate the seed mass
into the gravitomagnetic mass [7–9], basically adding the
NUT charge to a massive solution. On the other hand, the
Harrison transformation is known to add the electromag-
netic charge to the seed. It is well known that it can generate
from the Schwarzschild seed the Reissner-Nordstrom black
hole or to charge the double static black hole to get a
charged Bach-Weyl solution [10].
Because of the similarities between the Ehlers and the

Harrison transformation and since the nontrivial and non-
intuitive behavior the former transformation has in the
presence of an accelerating horizon, a natural question
arises: What is the effect of the Harrison transformation on
accelerating metrics? What one naively expects is that the
Harrison symmetry acting on the C-metric should generate
the well-known charged C-metric. Nevertheless, if the
analogy with the Ehlers transformation is strong, we
may encounter some nonintuitive and novel results. This
matter is discussed in detail in Sec. III, for a simple case in
the presence of electrical charge only; also the possible
removal of the conical singularity typically affecting the
accelerating black holes is discussed. For the dyonic case
see appendix A, which also contains some details on the
nature of the Harrison transformation and a proposal for
an enhanced version of it. In Sec. IV we combine both the
Ehlers and the Harrison maps to build more general
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1An accelerating black hole embedded in external gravitational

[2] or electromagnetic [3] backgrounds or multi-black-hole
configurations [4] were already known to be of more general
type with respect to the D type, however here we are referring
only to accelerating metrics that model a black hole with a
Rindler horizon.
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solutions, looking for possible connections with the
charged and NUTty type I black hole of [7]. We start, in
the next section, with a very brief review of the Ernst
equations and the Harrison transformation.

II. ERNST EQUATIONS AND THE HARRISON
TRANSFORMATION

A. Electrovacuum Ernst equations

Consider general relativity coupled with a Maxwell
electromagnetic field in four spacetime dimensions. The
theory is governed by the Einstein-Hilbert action

I½gμν; Aμ� ¼ −
1

16πG

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − FμνFμνÞ;

whose variation with respect to the metric gμν and electro-
magnetic vector potential Aμ gives the Einstein-Maxwell
field equations

Rμν −
R
2
gμν ¼ FμρFν

ρ −
1

4
gμνFρσFρσ; ð2:1Þ

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0: ð2:2Þ

The electromagnetic potential Aμ defines, as usual, the
Faraday tensor such that Fμν ¼ ∂μAν − ∂νAμ. We focus on
gauge fields which preserve the axisymmetric and sta-
tionary symmetry of the metric, therefore we pick the
vector potential as follows:

Aμ ¼ ½Atðρ; zÞ; 0; 0; Aφðρ; zÞ�: ð2:3Þ

For the theory under consideration, the most general four-
dimensional axisymmetric and stationary spacetime, which
thus possesses two commuting Killing vector fields
ð∂t; ∂φÞ, is the Lewis-Weyl-Papapetrou metric

ds2 ¼ −fðdt − ωdφÞ2 þ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2�:
ð2:4Þ

All of the functions of the metric f, ω, γ, of the electric and
magnetic potentials At; Aφ depend only on the non-Killing
coordinates (ρ, z), in order to respect the above symmetry
requirements. Ernst has shown in [11] that Einstein-
Maxwell field equations (2.1) and (2.2) are essentially
equivalent to the complex equations,

ðReE þ jΦj2Þ∇2E ¼ ð∇⃗E þ 2Φ�∇⃗ΦÞ · ∇⃗E; ð2:5Þ

ðReE þ jΦj2Þ∇2Φ ¼ ð∇⃗E þ 2Φ�∇⃗ΦÞ · ∇⃗Φ: ð2:6Þ

The electromagnetic and gravitational Ernst potentials,
related to the metric (2.4) and electromagnetic potential

(2.3), are complex functions of ρ and z, respectively,
defined by

Φ ≔ At þ iÃφ; E ≔ f −ΦΦ� þ ih; ð2:7Þ

where Ãtðρ; zÞ and hðρ; zÞ stem from the following defi-
nitions2:

∇!Ãφ ≔
f
ρ
e⃗φ × ð∇!Aφ þ ω∇!AtÞ; ð2:8Þ

∇!h ≔ −
f2

ρ
e⃗φ × ∇!ω − 2 ImðΦ�∇!ΦÞ: ð2:9Þ

In principle, an extra couple of differential equations should
be taken into account to determine γðρ; zÞ. These are not
included in the Ernst equations (2.1) and (2.2), because
they are completely decoupled from the main system, so
they can be subsequently considered after the functions
f;ω; At; Aφ are established. Then these equations reduce to
a pair of integrals, which can be solved to obtain the
remaining unknown γðρ; zÞ, see [9] for details. In any case,
in the case under consideration in this article, the γ function
remains fixed, thus it has not to be found. More generally it
can be proven that under a continuous symmetry trans-
formation of the Ernst system also the integral equations for
γ remain invariant, so also γ does not change.

B. Harrison transformation

The Ernst equations (2.5) and (2.6) enjoy the invariance
of the SOð2; 1Þ group of Lie-point symmetries. The
symmetry transformation we will mainly focus on in this
article is the Harrison map,

E→ Ē¼ E

1−2α�Φ−αα�E
; Φ→ Φ̄¼ ΦþαE

1−2α�Φ−αα�E
:

ð2:10Þ

It is easy to check that this transformation leaves the Ernst
equations invariant. The fundamental property of symmetry
transformations of Ernst equations is that they are able to
bring a given solution of the Einstein and Maxwell
equations (2.1) and (2.2), which is called seed, into another
solution, possibly physically inequivalent to the initial one.
In practice, the Harrison transformation (2.10) acts on an
initial seed written in terms of the complex Ernst potentials
ðE;ΦÞ and maps it into another couple of Ernst potentials
ðĒ; Φ̄Þ. This process is able to generate new solutions
without integrating the field equations, which is a nontrivial
fact because they are a set of coupled partial differential
equations.

2The following ordering (e⃗ρ; e⃗φ; e⃗z) of the three-dimensional
basis has been chosen.
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Actually Hauser and Ernst have proven the Geroch
conjecture, which states that any axisymmetric and station-
ery solution of general relativity can be generated from the
symmetries of the Ernst equations [12].
In particular, the Harrison transformation is able to add

an electromagnetic field to a seed spacetime. For instance,
it can add monopolar electric charge to the Schwarzschild
black hole to transform it into the Reissner-Nordstrom
solution.3

Also Ernst in [3] applied the Harrison transformation to
the accelerating Reissner-Nordstrom black hole to obtain a
charged C-metric in a Melvin fluxtube. The difference with
respect to the present work is that Ernst did not act with the
Harrison transformation on the charged C-metric cast in the
Lewis-Weyl-Papapetrou metric (2.4), but on its conjugate
version, obtaining a completely different action of the
Harrison transformation. For more information about the
relation between the Lewis-Weyl-Papapetrou metric and its
conjugate (or double Wick rotation) in the context of Ernst
generating technique, see [14].

III. REISSNER-NORDSTROM BLACK HOLE IN A
CHARGED RINDLER BACKGROUND

A. Generation of the new solution through the Harrison
transformation

Our objective is to build a black hole solution in an
electromagnetic Rindler background, a generalization of the
C-metric, where the accelerating horizon carries some extra
features. In order to do so we start choosing, as initial seed,
the acceleratingReissner-Nordstromblack holewhich can be
written in terms of the Lewis-Weyl-Papapetrou metric in
spherical-like coordinates (t; r; x ¼ cos θ;φ)4 as

ds2 ¼ −fðr; xÞ½dt − ωðr; xÞdφ�2

þ 1

fðr; xÞ
�
e2γðr;xÞ

�
dr2

ΔrðrÞ
þ dx2

ΔxðxÞ
�
þ ρ2ðr; xÞdφ2

�
;

ð3:1Þ

where5

fðr; xÞ ≔ Δr

r2Ω2
; ð3:2Þ

ωðr; xÞ ≔ 0; ð3:3Þ

γðr; xÞ ≔ 1

2
log

�
Δr

Ω4

�
; ð3:4Þ

ρðr; xÞ ≔
ffiffiffiffiffiffi
Δr

p ffiffiffiffiffiffi
Δx

p
Ω2

; ð3:5Þ

ΔrðrÞ ≔ ð1 − A2r2Þðr2 − 2mrþ e2 þ p2Þ; ð3:6Þ

ΔxðxÞ ≔ ð1 − x2Þ½1þ 2mAxþ A2x2ðe2 þ p2Þ�; ð3:7Þ

Ωðr; xÞ ≔ 1þ Arx; ð3:8Þ

and with the dyonic electromagnetic potential of the form

Aμ ¼
�
−
e
r
; 0; 0; px

�
: ð3:9Þ

The physical parameters m, A, e, p are related to the mass,
acceleration, electric and magnetic charge, respectively. The
transformation that has been used to pass from the Weyl
cylindrical coordinates (ρ, z) to the spherical ones (r, x) is
determined by (3.5) above and the remaining coordinate,

zðr; xÞ ¼ ðArþ xÞ½r −mð1 − ArxÞ − Axðe2 þ p2Þ�
Ω2

þ z0:

ð3:10Þ

Thanks to the definitions of the Ernst complex potentials
(2.7)–(2.9) we can derive6

Ãφðr; xÞ ¼ −
p
r
; ð3:11Þ

hðr; xÞ ¼ h0; ð3:12Þ

Φðr; xÞ ¼ −
eþ ip

r
; ð3:13Þ

Eðr; xÞ ¼ Δr

r2Ω2
−
e2 þ p2

r2
: ð3:14Þ

The action of the Harrison transformation (2.10) on the seed
potentials (3.13) and (3.14) generates the new solution,
which can be explicitly written in terms of the Ernst complex
fields ðĒ; Φ̄Þ, as follows:

Ēðr; xÞ ¼ q2Ω2 − Δr

s2Δr − ½s2q2 þ 2sðeþ ipÞrþ r2�Ω2
; ð3:15Þ

Φ̄ðr; xÞ ¼ ½sq2 þ rðeþ ipÞ�Ω2 − sΔr

s2Δr − ½s2q2 þ 2sðeþ ipÞrþ r2�Ω2
: ð3:16Þ

3See Sec. III D and Appendix B of [10] for more details and for
the proof that Harrison includes the Kramer-Neugebauer trans-
formation. The Harrison transformation can be used also, but in a
different setting, to embed the seed spacetime in the electromag-
netic Melvin universe [13].

4The range of angular coordinates is x∈ ½−1; 1� and φ∈ ½0; 2π�.
5The γ function considered here does not correspond exactly

with the one in (2.4). In these coordinates it is more concise if γ
absorbs also part of the coordinate transformation ðρ; zÞ → ðr; xÞ.

