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In Einstein-Gauss-Bonnet gravity, we study the quasinormal modes (QNMs) of the tensor perturbations
for the so-called Maeda-Dadhich black hole which locally has a topology M n ≃M4 ×K n−4. Our
discussion is based on the tensor perturbation equation [L.-M. Cao and L.-B. Wu, Phys. Rev. D 103,
064054 (2021).], where the Kodama-Ishibashi gauge-invariant formalism for Einstein gravity theory has
been generalized to the Einstein-Gauss-Bonnet gravity theory. With the help of characteristic tensors for the
constant curvature spaceK n−4, we investigate the effect of extra dimensions and obtain the scalar equation
in four-dimensional spacetime, which is quite different from the Klein-Gordon equation. Using the
asymptotic iteration method and the numerical integration method with the Kumaresan-Tufts frequency
extraction method, we numerically calculate the QNM frequencies. In our setups, characteristic frequencies
depend on six distinct factors. They are the spacetime dimension n, the Gauss-Bonnet coupling constant α,
the black hole mass parameter μ, the black hole charge parameter q, and two “quantum numbers” l, γ.
Without loss of generality, the impact of each parameter on the characteristic frequencies is investigated
while fixing the other five parameters. Interestingly, the dimension of the compactification part has no
significant impact on the lifetime of QNMs.
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I. INTRODUCTION

Modified gravity theories can help us understand the
limitations of Einstein gravity theory, address challenges
with existing models, and contribute significantly to our
understanding of the Universe. Lovelock theories beyond
four dimensions are the most general diffeomorphism
covariant modified gravity theories only involving a metric
tensor with second-order equations of motion [1]. In four
dimensions and generic values of the coupling constants,
the theory reduces to the general relativity with a cosmo-
logical constant [2], where the corresponding equations of
motion are the Einstein equations. Einstein-Gauss-Bonnet
(EGB) gravity is the lowest Lovelock theory, whose
Lagrangian contains only the linear and quadratic terms
of spacetime curvature. String theory predicts quantum
corrections to general relativity, with the Gauss-Bonnet

term as the first and dominating correction among others.
EGB gravity is the simplest model for illustrating the
distinctions between general Lovelock gravity theory and
Einstein gravity theory in higher dimensions.
One of the best ways to understand the modified gravity

theory is to investigate the black hole solutions within it.
However, in modified gravity theories, analytical solutions
of black holes are quite rare. Although numerical solutions
are practical, it is necessary to have a certain foundation in
numerical calculation theory in order to determine the
accuracy of the results. Fortunately, several analytical black
hole solutions in EGB gravity have been found. Black holes
in high-dimensional spacetime have garnered significant
interest for two primary reasons: they arise naturally in
the context of string theory and are also present in extra-
dimensional brane world scenarios [3]. A class of static
vacuum solutions in the EGB gravity was first obtained by
Boulware andDeser [4] andWheeler [5]. Thisworkwas later
extended to include a cosmological constant by Cai [6]. The
topology of these solutions is locally M n ≃M2 ×N n−2.
The Maeda-Dadhich black hole, a kind of Kaluza-Klein
(KK) black hole, is also an exact vacuum solution of EGB
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gravity with a cosmological constant that bears a specific
relation to the Gauss-Bonnet coupling constant [7]. This
spacetime is locally the product of a usual four-dimensional
manifold with a (n − 4)-dimensional space of constant
negative curvature, i.e., its topology is locally M n ≃
M4 ×K n−4. Here, M2, M4, and N 2 are general (pseudo)
Riemannian manifolds, while K n−4 is a noncompact
Riemannian manifold with sectional curvature K ¼ −1.
Another remarkable feature of this solution is that the
Gauss-Bonnet term acts like a Maxwell source for large r,
while at the other end, it regularizes the metric and weakens
the central singularity [7]. It can serve as an excellent model
for testing extra dimensions and could potentially be a
candidate for a realistic black hole. Our present work will
concentrate on this black hole solution. Based on the same
ideas, a class of black hole solutions has been obtained in
n-dimensional Lovelock gravity theory [8]. The topology of
these solutions is locallyM n ≃Mm ×K n−m, whereK n−m

is a space of negative constant curvature.
Perturbing black holes provide valuable insights into

their properties, but gauge dependence can be an issue. To
address this, one approach is to use physically preferred
gauges, while another one is to use gauge-invariant
variables such as the Kodama-Ishibashi gauge-invariant
variables [9]. These variables allow for the derivation of
master equations with tensor, vector, and scalar compo-
nents [9–12]. Using the Kodama-Ishibashi gauge-invariant
variables, a generalized master equation for tensor-type
perturbations has been derived in EGB gravity [13].
When a black hole undergoes perturbations, it experi-

ences damping oscillations superimposed by characteristic
modes. The incoming boundary condition at the horizon
and the outgoing boundary condition at spatial infinity
result in a dissipative system with characteristic modes
referred to as quasinormal modes (QNMs). Their frequen-
cies ω, denoted as quasinormal frequencies, are the group
of discrete complex eigenvalues of perturbation equations
of the black hole solution, a set of homogeneous second-
order differential equations, and can therefore reveal useful
information about the corresponding spacetime geometry.
QNMs have been a subject of interest for several decades,

ever since their initial proposal by Regge and Wheeler
in their analysis of the stability of Schwarzschild black
holes [14]. Thesemodes are significant fromboth theoretical
and observational standpoints. From the observation aspect,
binary black holemergers are amajor source of gravitational
waves. Thewaves emitted during the ringdown stage can be
expressed as a superposition of quasinormal modes of a
perturbedKerr black hole [15–17]. Some gravitational wave
(GW) events have been detected by LIGO,which are caused
by themerger of binary black holes (BHs), where QNMs are
also present [18–21]. These results show that the gravita-
tional wave signal is consistent with Einstein gravity theory.
However, the currently available observational precision of
the binary BH evolution prediction simulated by the LIGO

and VIRGO Collaborations may meet the requirements for
testing modified gravity theories [20]. That is to say, some
non-negligible uncertain parameters within the BHs’ range
indicate that the window for alternative gravity theories has
been opened [22]. With the development of observational
technology, it is now possible to use QNM measurements
from gravitational wave observations to test general rela-
tivity, examine thevalidity of the “no-hair” theorem [23–25],
and constrain modified gravitational theories. Therefore,
modified gravity theories containing higher derivative terms
and extra dimensions may be truly confirmed through
corresponding GW observations. As such, the analysis of
QNMs has become an important topic in gravitational wave
research.
From the theoretical perspective, QNMs are a topic of

significant interest. Research into QNMs can provide
insight into potential violations of strong cosmic censorship
[26]. Additionally, QNMs might provide one with some
inspirations about the quantization of black hole areas
[27–29]. Furthermore, it is anticipated that the signatures of
extra dimensions may be discerned from the QNMs of
black holes. For instance, a recent study investigated the
numerical evolution of massive Kaluza-Klein modes of a
scalar field in a thick brane [30]. This study found that there
are scalar KK resonant particles with long lifespans on the
brane, suggesting that these resonances could potentially
serve as candidates for dark matter. Another study exam-
ined the quasinormal modes of a thick brane in order to
detect sounds from extra dimensions [31]. In addition,
QNMs in EGB theory have also received a lot of attention
[32–34]. As for the Maeda-Dadhich black hole, Alexeyev
et al. analyzed the stability of this black hole by using the
Chandrasekhar frame [35]. However, their study was
limited to perturbations within the four-dimensional space-
time. Furthermore, we can investigate the stability of this
black hole in terms of the so-called Kaluza-Klein modes,
which are defined in the extra dimensions by computing
QNMs, utilizing the perturbation equation we have derived
[13]. Given these findings, our goal is to investigate the
impact of extra dimensions on QNMs within the framework
of EGB gravity theory.
The high precision measurement also requires accurately

calculating the QNMs. So far, the high precision methods
have been made to calculate the frequencies of QNMs, such
as the Wentzel-Kramers-Brillouin (WKB) approximation
[36–39], numerical integration method [40–43], continued
fractions method [44–49], asymptotic iteration method
(AIM) [50–52], and so on. It is worth noting that the
divergent behavior of the effective potential of asymptotic
anti–de Sitter (AdS) spacetime we consider here will be
quite different from that of asymptotic flat spacetime and
thus leads to some subtleties for the QNM treatment. In this
work, we use the AIM and numerical integration method
jointly to do the calculation, two widely adopted methods
that work well in the asymptotically AdS case with the
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nonrational metric function. One can see some nice reviews
[16,53,54] to get more information about QNMs.
The aim of this paper is to discuss characteristic

mode frequencies of the tensor perturbation equation for
the Maeda-Dadhich black holes obtained through the
Kodama-Ishibashi formalism for general warped product
spacetimes, with asymptotic iteration and numerical inte-
gration methods. After expressing the effect of extra dimen-
sions with the help of the characteristic tensors ofK n−4, we
recast the perturbation equation derived in [13] into a scalar
field equation in four-dimensional spacetime, which is quite
different from the Klein-Gordon equation. Roughly speak-
ing, the correction effect stems from the Gauss-Bonnet
coupling constant α and the eigenvalues of characteristic
tensors of the extra dimension part. The coefficients of the
second-order covariant derivative is no longer the spacetime
metric. Actually, it is modified by the Einstein tensor of the
four-dimensional spacetime. In addition, there exists a term
proportional to the scalar field in this equation. However,
unlike the massive scalar field [47,48], the term is in fact
dependent on the radial coordinate r. Having the scalar
equation, we get the Schrödinger-like equation by separating
the angular part as usual. Then, we calculate the QNMs by
two different numerical methods, namely, asymptotic iter-
ation and numerical integration methods. We then provide
the characteristic frequencies under different parameter
choices and study how these parameters affect the QNMs.
It is found that the dimension of the compactification part has
no significant impact on the lifetime of QNMs.
The paper is organized as follows. In Sec. II, we present a

brief review of Kaluza-Klein black holes proposed in [7].
The master equation for tensor-type perturbations in the
Einstein-Gauss-Bonnet gravity theories is displayed in
Sec. III. The Schrödinger-like equation with the corre-
sponding effective potential is also shown in the same
section. In Sec. IV, the asymptotic iteration method is given
to get the QNMs. In Sec. V, the evolution of a scalar field is
analyzed. With the numerical results from Sec. V, we use
the Kumaresan-Tufts (KT) method to extract characteristic
frequencies in Sec. VI. In Sec. VII, a large amount of data
will be displayed and we can find how the characteristic
frequencies change with parameters. Section VIII is
devoted to conclusions and discussion.

