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Holonomy corrected Schwarzschild black hole lensing
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In the present work, we theoretically investigate gravitational lensing in the spacetime of a holonomy
corrected Schwarzschild black hole. Analytical expressions for the light deflection angle are obtained in
both the weak field limit and the strong field limit. Furthermore, we analyze observables, such as relativistic
images and magnifications, and compare the results with those expected in a Schwarzschild spacetime.

We discuss the possibilities and difficulties of investigating such a solution in practice.
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I. INTRODUCTION

It is well known that the limitations presented by
Einstein’s general relativity in dealing naturally with the
problem of geodesic singularity have motivated the search
for a broader gravitation theory [1-9]. From this perspec-
tive, loop-quantum gravity (LQG) emerges as one of the
promising quantum gravity proposals with the objective of
“regularizing” gravity [10-12]. LQG is a nonpertubative
theory to quantize the spacetime structure; however, it does
not present a complete quantum description close to what
we currently understand as a singularity. In this sense,
one can explore the effects of LQG in low-energy regimes
through effective models, that is, models with corrections
arising from quantum effects. Recently, in [13,14], the
authors obtained a solution of a regular, geodesically
complete black hole, resulting from anomaly-free holon-
omy corrections. Some aspects of this model have already
been investigated, such as those linked to quasinormal
modes [15,16] and horizon area [17]. In this work,
specifically, we theoretically investigate aspects linked to
gravitational lensing related to the aforementioned space-
time in order to provide theoretical tools with which can
observationally investigate the plausibility of the theory.
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Gravitational lensing is a phenomenon resulting from the
interaction between light and gravity. When light passes
through the gravitational field of a given source, it changes
its direction of propagation as a result of this interaction
[18,19]. If the light passes through a region very far from
the source that generated the gravitational field, the angular
deflection is small and we call this regime the weak field
limit. Conversely, as the distance between the source and
the light decreases, the angular deflection increases. In fact,
if the light touches a certain minimum distance, the
deflection angle diverges, we call this regime the strong
field limit. The first studies of lensing in the strong field
limit, in the 1960s, showed that relativistic images are too
weak [20,21], in addition, there were no lensing equations
suitable for this regime. Because of this, the field of
research remained at a standstill in the following decades.
In [22], Virbhadra and Ellis presented lensing equations
suitable for studying lensing in the strong field regime.
Later, Bozza developed a suitable methodology to derive
the angular deflection of light in the strong field limit [23],
which was later improved by Tsukamoto [24]. Since then,
gravitational lensing has been investigated in several
contexts involving black holes [25-35], wormholes
[36-48], topological defects [49-52], modified theories
of gravitation [53-61] and regular black holes [62-65].

Combined with these theoretical developments, recent
technological advances, such as the Event Horizon
Telescope (EHT) [66—71], have strongly activated the field
of lensing research in the strong field limit. The next
generation Event Horizon Telescope (ngEHT) [72] is
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expected to be able to discriminate between relativistic
images and the first and second images. This, among other
achievements, presents itself as an important tool for
distinguishing between observations predicted by general
relativity and other theories of gravity, such as LQG, within
the high-energy regime.

Motivated by this stimulating context, in this work, we
theoretically explore the observational signature in the
gravitational lensing of a solution arising from LQG. We
compare the results with those predicted by Scharzschild
spacetime in order to distinguish between the two cases and
discuss the results. The work is organized as follows. In
Sec. II we present the metric that describes the spacetime
and calculate the light deflection in the weak field limit. In
Sec. III, we analytically obtain an expression for the light
deflection in the strong field limit. In Sec. IV we derive the
observables in the strong field limit and compare them with
those in the Schwarzschild spacetime. We also discuss the
possibilities of experimental verification of the solution. In
the Sec. V, we concluded.

II. SPACETIME AND LIGHT DEFLECTION

The line element metric that describes the holonomy
corrected Schwarzschild black hole, in spherical coordi-
nates, is given by [13,14]

-1
dsz——<1 2M>dt2+ : (1—2—M) dr

r r—a r

+ 12(d6? + sin*0dg?). (1)

In (1), the LQG parameter, a, is such that a < 2M. Itis a
static, spherically symmetric and asymptotically flat space-
time. The spacetime given in (1) has a wormhole-like
structure, with a defining a minimal spacelike hypersurface
separating the trapped regular BH interior from the anti-
trapped other region. However, we will consider light rays
that do not cross the event horizon, characterized by
r=r, =2M, i.e., we will address regions where r > ry,
considering the global structure in the form of a Penrose
diagram (see Fig. 1), we will work within region 1.