6We recall the form of the gradient in these spherical-like

coordinates ðr; xÞ: ∇!f ∝
ffiffiffiffiffiffi
Δr

p
e⃗r∂rf þ ffiffiffiffiffiffi

Δx
p

e⃗x∂xf.
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Note that for simplicity we have chosen a real parameter to
label the Harrison transformation (2.10), that is α ¼ s and
that the integrating constant h0 can be fixed to zero without
losing physical generality, while q ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ p2

p
. An imagi-

nary component in α would add a further magnetic field.
The above Ernst potentials already represent the sought

solution, the accelerating Reissner-Nordstrom black hole
endowed with a dyonic electromagnetic field and an addi-
tional electromagnetic charge encoded in s. By construction

they fulfill all of theErnst equations (2.5) and (2.6).However,
in order to express the new solution in the metric and
potential form, one has to appeal again to the definitions
(2.7)–(2.9). To keep the model as simple as possible, we
chose to set the seed magnetic charge to zero, i.e. p ¼ 0, in
any case the general solution for p ≠ 0 can be found in
AppendixA.Vanishingp also has the advantage of removing
issues related with the Dirac string andmagnetic monopoles.
The line element after the transformation reads

ds2 ¼ −
fðr; xÞdt2
jΛðr; xÞj2 þ

jΛðr; xÞj2
fðr; xÞ

�
e2γðr;xÞ

�
dr2

ΔrðrÞ
þ dx2

ΔxðxÞ
�
þ ρ2ðr; xÞdφ2

�
: ð3:17Þ

So basically in the metric only f changes by rescaling by a factor jΛj2 ¼ j1 − 2sΦ − s2Ej2; while the only non-null
component of the electromagnetic vector potential is the electric one,

At ¼
Φþ sE

Λ
¼ sðr − 2mÞð1 − A2r2Þ − eð1þ ArxÞ2 − Ase2½2xþ Arð1þ x2Þ�

rþ s½2eþ A2se2r − sðr − 2mÞð1 − A2r2Þ� þ Axð2þ rAxÞðseþ rÞ2 : ð3:18Þ

The metric remains diagonal in this case, but as can be seen
in Appendix A, when the intrinsic magnetic charge of the
seed black hole is non-null, for p ≠ 0, it couples with the
electric charge of the charged Rindler background gen-
erating a stationary rotation, thus ωðr; xÞ ≠ 0 after the
Harrison transformation. That is a manifestation of the
Lorentz force: the generalized Reissner-Nordstrom black
hole rotates, but with zero angular momentum. The rotation
is therefore not encoded in the angular dipole, but in the
subsequent angular multipole moments, which in general
do not necessarily contribute to the angular momentum.7

This kind of behavior resembles what happens with
magnetized (accelerating) black holes [13,15], where we
can have a rotating (accelerating) Reissner-Nordstrom
black hole which rotates because of the interaction with
the electromagnetic background.
The greatest peculiarity of this spacetime described in

Eqs. (3.17) and (3.18) is that it has two independent electric
charges: e and s. In the limit of vanishing s we recover
the seed, which is the standard accelerating Reissner-
Nordstrom black hole, but for s ≠ 0 (even if e ¼ 0) we
have a novel spacetime, which still represents an accel-
erating and charged black hole. First of all, to prove that the
novel metric is inequivalent with respect to the known
accelerating Reissner-Nordstrom one, it is sufficient to

check if it does not belong to the same type according to the
Petrov classification.

B. Petrov type I

It is well known that the standard accelerating Reissner-
Nordstrom black hole, s ¼ 0, in our solution [(3.17) and
(3.18)] is part of the Plebanski-Demianski family of
spacetimes, therefore it has to belong to the type D of
the Petrov classification.
If the new accelerating and charged Reissner-Nordstrom

black hole does not fall into the D type, then the generated
metric cannot be just a diffeomorphism of the standard
case. So we compute the scalar invariants related to the
Weyl tensor to check the algebraic class of the solution
(3.17) and (3.18). In particular, we focus on the scalar
invariant,

I3 − 27J2; ð3:19Þ

where

I ¼ Ψ0Ψ4 − 4Ψ1Ψ3 þ 3Ψ2
2; J ¼ det

0
B@

Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

1
CA:

ð3:20Þ

If the quantity in (3.19) is null the spacetime is algebraically
special. After evaluating the scalar invariant, we conclude
that the spacetime generated in this section is, generically,
not of type D, but algebraically general, that is of Petrov
type I. In fact, apart from the seed case, for s ¼ 0, and some

7It may seem counterintuitive because the most famous
rotating solution is probably the Kerr metric, where the angular
multipole moments are all determined as functions of the angular
momentum, therefore switching off one angular multipole is
sufficient to switch all of them. However, this is not the case for
more general solutions: multipole moments of different orders
can be independent.
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other known subcases (such as the nonaccelerating spe-
cialization A ¼ 0), the full solution is not of type D, neither
for e ¼ 0 (and p ¼ 0). On the other hand, the accelerating
s-charged background, defined by the absence of the black
hole m ¼ 0 (and e ¼ 0 ¼ p), remains of type D, that is
because the scalar invariant in Eq. (3.19) is null and also8

I ≠ J ¼ 0; ð3:21Þ

K¼Ψ1Ψ2
4−3Ψ4Ψ3Ψ2þ2Ψ3

3¼ 0; N¼ 12L2−Ψ2
4I¼ 0;

ð3:22Þ

with

L ¼ Ψ2Ψ4 − Ψ2
3: ð3:23Þ

The definitions of the Newman-Penrose scalars Ψi neces-
sary to compute the above scalar invariants can be found
below:

Ψ0 ≔ Cμνσρkμmνkσmρ;

Ψ1 ≔ Cμνσρkμlνkσmρ;

Ψ2 ≔ Cμνσρkμmνm̄σlρ;

Ψ3 ≔ Cμνσρlμkνlσm̄ρ;

Ψ4 ≔ Cμνσρlμm̄νlσm̄ρ: ð3:24Þ

These five complex scalar functions characterize the Weyl
tensor. They can be explicitly computed after defining a null
Newman-Penrose tetrad. We have chosen the following
tetrad:

k ¼
�

1ffiffiffiffiffiffiffiffiffiffiffi
−2gtt

p ∂t þ
1ffiffiffiffiffiffiffiffiffi
2gxx

p ∂x

�
; ð3:25Þ

l ¼
�

1ffiffiffiffiffiffiffiffiffiffiffi
−2gtt

p ∂t −
1ffiffiffiffiffiffiffiffiffi
2gxx

p ∂x

�
; ð3:26Þ

m ¼
�

gtφffiffiffiffiffiffiffiffiffiffiffi
2Dgtt

p ∂t þ
iffiffiffiffiffiffiffiffi
2grr

p ∂r þ
ffiffiffiffiffiffiffi
gtt
2D

r
∂φ

�
; ð3:27Þ

where

D ¼ gttgφφ − g2tφ:

The non-null scalar products between these vectors are just
kμlμ ¼ −1 and mμm̄μ ¼ 1.

C. Conical singularities

It is well known that accelerating black hole metrics
generically present conical singularities on the symmetry
axis.We inspect possible conicity by taking the ratio between
the small circumference around the azimuthal semiaxes z
(along both north and south directions, i.e. θ ¼ π and θ ¼ 0),
and its radius. If this ratio is equal to 2π the spacetime is free
from angular deficit or excess. In the set of coordinates9 we
are using here this quantity can be computed by the following
limits:

north circumference
radius

¼ lim
x→1

Z
2π

0

1

1 − x2

ffiffiffiffiffiffiffi
gφφ
gxx

r
dφ

¼ 2πð1þ A2e2 þ 2AmÞ; ð3:28Þ

south circumference
radius

¼ lim
x→−1

Z
2π

0

1

1 − x2

ffiffiffiffiffiffiffi
gφφ
gxx

r
dφ

¼ 2πð1þ A2e2 − 2AmÞ: ð3:29Þ

Even though the parametrization could be improved and we
have a certain freedom in the range of the azimuthal angle φ,
we can already appreciate from Eqs. (3.28) and (3.29) how
the onlyway both of the above limits are equal to 2π is for the
trivial nonaccelerating case A ¼ 0, or the equally trivial no
black hole seed mass casem ¼ 0. Therefore, as the standard
C-metric these exotic C-metrics described in (3.17) and
(3.18) still seem plagued by nonremovable conical singu-
larities. Anyway we will come back to this computation
afterwards, when in possession of a better physical para-
metrization, in Secs. III E and III G. As for the standard case,
by properly rescaling the coordinateφ, we can surely remove
the north pole nodal singularity or alternatively the one on the
south. Eventually the introduction of external fields, as done
in [3,17] or [18], can provide a source for the acceleration and
so it can cure both conicity simultaneously to remain with a
regularmetric and a completely smoothmanifold, outside the
event horizon.
Of course the spacetime considered in this section is

diagonal, therefore this subcase with p ¼ 0 is not plagued
with NUTty singularity or Misner strings. However, the
more general case of the full solution in Appendix A can be
affected both by Misner and Dirac strings.

D. Reparametrization

Usually, after the Harrison transformation, a reparamet-
rization of the solution in order to better appreciate its
physical characteristics is useful. As discussed above, in the
case of no acceleration, the solution remains of type D,
therefore, because of the black hole uniqueness theorems,
cannot be anything different from the only asymptotically8If I ¼ J ¼ 0, the vanishing of the scalar invariant in (3.19)

could imply a metric of type III or N, while if I ¼ J ¼ 0 does not
hold [but (3.19) holds] the spacetime could be II (if K ¼ N ¼ 0)
or else D, see Fig. 9.1 of [16] for details.

9For further details about the conical singularity in these
coordinates, see [17].
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flat charged black hole of the Einstein-Maxwell theory:
Reissner-Nordstrom (RN). To see it explicitly we can do, in
the solution (3.17) and (3.18), the following change of
radial coordinate, a time rescaling and some reparametri-
zation of the integrating constant as follows:

r →
r̄ð1 − s2Þ þ 2sðsm̄ − ēÞ

ð1 − s2Þ2 ; m →
m̄ð1þ s2Þ − 2sē

ð1 − s2Þ2 ;

ð3:30Þ

t → t̄ð1 − s2Þ; e →
ēð1þ s2Þ − 2sm̄

ð1 − s2Þ2 : ð3:31Þ

The nonaccelerating solution then becomes precisely the
electric RN black hole, whose metric and electric potential
are, respectively,

ds2 ¼ −
�
1 −

2m̄
r̄

þ ē2

r̄2

�
dt̄2 þ dr̄2

ð1 − 2m̄
r̄ þ ē2

r̄2Þ

þ r̄2dx2

1 − x2
þ r̄2ð1 − x2Þdφ2; ð3:32Þ

Aμ ¼
�
s −

ē
r̄
; 0; 0; 0

�
: ð3:33Þ

Thus the Harrison transformation, in this nonaccelerating
case, acts practically as an identity, mapping RN in itself.
The electric field brought by s is not independent of the
seed one: the two charges are basically the same. Note,
however, that in case the seed would be uncharged, that is if
we would have applied the Harrison to the Schwarzschild
black hole, i.e. e ¼ 0, we would still have obtained the RN
solution, in that case the parameter introduced by the
Harrison transformation would have been the only and total
electric charge, hence nontrivial; see Sec. III I for more
details. In that case (for e ¼ 0) the Harrison would not have
been an identity. We will see as, in the presence of the
acceleration, the charge parameter s is, in general, inde-
pendent on the seed one (e).
The choice of the new parameters m̄ and ē is significant

also when the acceleration is non-null as we will see below
computing the electric charge of the black hole and
inspecting the position of the horizons.
It is easy to realize that the reparametrization [(3.30) and

(3.31)] consistently reduces to the old one for vanishing
s∶ m̄ → m; r̄ → r;…. Moreover, it does not change a
possible regularization of the conical singularity, as found
in (3.28) and (3.29), for real values of the constants and
under the requirement of preserving the event horizon,
which means m̄ > ē. For instance, the constraint for having
a symmetric conicity on the axis (necessary prerequisite to
regularize the both conical excesses or defects thanks also
to the freedom in the φ angle range) gives

s ¼ ē�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ē2 − m̄2

p

m̄2
; ð3:34Þ

which is incompatible with the presence of an nonextremal
event horizon. Indeed, in the presence of acceleration, the
horizons are determined by the loci of the function Δr.
In the new parametrization it means the inner and outer
horizons and the accelerating horizons are

r̄� ¼ m̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2

p
;

r̄A� ¼ �1� s4 ∓ 2Asē ∓ 2s2ð1þ Am̄Þ
Að1 − s2Þ : ð3:35Þ

A proper reparametrization of s, as below, better clarifies
also the position of the accelerating horizon. Anyway it
depends on the case under consideration.