II. KALUZA-KLEIN BLACK HOLES

In this section, we will have a brief review of Kaluza-
Klein black holes proposed byMaeda and Dadhich [7]. The
action for n ≥ 5 in the n-dimensional spacetime with a
metric gMN is given by

S ¼
Z

dnx
ffiffiffiffiffiffi
−g

p �
1

2κ2n
ðR − 2Λþ αLGBÞ

�
þ Smatter; ð2:1Þ

where κn is the coupling constant of gravity that depends
on the dimension of spacetime, and R and Λ are the

n-dimensional Ricci scalar and the cosmological constant,
respectively. Smatter stands for the matter fields. The Gauss-
Bonnet term is given by

LGB ¼ R2 − 4RMNRMN þ RMNPQRMNPQ; ð2:2Þ

where the capital letters fM;N; P;Q; � � �g are the indices
for the n-dimensional spacetime. The symbol α is the
coupling constant of the Gauss-Bonnet term. The symbol α
is identified with the inverse string tension and is positive
definite. The equation of motion of this theory is given by

GMN þ αHMN þ ΛgMN ¼ κ2nTMN; ð2:3Þ

where

GMN ¼ RMN −
1

2
gMNR; ð2:4Þ

and

HMN ¼ 2½RRMN − 2RMLRL
N − 2RKLRMKNL

þ RM
KLPRNKLP� −

1

2
gMNLGB: ð2:5Þ

We consider the n-dimensional spacetime locally
homeomorphic to M4 ×K n−4 with the metric, gMN ¼
diagðgab; r20γijÞ, where a; b ¼ 0;…; 3; i; j ¼ 4;…; n − 1.
Here gab is an arbitrary Lorentz metric on M4, r0 is a
constant given by

r20 ¼ −2Kαðn − 4Þðn − 5Þ; ð2:6Þ

and γij is the unit metric on the (n − 4)-dimensional space
of constant curvature K n−4 with a sectional curvature
K ¼ −1.
We will seek a vacuum static solution with the metric on

M4 reading as

gabdxadxb ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΣ2

2ðkÞ; ð2:7Þ

where dΣ2
2ðkÞ is the unit metric on two-dimensional constant

curvature space Σ2ðkÞ with k ¼ �1; 0. The governing
equation is a single scalar equation on M4, which is
given by

1

n − 4
4Rþ α

2
4LGB þ 2n − 11

αðn − 4Þ2ðn − 5Þ ¼ 0; ð2:8Þ

where 4R and 4LGB are defined in the Lorentz manifold
ðM4; gabÞ. After some calculation, Eq. (2.8) yields the
general solution for the function fðrÞ,
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fðrÞ ¼ kþ r2

2ðn− 4Þα
�
1∓

�
1−

2n− 11

3ðn− 5Þþ
4ðn− 4Þ2α3=2μ

r3

−
4ðn− 4Þ2α2q

r4

�
1=2

�
; ð2:9Þ

where μ and q are arbitrary dimensionless constants, where
μ refers to the mass of the central object, and q is the
chargelike parameter. Probably, due to the topology of the
spacetime, i.e., M n ≃M4 ×K n−4 with constant curvature
K ¼ −1, the charge parameter q automatically appears as a
constant of integration. It should be noted that this kind of
charge corresponds to the so-called Weyl charge defined by
the integration of the Weyl tensor projected onto the brane
[55]. Detailed explanation on the meaning of this charge
can be found in [7] and references therein.
To make fðrÞ meaningful, the dimension of spacetime

must be set as n ≥ 6. There are two branches of the solution
indicated by a sign in front of the square root in Eq. (2.9),
which we call the minus and the plus branches [7]. We will
focus on the case with k ¼ 1 in the following sections.
Since the expression in the radical of the metric function
should be non-negative, the parameter μ and q should meet
the following condition:

1−
2n−11

3ðn−5Þþ
4ðn−4Þ2α3=2μ

r3
−
4ðn−4Þ2α2q

r4
≥ 0: ð2:10Þ

A sufficient condition is that μ ≥ 0 and q ≤ 0, and then
r∈ ð0;þ∞Þ. Notice that, since only for the negative
branch, the metric function fðrÞ may have zero points,
we choose the negative branch for our study for the black
hole appearing, i.e.,

fðrÞ ¼ 1þ r2

2ðn− 4Þα
�
1−

�
1−

2n− 11

3ðn− 5Þ þ
4ðn− 4Þ2α3=2μ

r3

−
4ðn− 4Þ2α2q

r4

�
1=2

�
: ð2:11Þ

The function fðrÞ is expanded for r → þ∞ as

fðrÞ ¼ 1þ r2

2ðn − 4Þα
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n − 4

3ðn − 5Þ

s �

−
α1=2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 4Þðn − 5Þp

r
þ αq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 4Þðn − 5Þp

r2

þO

�
1

r3

�
: ð2:12Þ

This is the same as the Reissner-Nordström anti–de Sitter
spacetime for k ¼ 1 in spite of the absence of the
Maxwell field.
Since the design of the algorithm of QNMs involves the

number of the zero points of the metric function fðrÞ, we

will find the number of the zero points of fðrÞ. fðrÞ ¼ 0 is
equivalent to hðrÞ ¼ 0 in terms of the condition μ ≥ 0 and
q ≤ 0, where

hðrÞ ¼ 2n − 11

12ðn − 5Þðn − 4Þ2α2 r
4 þ r2

ðn − 4Þα −
μ

α1=2
r

þ ðqþ 1Þ: ð2:13Þ
The derivative of hðrÞ is

h0ðrÞ¼ 2n−11

3ðn−5Þðn−4Þ2α2 r
3þ 2

ðn−4Þαr−
μ

α1=2
: ð2:14Þ

It is easy to find that h0ðrÞ only has one zero point in
ð0;þ∞Þ. Therefore, fðrÞ has two zero points at most. The
ranges of parameter values of μ and q are selected as μ ≥ 0
and q ≤ 0 for simplicity. Additionally, we can easily see
that, when q < −1, fðrÞ has only one zero point, i.e., only
the event horizon exists. In later calculations, we can judge
whether it has one or two zero points through numerical
calculations. The event horizon is denoted as rþ and the
inner horizon is denoted as r− if it exists.

III. THE MASTER EQUATION OF THE
TENSOR PERTURBATIONS

We consider an n ¼ 4þ ðn − 4Þ-dimensional spacetime
ðM n; gMNÞ, which has a local direct product manifold with
a metric

gMNdxMdxN ¼ gabðyÞdyadyb þ r2ðyÞγijðzÞdzidzj; ð3:1Þ

where coordinates xM ¼ fy1;…; y4; z1;…; zðn−4Þg. In the
following discussion, the Riemann manifold ðN n−4; γijÞ is
assumed to be a maximally symmetric space, i.e.,
N n−4 ¼ K n−4. The metric compatible covariant deriva-
tives associated with gab and γij are denoted by Da and D̂i.
K is the sectional curvature of the space and for this
Kaluza-Klein black hole we have K ¼ −1.
Under the linear perturbation of the metric gMN →

gMN þ hMN , the linear perturbation equations for
Eq. (2.3) can be obtained. The tensor perturbation equation
is obtained by making the metric perturbation hMN and the
energy-momentum perturbation δTMN meet with

hab ¼ 0; hai ¼ 0;

δTab ¼ 0; δTai ¼ 0: ð3:2Þ
At the same time, the Riemann part of the perturbation
hMN , i.e., hij, is transverse and traceless. The scalar- and
vector-type perturbation equations are the equations for
other parts of hMN [9,11]. After some calculation, the
master equation of tensor perturbations (the computing
method can be found in [11,13]) in vacuum can be written
as [13]
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ðPabDaDb þ PmnD̂mD̂n þ PaDa þ VÞ
�
hij
r2

�
¼ 0; ð3:3Þ

where

Pab ¼ gab þ 2ðn − 6Þα
�
2
DaDbr

r
þ
�
ðn − 7ÞK − ðDrÞ2

r2
− 2

4
□r
r

�
gab

�
− 4α · 4Gab; ð3:4Þ

Pmn ¼
�
1þ 2α

�
4R −

2ðn − 7Þ4□r
r

þ ðn − 7Þðn − 8ÞK − ðDrÞ2
r2

��
γmn

r2
≡ Q

r2
γmn; ð3:5Þ

Pa ¼ ðn − 4ÞD
ar
r

þ 2ðn − 6Þα
�
4
DaDbr

r
þ
�
4R − 2ðn − 5Þ

4□r
r

þ ðn − 6Þðn − 7ÞK − ðDrÞ2
r2

�
gab

�
Dbr
r

− 8α · 4Gab Dbr
r

; ð3:6Þ

and

V ¼ 4R − 2ðn − 5Þ
4
□r
r

þ ðn − 4Þðn − 7ÞK
r2

−
ðn − 5Þðn − 6ÞðDrÞ2

r2
− 2Λ

þ α

�
4LGB þ 8ðn − 5Þ · 4Gab DaDbr

r
− 4ðn − 5Þðn − 6Þ ðD

aDbrÞðDaDbrÞ
r2

þ 4ðn − 5Þðn − 6Þ
�

4
□r
r

�
2

þ 2ðn − 4Þðn − 7ÞK · 4R
r2

− 2ðn − 5Þðn − 6Þ ðDrÞ2 · 4R
r2

− 4ðn − 4Þðn − 7Þ2K · 4□r
r3

þ 4ðn − 5Þðn − 6Þðn − 7Þ ðDrÞ2 · 4□r
r3

− 2ðn − 4Þðn − 7Þ2ðn − 8ÞK · ðDrÞ2
r4

þ ðn − 7Þðn − 8Þ½ðn − 4Þ2 − 3ðn − 4Þ − 2�K
2

r4

þ ðn − 5Þðn − 6Þðn − 7Þðn − 8Þ
�ðDrÞ2

r2

�
2
�
; ð3:7Þ

where 4
□ ¼ gabDaDb is the d’Alembertian in ðM4; gabÞ.

We can apply the separation of variables [10],

hijðy; z1;…; zn−4Þ ¼ r2ΦðyÞh̄ijðz1;…; zn−4Þ; ð3:8Þ

where h̄ij is the characteristic tensor of K n−4 and satisfies

D̂kD̂kh̄ij ¼ γh̄ij; D̂ih̄ij ¼ 0; γijh̄ij ¼ 0: ð3:9Þ

Then, one obtains a four-dimensional wave equation of Φ
on the manifold M4 as follows (one can find the details in
Appendix A):

�
4n−22

ðn−4Þðn−5Þg
ab−4α · 4Gab

�
DaDbΦ

þ
�

2þ γ

ðn−4Þðn−5Þ
4Rþ 3ðn−6Þð2þ γÞ

αðn−4Þ2ðn−5Þ2
�
Φ¼ 0: ð3:10Þ

Equation (3.3) that we initially obtained is a tensor equation
about hij, which turns into this scalar equation on the
manifold M4 after separating the variables. In fact, the
scalar Φ is the amplitude of the characteristic field h̄ij
corresponding to the characteristic value γ. Comparing with
the standard Klein-Gordon equation 4

□Φ ¼ 0 in ðM4; gabÞ,
it can be found that the coefficient of the second derivative
of Φ in Eq. (3.10) is added by a term related to the four-
dimensional Einstein tensor Gab.
Solutions to Eqs. (3.9) are worked out in [56] for K ¼ 1,

where it is shown that the spectrum of eigenvalues is
γ ¼ −LðLþ n − 5Þ þ 2; L ¼ 2; 3; 4;…. However, as for
our case K ¼ −1, there is a subtlety in the value of γ that
may be a difficult mathematical problem. To avoid math-
ematical hardship, as a matter of convenience, γ ∈R is
assumed. It can be seen that QNMs can be obtained for a
given γ. Upon examination of Eq. (3.9), it can be observed
that a total of n − 3 constraints are imposed on h̄ij. The
degrees of freedom for h̄ij are ðn − 4Þðn − 3Þ=2. In the
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specific case where n ¼ 6, the number of constraints
imposed on h̄ij is equal to its degrees of freedom. As a
result, h̄ij possesses no degrees of freedom for propagation.
Since the issue mentioned above is excluded when n ≥ 7,
we will focus on the cases where n ≥ 7 for the remainder of
this paper.
Now, Eq. (3.10) is an equation about Φ on M4 with a