Having established the limits of our investigation, let us
derive the equations necessary to study lensing. Using the
variational method, the Lagrangian corresponding to the
minimum distance in the spacetime described in (1), for
0 =7, is given by

(-2 () g (-2 (%)
+r2(%>2. )

The corresponding Euler-Lagrange equation for the coor-
dinates ¢ and ¢ leads to the following conserved quantities

FIG. 1. Penrose diagram. We are analyzing lensing in the
shaded region I, beyond to the hypersurface r = r,. The other
regions correspond to the black hole (II), white hole (II) and
another asymptotically flat region (IV) [14].
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L—Vza, (4)

and

which can be understood as energy and angular momen-
tum. Replacing (3) and (4) into (2) and considering null
geodesics, where £ = 0, the (2) leads to

ro(dr\? , L? 2M
Lol =m0 e

Equation (5) can be seen as describing the dynamics of a
classical particle of energy E subject to an effective

potential V¢ = 1;—22 (1 —2M). The value of r for which the

orbits are circular is determined by W;#fr(r) = 0, with this we

conclude that the radius photon sphere, r,,, in the holon-
omy corrected Schwarzschild BH is given by

rm = 3M, (6)

just like in Schwarschild spacetime.

To analyze the spacetime lensing of a holonomy cor-
rected Schwarzschild BH, let us consider a photon depart-
ing from the asymptotically flat region and approaching the
BH at a radial distance r, called the turning point, such that
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ro > r,. After being deflected by the BH’s gravitational
field, the photon heads to another asymptotically flat
region. At the turning point, E = V g(ry), that is,

1 1 2M
Fal ) "

where f(rg) =% is the impact parameter. Replacing (4)
in (5), we find

) -[-9l-+0-2 o

We want to find the change in coordinate ¢, i.e.,
A¢p = ¢_ —¢.. By symmetry, the contributions to A¢
before and after the turning point are equal, so Eq. (8)
leads to

s (2] e

Let us introduce the following variable change u :%,
where we have dr:—%. Furthermore, u—0 when r— co
and u — uy when r — ry. Therefore, in terms of u, (9)

becomes

U 1 -1/2
Aj = 2/ [(1 — au) [ﬁ_ 21 ZMM)H dr. (10)
0
From (7), to (10) becomes

Ap= 2["[(1 —au)[ud(1=2Mug) —u?(1—=2Mu)]]""/2dr.

(11)

In the weak field approximation, that is, assuming that

the photon passes very far from the BH, we can take the

approximation M < 1 and a < 1. Therefore, up to the

second order in a, a (11) provides the deflection of light
a=Ap—m

_AM a 3ra* Ma(3x—4)

a_ﬂ +ﬂ+16ﬂ2+ 47 .

(12)

In Eq. (12), the first term refers to the deflection of a
Schwarszchild BH, while the following terms bring a
contribution from the holonomic correction. Later, we will
study the observational implications of these corrections.

III. EXPANSION FOR DEFLECTION OF LIGHT
IN THE STRONG FIELD LIMIT

In this section, we will obtain the expression for the
deflection of light in the strong field limit. To do this, we

will adopt the methodology developed in [23,24]. Making
the following variable change

o
=1-—, 13
z . (13)
the (9) becomes
1 2}’0
I(ry) = / —————dz, 14
( 0) 0 G(Z, ro) ( )
where
ooar
G(z, o) :ﬁ—g—ﬁ—;’u —2)—r5(1-2)?