E. e= 0: Discharged seed

It is illustrative to write the complete metric in the new
parametrization. In order to keep the procedure as simple as
possible, for the moment, we leave the initial charge of the
black hole e ¼ p ¼ 0. In this way the formal analogy with
the Ehlers transformation and the accelerating NUT case is
even more apparent10 [6,7].
When the intrinsic charge of the seed is zero, the

parametrization (3.30) and (3.31) becomes

r →
ðr̄ − r̄−Þr̄þ
r̄þ − r̄−

; m →
r̄þ
2
; A →

�
1 −

r̄−
r̄þ

�
Ā;

t →

�
1 −

r̄−
r̄þ

�
t̄; s →

ffiffiffiffiffi
r̄−
r̄þ

s
: ð3:36Þ

Note that now s is not free but is fixed in terms of the
electric charge ē. In particular, when the electric charge
vanishes, s ¼ 0 as expected, and we come back to the seed.
Also we added a convenient rescaling of the acceleration
parameter A. Thanks to this coordinate and parameters
modification, the metric takes the following simple form11:

ds2 ¼ 1

Ω2

�
−
Δr

R2
dt̄2 þR2

Δr
dr̄2 þR2

�
dx2

Δx
þ Δxdφ2

��
;

ð3:37Þ

where

Ωðr̄; xÞ ¼ 1 − Āðr̄ − r̄−Þx; ð3:38Þ

10That is because the seed used to generate accelerating
Taub-NUT or the accelerating Reissner-Nordstrom black hole
cannot carry NUT charge.

11A Mathematica file containing this solution is available
between the sources of the arXiv files, for the readers’ convenience.
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Δrðr̄Þ ¼ ðr̄ − r̄þÞðr̄ − r̄−Þ½1 − Āðr̄ − r̄−Þ�; ð3:39Þ

ΔxðxÞ ¼ ð1 − x2Þ½1 − Āðr̄þ − r̄−Þx�; ð3:40Þ

Rðr̄; xÞ ¼ ðr̄ − r̄−Þr̄þ
r̄þ − r̄−

−
r̄−Δr

ðr̄ − r̄−Þðr̄þ − r̄−ÞΩ2
: ð3:41Þ

The electric field that supports the above metric stems from the potential

Aμ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffi

r̄−=r̄þ
p ðr̄− − r̄þÞðr̄ − r̄þÞ½1 − Ā2ðr̄ − r̄−Þ2�

r̄ðr̄− − r̄þÞ − 2ðr̄ − r̄−Þ2r̄þxĀþ ðr̄ − r̄−Þ2½r̄þr̄−ð1þ x2Þ − r̄ðr̄− þ r̄þx2Þ�Ā2
; 0; 0; 0



: ð3:42Þ

For vanishing acceleration parameter, Ā ¼ 0, the solution becomes the Reissner-Nordstrom black hole

ds2 ¼ −
ðr̄ − r̄þÞðr̄ − r̄−Þ

r̄2
dt̄2 þ dr̄2

ðr̄ − r̄þÞðr̄ − r̄−Þ
þ r̄2dx2

1 − x2
þ r̄2ð1 − x2Þdφ2; ð3:43Þ

Aμ ¼
�
cost −

ffiffiffiffiffiffiffiffiffiffi
r̄þr̄−

p
r̄

; 0; 0; 0

�
: ð3:44Þ

For vanishing the electric charge parameter ē ¼ 0 (or equivalently r̄− and r̄þ ¼ 2m), we have the accelerating
Schwarzschild black hole, i.e. the standard C-metric

ds2 ¼
ð1 − r̄þ

r̄ Þð1 − Ā2r̄2Þdt2 þ dr̄2

ð1−r̄þ
r̄ Þð1−Ā2 r̄2Þ þ r̄2dx2

ð1−x2Þð1þĀr̄þxÞ þ r̄2ð1 − x2Þð1þ Ār̄þxÞdφ2

ð1 − Ā r̄ xÞ2 :

Interestingly enough the full solution is not the charged
C-metric but still represents an accelerating Reissner-
Nordstrom black hole. The difference between the two
can be easily verified computing the scalar invariant which
characterizes the Petrov type. While the charged C-metric
is type D, this black hole is of type I.
From a physical perspective, we expect this solution to

be a limit of a charged black hole binary system, as the
one described in [10].12 In fact, on one hand, the standard
C-metric is a limit of the Bach-Weyl binary system, for a
limit where one of the black hole pair grows to infinity,
while maintaining their distance unvaried [19]. On the other
hand, the Harrison transformation is known to equally
charge to both of the sources of a black hole Bach-Weyl
binary [10]. When on top of this picture we act on the
C-metric with the Harrison transformation, we get the
above solution, which therefore models a charged Reissner-
Nordstrom black hole in a charged accelerating back-
ground. Actually it can be demonstrated, see Sec. III J,
that this picture represents the zooming in the proximity of

the event horizon of a binary system, where one of the two
black holes is much larger with respect to the other.
According to this perspective the near horizon limit focuses
on just a portion of the black hole, which is encoded
mathematically in the metric into the Rindler horizon.
Obviously since both of the black holes are charged, also
the accelerating background must carry some information
about that new charge, introduced by the Lie-point trans-
formation, which is responsible for switching the solution
to the general I type.
Note that, in the particular case under consideration in this

subsection, the charge parameter is just one, so the electric
charges of the background and of the black hole are
dependent. However, in the more general solutions in
Eqs. (3.17), (3.18) and (3.48)–(3.51) we have two electric
charges, one for the black hole and the other for the
accelerating background. The standard charged C-metric
therefore is a subcase of the solution (3.17) and (3.18) [the
standard type-D dyonic C-metric version is a subcase of
(A1)–(A3) instead]. To verify this point it is sufficient to
vanish the electric charge of the accelerating background,
which trivially means setting s ¼ 0, so we retrieve the
acceleratingReissner-Nordstrom seed, as in Eqs. (3.1)–(3.9).
The fact that the charged binary system has a special

case, the Majumdar-Papapetrou solution [20], where it is

12However the gravitational external fields in Ref. [10] have to
be considered null, by switching off the parameters related to the
external field.
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possible to find an equilibrium configuration between the
two black holes without introducing other external fields,
suggests to us to give another look to the conical singularity
of the solution in this new parametrization. Indeed when
the binary sources are at equilibrium there are no conical
excess or defects in the spacetime, that is because the
gravitational attraction is balanced by the electromagnetic
repulsion. If our physical interpretation is correct, we
should encounter a similar equilibrium configuration also
in the type I accelerating and charged black hole. In the new
parametrization (3.36) the conical singularities on the north
and the south pole are, respectively,

north circumference
radius

¼ lim
x→1

Z
2π

0

1

1 − x2

ffiffiffiffiffiffiffi
gφφ
gxx

r
dφ

¼ 2π ½1 − Āðr̄þ − r̄−Þ�; ð3:45Þ

south circumference
radius

¼ lim
x→−1

Z
2π

0

1

1 − x2

ffiffiffiffiffiffiffi
gφφ
gxx

r
dφ

¼ 2π ½1þ Āðr̄þ − r̄−Þ�: ð3:46Þ

It is clear that both conical singularities are not present
when the accelerating black hole is extreme, that is when
r̄þ ¼ r̄−. That is not a case, indeed the extremality
condition is the one which characterizes the Majumdar-
Papapetrou binary system. This point further strengthens
the interpretation of these novel accelerating metrics as a
part of a binary system. Anyway, one has to be cautious
regarding how to take this limit and its interpretation
because it represents an extremal point also of the new
barred coordinates and parameters.
Similar considerations will be done in the more general

case where the seed is electrically charged e ≠ 0. Mapping
the conical deficits or excess (3.28) and (3.29) thanks to the
new parametrization (3.30) and (3.31), we still formally
obtain the extremality condition m̄ ¼ ē.13

Curvature scalar invariants for this spacetime display a
divergent behavior near the axis of symmetry, close to the
conformal boundary, as observed for these kinds of metrics
built in [5], so in general their physical interpretation
as black holes is considered dubious. Note, however, that
the generalization constructed, by a combination of the
Harrison and the Ehlers transformations, in Sec. IVare free
from this issue.

F. Black hole electric charge

We want to compute the black hole electric charge Q for
the general accelerating case (3.17) and (3.18). According
to the Stokes theorem the charge passing through the

boundary ∂Σ of a spacelike hypersurface Σ which sur-
rounds the collapsed star14 is given by

Q ¼ −
Z
∂Σ
dφdx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝxxĝφφ

q
nμσνFμν ¼ ē; ð3:47Þ

where n and σ are, respectively, two timelike and spacelike
unitary vectors normal to the boundary of Σ, whose chosen
normalization is nμnμ ¼ −1 and σμσμ ¼ 1. With ĝij we call
the induced metric on the bidimensional surface, for time
and radial coordinate constant. Thus the considered hyper-
surface contains both the electric charge e of the seed and
the one introduced by the Harrison transformation s. These
two electric charges combine and contribute to the full
electric charge, ē, of the newly generated accelerating black
hole. This computation confirms the validity of the para-
metrization, substantially borrowed from the nonaccelerat-
ing case (3.31), to describe the physical properties of the
black hole.
We stress that this is the electric charge of the black hole

only, not of the whole spacetime containing also the
(charged) accelerating background.
This specialization, for p ¼ 0, of the solution we are

considering here has no magnetic field, clearly it has no
magnetic charges, but the dyonic extension reported in
Appendix A carries magnetic charges.

G. e ≠ 0: Two independent electric charges

When we leave nonzero electric charge in the seed
spacetime, the generated solution (3.1)–(3.9) is endowed
with two independent electric charges, the one of the seed e
and the one brought by the Harrison transformation,
encoded in ē (or alternatively s). According to the new
coordinates (3.30) and (3.31) the spacetime can still be
written as in Eq. (3.37) where the metric functions are15

Ωðr̄; xÞ ¼ 1þ Āxðr̄ − r̂−Þ; ð3:48Þ

Δrðr̄Þ ¼ ðr̄ − r̄þÞðr̄ − r̄−Þ½1 − Āðr̄ − r̂−Þ�; ð3:49Þ

ΔxðxÞ ¼ ð1 − x2Þ½1þ Āxðr̄− − r̂−Þ�½1þ Āxðr̄þ − r̂−Þ�;
ð3:50Þ

Rðr̄; xÞ ¼ ðr̄ − r̄−Þr̄þ
r̄þ − r̄−

−
r̄−Δr

ðr̄ − r̄−Þðr̄þ − r̄−ÞΩ2
; ð3:51Þ

and the Harrison parameter s is fixed as function r̄�; r̂− as
follows:

13Although in this case m̄ and ē depends also on the seed initial
charge e.

14In order to have a well defined integral we consider that the
hypersurface Σ does not exceed the accelerating horizon and the
conformal boundary.