Lorentz metric

gabdxadxb ¼ −fðrÞdt2 þ 1

fðrÞ dr
2

þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3:11Þ

where we have chosen the metric function (2.9) with k ¼ 1.
Separating the variables as

Φðt; r; θ;ϕÞ ¼ e−iωtRðrÞYðθ;ϕÞ; ð3:12Þ

where Yðθ;ϕÞ is the spherical harmonics, we get the radial
equation of RðrÞ as follows:

R00 þ BðrÞR0 þ CðrÞR ¼ 0; ð3:13Þ

where the functions BðrÞ and CðrÞ are

BðrÞ¼
�

4n−22

ðn−4Þðn−5Þ
�
f0 þ2f

r

�
−4α

−f0 þ3ff0 þ rðf0Þ2þ rff00

r2

��
4n−22

ðn−4Þðn−5Þf−
4αfð−1þfþ rf0Þ

r2

�
−1
; ð3:14Þ

and

CðrÞ ¼ ω2

f2
þ
�
−
lðlþ 1Þ

r2

�
4n − 22

ðn − 4Þðn − 5Þ −
2αð2f0 þ rf00Þ

r

�

þ
�

2þ γ

ðn − 4Þðn − 5Þ
4Rþ 3ðn − 6Þð2þ γÞ

αðn − 4Þ2ðn − 5Þ2
���

4n − 22

ðn − 4Þðn − 5Þ f −
4αfð−1þ f þ rf0Þ

r2

�
−1
: ð3:15Þ

Here, the prime denotes the derivative with respect to r.
Now, our task is to bring this equation to the more

familiar form of the one-dimensional Schrödinger-like
equation, for which we need to remove the friction term
in the equation above. There are two transformations that
we can consider: a change of variable for the radial
coordinate r⋆ ¼ r⋆ðrÞ and a rescaling of R so that

dr⋆ ¼ zðrÞdr; R ¼ SðrÞφ; ð3:16Þ

for given functions S and z, and φ is the new radial function
now [57]. Performing the transformations (3.16), one gets

z2S
d2φ
dr2⋆

þðz0Sþ2zS0 þBzSÞ dφ
dr⋆

þðCSþBS0 þS00Þφ¼ 0:

ð3:17Þ

In order to remove the term dφ=dr⋆, it is found that S and z
must satisfy

zS2 ¼ exp

�
−
Z

BðrÞdr
�
: ð3:18Þ

Therefore, Eq. (3.17) becomes

d2φ
dr2⋆

þ CSþ BS0 þ S00

z2S
φ ¼ 0: ð3:19Þ

We have the freedom to fix one of these functions; the other
one will then be determined by the relation (3.18). We make
the following choice of tortoise coordinate:

zðrÞ ¼ 1

fðrÞ : ð3:20Þ

It is found that r⋆ is finite as r → þ∞, and r⋆ → −∞ as
r → rþ. This is similar to the AdS case. The function S is
satisfied with

S2 ¼ 1

z
exp

�
−
Z

Bdr

�
;

ðS2Þ0 ¼−Bz− z0

z2
exp

�
−
Z

Bdr

�
;

ðS2Þ00 ¼
�
−
z00

z2
þ 2Bz0

z2
þ 2ðz0Þ2

z3
−
B0

z
þB2

z

�
exp

�
−
Z

Bdr

�
:

ð3:21Þ

Finally, the standard Schrödinger-like equation is obtained,

�
d2

dr2⋆
þ ðω2 − VeffÞ

�
φ ¼ 0; ð3:22Þ

where the effective potential Veff is
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Veff ¼ ω2 −
CSþ BS0 þ S00

z2S

¼ ω2 − f2Cþ ðf0Þ2
4

−
ff00

2
þ f2B0

2
þ f2B2

4
: ð3:23Þ

It should be noted that Veff above is independent of ω since
there is a term ω2=f2 in C.
We need to examine the behavior of the effective

potential Veff before calculating QNMs. There are two
things we must accomplish. First, we should check whether
there exists any r ¼ rV ∈ ðrþ;þ∞Þ such that Veff is
divergent, i.e.,

lim
r→rV

Veff ¼ ∞: ð3:24Þ

In other words, we are supposed to pay attention to whether
there exists r ¼ rV ∈ ðrþ;þ∞Þ such that

4n − 22

ðn − 4Þðn − 5Þ −
4αð−1þ f þ rf0Þ

r2
¼ 0; ð3:25Þ

which is equivalent to

2n− 11

n− 5
r8 þ 12α3=2μðn− 4Þð2n− 11Þr5

− 12α2qðn− 4Þðn− 6Þr4 − 144α7=2μqðn− 5Þ2ðn− 4Þ2r
þ 48α4ðn− 5Þ2ðn− 4Þ2q2 ¼ 0: ð3:26Þ

However, in the above polynomial equation, we find each
term is non-negative provided that μ ≥ 0, q ≤ 0, and n ≥ 6,
i.e., there is no such rV that Eq. (3.24) is established.
Hence, the effective potential Veff is always regular at
ðrþ;þ∞Þ. Second, we should acquaint ourselves with the
asymptotic behavior of Veff as r → þ∞ and r → rþ. When
r → þ∞, we have

Veff ¼
�ðγ þ 2Þð2 ffiffiffi

3
p ffiffiffiffiffiffi

n−4
n−5

q
n − 3n − 10

ffiffiffi
3

p ffiffiffiffiffiffi
n−4
n−5

q
þ 12Þð ffiffiffi

3
p ffiffiffiffiffiffi

n−4
n−5

q
− 3Þ

12α2ðn − 5Þðn − 4Þ2ð ffiffiffi
3

p ffiffiffiffiffiffi
n−4
n−5

q
n − n − 5

ffiffiffi
3

p ffiffiffiffiffiffi
n−4
n−5

q
þ 4Þ

þ
ð ffiffiffi

3
p ffiffiffiffiffiffi

n−4
n−5

q
− 3Þ2

18α2ðn − 4Þ2
�
r2 þ Oð1Þ

¼
�
3 −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
n − 4

n − 5

r ��
36α2ðn − 5Þðn − 4Þ2

� ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
n − 4

n − 5

r
ðn − 5Þ − ðn − 4Þ

��
−1

×

��
9ðn − 4Þ − 6

ffiffiffi
3

p
ðn − 5Þ

ffiffiffiffiffiffiffiffiffiffiffi
n − 4

n − 5

r �
γ þ 2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffi
n − 4

n − 5

r
ðn − 5Þð4n − 25Þ − 6ðn − 4Þð2n − 13Þ

�
r2 þ Oð1Þ

≡ V0ðα; n; γÞr2 þ Oð1Þ: ð3:27Þ

The stability requirement demands that Veff tends toward
positive infinity, i.e., V0ðα; n; γÞ > 0 [58]. One can find the
range of γ in terms of the dimension of spacetime n in
Table I. An important property of the effective potential
Veff is that

VeffðrþÞ ¼ 0: ð3:28Þ

One can check it by a direct calculation (see Appendix B).
Before proceeding to actual numerical calculation, we

make some remarks on our analysis. Although Newton’s
gravitational constant varies with different total dimensions
of spacetime, it does not directly enter into the calculation,

since the energy-momentum tensor vanishes in terms of the
considered spacetime. We utilized Newton’s gravitational
constant only when converting mass dimensions to length
dimensions. As a result, we can simply set both the speed of
light c and the four-dimensional Newton’s gravitational
constant G to 1 without encountering any issues with the
higher-dimensional Newton’s gravitational constant. The
Gauss-Bonnet coupling, denoted by α, has the dimension
of length squared. Because of the asymptotic property of
Kaluza-Klein black holes we studied, the effective AdS
length is [7]

leff ¼
�
2ðn − 4Þα
1 −

ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q �

1=2
; ð3:29Þ

the effective mass of the black hole is represented by

Meff ¼
1

2
α1=2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 4Þðn − 5Þ

p
; ð3:30Þ

while the effective charge of the black hole is

Qeff ¼
	
αq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 4Þðn − 5Þ

p 

1=2

: ð3:31Þ

TABLE I. The range of γ in terms of the dimension of
spacetime n.

Dimension of spacetime n Range of γ

n ¼ 7
γ > − 2

ffiffi
3

p ffiffiffiffiffi
n−4
n−5

p
ðn−5Þð4n−25Þ−6ðn−4Þð2n−13Þ

9ðn−4Þ−6 ffiffi
3

p ðn−5Þ
ffiffiffiffiffi
n−4
n−5

p

n ¼ 8 R
n ≥ 9

γ < − 2
ffiffi
3

p ffiffiffiffiffi
n−4
n−5

p
ðn−5Þð4n−25Þ−6ðn−4Þð2n−13Þ

9ðn−4Þ−6 ffiffi
3

p ðn−5Þ
ffiffiffiffiffi
n−4
n−5

p
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The mass parameter μ and the chargelike parameter q are
both dimensionless and the Gauss-Bonnet coupling con-
stant α is the only independent length scale, i.e., other
length scales can be determined by α. The quasinormal
frequencies, denoted by ω, have the dimension of length
inversed, which means that the quantity

ffiffiffi
α

p
ω is dimension-

less. Therefore, as the value of α is changed, it merely
results in a scaling transformation, leaving the dimension-
less quantities unaffected, i.e., the quantity

ffiffiffi
α

p
ω remains

constant when only the value of α varies. One can prove it
by using a scale transformation for the Schrödinger-like
equation (3.22) and this conclusion is also verified numeri-
cally (see Table V). We omit the unit of α, but one can
introduce the unit of α as s2. Consequently, the unit of ω
will be adjusted to hertz.

IV. ASYMPTOTIC ITERATION METHOD

In this section, we will use the asymptotic iteration
method to solve the QNMs of the tensor perturbations in
Kaluza-Klein black holes for EGB gravity. At the begin-
ning, we provide a brief review on the asymptotic iteration
method. Consider a second-order homogeneous linear
differential equation for the function χðxÞ,

χ00ðxÞ ¼ λ0ðxÞχ0ðxÞ þ s0ðxÞχðxÞ; ð4:1Þ

where λ0ðxÞ ≠ 0. Differentiating Eq. (4.1) with respect to x,
one finds

χ000ðxÞ ¼ λ1ðxÞχ0ðxÞ þ s1ðxÞχðxÞ; ð4:2Þ

where

λ1ðxÞ ¼ λ00 þ s0 þ λ20;

s1ðxÞ ¼ s00 þ s0λ0: ð4:3Þ

Iteratively, the ðn̄ − 1Þth and n̄th differentiations of
Eq. (4.1) give

χðn̄þ1Þ ¼ λn̄−1ðxÞχ0ðxÞ þ sn̄−1χðxÞ;
χðn̄þ2Þ ¼ λn̄ðxÞχ0ðxÞ þ sn̄ðxÞχðxÞ; ð4:4Þ

where

λn̄ðxÞ ¼ λ0n̄−1 þ sn̄−1 þ λ0λn̄−1;

sn̄ðxÞ ¼ s0n̄−1 þ s0λn̄−1: ð4:5Þ

The so-called “quantization condition” is given by

sn̄ðxÞλn̄−1ðxÞ − sn̄−1ðxÞλn̄ðxÞ ¼ 0: ð4:6Þ

It is noted that at each iteration one must take the derivative
of the s and λ terms of the previous iteration [59].