+ (2M + a)ro(1 —z)* —=2Ma(1 —2)*.  (15)

Expanding G(z, rg) in power series, we obtain

G(z, o) =y (ro)z + ay(r) 27, (16)

with
ay(ry) = 6aM — 2ary — 6Mry + 213 (17)

and
ay(ro) = 3arg + 6Mry — 12aM — r3. (18)

In the strong field limit, ry — r,, = 3M, the expansion
coefficients are

ai(ro) = ai(ry) =0 (19)

and
ay(ry) = ay(r,) = IM? — 3aM. (20)
This demonstrates that the integral (14), in dominant order,
diverges logarithmically in the strong field limit. In order to
obtain an expression for the deflection of light in the strong

field limit, we will divide (14) into two parts, a divergent
part I(rg) and a regular part I,(ry), where

Ig(ro) = I(ro) = Ip(ry). (21)

The divergent part is given by

dz, (22)

_ 1 2r
olro) / Var () + ()2
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whose integration provides

ID(FO)__%IOg< 0’1(’”0))
a\ro
4r
+mlog( a(ro)
+ al(ro)+az<r0))- (23)

Now let us expand a;(rq) and f(rg) close to the radius of
the photon sphere. From (17) and (7), we are left with

(6M —2a)(ro —3M) (24)

4 \/&(ro _3Mpe. (25

From (24) and (25), we have that

a(ry) =

and

B(ry) =~ V2TIM?

a,(ro) = 2vV6(3M? — aM) ( b —1>. (26)

V21M?

Replacing (26) in (23) and considering the strong field
limit, that is, ro — r,, = 3M, we get

M 10( p —1)
3M —a g3\/§M

p log(6). (27)

ID:_

3M —

The regular part, (21), is given by

) = [ =2y
(ro)—A 727&—’:0—) <
A Vai(ro)z + ay(ry) 2

dz.  (28)

In the limit ry — r,, = 3M and taking into account (15),
(16) and (7), (28) leads to

L 2
B=\3=2(aj2M)
18— 12(a/2M)
x log <6 ~(a/2M) + 33— 2(a/2M)>' (29)

Therefore, putting together (29) and (27), we finally find
the expansion for the deflection of light in the strong field
limit,

) =~ Mial <3fM 1)

\/ 2 108(6 T\ 3 202m) 2a/2M

« log ( 18 = 12(a/2M) )
(a/2M) + 31/3 —=2(a/2M)
— 7. (30)

One can easily check that when the LQG parameter, a,
tends to zero, the deflection falls into the well-known
expression referring to the Schwarszchild spacetime [23]:

o =g (-

In Fig. 2 we plot the light deflection for some values of
a/2M, we see that it is a function that increases with LQG
parameter. The solid curve corresponds to the well-known
Schwarzschild spacetime case. In Fig. 3 we plot o as a

1> +1og(6) + 0.9496 — 7. (31)

121

101
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Bl(zm)

FIG. 2. Light angular deflection as a function of the impact
parameter 3/2M for various values of the LQG parameter a/2M.
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FIG 3. Light angular deflection as a function of a/2M for
& =361 0.005.
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function of a/2M for 5; =3 ‘/_—l- 0.005, that is, we are
considering the deﬂectlon for a small radial displacement
from the critical impact parameter as a function of the LQG
parameter. As we can see more clearly, the deflection is a
function that increases with the LQG parameter a/2M. This
already indicates that the higher the LQG parameter, the
more expressive the discrimination between the deviation
of light in comparison to the Schwarzschild spacetime,
which really demonstrates the coherence of the results.

IV. OBSERVABLES

Now that we have obtained the expressions for the
deflection of light in the weak field limit (12) and in the
strong field limit (30), let us investigate, through gravita-
tional lensing, what to expect observationally from the
LQG spacetime. First, we will briefly review the lens
equations in the strong field limit, then we will use them to
derive expressions for the observables, with which we can
observationally investigate the plausibility of the solution
and distinguish it from the Schwarzschild black hole.

The visual profile of the lensing is schematized in
Fig. 4. The light that is emitted by the source S is deflected
towards the observed O by the LOG compact object
located in L. The angular deflection of light is given by a.
The angular positions of the source and image in relation
to the optical axis, LO, are given, respectively, by y and 6.

As in [22,73], we will admit that the source (S) is almost
perfectly aligned with the lens (L) which is where relativ-
istic images are most expressive. In this case, the lens
equation relating the angular positions € and f is given by

D
=0 -—L2Aq,, (32)
DOS

where Aq,, is the least deflection angle of all the loops made
by the photons before reaching the observer, that is,
Aa,, = a — 2nn. In this approximation,

DLS -DOL

FIG. 4. Light angular deflection diagram.