15A Mathematica file containing this solution is available
between the sources of the arXiv files, for the readers’ convenience.
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s ¼ r̂−
∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr̄− − r̂−Þðr̄þ − r̂−Þ

p þ ffiffiffiffiffiffiffiffiffiffi
r̄þr̄−

p ; ð3:52Þ

while the electric potential that generalizes the one in (3.42) is

Atðr̄; xÞ ¼
sð1 − s2ÞΔr þ ðr̄ − s

ffiffiffiffiffiffiffiffiffiffi
r̄þr̄−

p Þ½sðr̄− − r̄þÞ − ð1þ s2Þ ffiffiffiffiffiffiffiffiffiffi
r̄þr̄−

p �Ω2

ðr̄ − s
ffiffiffiffiffiffiffiffiffiffi
r̄þr̄−

p Þ2Ω2 − s2Δr
: ð3:53Þ

In case we want to express the solution in terms of the
physical parameters e; ē; m̄, we just need the expression for
the position of the inner and outer horizon r̄�, which
remains formally defined as in (3.35), even though now the
seed charge e modifies ē, and it is convenient to define a
new quantity16

r̂− ≔ m̄ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2 þ e2

p
: ð3:54Þ

On the other hand, the accelerating horizon in the new
parametrization takes a clearer form with respect to (3.35):

r̄A ¼ 1

Ā
þ r̂−: ð3:55Þ

Note that this location of the accelerating horizon holds
also for the uncharged seed case, e ¼ 0, of (3.37)–(3.42),
but there r̂− → r̄−. From the general case, the specific
requirement jēj ¼ jej means that the total charge of the
back hole after the Harrison transformation coincides with
the initial charge of the seed, hence the charging trans-
formation has left unchanged the electric charge, so the
Harrison transformation becomes the identity map. In fact,

in that case, it is easy to infer from (3.54) and (3.52) that
s ¼ 0, thus we remain with the type-D seed, as indicated
also by the fact that the accelerating horizon is not shifted
by a factor r̂−, since r̂− vanishes.
On the other end, for vanishing the acceleration param-

eter Ā, the solution becomes just the standard Reissner-
Nordstrom (with electric charge shifted ē), as in (3.32)
and (3.33).
When the acceleration is nonzero, the fact that ē ≠ e

determines the switch of the Petrov to the general type I.
Hence if ē ¼ 0, we still remain outside the type D, even
though the metric describes a Schwarzschild black hole, but
embedded in a charged accelerating background, as
described below.
An interesting feature which comes with the presence of

a double electric charge comes from the possibility of
equilibrium configurations due to the interplay between the
black hole charge and the electromagnetic field of the
background, which might balance gravity. Actually in this
case the analysis of the conicities, as defined in Eqs. (3.45)
and (3.46), on the north and on the south poles gives,
respectively,

ΔφN
¼

h
1þ e4Ā4 þ 4Ā2ðm̄2 − ē2Þ þ 4Ā

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2 þ e2

p
þ8e2Ā2ð3 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2 þ e2

p
Þ
i
; ð3:56Þ

ΔφS
¼

h
1þ e4Ā4 þ 4Ā2ðm̄2 − ē2Þ − 4Ā

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2 þ e2

p
þ8e2Ā2ð3 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2 þ e2

p
Þ
i
: ð3:57Þ

When Δφ ≠ 2π, the manifold becomes singular for the
presence of conical excesses or deficits. In general, usual
C-metrics, whether charged or not, cannot avoid axial
singularities in both the north and south hemisphere of the
event horizon. Nevertheless, as can be seen from (3.56) and
(3.57), the double charged accelerating black hole has the

notable property that both the conical defects can be
removed from its geometry, as announced in the e ¼ 0
case, because of the interaction between the charged black
hole and the electrical background. A necessary condition
for eliminating both conical singularities simultaneously is
that ΔφN

¼ ΔφS
, which means

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 − ē2 þ e2

p
Āð1þ e2Ā2Þ ¼ 0: ð3:58Þ

Apart from the trivial cases, when there is no black hole or
no acceleration, which are naturally regular, conical sin-
gularities can be removed for m̄2 − ē2 þ e2 ¼ 0. However,

16The similitude with the accelerating black hole with two
NUT charges of [7] is apparent also in the parametrization. In that
case the seed charge was l, the charge introduced by the Lie-
point transformation was n and the total charge was n − l. These
quantities correspond to e; ē − e and ē, respectively. In this sense
r̂− has the same parametrization of the double nutty one of [7].
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because the event horizon condition requires jm̄j ≥ ē and
because by construction jēj ≥ jej, this constraint (3.58) can
be accomplished only at extremality for uncharged seed
(e ¼ 0), as we have already seen in Sec. III E.
From the careful analysis of scalar invariants we noticed

that the curvature can become unbounded between the
outer and the accelerating horizons, when the Harrison
charge is present. Nevertheless, the generalizations of
Sec. IV and Appendix B cure this defect, because there
the NUT parameter is also introduced.

H. Extremal near horizon metric and CFT entropy

It is worth studying the near horizon behavior of the
above metric in particular to clarify some basic character-
istics of the new accelerating black hole of the above
section. In fact in zooming near the horizon we focus more
on the black hole properties with respect to the background.
As explained in [21] to describe the metric close by the

extremal event horizon re we adapt the coordinates (t; r̄) as
follows:

r̄ðr̃Þ ≔ re þ εr0r̃; tðt̃Þ ≔ r0
ε
t̃;

where the constant r0 is needed to compensate the overall
scale of the near-horizon geometry. Also the electric
potential has to be adjusted by a proper constant Φe ¼
−χμAμjr̄¼r̄þ before the near horizon limit, in this way

At → At þΦe: ð3:59Þ

The near horizon limit for the extremal metric is obtained
for ε → 0. As expected by the results of [22], it can be
written as a warped product of AdS2 × S2,

ds2 ¼ ΓðxÞ
�
−r̃2dt2 þ dr̃2

r̃2
þ α2ðxÞ dx2

1 − x2
þ γ2ðxÞdφ2

�
;

ð3:60Þ

where

ΓðxÞ ¼ ē2

ð1 − A2e2Þð1þ AexÞ2 ; r0 ¼
ēffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2A2
p ;

ð3:61Þ

γðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e2A2

p
ð1þexAÞ; αðxÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−A2e2

p

1þAex
:

ð3:62Þ

The near horizon electric potential goes as

A ¼ ϵr̃dt; ð3:63Þ

with

ϵ ¼ ē
1 − A2e2

: ð3:64Þ

This is a typical near horizon behavior for an extremal
charged accelerating black hole, as described in [23]. This
behavior in proximity of the event horizon allows us to use
the tool provided by the Kerr/CFT correspondence
[21,24,25] to estimate the entropy of the black hole through
the mapping with a dual conformal model living on the
boundary of the near horizon metric.
We briefly present here the relevant results for the metric

under consideration, for more details about the relation
between extremal accelerating black holes andCFT, see [23].
First of all, from the asymptotic symmetries of the near

horizon metric, it is possible to extract one central charge of
the conformal field theory living on the boundary of (3.60):

cQ ¼ 3ϵ

Z
1

−1

dxffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p ΓðxÞαðxÞγðxÞ¼ 6ē3

ð1−A2e2Þ2 : ð3:65Þ

The microscopic entropy of the conformal field theory
system living on the boundary of the extremal near horizon
metric can be computed, from the Cardy formula, as
follows:

SCFT ¼ π2

3
cQTL; ð3:66Þ

where TL is the chemical potential of the asymptotic
conformal model, associated to the Frolov-Thorne vac-
uum,17 which for the metric of Sec. III G is

TL ¼ lim
r̄þ→re

TH

Φext
e −Φe

¼ 1

2πϵ
: ð3:67Þ

Finally using Eq. (3.66) we obtain the microscopic entropy
of the boundary conformal field theory,

SCFT ¼
¯e2π

1 − A2e2
: ð3:68Þ

We confirm that this precisely corresponds with the
Bekenstein-Hawking entropy of the extremal black hole
of Sec. III G, which is a quarter of its event horizon area,

Are ¼
Z

2π

0

dφ
Z

1

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgφφ

p
dx ¼ 4 ¯e2π

1 − A2e2
: ð3:69Þ

17The standard Hawking temperature cannot be taken in
consideration at this purpose because at extremality it vanishes.
Also note that we have fixed for simplicity to 2π the period of the
compact extra dimension ψ necessary to export the Kerr/CFT
analysis from a rotational five-dimensional model to an electro-
magnetic four-dimensional one.
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I. Schwarzschild black hole in a charged
accelerating Rindler background

A remarkable subcase we can extract from the double
electrically charged solution of Sec. III G consists in tuning
the electric integration constants to vanish the net electric
charge of the black hole: ē ¼ 0, or equivalently in the old
parametrization18

s ¼ −m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − e2

p

e
; ð3:70Þ

without turning off the electric field in the full spacetime.
This fine-tune of the two electric charges implies that the
inner and the outer horizon coincides. Thus, we get a
Schwarzschild-like black hole, immersed in an accelerating
and charged Rindler-like background. The fact that ē is null
does not mean that the full electric field of the spacetime is
null, but just that the charge parameter s introduced by the
Harrison transformation is not free, but instead it is a fine-
tuned function of the seed RN black hole physical
parameters. This particular constraint (3.70) implies that
the Harrison transformation has discharged the black hole
part of the seed (the accelerating charged black hole), while
at the same time it has added an electric field to the Rindler
background, which had no intrinsic electric charge before
the transformation. In fact, if we turn down the mass and
electromagnetic charges of the seed we remain with a
neutral Rindler spacetime. On the other hand, in case we
turn off only the remaining electric charge e we recover the
standard C-metric, that is the accelerating Schwarzschild
black hole.
It can be noted that, for small accelerations, the con-

straint (3.70) also eliminates the characteristic monopole
divergent term for r ¼ 0 of the Coulomb central potential.
The small acceleration limit indeed means pushing the
accelerating horizon to spatial infinity, thus we remain only
with the standard Schwarzschild black hole.

J. Charged C-metric in charged Rindler background as
limit of a charged black hole binary system

We would like here to provide some more elements on
the interpretation, as announced in Sec. III E, of the new
parameter, s or ē, introduced by the Harrison transforma-
tion as an electric charge which affects also the Rindler
background. Specifically, we would like to obtain the type I
charged C-metric as a limit of a charged binary system.
Consider a black hole binary system, such as the Bach-

Weyl solution, which describes the simplest metric con-
taining a couple of black holes in general relativity. In Weyl
coordinates, which are much more economical for this
setting, that metric takes the form

ds2 ¼ −
μ1μ3
μ2μ4

dt̂2 þ 16Cfμ
3
1μ

5
2μ

3
3μ

5
4ðdρ2 þ dz2Þ

μ12μ14μ23μ34W2
13W

2
24W11W22W33W44

þ ρ2
μ2μ4
μ1μ3

dφ̂2; ð3:71Þ

where the fundamental blocks of the metric, as in Weyl or
in the inverse scattering methods [26] are the solitons,
defined as

μiðρ; zÞ ≔ wi − zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðwi − zÞ2

q
; ð3:72Þ

while

μij ≔ ðμi − μjÞ2; Wij ≔ ρ2 þ μiμj: ð3:73Þ

The physical quantities of the spacetime are encoded in the
four wi parameters, which for instance to describe two
Schwarschild black holes of mass m1 and m2 centered on
the axis of symmetry at z1 and z2 are chosen as w1 ¼
z1 −m1,w2 ¼ z1 þm1,w3 ¼ z2 −m2,w4 ¼ z2 þm2.Cf is
just a gauge constant that can be adjusted at will, often to
remove a conical singularity, whether it is present.
We can build the charged version of the Bach-Weylmetric

thanks to the Harrison transformation (2.10), where the
electric parameter is α̂. The resulting solution is given by

ds2 ¼ −
μ1μ2μ3μ4

ðμ2μ4 − α̂2μ1μ3Þ2
dt̂2

þ 16Cfμ
3
1μ

3
2μ

3
3μ

3
4ðμ2μ4 − α̂2μ1μ3Þ2ðdρ2 þ dz2Þ

μ12μ14μ23μ34W2
13W

2
24W11W22W33W44

þ ρ2
ðμ2μ4 − α̂2μ1μ3Þ2

μ1μ2μ3μ4
dφ̂2;

Aμ ¼
�
At0 þ

α̂μ1μ3
μ2μ4 − α̂2μ1μ3

; 0; 0; 0

�
: ð3:74Þ

This kind of solution19 contains the Majumdar-Papapetrou
black hole pair at equilibrium, as a special extreme case [10].
To show the relation with the type-I accelerating black

hole, we perform the following change of coordinates:

ρ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2mÞð1 − A2r2Þð1þ 2AmxÞð1 − x2Þ

p
ð1þ ArxÞ2 ;

t̂ →

ffiffiffiffiffiffiffiffi
A
2w4

s
t; ð3:75Þ

18In terms of the newparametrization s ¼ �ðm̄ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 þ e2

p
Þ=e.

19Actually in [10] a slightly different charging Lie-point
symmetry of the Ernst equations has been used; moreover, it
is embedded in an external multipolar background (which here
we are neglecting). However, in [10] it is shown as the Kramer-
Neugebauer and the Harrison transformations are physically
equivalent, because they differ only on gauge transformations.
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z → z1 þ
ðArþ xÞ½r −mð1 − ArxÞ�

ð1þ ArxÞ2 ; φ̂ →

ffiffiffiffiffiffiffiffi
2w4

A

r
φ:

ð3:76Þ

Then we center one black hole, let us say the left one, with
mass parameter20m in z1, sow1 ¼ z1 −m andw2 ¼ z1 þm.
We fix just one physical parameter entering in the remaining
couple of solitons, which will be related to the position of the
accelerating horizon as z3 ¼ z1 þ 1=ð2AÞ, while z4 remains
free. Without losing generality we can assume that the origin
of the z axis is at z1, thus we can set z1 ¼ 0. We fix also the
arbitrary coefficient in the gρρ element of themetric, such that

Cf ¼ 2w4m2=A3 and we fix α̂ ¼ ffiffiffiffi
A

p
s.