This “deficiency” might bring difficulties for numerical
calculations. An improved version of the AIM that
bypasses the need to take derivatives at each step is
proposed in [50,51]. This greatly improves both the
accuracy and speed of the method. The functions λn̄ and
sn̄ are expanded in a Taylor series around the point ξ0 at
which the AIM is performed, which means that

λn̄ðξÞ ¼
X∞
j¼0

cjn̄ðξ − ξ0Þj; ð4:7Þ

sn̄ðξÞ ¼
X∞
j¼0

djn̄ðξ − ξ0Þj; ð4:8Þ

where cjn̄ and d
j
n̄ are the jth Taylor coefficients of λn̄ðξÞ and

sn̄ðξÞ, respectively. Substituting these expressions, we get a
set of recursion relations for the coefficients,

cjn̄ ¼ ðjþ 1Þcjþ1
n̄−1 þ djn̄−1 þ

Xj

k¼0

ck0c
j−k
n̄−1;

din̄ ¼ ðjþ 1Þdjþ1
n̄−1 þ

Xj

k¼0

dk0c
j−k
n̄−1: ð4:9Þ

In terms of these coefficients, the quantization condition
(4.6) can be expressed as

d0n̄c
0
n̄−1 − d0n̄−1c

0
n̄ ¼ 0: ð4:10Þ

Thus, we have reduced the AIM into a set of recursion
relations that no longer require derivative operations. The
symbol n̄ is nothing but the iteration order.
Now, we can find the standard AIM form of

Schrödinger-like equation (3.22) with the help of the
boundary conditions of QNMs. The effective potential is
zero at the event horizon r → rþ [see Eq. (3.28)]. The
Dirichlet boundary condition is added at spatial infinity
because of the divergence of the effective potential there, as
we can see through Eq. (3.27). Therefore, the boundary
conditions are taken so that the asymptotic behavior of the
solutions is

φðrÞ →
�
e−iωr⋆ r → rþ;

0 r → þ∞;
ð4:11Þ

which represents an in-going wave at the event horizon and
no waves at infinity. According to the theory of second-
order ordinary differential equations, we know that r ¼ rþ
and r ¼ þ∞ both are regular singular points. In order to
apply the boundary condition (4.11), we define the follow-
ing solution (one can see more details in Appendix C):

φðrÞ ¼
�
r − rþ
r − r−

�
−iω=f0ðrþÞ�rþ − r−

r − r−

�
ρ

φ̃ðrÞ; ð4:12Þ
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in which the index at infinity is [we have disposed another
index due to the boundary condition of φðrÞ at infinity]

ρ ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ðn − 4Þ2α2V0

½1 −
ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q

�2

vuut �
> 0; ð4:13Þ

and φ̃ðrÞ is a finite and convergent function. Based on the
above discussion, a compact coordinate is introduced as
follows:

ξ ¼ r − rþ
r − r−

; ð4:14Þ

with 0 ≤ ξ < 1. If there exists only the event horizon rþ,
we will set r− ¼ 0 in Eq. (4.14). The regular function φ̃ðξÞ
is introduced as

φðξÞ ¼ ξ−iω=f
0ðrþÞð1 − ξÞρφ̃ðξÞ; ð4:15Þ

so that the function φðξÞ obeys the Dirichlet boundary
condition at spatial infinity (ξ ¼ 1). Now, we will rewrite

the Eq. (3.22) into the differential equation for the regular
function φ̃ðξÞ by using Eqs. (4.14) and (4.15). Using the
relationship (4.14) between ξ and r, we can derive the
inverse relationship between ξ and r, which is expressed as

r ¼ rþ − ξr−
1 − ξ

: ð4:16Þ

After some calculations, the standard AIM form of
Eq. (3.22) equipped with the boundary condition (4.11)
is found as follows:

d2φ̃
dξ2

¼ λ0ðξÞ
dφ̃
dξ

þ s0ðξÞφ̃; ð4:17Þ

where

λ0ðξÞ¼−
2κξðρþ1Þ− iðξ−1Þω

κðξ−1Þξ −
gðξÞðrþ− r−Þ
ðξ−1Þ2fðξÞ ; ð4:18Þ

and

s0ðξÞ ¼
1

4κ2ðξ − 1Þ4ξ2fðξÞ2
�
−2κðξ − 1ÞξfðξÞgðξÞðrþ − r−Þ½2κξρ − iðξ − 1Þω�

þ ðξ − 1Þ2f2ðξÞ½−4κ2ξ2ρðρþ 1Þ þ 2iκðξ − 1Þωð2ξρþ ξþ 1Þ þ ðξ − 1Þ2ω2�

− 4κ2ξ2ðrþ − r−Þ2½ω2 − VeffðξÞ�
�
; ð4:19Þ

with κ ¼ f0ðrþÞ=2 and

gðξÞ≡ f0ðrÞjr¼ðrþ−ξr−Þ=ð1−ξÞ: ð4:20Þ

These equations are now in the standard form for AIM
calculation, and we can use the standard AIM treatment to
derive the QNM frequencies.
The QNM frequencies depend on six physical param-

eters, namely, the spacetime dimension n, coupling con-
stant α, black hole mass parameter μ, black hole charge
parameter q, and quantum numbers l and γ. We will
demonstrate how these six parameters influence the
QNM frequencies later. In addition, the numerical results
also depend on two nonphysical parameters: the iteration
order and the expanding position ξ0 in the AIM. Before
going into the discussion about physical parameters, we
will first give a discussion about these two parameters.
In Fig. 1, we illustrate how the iteration order influences

the numerical result. This figure shows the numerical
results for iteration orders ranging from 1st to 50th, with
the parameter choices indicated in the figure. The colors of
the points correspond to the iteration order, as shown in the
legend bar. As the iteration order increases, the physical

FIG. 1. The AIM numerical results of iteration order from 1st to
50th. The parameter choice is as shown in the figure. The
horizontal axis stands for the real part of frequencies, while the
vertical axis stands for the imaginary part of frequencies. Points
of different color are from different iteration orders, as indicated
by the legend bar on the right. Since we expect the physical
frequencies to repeatedly appear in the solution of each iteration
order, we may recognize the common position of various
different colors to be the location of physical frequencies, while
those points that show only one color are considered as numerical
artifacts.
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frequencies, which are the physical roots of Eq. (4.10),
repeatedly appear in the results of each iteration order.
Therefore, we may recognize physical frequencies through
the common locations of points of different colors, while
those points with only one color are from numerical
artifacts. We expect that the precision of the numerical
result will also increase with increasing iteration order.
Similar to the WKB method, we can use the difference

between adjacent iteration orders to estimate the precision
of the QNM frequencies we get [39]. Here, we use the
variance of the results from the highest iteration orders as
the uncertainty of the QNM frequencies. We demonstrate
this estimation in Fig. 2. In this plot, we show the mean
value and the variance for the n̂ ¼ 1QNM frequency under
the same parameter choice with Fig. 1. The blue points are
from the highest 11 iteration orders, and the orange point is
their mean value. The light and deep yellow regions then
indicate the 2σ and 1σ region, where σ is the variance for
the real and imaginary parts of the blue points, given by

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hre2ðωÞiþhim2ðωÞi− hreðωÞi2− himðωÞi2

q
; ð4:21Þ

where h�i means the average value of � for the highest 11
iteration orders.
On the other hand, the precision of the AIM heavily

depends on the expanding position ξ0 ∈ ð0; 1Þ. For a good
expanding position, the result can be more accurate, while
for a bad expanding position, the precision of the result is
much worse. This can be illustrated from Figs. 1 and 3. As
shown in Fig. 3, we do the AIM calculation with the same
physical parameters as in Fig. 1, but expand the equation at
ξ0 ¼ 0.5 instead of ξ0 ¼ 0.4125. From the left panel, we
find that the spot for the n̂ ¼ 1 point is much larger, and we
cannot read the characteristic frequency for the overtone
number n̂ ¼ 2 from the figure. This is further shown in the
right panel, which shows the variance of the highest 11
iteration orders is more than about 10 times larger than that
of ξ0 ¼ 0.4125. These suggest that ξ0 ¼ 0.5 is not a good
expanding position.
From the analysis above, we see the importance of

choosing a proper expanding position to find out the
characteristic frequencies. However, up until now, although
there are some suggested expanding positions for the case
where the effective potential has a maxima [60], there is no
universal method to derive the proper expanding position
theoretically for a given AdS-like system. Therefore, in
order to overcome this difficulty, we conduct the following
analysis. In our calculation, we choose our expanding
position by going through the interval (0,1) at a separation
of 0.05 and then choose the one that minimizes the variance
mentioned above. The variances for the n̂ ¼ 0, n̂ ¼ 1, and
n̂ ¼ 2 QNM frequencies with respect to different expand-
ing positions are shown in Fig. 4, respectively. From these
plots, we have three observations as follows:
(1) For fixed overtone number n̂, the best expanding

position does not change markedly with different
iteration order.

FIG. 2. The variance estimate for QNM frequencies with
overtone n̂ ¼ 1. The blue points are the results for the n̂ ¼ 1
frequencies from the highest 11 iteration orders (the 40th–50th
order, here), and the orange point stands for the mean value of
them. The light and deep yellow regions indicate 2σ and 1σ
regions, respectively.

FIG. 3. The AIM calculation result with the parameters indicated in the figure. The physical parameters are unchanged, while the
expanding position is chosen to be ξ0 ¼ 0.5. Left: the numerical result for different orders. Right: the mean value and variance of the
corresponding n̂ ¼ 1 QNM frequency.
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(2) The QNM frequency with lower n̂ converges at
lower iteration order and has smaller variance.

(3) The best expanding position for different overtone
number n̂ is slightly different. However, the choice
of ξ0 that works best for higher overtone number n̂
also works fairly well for lower overtone number n̂.