:B = QDOL’ (33)

so that, for simplicity, we can write the angular deflection
(30) as

0D -
a(f) = —alog ( ﬂOL - 1) + b, (34)
where, compared to (30), we have
3M
a—= , 35
“ 3M —a (35)
- 3M
b=1/——1
V37— q 02©) T\ 3 2(a/2m) 2a/2M
( 18 —12(a/2M) >
X log
6—(a/2M) +3+/3 —2(a/2M)
-7, (36)
and
B. =3V3M. (37)

What enters the lens equation is Agq,, to obtain it we
expand a(6) close to @ = 69, where a(69) = 2nzx. Thus, we
are left with

Aa, = Ja
90 |p—g,

n

(0—69). (38)

Evaluating (34) in 8 = 6°, we obtain

Pe

b=2nzx

00 = (1+e,), wheree,=ce . (39)
Dor,
Substituting (34) and (39) into (38), we get
Aa, = ——=(0-6°). 40
) (40)

Substituting (40) in the lens equation (32), we obtain the
expression for the nth angular position of the image

ﬁc €y DOS
a DorDpg

Although the deflection of light preserves surface bright-
ness, gravitational lensing changes the appearance of the
source’s solid angle. The total flux received by a lensed
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image is proportional to the magnification u,, which is
given by u,, = | %‘;—"6’ | |~!. Then from (32) and (40), we get

1 D .\ 2
U, = en( _+ en) oS < ﬂc > ) (42)
ay Dis \Dor

In fact, p,, decreases very quickly with 7, so the brightness
of the first image 6; dominates in comparison with other
ones. On the other hand, whatever the case, the presence of

the factor ( lf(‘)’L)z implies that the magnification will always

be small. It should also be noted that at the limit of the
source alignment, the lens and observer the magnification
diverges, maximizing the possibility of detecting relativis-
tic images.

A. Observables in the strong field limit

Finally, we have expressed the position of the relativistic
images as well as their flows in terms of the expansion
coefficients (@, b, and p.). Let us now consider the inverse
problem, that is, from observations, determine the expan-
sion coefficients. With this, we can understand the nature of
the object that generates the gravitational lens and compare
it with the predictions made by modified theories of gravity.

From Egs. (41) and (39), we have that

Pe

Iy
Doy,

(43)

Therefore, we can express the critical impact parameter as

Be = Dor0. (44)

Let us follow Bozza [23] and assume that only the
outermost image 6 is discriminated as a single image
while the rest are encapsulated in 6. Therefore, Bozza
defined the following observables,

b=2n

s=0,-0, =0y ¢, (45)
~ M1 2
F=eg— = €5, (46)
Zn:Z:un

In the expressions above, s is the angular separation and 7 is
the relationship between the flow of the first image and the
flow of all others. These forms can be inverted to obtain the
expansion coefficients. To evaluate the observables, let us
consider that the object in question has an estimated mass
of 4.4 x10°M and is at an approximate distance of
Do = 8.5 Kpc, these data are the same for the black hole
at the center of our galaxy [74]. As . = 3v/3M does not
depend on a, we can calculate it directly. In geometric
units, where M — M C% we will have 6, ~26,5473u
arcsecs; which is the same as the Schwarzschild case,
therefore, it is more promising to investigate the other

0.4F

0.3f

0.2

s(parcsecs)

0.1F

0.0},

al2M

FIG. 5. Angular separation s as a function of a/2M.

6.5F
6.0

E 55¢f

r

50f
4.5F

4.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. 2.5logo7 as a function of a/2M.

parameters. We plot the behavior of the angular separation
in Fig. 5 as a function of 53;. In Fig. 6, we plot

rn = 2.5logo 7 (47)

in function of 5j;. As we can see, the angular separation
increases with a, while r,, decreases. In Table I, we present
the observables for some values of the parameter 577, where
337 = 0 corresponds to the Schwarzschild case. We observe
that for 5§; > 0.6 the angular separation increases by an
order of magnitude compared to the Schwarzschild case.
Given the increase in optical resolution of observational
projects [72], we hope in the coming decades to have
minimum conditions to discriminate different theories of

gravitation, however, it is still a great challenge. As we can

TABLE I.  Observables.

a/(2M) s (uarcsecs) r,, (magnitudes)
0 0.0332 6.8218

0.3 0.0673 6.1017

0.6 0.1412 5.2842

0.9 0.3026 4.3145
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still see from the graphs and tables, the ratio between the
flow of the first and other images decreases, indicating an
increase in the magnitude of the other images.