Now if we take the limit for w4 → ∞, which in the
Weyl representation means make the right black hole
of the binary grow indefinitely bigger, see picture 2 of
[7], we get

ds2 ¼ −fðr; xÞdt2 þ 1

fðr; xÞ

×

�
e2γðr;xÞ

�
dr2

ΔrðrÞ
þ dx2

ΔxðxÞ
�
þ ρ2ðr; xÞdφ2

�
; ð3:77Þ

where

fðr; xÞ≔ r2ΔrΩ2

ðs2Δr − r2Ω2Þ2 ; Ωðr; xÞ≔ 1þArx;

γðr; xÞ≔ 1

2
log

�
Δr

Ω4

�
; ΔrðrÞ≔ ð1−A2r2Þðr2 − 2mrÞ;

ρðr; xÞ≔
ffiffiffiffiffiffi
Δr

p ffiffiffiffiffiffi
Δx

p
Ω2

; ΔxðxÞ≔ ð1− x2Þð1þ 2mAxÞ;

Aμ ¼
�

sΔr

r2Ω2 − s2Δr
0;0;0

�
: ð3:78Þ

This coincides precisely with the solution of Eqs. (3.17)
and (3.18) for e ¼ 0. Therefore we conclude that the Petrov
type I charged and accelerating metric is the limit of a
binary system where both black holes are charged. In the
limiting process the black hole horizon of the right black
hole grows so big, compared with the other, that it can be
considered just a Rindler horizon,21 see Fig. 1. Since both
elements of the binary were charged, the electric charge
remains also as a feature of the accelerating background.

Note that when the electric charge s is null, then this limit
still works. In that case the limit for w4 → ∞ of the Bach-
Weyl binary black hole gives the standard type-D C-metric.
On the contrary, applying this limit to a more general

binary black hole solution, such as the ones with two
independent electric charges such as [27] or [28], one can
retrieve also more general accelerating type I black holes
with e ≠ 0, such as the full solution (3.17) and (3.18). In
case we would like to extend this limiting procedure for the
dyonic generalization, when both e ≠ 0 and p ≠ 0, as in
Appendix A, or for NUTty backgrounds such as the ones
described in Sec. IV, it would be necessary even more
general charged and rotating binary metrics, where also off
diagonal terms are switched on. That’s because these
spacetimes are endowed with NUT parameter.

IV. REISSNER-NORDSTROM-NUT IN ACHARGED
RINDLER-NUT BACKGROUND

Recently a large class of type I black holes has been
proposed in [7]. This family consists of a NUTty extension
of the Plebanski-Demianski black hole. A particular sub-
case of this very general spacetime is the accelerating
Reissner-Nordstrom-NUT black hole, first constructed in
[29], which can be obtained from the general class of [7],
by vanishing the angular momentum. We may think that if
we act with the Harrison transformation (2.10) to an
accelerating NUTty black hole we might obtain the same

FIG. 1. The limit for w4 → ∞ brings a binary black hole system
into an accelerating black hole metric. For bigger values of w4 the
right element of the binary grows and its event horizon transforms
into an accelerating horizon. If the right black hole of the binary
carries no charges, then the metric after the limit becomes of
special algebraic type D and the accelerating horizon is a standard
Rindler one. If the right black hole of the binary carries some
charges, such as the electric charge, the resulting accelerating
metric remains of general type I and the Rindler background is
endowed with that charge. Conical singularities here are not
displayed, eventually they can be removed with external electro-
magnetic or gravitational fields in the spirit of [3,10].

20Remember that the mass parameter before the Harrison
transformation does not necessarily coincide with the mass of the
black hole after the transformation.

21This is a generalization of the well-known fact that the metric
near a Schwarzschild black hole is the Rindler one.
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solution described in [7]. That is because both spacetimes
represent charged and NUTty accelerating black holes
and because they belong to the same Petrov class I.
Nevertheless these two spacetimes are different. The main
difference consists in the background: the case studied in
[7] represents an accelerating Reissner-Nordstrom-NUT
black hole in a NUTty Rindler background while the
solution we will construct here below, thanks to the extra
Harrison transformation, models an accelerating RN-NUT
black hole but in a NUTty and charged Rindler back-
ground. Let us further clarify this point: when we remove
the black hole (with his charges) from the first case we
remain with a Rindler-NUT spacetime, while in case we
remove the black hole in the second spacetime, we are left
with a electromagnetic Rindler-NUT background. In the
former case we have a stationary rotating background
without an electromagnetic field, in the latter a background
with a non-null electromagnetic field. So these two
solutions cannot be physically equivalent.

A. Harrison and Ehlers transformations commute

We recall that the accelerating RN-NUT black hole built
in [29] and its rotating generalizations [7] were generated
by the Ehlers symmetry of the Ernst equations (2.5) and
(2.6), that is

ðIIIÞ∶ E → Ē ¼ E

1þ icE
; Φ→ Φ̄ ¼ Φ

1þ icE
: ð4:1Þ

It is a nontrivial fact that the Harrison (2.10) and Ehlers
ðIIIÞ transformations commute. That is because these Lie-
point symmetries of the Ernst equations belong to the
noncommutative group SU(2,1). Nevertheless, it is easy to
check that

ðVÞ∘ðIIIÞ ¼ ðIIIÞ∘ðVÞ ¼

8>><
>>:

E → Ē ¼ E
1þicE−αα�E−2α�Φ

Φ → Φ̄¼ ΦþαE
1þicE−αα�E−2α�Φ :

ð4:2Þ

This observation opens the possibility of generating a
common solution which extends both the one built in this
section and the one of [7]. In fact starting with an
accelerating solution as a seed, for instance the PD class
(without the cosmological constant22), it is possible to build
a large class of accelerating, charged, with NUT parameter
and endowed with angular momentum in an electromag-
netic and NUTty Rindler background. Basically because of
the commutative property (4.2), we have just to apply (V)
to the general metric of [7] to add electromagnetic charge to
the Rindler background.
To keep the construction simple we start below with a

diagonal seed, without gravitomagnetic mass nor angular
momentum.

B. Generation of a Reissner-Nordstrom-NUT black hole
in a charged Rindler-NUT background

The above composition of Harrison and Ehlers trans-
formations will be used to generate the accelerating
Reissner-Nordstrom-NUT black hole in an electromag-
netic Rindler-NUT background, that is the NUTty gen-
eralization of the metric built in Sec. III. We start, as a
seed, with the same accelerating RN black hole in (3.1)–
(3.9) and we apply the map (4.2). The composite trans-
formation ðVÞ∘ðIIIÞ in principle is labeled by three real
parameters (c and the two components of the complex
parameter α), but for the sake of simplicity we consider
α ¼ s real. In the case of dyonic seeds, an extra imaginary
part for the Lie parameter α might at most add a further
contribution to the magnetic part of the Maxwell field,
which however can be reabsorbed by an electromagnetic
rotation transformation (A7). Thus, an imaginary compo-
nent for α does not affect the geometry of the spacetime.
The proof that the real choice of α does not affect the
generality of the resulting metric for dyonic solution can
be found in Appendix B.
The procedure to generate the new metric is very similar

to the one executed in Sec. III, the seed Ernst potentials are
the same, so we do not repeat all the steps here but just state
the final results. The new Ernst potentials, generated by the
transformation ðVÞ∘ðIIIÞ, are23

ds2 ¼ −
fðr; xÞ

jΛðr; xÞj2 ½dt − ω̄ðr; xÞdφ�2 þ jΛðr; xÞj2
fðr; xÞ

�
e2γðr;xÞ

�
dr2

ΔrðrÞ
þ dx2

ΔxðxÞ
�
þ ρ2ðr; xÞdφ2

�
; ð4:3Þ

where

22It is well known that the symmetries of the Ernst equations in the presence of the cosmological constant are not effective to generate
new solutions [30].

23A Mathematica file containing this solution is available between the sources of the arXiv files, for the readers’ convenience.
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jΛðr; xÞj2 ¼ ½s2Δr − ðr2 þ 2ersþ q2s2ÞΩ2�2 þ 4p2r2s2Ω4 þ 4cprsΩ2ðΔr − q2Ω2Þ þ c2ðΔr − q2Ω2Þ2
r4Ω4

;

ω̄ðr; xÞ ¼ 1

AΩ2

n
4Aps½xðs2 − 1Þ þ 2A½rðs2 − x2Þ −ms2ð1 − x2Þ� þ A2x½r2ðs2 − x2Þ − q2s2ð1 − x2Þ��

þ 2c½1þ 2Axðmþ rþ esÞ þ A2ðr2 þ 4esðr −mÞ þ 4mx2ðrþ esÞ − q2ð1 − x2ÞÞ�
þ 2A3xðr2ðmþ esÞ − q2ðrþ esÞð1 − x2ÞÞ

o
þ ω0: ð4:4Þ

The electromagnetic field supporting the metric becomes

Āt ¼
−er3Ω4 þ r2sΩ2ðΔr − 3q2Ω2Þ þ ð3ers2 − cprÞΩ2ðΔr − q2Ω2Þ − s3ðΔr − q2Ω2Þ2

jΛðr; xÞj2r4Ω4
;

Āφ ¼ Aφ0
þ pxð1 − 3s2Þ − cexþ Aðceþ 3ps2Þð2mþ Aq2xÞð1 − x2Þ − Arð2þ ArxÞðceþ pð3s2 − x2ÞÞ

Ω2
− ω̄Āt:

Note that the presence of the acceleration in the seed is
fundamental to obtain a new spacetime. Otherwise we
would remain within the Carter-Plebanski class and the
Harrison (or the Ehlers) transformation on an already
charged (or NUTty) seed would act just as an identity,
after a proper reparametrization of the solution. In particu-
lar in the case under consideration, in absence of accel-
eration, we would just find RN-NUT (as can be easily
realized by taking the limit A → 0 of the above solution).
So the main novelty of this solution comes from having

simultaneously added both the NUT and the electromag-
netic charges also to the accelerating background, and that
is the reason why these metrics go beyond the Plebanski-
Demianski family, but becomes of Petrov type I.24

Further generalizations may include also in angular
momentum or NUT charge in the seed. In Appendix B
the most general Plebanski-Demianski seed is embedded in

this NUTty and charged Rindler background. A detailed
map of the main solutions discussed in this article can be
found in Fig. 2.