We then demonstrate how the expansion position
impacts the calculation result of QNM frequencies in
Fig. 5. These figures shows the mean value of QNM
frequencies with respect to different expanding positions.
The horizontal axis stands for the expanding position, while
the vertical axis stands for the mean value. These six figures
are for n̂ ¼ 0, n̂ ¼ 1, and n̂ ¼ 2 from left to right. The
upper row is for the real part, while the bottom row is for
the imaginary part. From these figures, we can see that for
the expanding position with minima value of variance, the
mean value for QNM frequencies does not change greatly
with respect to expanding position, and the results given by
different orders coincide with each other quite well. These

relationships between the variance and the mean value for
the AIM results confirm the variance as a good indicator to
choose expanding positions.
For a set of given physical parameters, in this calculation

we want to find out the expanding position that works best
for the n̂ ¼ 0, n̂ ¼ 1, and n̂ ¼ 2 QNM frequencies. Based
on three observations above, we choose the proper expand-
ing position mainly with the following method. In the first
step, we go through all possible ξ0, from 0 to 1 under
iteration order of 20, and find out the value of ξ0 that
minimizes the variance for the overtone number n̂ ¼ 1
QNM. This provides a rough estimate of the expanding
position and a proper region around the expanding position.
In the second step, we use a bisection method in this region
to find out a more refined expanding position that mini-
mizes the variance for the overtone number n̂ ¼ 2 QNM at
iteration order of 30. It should be noted that, for the
iteration order of 20, the variance is averaged over the
neighboring four points, and for the iteration order of 30,

FIG. 4. These figures show how the variances defined in (4.21) of QNM frequencies change with respect to changing expanding
position. The horizontal axis stands for the expanding position, while the vertical axis is for the value of the variance. The three figures
are for n̂ ¼ 0, n̂ ¼ 1, and n̂ ¼ 2, respectively.

FIG. 5. These figures show how the mean value of QNM frequencies changes with respect to changing expanding position. The
horizontal axis stands for the expanding position, while the vertical axis is for the mean value. The six figures are for n̂ ¼ 0, n̂ ¼ 1, and
n̂ ¼ 2, from left to right, respectively. The upper row is for the real part, while the bottom row is for the imaginary part.
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the variance is averaged over the neighboring six points.
After confirming the location of the expansion point, we
then use this expanding position for higher-order calcu-
lation at the iteration order of 50, and there the variance is
averaged over the neighboring 11 points.

V. TIME-DOMAIN ANALYSIS

In this section, we consider the numeric evolution of an
initial wave packet in order to investigate the contribution
of all modes. We rewrite the wavelike equation (3.22)
without implying the stationary ansatz (Ψ ∼ e−iωt), i.e., the
equation for Ψðt; rÞ is given by

−
∂
2Ψ
∂t2

þ ∂
2Ψ
∂r2⋆

− VeffðrÞΨ ¼ 0; ð5:1Þ

where the effective potential is expressed as (3.23). The
technique of integration of the above wave equation in the
time domainwas developed byGundlach et al. [61]. In terms
of t and r⋆, we introduce null coordinates u ¼ t − r⋆ and
v ¼ tþ r⋆ so that the black hole horizon r ¼ rþ is located at
u ¼ þ∞. In these coordinates, Eq. (5.1) is written as

−4
∂
2

∂u∂v
Ψðu; vÞ ¼ VeffðrÞΨðu; vÞ; ð5:2Þ

where r can be determined by inverting the relation
r⋆ðrÞ ¼ ðv − uÞ=2, because of the monotonicity of the
relation between r and r⋆.
The two-dimensional wave equation (5.2) can be inte-

grated numerically, using the finite difference method
suggested in Refs. [40,61,62]. To be specific, Eq. (5.2)
can be discretized as

ΨðNÞ ¼ΨðEÞ þΨðWÞ−ΨðSÞ

− h2Veff

�
r

�
vN þ vW − uN − uE

4

��
ΨðEÞ þΨðWÞ

8

þOðh4Þ; ð5:3Þ

where S ¼ ðu; vÞ, W ¼ ðuþ h; vÞ, E ¼ ðu; vþ hÞ, and
N ¼ ðuþ h; vþ hÞ. While the above described integration
scheme is efficient for asymptotically flat or de Sitter black
holes, for asymptotically AdS black holes like our case, its
convergence is too slow [16]. An alternative integration
scheme is put forward in [41] which is given by

�
1þ h2

16
VeffðSÞ

�
ΨðNÞ

¼ ΨðEÞ þ ΨðWÞ − ΨðSÞ

−
h2

16
½VeffðSÞΨðSÞ þ VeffðEÞΨðEÞ þ VeffðWÞΨðWÞ�

þ Oðh4Þ: ð5:4Þ

This integration scheme is more stable and in our paper this
alternative integration scheme is used. This integration
scheme can be proved when one uses Taylor expansion at
the center of the square. Considering that the behavior of
the wave function is not sensitive to the choice of initial
data, we set Ψðu; v ¼ 0Þ ¼ 0 and use a pulse as an initial
perturbation as

Ψðu ¼ 0; vÞ ¼ A
�
v − v1
v2 − v1

�
4
�
1 −

v − v1
v2 − v1

�
4

ð5:5Þ

if v∈ ½v1; v2�, and Ψðu ¼ 0; vÞ ¼ 0 otherwise. The fourth
power is used to ensure that the initial value is smooth at v1
and v2. The symbol A refers to the initial amplitude of
the pulse.
First, according to the definition of tortoise coordinates,

we have

r⋆ðrÞ ¼
Z

r

rϵ

dr0

fðr0Þ ; ð5:6Þ

where rϵ is chosen as rϵ ¼ rþ þ ϵ such that r⋆ðrϵÞ ¼ 0 and
ϵ is a positive constant that can be given arbitrarily, in
principle. Hence, the above integral can be worked out
numerically although the primitive function of 1=fðrÞ
cannot be expressed as an elementary function. It is found
that when r → þ∞, r⋆ tends to a finite constant denoted as
r⋆max and given by

r⋆max ¼
Z þ∞

rϵ

dr0

fðr0Þ ; ð5:7Þ

which is determined by ϵ and r⋆ → −∞ as r → rþ. It is
worth recalling that our initial condition (5.5) is vanished
strictly at v ¼ 2r⋆max, if −vmax < v2 < v1 < 0 is selected.
Now, we start to build the numerical grid in Fig. 6. In Fig. 6,
the black spots represent the initial grid points, the stars

FIG. 6. The diagram of numerical grid and the right-angled
trapezoidal domain is of interest. The red dots refer to the east (E),
south (S), west (W), and north (N), respectively. From the
boundary condition (4.11), we have Ψ ¼ 0 on the sloping waist
of the right-angled trapezoidal.
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represent the grid points to be calculated, and the cross
product sets represent the forbidden region. Provided that
ϵ is given, we have N1 grid points between the interval
½0; 2r⋆max�, where r⋆max is given by Eq. (5.7), then
h ¼ du ¼ dv ¼ 2r⋆max=ðN1 − 1Þ. We have N2 grid points
between the interval ½−vmax; 0�, where vmax ¼ ðN2 − 1Þh.
umax is assumed to be umax ¼ ðN − 1Þh ¼ ðN1 þ N2 − 1Þh
for simplicity.
The evaluation of the potential VeffðrÞ is the most

challenging part in the computation, which brings more
numerical errors. We use the method proposed in [61,62] to
overcome it. The potential is evaluated at the central radius
rc satisfying

r⋆ðrcÞ ¼
vN þ vW − uN − uE

4
¼ vS − uS

2
: ð5:8Þ

From Fig. 6, it is easy to see that there are 2N − 1 points
whose r should be computed in order to get the potential
VeffðrÞ. These points are all on the line segment between
the point ð−vmax; umaxÞ and the point ð2r⋆max; 0Þ. We will
number these 2N − 1 points where ð−vmax; umaxÞ is the first
one and ð2r⋆max; 0Þ is the last one (including the center of
the square). Since r⋆ðrϵÞ ¼ 0, we use the built-in function
FindRoot in Mathematica based on rϵ. After evaluating r
along the line segment, we use Eq. (3.23) to derive the
value of VeffðrÞ along the line segment and number it in the

same order as r. Then, the values of the stars in Fig. 6 are
established as follows. Define Ψðuj; vkÞ≡Ψk

j , and since
Ψðu; v ¼ 0Þ ¼ 0, we have

Ψðuj; v ¼ 0Þ≡Ψðj; 1Þ≡Ψ1
j ¼ 0; ð5:9Þ

for j ¼ 1; 2;…; N − 1; N. From Eq. (5.4), for k ¼ 2;…; N,
we have

Ψk
j ¼

�
1þ h2

16
Veffðk − jþ NÞ

�
−1
�
Ψk

j−1 þΨk−1
j −Ψk−1

j−1 −
h2

16
½Veffðk − jþ NÞΨk−1

j−1

þ Veffðk − jþ N þ 1ÞΨk
j−1 þ Veffðk − jþ N − 1ÞΨk−1

j �
�
; j ¼ 2;…; N: ð5:10Þ

For k ¼ N þ 1;…; 2N − 1, we have

Ψk
j ¼

�
1þ h2

16
Veffðk − jþ NÞ

�
−1
�
Ψk

j−1 þ Ψk−1
j −Ψk−1

j−1 −
h2

16
½Veffðk − jþ NÞΨk−1

j−1

þ Veffðk − jþ N þ 1ÞΨk
j−1 þ Veffðk − jþ N − 1ÞΨk−1

j �
�
; j ¼ 2þ k − N;…; N: ð5:11Þ

There is an issue when the term VeffðEÞΨðEÞ is computed
on the grid of sloping waist of the right-angled trapezoidal.
Since Ψ ¼ 0 on this sloping waist, one can set any value
Veff , which does not affect the calculation results. For
simplicity, Veffð2N − 1Þ ¼ 0 is added into the above
numerical scheme. After the integration is completed,
the value Ψðumax; vÞ is extracted, where umax is the
maximum value of u on the numerical grid.
Now, we give an example to demonstrate how to

implement the above algorithm and obtain the correspond-
ing waveform under a specific set of parameters. For the
metric function fðrÞ, we choose n ¼ 10, α ¼ 30, μ ¼ 1.5,
and q ¼ −0.5. The inner horizon is r− ¼ 1.8991 and the

event horizon is rþ ¼ 27.9251. Choosing ϵ ¼ 0.9973, we
have r⋆max ¼ 59.3221. The dependency between r⋆ and r
is shown in Fig. 7. Choosing l ¼ 6 and γ ¼ 0, we get the
waveform of Ψðumax; vÞ and the 3D plot of the waveform
in Fig. 8.

VI. CHARACTERISTIC FREQUENCY
FROM SIGNAL DISPOSITION

To extract the characteristic frequencies from the numeri-
cal results in the previous section, we implement signal
disposition. Following Ref. [63], we present a brief
summary of the Prony method and the Kumaresan-Tufts

FIG. 7. The dependency between r⋆ and r, where the param-
eters are n ¼ 10, α ¼ 30, μ ¼ 1.5, q ¼ −0.5, and ϵ ¼ 0.9973.
The two gray lines represent r⋆ ¼ r⋆max ¼ 59.3221 and r ¼
rþ ¼ 27.9251, respectively.
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method for damped sinusoidal signals. Given N ¼ 2p
equally spaced samples of the signal, with a time sampling
interval T between adjacent samples, and indexed by
m ¼ 1; 2;…N, we can apply the Prony method to analyze
the signal. In the absence of noise, the Prony method
assumes that the measured signal x is a linear combination
of the “true” waveform Ψ, i.e.,

x½m� ¼ Ψ½m� ¼
Xp
k¼1

hkzm−1
k ; ð6:1Þ

where

hk ¼ Akeiφk ; ð6:2Þ

zk ¼ eðαkþiωkÞT: ð6:3Þ

The complex parameters fhk; zkg and the number p of
damped sinusoids are to be determined. For 1 ≤ m ≤ p we
can rewrite Eq. (6.1) in matrix form as

2
666664

z01 z02 � � � z0p

z11 z12 � � � z1p

..