B. Observables in the weak field limit

The weak field limit corresponds to a very large impact
parameter (f > M), so that there are no loops performed by
light. In this limit, Eq. (12) gives

o 4Mﬂ+ a (48)

In the perfect alignment between the source, the compact
object and the observer, we have y = 0, this implies, from
Eq. (32), that

Dy

0 =
DOS

Aa,, (49)

with Aa, given by (48). Therefore, substituting (48) into
(49), we find

DLS<4M + a)

0 =0, = ,
. DosDor.

(50)

where 6 is the angular position of the Einstein ring.
Beforehand, it is clear that the presence of the LQG
parameter, a, increases the angular position of the
Einstein ring. From (33), we can also calculate the radius
of the Einstein ring, R, which is given by

RE :DOLHE' (51)

Let us now estimate the observables Ry and 6 taking
into account reasonable values for the LQG parameter.
As in [48], let us consider the lensing of a bulge star. The
following parameters are adopted: D,g = 8 Kpc and
D,; = 4 Kpc. Based on these estimates, in the Table II,
we present some values of the observables for the presented
scenario. We verified that, within the possibilities of the
LQG gravity, the present solution presents feasible theo-
retical possibilities of being detected since the measure-
ments are within the range of observables.

Let us make some observations about the limitation of
this work. To calculate the observables, we use the conven-
tional formulation for the lens equation [Eq. (32)]. A
general formulation for a spherically symmetric and static

TABLE II. Einstein radii/angle for bulge lensing.

37 Ry (km) O (arcsecs)
0 1.26 x 1012 2.11

0.3 1.35 x 102 2.26
0.6 1.44 x 10'? 241

0.9 1.52 x 10'2 2.54

spacetime is given in [75] and improved by Takizawa et al.
[76], in order to solve the lens equation through iterative
methods. In [76], the method is described clearly and in
detail, but in order to analyze second-order corrections in
holonomy correction, let us give a brief summary of the
method here. In the iterative scheme, angles are considered
small and expanded in terms of an iterative parameter (¢):
w=ey ), 9:Zlesk9(k), a=>y 2, eka(k). Substituting
these expressions into the general lens equation gives the
lens equation in all orders. For example, in the leading
order [O(¢)], we get the conventional lens equation,

va) =00 — 5 aq)- (52)

At second order [O(¢?)], the general lens equation gives
Dps

92 = p, % (53)

and so on. Next, we outline the steps that allow us to calculate
62)- Todo so, letus write f = eDg; + Doy + O(&?), the
mass M — &M and a — £’a. Substituting these values
into (12) we obtain

3arn — 16DOL6(2) aM
(1(2) = 16D2 9 (Cl + 4M) - 71)2 92 . (54)
oLY(1) OL™ (1)

Replacing (54) in (53), we find

_ 3azm aM
o 32D0L 2D0L(a + 4M) '

02) (55)

With the expression (55), we estimate the values of 0,
for 0 < a/2M < 1; in all cases we find that 6, ~ 106
arcsecs. This contribution is far below the observational
range, which justifies, in the present case, considering the
conventional lens equation (leading order in &).

V. CONCLUSIONS

In this work, we theoretically investigate the gravita-
tional lensing produced by a recently proposed spacetime
that is motivated by LQG. We provide analytical expres-
sions for the deflection of light in both the strong field and
weak field limits. Furthermore, we carried out a more
detailed study of the images generated in the strong field
limit, when the light passes very close to the photon sphere.
In order to compare our results with those predicted by a
Schwarzschild black hole, we modeled the solution with
black hole data at the center of our galaxy and calculated
the observables. We show that the angular separation
increases with the LQG parameter, a, and, on the other
hand, the relativistic images have increased intensity. We
emphasize that this distinction between observables,
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generated by different models, is crucial for the inves-
tigation of gravitational theories beyond general relativity.
We further investigated the influence of the LQG parameter
on the Einstein ring, concluding that for reasonable
values of a, the radius and angular position of the ring
differ significantly from the results predicted by the
Schwarzschild solution. We hope that the present work,
due to its analytical and numerical results, will contribute,

in due time, to verifying the possibility of corrections to
general relativity.
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