C. Electric accelerating background

When we remove completely the RN-NUT black hole,
which means setting to zero its characteristic parameters
(m, e,p), we remain with a stationary rotatingRindler metric
with an electromagnetic field, not with the usual Rindler
metric, as in the type D accelerating black hole solutions. In
any case the electromagnetic field can be removed thanks to
its parameter s. In an equivalent waywemayhave just started
from a no black hole spacetime as seed, but only with the
Rindler metric and after the transformation (4.2) we would
have obtained a Rindler background endowed with an
electromagnetic field, whose metric reads

ds2 ¼ −f̂ðr; xÞ
�
dt −

�
2Acr2ð1 − x2Þ
ð1þ ArxÞ2 þ ω0

�
dφ

�
2

þ 1

f̂ðr; xÞ

	
1

ð1þ ArxÞ4
�
dr2 þ ðr2 − A2r4Þ

�
dx2

1 − x2
þ ð1 − x2Þdφ2

��


ð4:5Þ

with

f̂ðr; xÞ ≔ ð1 − A2r2Þð1þ ArxÞ2
c2ð1 − A2r2Þ2 þ ½ð1þ ArxÞ2 − s2ð1 − A2r2Þ�2 : ð4:6Þ

The electromagnetic field stems from the potential

Aμ ¼ f̂

	
s − s3

1 − A2r2

ð1þ ArxÞ2 ; 0; 0;
2cs½1þ ArðArþ 2xÞ�½ð1 − A2r2Þs2 − ð1þ ArxÞ2�

Að1þ ArxÞ4


; ð4:7Þ

24The evaluation of the Petrov class can be found exactly as in Sec. III. However, it is not surprising having a general algebraic type,
since even the c ¼ 0 subcase, as analyzed in the previous sections, or for s ¼ 0 as in [7], was already of type I.
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wherewe just shift the constantω0 → −2c=Aþ ω0 to have a
well-defined zero acceleration limit, the Minkowski space-
time. So, also in this background case, the relevance of the
accelerating parameter and the accelerating horizon in the
novelty of the solution is manifest.
From (4.7) we clearly see that when s → 0 the electro-

magnetic field goes to zero, thus we remain with just the

standard Rindler metric. On the other hand, when the
acceleration is zero also the electromagnetic field vanishes.
Combining the fact that the full solution can be derived

from blowing up one constituent of a charged binary
system, as seen in Sec. III J, and that the background, in
this frame of reference, consists in vanishing the seed black
hole quantities (m, e, p), it is natural to hypothesize that the

FIG. 2. Map of the family of accelerating solutions in the Einstein-Maxwell theory containing a black hole. The new spacetimes
presented in this article, not yet known in the literature, are emphasized in bold line rectangles. The new family of solutions are of Petrov
type I and carry up to two independent NUT parameters and two independent electric (possibly also two magnetic) charges, when the
acceleration is nonzero. However, note that accelerating black holes in an external electromagnetic field such as [3,15] or in an external
rotational field [18] are not included in this family; they belong to a different branch.
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background may be derived from a limit of the Reissner-
Nordstrom black hole itself. This is in agreement with the
uncharged case where the Rindler horizon can be obtained
as a limit of Schwarzschild black hole: indefinitely enlarg-
ing the event horizon. To verify this hypothesis, we
consider the RN black hole written in cylindrical coor-
dinates (ρ, z):

ds2 ¼ −
ðRþ þ R−Þ2 − 4ðm2 − q2Þ

ð2mþ RþR−Þ2
dt2

þ ð2mþ Rþ þ R−Þ2
4RþR−

ðdρ2 þ dz2Þ

þ ρ2ð2mþ RþR−Þ2dφ2

ðRþ þ R−Þ2 − 4ðm2 − q2Þ ;

Aμ ¼
�

q2

ð2mþ RþR−Þ2
; 0; 0; 0

�
; ð4:8Þ

where

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ

h
�ðz − z1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

q i2r
: ð4:9Þ

The relation with the usual solution in spherical coordi-
nates, as in (3.32) and (3.33), is given by the following
map:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2mr − q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
;

z ¼ z1 þ ðr −mÞx: ð4:10Þ

The constant z1 determines the position, on the z axis, of
the black hole. When only one source is present this
constant can be gauged away by the translation invariance
property of the solution, along the z axis, therefore is often

omitted. However, in our limiting procedure it could be
useful, because we would like to grow the black hole size
avoiding that the whole event horizon runs to spatial
infinity.
Before taking the limit for large mass and electric charge

parameters, we rescale the three parameters of the solution
(m; q; z1) and the coordinate as follows:

m→
1

2
ðw2 −w1Þð1þ 2w2δ

2Þ; q→ ðw1 −w2Þ
ffiffiffiffiffiffiffiffi
2w2

p
δ;

z1 →
1

2
ðw2 þw1Þð1− 2w2δ

2Þ; ð4:11Þ

ρ → ρð1 − 2w2δ
2Þ; z → zð1 − 2w2δ

2Þ;

t →

ffiffiffiffi
A

p

δ2
ffiffiffiffiffiffiffiffi
2w2

p t; φ →

ffiffiffiffi
A

p

δ2
ffiffiffiffiffiffiffiffi
2w2

p φ: ð4:12Þ

Now taking the limit for w2 → ∞ and rescaling δ → δ
ffiffiffiffi
A

p
we get precisely the solution (4.5)–(4.7) with c ¼ 0.
The similarities with (4.5)–(4.7) can be better appreciated
by the change of coordinates,

ρ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − A2r2Þð1 − x2Þ

p
ð1þ ArxÞ2 ; z ¼ z1 þ

rðArþ xÞ
ð1þ ArxÞ2 :

ð4:13Þ

In case one would like to recover also the c ≠ 0 case, it is
necessary to perform this limit starting from a Reissner-
Nordstrom-NUT spacetime.
This background is free from conical singularities, but

the metric, for c ¼ 0, seems to be not free of curvature
singularity for 0 < r < 1=A, as can be appreciated from the
Kretschmann scalar,

RμνσλRμνσλ ¼ 64A4s4ð1þ ArxÞ12½3ð1 − A2r2Þ2s4 þ 5ð1þ ArxÞ4 þ 6s2ð1 − A2r2Þð1þ ArxÞ2�
½−ð1 − A2r2Þs2 þ ð1þ ArxÞ2�8 : ð4:14Þ

On the other hand, when c ≠ 0 the denominator of the main scalar invariants can never be zero, as can be seen from the
Ricci squared25

RμνRμν ¼ 64A4s4ð1þ ArxÞ16
fc2ð1 − A2r2Þ2 þ ½−ð1 − r2A2Þs2 þ ð1þ ArxÞ2�2g4 ; ð4:15Þ

therefore, in the general case, the solution (4.5)–(4.7) is free
of any singularities, curvature or conical. The only locus
of the spacetime which might seem suspect of bringing

curvature singularities, for c ≠ 0, is for x ¼ −1; r ¼ 1=A,
but a deeper scrutiny of various scalar invariants confirms it
is not a problematic point.
Note that this metric has, for any value of c, neither NUT

charge nor Misner string because the Ehlers transformation
rotates mass or electric charge into gravitomagnetic mass.
When we set m ¼ 0, e ¼ 0 and p ¼ 0 we are also shutting

25We write the Ricci squared and not the Kretschmann only for
brevity, anyway the possible divergent loci coincides for both
scalar invariants.
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down the NUT charge. That is also why the Petrov type
remains D.26

In any case possibly this type D solution, where we
switched off the seed physical quantities of the black hole,
may be not the more adequate spacetime to be considered
the background of our solution, because after the Harrison
transformation the characteristic quantities of the black
hole change, as can be seen in Appendix A 2, and a change
of coordinates is necessary. If we eliminate the black hole
after the charging transformation and in the new para-
metrization, then we get a NUTty and charged type I
background, similarly to what happens in the pure NUT
case [7].
We write here a simple case without the c parameter,

because we already have it in the new parametrization.
Indeed this spacetime can be obtained from the solution in
Sec. III G by taking the limit for zero black hole electric
charge ē and zero black hole mass27 parameter m̄:

ds2 ¼ −fðr̄; xÞdt2 þ 1

fðr̄; xÞ

×

�
e2γðr̄;xÞ

�
dr̄2

Δrðr̄Þ
þ dx2

ΔxðxÞ
�
þ ρ2ðr̄; xÞdφ2

�
; ð4:16Þ

where

fðr̄;xÞ≔ 4Ω2Δr

r̄4½2xþðeþ r̄ÞxA�2 ; Ωðr̄;xÞ≔ 1þAðeþ r̄Þx;

γðr̄;xÞ≔ 1

2
log

�
Δr

Ω4

�
; Δrðr̄Þ≔ r̄2½1− ðeþ r̄Þ2A2�;

ρðr̄;xÞ≔
ffiffiffiffiffiffi
Δr

p ffiffiffiffiffiffi
Δx

p
Ω2

; ΔxðxÞ≔ ð1−x2Þð1þeAxÞ: ð4:17Þ

The electromagnetic potential supporting this metric is

Aμ ¼
	
−
2½1þ 2exAþ ðeþ r̄Þðex2 − r̄ÞA2�

2r̄xþ r̄ðeþ r̄Þð1þ x2ÞA ; 0; 0; 0



:

ð4:18Þ
The limit is quite straightforward, the only care we used, to
assure a convergent result, was to rescale the coordinates
before the limiting procedure: t → ðeα=m̄Þt, φ → φm̄=ðeαÞ.
This solution is diffeomorphic to the extremal case

(m ¼ e) of (4.5), for c ¼ 0 and s ¼ −1, up to a radial
shift. Because of the fact that s ≠ 0 the standard Rindler
background cannot be retrieved easily.
When e or A goes to zero the metric became algebrai-

cally special, of type D. When the accelerating28 parameter
A → 0 a cylindrical electric monopole is obtained:

ds2 ¼ −
q̄2

ρ2
dt2 þ ρ̄2

q̄2
dρ̄2 þ ρ̄2ðdx̄2 þ dȳ2Þ; ð4:19Þ

Aμ ¼
�
−
q̄
ρ̄
; 0; 0; 0

�
: ð4:20Þ

The following change of coordinates has been used to put
the metric, after the A → 0 limit, in the above form:

r̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̄2x̄2 þ q̄2ȳ2 þ ρ̄2=q̄2

q
; φ ¼ arctan

�
ȳ
x̄

�
;

x ¼ ρ̄

q̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̄2x̄2 þ q̄2ȳ2 þ ρ̄2=q̄2

p : ð4:21Þ

Hence, the electric field of the background can be inter-
preted as a monopole charge and it is not a surprise that the
metric (4.16) and (4.17) displays curvature singularities.
We expect the more general case, when c ≠ 0, to be more

regular, in particular to be void of curvature singularities, as
happens for the type-D background above.

D. Misner string?

Let us come back to the full solution of Eqs. (4.3) and
(4.4). The Ehlers transformation brings into the spacetime
the NUT charge and hence the Misner string, a rotating
deltalike energy-density distribution on the azimuthal axis,
which is not continuous because the ωðr; xÞ function has a
jump passing from the sector of the z axis characterized by
x → 1 to x → −1. We can quantify this discontinuity as

Δω¼ lim
x→1

ω̄ðr;xÞ− lim
x→−1

ω̄ðr;xÞ¼8½cðmþesÞ−psð1−s2Þ�:
ð4:22Þ

Spacetime without a Misner string experiences a zero Δω.
For the dyonic Reissner-Nordstrom-NUT black hole in an
accelerating and nutty background this value vanishes for

26One might think it should be a Melvin-like electric universe
in some accelerating coordinates, but contrary to Melvin this
background is not able to help to remove the conical singularity
of the charged accelerating black hole. Furthermore, the zero
acceleration limit removes also the electromagnetic field, which
is not in line with the usual Melvin behavior in accelerating
coordinates, such as the Ernst metrics [3]. Finally note that the
accelerating Melvin universe has not curvature singularities and
can be thought as a couple of RN black holes pushed at spatial
infinity, while in our case we push at most one of the two black
holes asymptotically, as described in Secs. IV C and III J.

27It is not easy to compute the mass for accelerating black
holes with conical singularities, therefore the mass parameter m̄ is
surely related with the black hole mass in the nonaccelerating
case. We are aware that a different parametrization might give
different results for the type I background spacetime; this point
deserves further investigation.

28After the reparametrization and the limit of zero m̄, ē the
constant A may not keep the usual acceleration interpretation.
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c ¼ psð1 − s2Þ
mþ es

: ð4:23Þ

Moreover, the value of the rotating function ωðr; xÞ can be
made zero on the axis by setting

ω0 ¼ −
2psð1 − s2Þ
Aðmþ esÞ : ð4:24Þ

Therefore the gravitomagnetic mass introduced by the
coupling between the Harrison transformation and the
magnetic charge (encoded into the term proportional to
ps in Δω) can be fine-tuned with the NUT contribution
brought by the Ehlers parameter c. Indeed without the
Ehlers map, as can be seen in Appendix A, the only way to
regularize the metric is to switch off also the magnetic
charge p.