. ..
. . .

. ..
.

zp−11 zp−12 � � � zp−1p

3
777775

2
666664

h1
h2

..

.

hp

3
777775 ¼

2
666664

x½1�
x½2�
..
.

x½p�

3
777775: ð6:4Þ

In essence, Prony’s method is a technique that allows for
the determination of the zk’s without requiring nonlinear
minimization. Define a polynomialAðzÞ of degree pwhich
has the zk’s as its roots,

AðzÞ ¼
Yp
k¼1

ðz − zkÞ≡
Xp
m̃¼0

a½m̃�zp−m̃; ð6:5Þ

where a½0� ¼ 1. It can be shown that the a½k�’s are
determined from the following matrix equation:2
666664

x½p� x½p−1� � � � x½1�
x½pþ1� x½p� � � � x½2�

..

. ..
. . .

. ..
.

x½2p−1� x½2p−2� … x½p�

3
777775

2
666664

a½1�
a½2�
..
.

a½p�

3
777775¼−

2
666664

x½pþ1�
x½pþ2�

..

.

x½2p�

3
777775:

ð6:6Þ

Then we aim to determine the roots zk of the polynomial
AðzÞ [see Eq. (6.5)]. The damping and frequency are
obtained through

αk ¼ log jzkj=T;
ωk ¼ arctan½ImðzkÞ=ReðzkÞ�=T: ð6:7Þ

Finally, the amplitudes Ak and phases φk are found,

Ak ¼ jhkj;
φk ¼ arctan½ImðhkÞ=ReðhkÞ�: ð6:8Þ

For most situations, there are more data points than
exponential parameters: N > 2p. One can then use the
so-called “least-squares Prony method” [64] to get the
a½k�’s from the data and then determine the roots zk, αk, ωk,
Ak, and φk from Eqs. (6.5), (6.7), and (6.8).
Unfortunately, the results of measurements and numeri-

cal simulations will inevitably contain noise. This will
make the original and least-squares Prony method no

FIG. 8. Left: the waveform of Ψðumax; vÞ in logarithmic graph is given. Right: the 3D plot of the waveform of Ψðu; vÞ in logarithmic
graph. We choose n ¼ 10, α ¼ 30, μ ¼ 1.5, q ¼ −0.5, ϵ ¼ 0.9973, l ¼ 6, and γ ¼ 0. At this case, A ¼ 20, v1 ¼ −100, and v2 ¼ −80
are selected as the parameters of the initial wave packet.
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longer applicable. By introducing another characteristic
polynomial BðzÞ, an improved method called the KT
method is given [63–65]. The coefficients a½k� of AðzÞ
are solutions of the forward linear prediction equation
given by

Xp
m̃¼0

a½m̃�x½n0 − m̃� ¼ 0: ð6:9Þ

These same exponential waves can be generated in reverse
time by the backward linear predictor

Xp
m̃¼0

b½m̃�x½n0 − pþ m̃� ¼ 0; ð6:10Þ

where b½0� ¼ 1. The characteristic polynomial BðzÞ is
constructed as

BðzÞ ¼
Xp
m̃¼0

b⋆½m̃�zp−m̃; ð6:11Þ

in which the roots are zk ¼ e−s
⋆
k with sk ¼ ðαk þ iωkÞT and

here ⋆ represents the complex conjugation.
Suppose the measured signal contains additional

Gaussian white noise. The noise leads to the deviation
of the true zero estimate of the polynomials. As a result, this
deviation will cause the real and imaginary parts of
characteristic frequency estimates to be different from
the true ones. By searching for a number of exponential
components L > p, in which p represents the actual
number of exponential waves in the signal and L is the
prediction order of the model, the bias can be significantly
reduced in an empirical manner [63–65]. However, when
one uses this process, some extra zeros due to noise will
arise. Fortunately, these can be statistically separated by
monitoring the zeros of the polynomialsAðzÞ andBðzÞ and
the complex conjugate of the reciprocal of these zeros.
Singular value decomposition (SVD) can provide the
separation. In practice, p in Eqs. (6.9) and (6.10) is replaced
by L. We obtain two linear equations with respect to a½k�
and b½k�, i.e.,
2
666664

x½L� x½L−1� � � � x½1�
x½Lþ1� x½L� � � � x½2�

..

. ..
. . .

. ..
.

x½N−1� x½N−2� � � � x½N−L�

3
777775

2
666664

a½1�
a½2�
..
.

a½L�

3
777775¼−

2
666664

x½Lþ1�
x½Lþ2�

..

.

x½N�

3
777775

ð6:12Þ

and

2
666664

x½2� x½3� � � � x½Lþ 1�
x½3� x½4� � � � x½Lþ 2�
..
. ..

. . .
. ..

.

x½N − Lþ 1� x½N − Lþ 2� � � � x½N�

3
777775

2
666664

b½1�
b½2�
..
.

b½L�

3
777775

¼ −

2
666664

x½1�
x½2�
..
.

x½N − L�

3
777775; ð6:13Þ

where n0 is given by Lþ 1; Lþ 2;…; N − 1; N in
Eqs. (6.9) and (6.10). We express X, which is the
coefficient matrix of Eq. (6.12) or (6.13), as

X ¼ USVH; ð6:14Þ

where U is an ðN − LÞ × ðN − LÞ-dimensional matrix, S is
an ðN − LÞ × L-dimensional matrix, and V is an L × L-
dimensional matrix, where the superscript H stands for the
Hermitian conjugation. The singular values on the diagonal
ðs1;…; sp; spþ1;…; sLÞ are arranged in decreasing order.
Noise will be reduced by considering the reduced rank
approximation

X̂ ¼ UŜVH ð6:15Þ

with

Ŝ ¼
�
Ŝp 0

0 0

�
ðN−LÞ×L

; ð6:16Þ

where Ŝp is the top left p × p of S. A better estimate for the
coefficients a½k� and b½k� is then

â ¼ −X̂þx; ð6:17Þ

where X̂þ is the Moore-Penrose inverse of X̂ and â stands
for a½k�’s or b½k�’s. This is the basic idea for the Kumaresan-
Tufts methods [63–65]. It should be mentioned that SVD
and Moore-Penrose inverse are both built-in functions in
MATLAB, called svd and pinv. As for the KT method in
practice, we choose L ¼ N=3 in order to minimize the
variance [63], where N is the number of samples.
Now, taking the parameters given in Fig. 8 as an

example, we will use the KT method to extract quasinormal
frequencies. First, we select an appropriate sampling time
interval by observing the data in the left panel of Fig. 8.
For the entire interval of v, we choose the line segments
proportionally as [0.53, 0.88] to extract the characteristic
frequencies where 0.53 means that we start to extract at
vinitial ¼ 132.8815 and 0.88 means that we end with
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vfinal ¼ 298.9833. It is noted that vinitial ¼ 0.53 × ðvend −
vstartÞ þ vstart and vfinal ¼ 0.88 × ðvend − vstartÞ þ vstart, in
which vstart is the time when the numerical simulation starts
and vend is the time when the numerical simulation ends.
It is observed that the ringdown begins at around
vinitial ¼ 132.8815. For this example, N ¼ 1200 is the
number of samples and the prediction order is L ¼ 400
as previously mentioned. We obtain a½k�’s and b½k�’s from
Eqs. (6.12) and (6.13) so the roots of polynomialsAðzÞ and
BðzÞ can be found. These roots are irregularly distributed
on both sides of the unit circumference, which are shown in
Fig. 9. At this time, a½k�’s and b½k�’s are not modified by the
SVD method.

Then, choosing the physical number of exponential
waves as p ¼ 5 and using the SVD method, we will have
the new a½k�’s and b½k�’s [see Eq. (6.17)] and then derive
the new roots of polynomialsAðzÞ andBðzÞ that are shown
in Fig. 10. To find the physical frequency, we also need to
find the conjugate roots of these roots, which are also
shown in Fig. 10. After applying the SVD method, it is
found that almost all of the red asterisks are coincident
with blue asterisks, except for five red asterisks that are
coincident with blue five-pointed stars. Just as explained
previously, these five points correspond to physical
frequencies, while other points are not physical, which
are considered to be the noise. The theoretical support for
the above statement is that for both polynomials AðzÞ and
BðzÞ, zeros due to the noise tend to stay within the unit
circle, whereas the true zeros due to the exponential signal
form complex conjugate pairs inside and outside the unit
circle. This is, in general, as a result of the fact that the
statistics of a stationary random process do not change
under time reversal [63].
Following such a process, we have five physical frequen-

cies in all. Substituting them into Eq. (6.1), hk will be
acquired, with x½i� coming from our collected samples.
Finally, we have the damping and the frequency through
Eq. (6.7) where the time sampling interval T ¼ 0.1305 in
this example. The physical frequencies are displayed in
Fig. 11. Furthermore, the amplitudes Ak and the phases φk
are determined from Eqs. (6.8). The comparison among the
results of numerical calculations and the results of fitting
are represented in Fig. 12. The model has a good fit and we
find that the physical frequencies derived in this section are
compatible with the AIM. This will be explained in more
detail in Sec. VII.

FIG. 9. The red asterisks stand for the roots of polynomial
AðzÞ. The blue asterisks stand for the roots of polynomial BðzÞ.

FIG. 10. The new roots are shown after the SVD decomposition. The red asterisks stand for the roots of polynomial AðzÞ. The blue
asterisks stand for the roots of polynomial BðzÞ. The red five-pointed stars stand for the complex conjugate of the reciprocal of the roots
of polynomial AðzÞ. The blue five-pointed stars stand for the complex conjugate of the reciprocal of the roots of polynomial BðzÞ. The
image on the right is an enlargement of the image on the left near the point (1,0).
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Last but not least, determining the beginning of quasi-
normal ringing is somewhat ambiguous since the quasi-
normal stage is the one that cannot be defined exactly on
the one hand. On the other hand, higher overtones damp
quickly and are exponentially suppressed. As a result, they
are difficult to distinguish from numerical errors within the
fitting approach, making them challenging to identify [66].
In fact, we are able to calculate only two or, sometimes,
three longest-living frequencies including the point on the
imaginary axis. However, through our practice, we find
that using the KT method is suitable to find more character-
istic frequencies than the least-squares Prony method in
our model.

VII. NUMERICAL RESULT AND ANALYSIS

In this section, we will show some typical results. In
order to provide how a single physical parameter affects the
characteristic frequencies, we provide benchmark param-
eters as spacetime dimension n ¼ 10, coupling constant
α ¼ 30, black hole mass parameter μ ¼ 1.5, black hole
charge parameter q ¼ −0.5, and quantum numbers l ¼ 6
and γ ¼ 0 which are used in Secs. IV and V. It should be
noted that there is nothing special about this set of
benchmark parameters.
In Fig. 13, we show the first three order characteristic

frequencies obtained from the AIM, with the exception of
the pure imaginary modes, which are shown in the tables
(see Tables II–VII). These six figures describe the relation-
ship between characteristic frequencies and the six param-
eters n, μ, q, α, l, and γ, respectively. The horizontal axis in
the figure represents the real part of the frequency, while the
vertical axis represents the imaginary part of the frequency.
The circle, rectangle, and triangle markers stand for over-
tone numbers n̂ ¼ 0, n̂ ¼ 1, and n̂ ¼ 2, respectively.
At first glance, it is found that the relationship between

frequencies and parameters roughly shows a linear relation-
ship for fixed overtones (the curvature of the curve is low).
Since the imaginary part of all frequencies that we get is
negative, for convenience in later discussions, the imagi-
nary part of frequencies refers to the absolute value of the
imaginary part without any special instructions.
For the dimension of spacetime n, we find that the

imaginary part of frequencies is not significantly dependent
on the dimension of spacetime, while the real part decreases
as the dimension of spacetime increases. So we can say the
lifetime of QNMs are not remarkably dependent on the
number of extra dimensions of spacetime. For the black
hole mass parameter μ, we find that the imaginary part of
frequencies increases with the increase of the mass, while
the real part increases with the increase of the mass.
Therefore, the lifetime of QNMs decreases with the
increase of the mass. For the parameter of black hole
charge q, we see a weak dependence on the imaginary part
of frequencies for the charge. The imaginary part of
frequencies increases with the increase of the charge jqj,
while the real part increases with the increase of the charge.
The lifetime of QNMs decreases with the increase of the
charge jqj. For the Gauss-Bonnet coupling constant α, it
is found that

ffiffiffi
α

p
ω remains constant when only α varies,

as we stated before. The lifetime of QNMs increases with
the increase of the Gauss-Bonnet coupling constant.
Additionally, the Gauss-Bonnet coupling constant has more
impact on the imaginary part of the third overtone than the
first and second overtones. The above studies are shown
to illustrate the relationship between the characteristic
frequencies and the four physical parameters n, μ, q,
and α where they are all appear at the metric function fðrÞ.
There are two parameters l and γ that can effect the

frequencies, which are called the quantum numbers. For the

FIG. 11. These five characteristic frequencies are symmetri-
cal in terms of the imaginary axis. The value of these character-
istic frequencies are −0.0873i, �0.2635 − 0.07208i, and
�0.3248 − 0.1836i, respectively.

FIG. 12. The comparison among the results of numerical
calculations and the results of fitting. The blue curve stands
for the numerical results and the orange curve stands for the
fitting results.
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parameter l, we find that the imaginary part of frequencies
decreases with the increase of l, while the real part
increases with the increase of l. The different performance
is because the linear relationship between the imaginary
part and the real part disappears especially for l → 0. The
lifetime of QNMs increases with the increase of l. For
another quantum parameter γ, we find that the imaginary
part of frequencies decreases with the increase of γ, while
the real part decreases with the increase of γ. Interestingly,
it is found that the slopes of the three lines of three
overtones are almost the same within the range of errors.
So, it can be said that rain and dew are evenly distributed on
each overtone for the quantum parameter γ, while the
Gauss-Bonnet coupling constant is not.
As for those pure imaginary modes, we place the first

pure imaginary frequency on the right side of the table and
these modes do not participate in the sorting of overtones.
Here, we provide some interesting discoveries among the
results. For the dimension n, it can be seen that the

relationship between frequency and n is not monotonic.
For the mass μ, we notice that, as the mass increases, the
fundamental mode changes from the nonimaginary axis
mode dominating to the imaginary axis mode dominating.
For the quantum number l, it is found that, when l ≥ 7, the
pure imaginary frequency is dissipated, which is confirmed
at the side of the numerical integration method.
Considering the limitation of the numerical integration

method, in our analysis the AIM is the main approach to
derive the QNM frequencies and the numerical integration
method is an auxiliary method. In other words, we use the
numerical integration method to check the consistence of
the frequencies obtained by two methods and calculate the
corresponding errors. The relative error formula used in this
paper is

δ ¼ jωAIM − ωNIMj
jωAIMj

× 100%; ð7:1Þ

FIG. 13. QNM frequencies of overtone numbers n̂ ¼ 0; 1; 2 with different physical parameters. The six figures are for the spacetime
dimension n, mass μ, charge q, Gauss-Bonnet coupling constant α, and quantum numbers l and γ. Results with overtone numbers
n̂ ¼ 0; 1; 2 are marked by circles, rectangles, and triangles, respectively.

TABLE II. QNM frequencies for the dimension n. The results are calculated with asymptotic iteration method of 50 iteration order.
“� � �” indicates that the AIM cannot predict the result with enough precision with the corresponding parameter choice.

n̂ ¼ 0 n̂ ¼ 1 n̂ ¼ 2 First pure imaginary

n ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
7 0.3407–0.07223 i 3.436 × 10−4 0.4174–0.1707 i 3.758 × 10−3 � � � � � � −0.06898 i 5.593 × 10−4
8 0.3064–0.06988 i 3.030 × 10−4 0.3779–0.1675 i 2.716 × 10−3 � � � � � � −0.08114 i 4.715 × 10−4
9 0.2824–0.07091 i 5.328 × 10−5 0.3538–0.1715 i 4.615 × 10−4 0.4353–0.2786 i 4.363 × 10−3 −0.08474 i 1.296 × 10−3
10 0.2637–0.07208 i 2.256 × 10−5 0.3336–0.1733 i 1.937 × 10−4 0.4161–0.2830 i 2.627 × 10−3 −0.08566 i 7.629 × 10−4
11 0.2485–0.07270 i 2.654 × 10−5 0.3167–0.1734 i 2.333 × 10−4 0.3962–0.2817 i 2.081 × 10−3 −0.08465 i 1.058 × 10−4
12 0.2357–0.07293 i 1.401 × 10−5 0.3023–0.1726 i 1.278 × 10−4 0.3798–0.2812 i 1.295 × 10−3 −0.08328 i 7.548 × 10−5
13 0.2249–0.07286 i 1.997 × 10−5 0.2900–0.1714 i 1.818 × 10−4 0.3656–0.2772 i 1.563 × 10−3 −0.08167 i 1.167 × 10−5
14 0.2154–0.07261 i 1.247 × 10−5 0.2792–0.1698 i 1.177 × 10−4 0.3530–0.2748 i 1.002 × 10−3 −0.08002 i 8.808 × 10−6
15 0.2072–0.07223 i 1.990 × 10−5 0.2697–0.1681 i 1.852 × 10−4 0.3419–0.2704 i 1.589 × 10−3 −0.07838 i 1.528 × 10−6
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TABLE III. QNM frequencies for the mass μ. The results are calculated with asymptotic iteration method of 50 iteration order.

n̂ ¼ 0 n̂ ¼ 1 n̂ ¼ 2 First pure imaginary

μ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
1.5 0.2637–0.07208 i 2.256 × 10−5 0.3336–0.1733 i 1.937 × 10−4 0.4161–0.283 i 2.627 × 10−3 −0.08566 i 7.629 × 10−4
2 0.2675–0.08634 i 5.619 × 10−6 0.3444–0.2027 i 4.915 × 10−5 0.4331–0.3297 i 4.489 × 10−4 −0.09916 i 2.898 × 10−6
2.5 0.2712–0.0983 i 1.978 × 10−6 0.3549–0.2274 i 2.017 × 10−5 0.4510–0.3667 i 1.806 × 10−4 −0.1095 i 1.451 × 10−7
3 0.2748–0.1087 i 1.440 × 10−6 0.3647–0.2490 i 1.427 × 10−5 0.4676–0.3992 i 1.221 × 10−4 −0.1177 i 1.477 × 10−8
3.5 0.2782–0.1180 i 5.341 × 10−7 0.3740–0.2681 i 5.295 × 10−6 0.4830–0.4280 i 4.907 × 10−5 −0.1244 i 7.514 × 10−9
4 0.2815–0.1265 i 6.627 × 10−7 0.3827–0.2855 i 6.665 × 10−6 0.4973–0.4540 i 6.095 × 10−5 −0.1301 i 1.025 × 10−9
4.5 0.2847–0.1343 i 3.598 × 10−7 0.3910–0.3014 i 3.943 × 10−6 0.5108–0.4778 i 3.637 × 10−5 −0.1351 i 6.371 × 10−10
5 0.2877–0.1415 i 2.322 × 10−7 0.3989–0.3161 i 2.638 × 10−6 0.5236–0.4997 i 2.338 × 10−5 −0.1395 i 3.905 × 10−10
5.5 0.2906–0.1482 i 3.925 × 10−7 0.4064–0.3299 i 4.425 × 10−6 0.5357–0.5202 i 4.033 × 10−5 −0.1434 i 1.511 × 10−10
6 0.2934–0.1546 i 2.911 × 10−7 0.4136–0.3427 i 3.342 × 10−6 0.5473–0.5394 i 2.977 × 10−5 −0.1470 i 1.201 × 10−10
6.5 0.2961–0.1606 i 2.283 × 10−7 0.4205–0.3549 i 2.612 × 10−6 0.5583–0.5574 i 2.277 × 10−5 −0.1503 i 9.093 × 10−11
7 0.2988–0.1664 i 1.848 × 10−7 0.4272–0.3664 i 2.094 × 10−6 0.5689–0.5745 i 1.797 × 10−5 −0.1534 i 6.594 × 10−11
7.5 0.3013–0.1718 i 1.528 × 10−7 0.4336–0.3774 i 1.714 × 10−6 0.5791–0.5908 i 1.459 × 10−5 −0.1562 i 4.540 × 10−11
8 0.3038–0.1771 i 1.284 × 10−7 0.4398–0.3878 i 1.431 × 10−6 0.5889–0.6063 i 1.213 × 10−5 −0.1589 i 2.908 × 10−11
8.5 0.3062–0.1821 i 2.611 × 10−7 0.4458–0.3978 i 3.013 × 10−6 0.5984–0.6211 i 2.628 × 10−5 −0.1614 i 2.255 × 10−11
9 0.3086–0.1869 i 2.294 × 10−7 0.4517–0.4074 i 2.628 × 10−6 0.6075–0.6353 i 2.275 × 10−5 −0.1638 i 4.043 × 10−12
9.5 0.3109–0.1916 i 2.036 × 10−7 0.4573–0.4167 i 2.318 × 10−6 0.6164–0.6490 i 1.997 × 10−5 −0.1661 i 1.330 × 10−11
10 0.3131–0.1961 i 1.823 × 10−7 0.4629–0.4256 i 2.064 × 10−6 0.6250–0.6622 i 1.773 × 10−5 −0.1682 i 2.807 × 10−11
10.5 0.3153–0.2005 i 1.644 × 10−7 0.4682–0.4342 i 1.855 × 10−6 0.6333–0.6749 i 1.591 × 10−5 −0.1702 i 4.139 × 10−11

TABLE IV. QNM frequencies for the charge q. The results are calculated with asymptotic iteration method of 50 iteration order.