V. SUMMARY, DISCUSSION AND CONCLUSIONS

In this article we have explored the behavior of the
Harrison transformation on accelerating black holes. We
have discovered that the Lie symmetry map acts on an
accelerating black hole seed adding electromagnetic charge
to the initial solution in a nontrivial way. In fact, it does not
generate the standard charged C-metric from the neutral
one, but an exotic C-metric which is type I instead of type
D, as the standard one. Both charged C-metrics describe
accelerating and charged black holes, but the type I is more
general, it has an extra feature: also the accelerating
background can carry its own electromagnetic charge,
which is independent with respect to the black hole one,
as discussed in Sec. III. The two charges may interact and
combine, for instance to discharge the black hole, trans-
forming a seed accelerating Reissner-Nordstrom solution
(of type D) in an exotic accelerating Schwarzschild (type I),
but the two electric charges cannot completely annihilate
everywhere because of their physical differences: their
distribution within the spacetime and their relative inde-
pendence. While the action of the Harrison transformation
on C-metrics can cause curvature singularities, these are
absent for the combined Ehlers-Harrison transformation,
because of the presence also of the NUT parameter.
This behavior resembles much of what is described in [7]

about the accelerating NUT spacetime and the Ehlers
transformation. Also in that case the NUT charge can be
added to an accelerating black hole and can combine to
elide the Misner string of the seed, if present, but never
remaining with a type-D metric.
These findings about the charging transformation

strengthen the interpretation given in [7] about the action
of these nontrivial Lie-point symmetries and the nature of
accelerating black holes and C-metrics, which we summa-
rize here below: Accelerating black holes can be viewed as
limits of the binary system where one of the collapsed
sources grows indefinitely while maintaining a fixed

distance between the horizons [7,19]. Similarly, one may
think of zooming near the horizon of a big black hole which
has a much smaller companion close by. In both inter-
pretations the big black hole in this limit becomes an
accelerating horizon. On the other hand, the Harrison
transformation acting on a neutral binary system equally
adds electromagnetic charge to both sources; for instance, it
can generate a charged binary system (such as the
Majumdar-Papapetrou) from the neutral Bach-Weyl pair
[10]. In this charged setting the above limit where one
element of the black hole couple grows indefinitely, as
proven in Sec. III J, represents the exotic charged accel-
erating black hole we had described here. The fact that also
the big black hole is endowed with electric charge causes
the background to have nonzero electric field. According to
this interpretation the standard (type-D) charged C-metric
can be thought of as the limit of a binary system where only
the small black hole carries charges (not only electromag-
netic but also NUT charges, as seen in [7]) but the big black
hole is neutral. This is the reason why these exotic
accelerating black hole metrics can have double indepen-
dent charges. One of these charges is reminiscent of the
black hole charge that has been infinitely enlarged. In this
sense, it is not surprising to find for these type I charged
and accelerating black holes that extremal configurations
can be void of conical singularities, such as the Majumdar-
Papapetrou system.
These results open the possibility of building even more

general accelerating black holes in general relativity and
beyond.29 In principle, it is quite direct to apply the
Harrison transformation to a charged and rotating C-metric
seed to obtain an exotic accelerating type I Kerr-Newman
black hole, where the accelerating background is endowed
with electromagnetic field or even with NUT charge using
the combined transformation of Sec. IV. While the result in
terms of the Ernst potential is straightforward, as can seen
in Appendix B, the metric form of the solution could be
quite involuted, in particular in a convenient parametriza-
tion. Another interesting possibility is to add other kinds of
charges to these accelerating backgrounds, for instance
angular momentum; works in this direction are in progress.

ACKNOWLEDGMENTS

We thank Giovanni Boldi, Silke Klemm and Adriano
Viganò for interesting discussions on the subject andRoberto
Emparan for stimulating comments. A Mathematica note-
book containing the main solutions presented in this article
can be found in the arXiv source folder.

29In fact the solution generating techniques here can be
extended to scalar tensor theories, such as Brans-Dicke or
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APPENDIX A: DYONIC REISSENER-NORDSTROM IN A CHARGED RINDLER BACKGROUND

If we leave p ≠ 0 in the solution generated in Sec. III, we obtain the dyonic version of the charged Reissner-Nordstrom
black hole in the Rindler background. The metric becomes30

ds2 ¼ −
fðr; xÞ

j1 − 2sΦ − s2Ej2 ½dt − ω̄ðr; xÞdφ�2 þ j1 − 2sΦ − s2Ej2
fðr; xÞ

�
e2γðr;xÞ

�
dr2

ΔrðrÞ
þ dx2

ΔxðxÞ
�
þ ρ2ðr; xÞdφ2

�
; ðA1Þ

with

ω̄ðr; xÞ ¼ 4spfðs2 − 1Þxþ 2A½s2ðr −mð1 − x2ÞÞ − rx2� þ A2x½s2ðr − q2ð1 − x2Þ − r2x2�g
Ω2

þ ω0; ðA2Þ

where ω0 is an arbitrary constant that usually defines the angular speed of the asymptotic observer.
The electromagnetic potential, up to an additive constant, takes the form

Āt ¼
er3Ω4 þ s3ðΩ2q2 − ΔrÞ2 þ 3s2erΩ2ðΩ2q2 − ΔrÞ þ sr2Ω2ð3q2Ω2 − ΔrÞ

4ser3Ω4 þ r4Ω4 þ s4ðΔr − q2Ω2Þ2 þ 4s3erΩ2ðΩ2q2 − ΔrÞ þ 2s2r2Ω2ð3q2Ω2 − ΔrÞ
;

Āφ ¼ Āφ0
− 2px − ω̄

�
3

4s
þ Āt

�
: ðA3Þ

As computed in Sec. III, this solution generically belongs to the I class of the Petrov classification.

The metric is not diagonal, as the seed, because there is
an interaction due to the Lorentz force, between the
electrically charged Rindler background and the intrinsic
magnetic charge of the black hole p. From a mathematical
point of view this fact can be directly read in the sp
coupling in the rotating ω function. Indeed if s or p are
switched off the metric becomes diagonal.

1. Misner string and gravitomagnetic mass

While the appearance of Dirac strings is an expected
feature from a complex charging transformation, what is
not completely expected is that the rotation introduced by
the Harrison map is not regular. In fact, the transformation
(2.10) in the presence of a magnetic field switches on also
an axial singularity, which can be associated to the
discontinuity of the ωðr; xÞ function passing through the
equatorial plane on the azimuthal axis, as can be seen from
the difference,

Δω ¼ lim
x→1

ω̄ðr; xÞ − lim
x→−1

ω̄ðr; xÞ ¼ −8spð1 − s2Þ: ðA4Þ

This discontinuity physically represents a rotating deltalike
matter distribution on the z axis, often called NUT charge.
In case we would like to remove this defect in the
spacetime, we might act with an extra Ehlers transforma-
tion to rotate the gravitomagnetic mass quantified in
Eq. (A4) into the usual mass, as explained in [9]. Note

also that the gravitomagnetic mass generated by theHarrison
transformation does not depend on the presence of the
acceleration; in fact this can happen also in asymptotically
flat conditions. Hence, it would be desirable to improve the
standard Harrison transformation to avoid this behavior
when the seed carries monopolar magnetic charge.

2. Enhanced Harrison transformation

In order to have a more precise charging transformation,
that is a symmetry of the Ernst equations which just adds
electromagnetic charges on a given seed, but without
messing with other physical parameters of the solution,
we might try to modify the standard Harrison transforma-
tion (2.10). We would like to refine this transformation
composing with other symmetries of the Ernst equations,
because in this way, we are sure that the spacetime it
generates satisfies, by construction, the Einstein-Maxwell
field equations (2.1) and (2.2). We focus here, for sim-
plicity, on relaxed asymptotically flat spacetimes, which
means that the Ernst potential decay for large values of the
radial coordinate to the Minkowski ones (E ¼ 1;Φ ¼ 0),
as follows:

E∼1−
2ðM− iBÞ

r
þðz� þ2iJÞxþ const

r2
þO

�
1

r3

�
; ðA5Þ

Φ ∼
Qe þ iQm

r
þ ðDe þ iDmÞxþ const

r2
þO

�
1

r3

�
; ðA6Þ

where M;B; J;Qe;Qm;De;Dm, respectively, are associ-
ated with the physical quantities of the solution: mass,

30A Mathematica file containing this solution is available
between the sources of the arXiv files, for the readers’ convenience.
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NUT, angular momentum, electric and magnetic charge,
electric and magnetic dipole moments, on the other and z�
is a constant related to the position of the origin of the
coordinates ðr; xÞ. Relaxed is referring to the fact that the
metric can approach asymptotically a little more general
spacetime with respect to the Minkowski one, i.e.
Taub-NUT.
Other symmetries of the Ernst equations (2.5) and (2.6)

which can be useful for improving the Harrison map are

ðIÞ∶ E → E0 ¼ λλ�E; Φ → Φ0 ¼ λΦ; ðA7Þ

ðIVÞ∶ E → E0 ¼ E − 2β�Φ− ββ�; Φ→ Φ0 ¼ Φþ β;

ðA8Þ

where in general λ and β are complex scalars which
parametrize the transformation, see [16] or [9] for details.
We can define an enhanced version of the Harrison trans-
formation ðV̄Þ thanks to the following composition:

ðV̄Þ ≔ ðIVÞ○ðVÞ○ðIÞ; ðA9Þ

with

λ ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

p
2jαj2 expðivÞ; ðA10Þ

β ¼ α
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

p
2jαj2 : ðA11Þ

ðV̄Þ preserves the asymptotic form of the Ernst complex
potential (A5) and (A6), in fact by applying (A9) we get

Ē ∼ 1 −
2ðM̄ − iB̄Þ

r
þ ðz̄� þ 2iJ̄Þxþ ¯const

r2
þO

�
1

r3

�
;

ðA12Þ

Φ̄ ∼
Q̄e þ iQ̄m

r
þ ðD̄e þ iD̄mÞxþ ¯const

r2
þO

�
1

r3

�
;

ðA13Þ

where the new barred physical quantities are related to the
old ones by the following transformations:

M̄ ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
− 2½QeReðαÞ þQmImðαÞ� cos v − 2½QeImðαÞ −QmReðαÞ� sin v; ðA14Þ

B̄ ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
− 2½QeImðαÞ −QmReðαÞ� cos vþ 2½QeReðαÞ þQmImðαÞ� sin v; ðA15Þ

z̄� ¼ z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
þ 4½DeReðαÞ þDmImðαÞ� cos vþ 4½DeImðαÞ −DmReðαÞ� sin v; ðA16Þ

J̄ ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
þ 2½DeImðαÞ −DmReðαÞ� cos vþ 2½DeReðαÞ þDmImðαÞ� sin v; ðA17Þ

Q̄e ¼ ðQe cos v −Qm sin vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
− 2MReðαÞ − 2B ImðαÞ; ðA18Þ

Q̄m ¼ ðQm cos vþQe sin vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
− 2MImðαÞ þ 2BReðαÞ; ðA19Þ

D̄e ¼ ðDe cos v −Dm sin vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
þ z�ReðαÞ − 2J ImðαÞ; ðA20Þ

D̄m ¼ ðD0
m cos vþDe sin vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jαj2

q
þ z�ImðαÞ þ 2JReðαÞ: ðA21Þ

This map between new and old quantities allows one to
build the Harrison transformation with the desiderated
features. For instance, if we want not to add additional
NUT charge to the generated solution it is sufficient, by
inspecting (A15), to require an extra constraint on the v or
the α parameters:

ImðαÞ ¼ ReðαÞQm cos vþQe sin v
Qe cos v −Qm sin v

: ðA22Þ

In case we would like to erase the Dirac string of a solution
charged by ðV̄Þ starting from a seed free of Misner strings
(B ¼ 0) then we may require, from (A19), that
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ImðαÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ReðαÞ2

p
ðQe sin vþQm cos vÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM −Qm cos v −Qe sin vÞðM þQm cos vþQe sin vÞ

p : ðA23Þ

APPENDIX B: PLEBANSKI-DEMIANSKI IN
NUTTY AND CHARGED RINDLER

BACKGROUND

For the sake of generality we can consider here also the
most general solution of these accelerating type I black
holes with a charged and NUTty Rindler background. We
represent it in detail in terms of the Ernst potentials, since
the metric expression is quite lengthy; however, also the
metric representation is reported below. As seed we
consider the Plebanski-Demianski solution, which includes
black holes with dyonic electromagnetic charges, NUT
charges and angular momentum. This seed can be written
as in Eq. (3.1), with

fðr; xÞ ≔ ω̂2Δx − Δr

ω̂Ω2R2
; ðB1Þ

ωðr; xÞ ≔ ω̂ðr2Δx þ x2ΔrÞ
Δr − ω̂2Δx

; ðB2Þ

γðr; xÞ ≔ 1

2
log

�
Δr − ω̂2Δr

Ω4

�
; ðB3Þ

ρðr; xÞ ≔
ffiffiffiffiffiffi
Δr

p ffiffiffiffiffiffi
Δx

p
ω̂Ω2

; ðB4Þ

ΔrðrÞ ≔ −ω̂ðe2 þ p2 þ kω̂2Þ þ 2mω̂r − ϵω̂r2

þ 2n̂αr3 þ kα2ω̂r4; ðB5Þ

ΔxðxÞ ≔ −kω̂ − 2n̂xþ ϵω̂x2 − 2mαω̂x3

þ α2ω̂ðe2 þ p2 þ kω̂2Þx4; ðB6Þ

Ωðr; xÞ ≔ 1 − αrx; ðB7Þ

Rðr; xÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ω̂2x2

p
; ðB8Þ

and the non-null components of the electromagnetic vector
potential are

Atðr; xÞ ≔ −
erþ ω̂px

R2
; ðB9Þ

Aφðr; xÞ ≔
eω̂rx2 − pxr2

R2
: ðB10Þ

From the definitions of the Ernst potentials (2.7)–(2.9) can
be derived h; Ãφ and the seed Ernst complex fields as
follows:

hðr; xÞ ¼ 2fnrþ ω̂½mx − kr2α − x2αðe2 þ p2 þ kω̂Þ�g
ΩR2

;

ðB11Þ

Ãφðr; xÞ ¼
exω̂ − pr

R2
; ðB12Þ

Eðr; xÞ ¼ rω̂Δx þ ifΩ2ω̂½−ikrω̂þ xðe2 þ p2 þ kω̂2Þ� þ xΔrg
rxΩ2ω̂ð−irþ ω̂xÞ ; ðB13Þ

Φðr; xÞ ¼ −
eþ ip
rþ iω̂x

: ðB14Þ

Using the combined Harrison-Ehlers transformation (4.2), we can generate a new pair of complex Ernst potentials ðĒ; Φ̄Þ as
follows:

Ēðr; xÞ ¼ −irω̂Δx þ xΔr þ ω̂½−ikrω̂þ xÞðq2 þ kω̂2Þ�Ω2

ðcþ is2Þðrω̂Δx þ ixΔrÞ − ω̂½r2xþ 2ðipþ eÞrsxþ irðx2 þ ikc − ks2Þω̂þ ðs2 − icxÞðq2 þ kω̂2Þ�Ω2
; ðB15Þ

Φ̄ðr; xÞ ¼ −irsω̂Δx þ sxΔr þ ω̂½ðipþ eÞrxþ ðq2 þ kω̂2Þsx − ikrsω̂�Ω2

ðcþ is2Þðrω̂Δx þ ixΔrÞ − ω̂½r2xþ 2ðipþ eÞrsxþ irðx2 þ ikc − ks2Þω̂þ ðs2 − icxÞðq2 þ kω̂2Þ�Ω2
: ðB16Þ
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These complex functions represent the new solution,
inequivalent with respect to the seed, of the Einstein-
Maxwell theory. It includes basically all the accelerating
type I black holes described in this article and more. In
particular, these solutions can describe black holes of the
Kerr-Newman family.
In case one wants to write the solution in terms of the

metric fields and electromagnetic potential, it is sufficient

to exploit again the definitions (2.7)–(2.9). The new
function fðr; xÞ can be easily written as

f̄ ¼ f
1þ ðic − s2ÞE − 2sΦ

; ðB17Þ

while the transformed rotating function ω̄ðr; xÞ and the
magnetic part of the gauge potential Āφ are more involved.
However, for completeness we explicitly write

ω̄ðr; xÞ ¼ 1

r2x2ω̂ðω̂2Δx − ΔrÞð1 −ΩÞΩ4
fc2ðΩ − 1Þ½r2ΔrðΔx þ kω̂Ω2Þ2 þ x2ΔxðΔr þ ω̂ðq2 þ kω̂2ÞΩ2Þ2�

− 2crxΩ2½r2ΔrðΩ − 1ÞðΔx þ kω̂Ω2Þ þ 2rðmx2ω̂ðΔr − ω̂2ΔxÞΩ2 þ esΔrðΩ − 1ÞðΔx þ kω̂Ω2ÞÞ
þ xð−xΔ2

rΩþ ω̂2ðq2 þ kω̂2ÞΔxΩ2ðxω̂2 − 2psþ 2psΩÞ þ ω̂Δrðxðq2 þ kω̂2ÞðΩ − 2ÞΩ2

þ Δxð2ðpsþ xω̂ÞΩ − 2ps − xω̂ÞÞÞ� þ ðΩ − 1Þ½x2ω̂2ðr4 þ 4er3sþ 6q2r2s2 þ 4ers3ðq2 þ kω̂2ÞÞΔxΩ4

þ s4x2Δ2
rΔx þ Δrðr4s4Δ2

x þ 2s3ðkr2sω̂ − 2psr2xþ ð2erþ q2sÞx2ω̂þ ksx2ω̂3ÞΔxΩ2

þ r2ωð4psx3 − 4kps3xþ k2s4ω̂þ x4ω̂ÞΩ4Þ�g: ðB18Þ

The above expressions of the rotational function (B18) with (B17) and (B3)–(B6) completely determine the new generated
metric, which can be written, similarly to (3.1), as

ds̄2 ¼ −f̄ðr; xÞ½dt − ω̄ðr; xÞdφ�2 þ 1

f̄ðr; xÞ
�
e2γðr;xÞ

�
dr2

ΔrðrÞ
þ dx2

ΔxðxÞ
�
þ ρ2ðr; xÞdφ2

�
: ðB19Þ

Actually the electromagnetic field supporting the metric can be conveniently derived from the electromagnetic Ernst
potential, without the need of integrating explicitly Āφ from (2.8). In fact, the Faraday tensor for axisymmetric and
stationary spacetime in the form of (B19) can be written as

F̄μν ¼

0
BBBBBBBBB@

0 ∂tĀt ∂xĀt 0

−∂tĀt 0 0
ffiffiffiffi
Δx
Δr

q
ρ∂x

¯̃Aφ

f̄
þ ω̄∂rĀt

−∂xĀt 0 0 −
ffiffiffiffi
Δr
Δx

q
ρ∂r

¯̃Aφ

f̄
þ ω̄∂xĀt

0 −
ffiffiffiffi
Δx
Δr

q
ρ∂x

¯̃Aφ

f̄
− ω̄∂rĀt

ffiffiffiffi
Δr
Δx

q
ρ∂r

¯̃Aφ

f̄
− ω̄∂xĀt 0

1
CCCCCCCCCA
; ðB20Þ

where, fromdefinition (2.7), Ātðr;xÞ¼ReðΦ̄Þ and ¯̃Atðr;xÞ¼
ImðΦ̄Þ. In case ρ can be written similarly to (B4) the
Faraday tensor can be further simplified. This solution is
available, as a Mathematica notebook, between the arXiv
files.
We observe that the metric built in this section represents

the most general Plebanski-Demianski metric that can be
built by the composition of the Ehlers and the Harrison
transformation (4.2), even though we have considered just a
real parameter labeling the Harrison transformation. As
said in the above sections, this restriction just eases the
computation and thus simplifies the resulting metric
without compromising the generality of the spacetime.

The main reason is that, when an Ehlers-Harrison trans-
formation is applied to a dyonic metric, the electromagnetic
Ernst potential is already complex; therefore the imaginary
part of the Ehlers-Harrison parameter can be reabsorbed
just in a relabeling of the electromagnetic parameter of the
seed Ernst potential. Alternatively, it can be understood as
the phase space degree of freedom is already completely
saturated by a real-parameter Ehlers-Harrison transforma-
tion for dyonic seeds. We can easily prove this fact
considering a real parameters Ehlers-Harrison transforma-
tion, i.e. (4.2) with α ¼ s, with f and h, for a dyonic
electromagnetic seed field as described in (B13). The
gravitational Ernst potential takes the form
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Ē ¼ −i½e2 þ p2 − ðr2 þ x2ω̂2Þðf − ihÞ�
cðe2 þ p2Þ þ i½r2 þ 2ðeþ ipÞrsþ ðe2 þ p2Þs2 þ 2ðp − ieÞsxω̂þ x2ω̂2� − ðcþ is2Þðr2 þ x2ω̂2Þðf þ ihÞ : ðB21Þ

Then we relabel31 the electric and magnetic charge such as

e → þe cos aþ p sin a

p → −e sin aþ p cos a
with a ¼ arccos

�
Reðα̃Þ
jα̃j

�

ðB22Þ

and we rename the real parameter α ¼ s32 of the Harrison
transformation

s → jα̃j: ðB23Þ

Hence, the gravitational Ernst potential (B21) becomes

Ēðr; xÞ ¼ E

1þ icE − α̃α̃�E − 2α̃�Φ
; ðB24Þ

which exactly corresponds to the Ehlers-Harrison trans-
formed gravitational Ernst potential with α̃∈C, as in (4.2).
Similarly also the electromagnetic Ernst potential of a
dyonic seed under a real parameter (s) Harrison trans-
formation coincides with the one of a complex parameter
(α̃) Harrison map, up to a unitary electromagnetic duality
rotation (A7), with λ ¼ expðibÞ. In fact, acting with the (I)
transformation on the seed electromagnetic Ernst potential
we get

Φ̄ ¼ expðibÞ½−ðp − ieÞðirþ psþ iesþ xω̂Þ þ sðr2 þ x2ω̂2Þðf þ ihÞ�
−icðe2 þ p2Þ þ r2 þ 2ðipþ eÞrsþ ðe2 þ p2Þs2 þ 2ðp − ieÞsxω̂þ x2ω̂2 þ iðcþ is2Þðr2 þ x2ω̂2Þðf þ ihÞ : ðB25Þ

Then considering the redefinitions in (B22) and (B23) and

b ¼ arctan

�
Imðα̃Þ
Reðα̃Þ

�
; ðB26Þ

we precisely recover the full complex Ehlers-Harrison trans-
formation for the Ernst electromagnetic potential, as in (4.2):

Φ̄ðr; xÞ ¼ Φþ α̃E

1þ icE − α̃α̃�E − 2α̃�Φ
: ðB27Þ

Note that the extra unitary (I) transformation leaves Ē
invariant.
Therefore we have proven that for a dyonic seed, such as

the one we are considering in this section, the Ehlers-
Harrison transformation (4.2) with real parameters is
sufficient to generate the most general metric. Actually a
complex α̃ parameter does not provide an extended
physical spacetime, but eventually only a more involved
solution with fictitious parameters, which should be better
to be reabsorbed to pursue a physical interpretation of the
novel metric. The same observation, about the unnecessary
complex parametrization, when dealing with dyonic
seeds, holds when c ¼ 0, i.e. for the standard Harrison
symmetry (2.10).

31This relabeling of electromagnetic charges can be alterna-
tively interpreted as a unitary electromagnetic rotation trans-
formation (I) as in (A7) with λ ¼ expðiaÞ (a∈R), which in
general is always an identity transformation for the gravitational
Ernst potential, and a rotation of the Ernst electromagnetic
potential. But in the case of a dyonic electromagnetic field, such
as the one we are working with, the (I) transformation trivializes
into the identity operator also for Φ because it can be reabsorbed
in a redefinition of the electromagnetic parameters.

32The symbol α̃ is used to point to a full complex quantity and
to distinguish it from the above real choice α ¼ s.
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