n̂ ¼ 0 n̂ ¼ 1 n̂ ¼ 2 First pure imaginary

q ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
–0.5 0.2637–0.07208 i 2.256 × 10−5 0.3336–0.1733 i 1.937 × 10−4 0.4161–0.2830 i 2.627 × 10−3 −0.08566 i 7.629 × 10−4
–1.5 0.2655–0.07258 i 1.282 × 10−5 0.3385–0.1744 i 9.853 × 10−5 0.4229–0.2854 i 8.608 × 10−4 −0.09169 i 3.496 × 10−5
–2.5 0.2673–0.07315 i 4.219 × 10−6 0.3432–0.1757 i 3.423 × 10−5 0.4304–0.2886 i 3.392 × 10−4 −0.09728 i 1.314 × 10−5
–3.5 0.2689–0.07377 i 5.536 × 10−6 0.3478–0.1772 i 4.274 × 10−5 0.4379–0.2908 i 3.733 × 10−4 −0.1022 i 1.449 × 10−6
–4.5 0.2705–0.07444 i 3.660 × 10−6 0.3522–0.1789 i 2.371 × 10−5 0.4453–0.2931 i 1.997 × 10−4 −0.1067 i 1.089 × 10−6
–5.5 0.2721–0.07513 i 2.591 × 10−6 0.3562–0.1805 i 1.673 × 10−5 0.4521–0.2960 i 1.263 × 10−4 −0.1107 i 5.847 × 10−7
–6.5 0.2735–0.07584 i 2.131 × 10−6 0.3601–0.1823 i 1.229 × 10−5 0.4584–0.2987 i 8.281 × 10−5 −0.1143 i 4.157 × 10−7
–7.5 0.2749–0.07656 i 1.768 × 10−6 0.3638–0.1840 i 9.130 × 10−6 0.4645–0.3015 i 5.755 × 10−5 −0.1177 i 3.843 × 10−7
–8.5 0.2763–0.07728 i 3.659 × 10−6 0.3673–0.1858 i 1.998 × 10−5 0.4702–0.3043 i 1.293 × 10−4 −0.1208 i 1.040 × 10−7
–9.5 0.2776–0.07801 i 3.190 × 10−6 0.3707–0.1875 i 1.724 × 10−5 0.4757–0.3069 i 1.081 × 10−4 −0.1237 i 7.619 × 10−8
–10.5 0.2788–0.07874 i 2.887 × 10−6 0.3739–0.1893 i 1.612 × 10−5 0.4810–0.3097 i 9.016 × 10−5 −0.1264 i 5.360 × 10−8
–11.5 0.2800–0.07946 i 1.136 × 10−6 0.3770–0.1910 i 6.094 × 10−6 0.4860–0.3125 i 2.472 × 10−5 −0.1290 i 1.778 × 10−7
–12.5 0.2812–0.08018 i 1.069 × 10−6 0.3800–0.1927 i 5.570 × 10−6 0.4908–0.3152 i 2.389 × 10−5 −0.1314 i 1.560 × 10−7
–13.5 0.2823–0.08089 i 1.019 × 10−6 0.3828–0.1944 i 5.201 × 10−6 0.4954–0.3178 i 2.295 × 10−5 −0.1337 i 1.291 × 10−7
–14.5 0.2833–0.08159 i 2.287 × 10−6 0.3856–0.1961 i 1.239 × 10−5 0.4999–0.3205 i 5.623 × 10−5 −0.1359 i 4.780 × 10−8
–15.5 0.2844–0.08229 i 2.215 × 10−6 0.3882–0.1977 i 1.188 × 10−5 0.5042–0.3231 i 5.508 × 10−5 −0.1380 i 4.064 × 10−8
–16.5 0.2854–0.08298 i 2.164 × 10−6 0.3908–0.1993 i 1.149 × 10−5 0.5083–0.3256 i 5.465 × 10−5 −0.1400 i 3.685 × 10−8
–17.5 0.2864–0.08366 i 2.122 × 10−6 0.3933–0.2009 i 1.115 × 10−5 0.5123–0.3281 i 5.450 × 10−5 −0.1419 i 3.757 × 10−8
–18.5 0.2874–0.08433 i 2.081 × 10−6 0.3957–0.2025 i 1.085 × 10−5 0.5162–0.3306 i 5.445 × 10−5 −0.1437 i 4.074 × 10−8
–19.5 0.2883–0.08500 i 2.040 × 10−6 0.3981–0.2040 i 1.060 × 10−5 0.5200–0.3330 i 5.442 × 10−5 −0.1455 i 4.393 × 10−8
–20.5 0.2892–0.08565 i 1.997 × 10−6 0.4003–0.2055 i 1.041 × 10−5 0.5237–0.3354 i 5.437 × 10−5 −0.1472 i 4.591 × 10−8
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where the numerical integration method is indicated by
NIM. A typical example is that the spacetime dimension
n ¼ 10, coupling constant α ¼ 30, black hole mass param-
eter μ ¼ 1.5, black hole charge parameter q ¼ −0.5, and
quantum numbers l ¼ 6 and γ ¼ 0. Using Eq. (7.1), we
get the relative error δ0 ¼ 0.072%, δ1 ¼ 3.6%, and
δpure ¼ 1.9%, where 0 and 1 refer to the overtone numbers
and “pure” refers to the pure imaginary mode. By applying
the relative error formula (7.1), we observe that the error is

within an acceptable range. The corresponding calculation
results are not shown but they are all small, especially for
the overtone number n̂ ¼ 0.
It has been shown that one can obtain a four-dimensional

wavelike equation on the manifold M4 by using the
characteristic tensors in extra dimensions [see Eqs. (3.8)
and (3.9)]. In Appendix D, we study a toy model (Klein-
Gordon equation) to compute the QNM frequencies in
four-dimensional spacetime so as to compare our model

TABLE V. QNM frequencies for the Gauss-Bonnet coupling constant α. The results are calculated with asymptotic iteration method of
50 iteration order.

n̂ ¼ 0 n̂ ¼ 1 n̂ ¼ 2 First pure imaginary

α ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
10 0.4567–0.1248 i 3.907 × 10−5 0.5778–0.3001 i 3.356 × 10−4 0.7207–0.4901 i 4.549 × 10−3 −0.1484 i 1.321 × 10−3
20 0.3230–0.08828 i 2.763 × 10−5 0.4085–0.2122 i 2.373 × 10−4 0.5096–0.3465 i 3.217 × 10−3 −0.1049 i 9.343 × 10−4
30 0.2637–0.07208 i 2.256 × 10−5 0.3336–0.1733 i 1.937 × 10−4 0.4161–0.2830 i 2.627 × 10−3 −0.08566 i 7.629 × 10−4
40 0.2284–0.06242 i 1.953 × 10−5 0.2889–0.1501 i 1.678 × 10−4 0.3604–0.2450 i 2.275 × 10−3 −0.07419 i 6.607 × 10−4
50 0.2043–0.05583 i 1.747 × 10−5 0.2584–0.1342 i 1.501 × 10−4 0.3223–0.2192 i 2.034 × 10−3 −0.06635 i 5.909 × 10−4
60 0.1865–0.05097 i 1.595 × 10−5 0.2359–0.1225 i 1.370 × 10−4 0.2942–0.2001 i 1.857 × 10−3 −0.06057 i 5.394 × 10−4
70 0.1726–0.04719 i 1.477 × 10−5 0.2184–0.1134 i 1.268 × 10−4 0.2724–0.1852 i 1.719 × 10−3 −0.05608 i 4.994 × 10−4
80 0.1615–0.04414 i 1.381 × 10−5 0.2043–0.1061 i 1.186 × 10−4 0.2548–0.1733 i 1.608 × 10−3 −0.05246 i 4.672 × 10−4
90 0.1522–0.04161 i 1.302 × 10−5 0.1926–0.1000 i 1.119 × 10−4 0.2402–0.1634 i 1.516 × 10−3 −0.04946 i 4.405 × 10−4
100 0.1444–0.03948 i 1.235 × 10−5 0.1827–0.09491 i 1.061 × 10−4 0.2279–0.1550 i 1.439 × 10−3 −0.04692 i 4.179 × 10−4

TABLE VI. QNM frequencies for the quantum number l. The results are calculated with asymptotic iteration method of 50 iteration
order. “� � �” symbol indicates that the AIM can’t predict the result with enough precision with corresponding parameter choice.

n̂ ¼ 0 n̂ ¼ 1 n̂ ¼ 2 First pure imaginary

l ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
0 0.1294–0.1119 i 1.036 × 10−3 � � � � � � � � � � � � −0.03624 i 1.374 × 10−6
1 0.1389–0.1065 i 1.021 × 10−3 � � � � � � � � � � � � −0.04079 i 3.095 × 10−6
2 0.1558–0.09809 i 4.608 × 10−4 0.2553–0.2135 i 5.634 × 10−3 � � � � � � −0.04817 i 1.112 × 10−6
3 0.1790–0.08950 i 2.309 × 10−4 0.2644–0.2023 i 2.541 × 10−3 � � � � � � −0.05678 i 1.939 × 10−6
4 0.2057–0.08262 i 4.372 × 10−5 0.2859–0.1909 i 4.925 × 10−4 � � � � � � −0.06592 i 6.728 × 10−5
5 0.2342–0.07686 i 4.796 × 10−5 0.3085–0.1816 i 4.646 × 10−4 0.3923–0.2903 i 5.414 × 10−3 −0.07547 i 1.062 × 10−4
6 0.2637–0.07208 i 2.256 × 10−5 0.3336–0.1733 i 1.937 × 10−4 0.4161–0.2830 i 2.627 × 10−3 −0.08566 i 7.629 × 10−4
7 0.2938–0.06795 i 1.061 × 10−5 0.3598–0.1654 i 8.851 × 10−5 0.4374–0.2761 i 1.737 × 10−3 � � � � � �
8 0.3243–0.06437 i 5.454 × 10−6 0.3873–0.1583 i 4.575 × 10−5 0.4603–0.2660 i 1.129 × 10−3 � � � � � �
9 0.3551–0.06123 i 3.162 × 10−6 0.4156–0.1519 i 2.521 × 10−5 0.4858–0.2559 i 6.110 × 10−4 � � � � � �
10 0.3860–0.05844 i 2.322 × 10−6 0.4446–0.1461 i 2.232 × 10−5 0.5126–0.2475 i 5.824 × 10−4 � � � � � �
11 0.4172–0.05594 i 1.747 × 10−6 0.4740–0.1408 i 1.720 × 10−5 0.5402–0.2398 i 6.290 × 10−4 � � � � � �
12 0.4484–0.05369 i 1.255 × 10−6 0.5037–0.1361 i 1.849 × 10−5 0.5679–0.2324 i 7.605 × 10−4 � � � � � �
13 0.4798–0.05163 i 8.882 × 10−7 0.5337–0.1317 i 2.403 × 10−5 0.5953–0.2257 i 1.029 × 10−3 � � � � � �
14 0.5112–0.04974 i 6.810 × 10−7 0.5640–0.1277 i 3.519 × 10−5 0.6238–0.2211 i 1.423 × 10−3 � � � � � �
15 0.5427–0.04800 i 7.710 × 10−7 0.5944–0.1240 i 5.292 × 10−5 0.6554–0.2161 i 1.990 × 10−3 � � � � � �
16 0.5743–0.04639 i 1.209 × 10−6 0.6250–0.1204 i 8.011 × 10−5 0.6867–0.2077 i 2.809 × 10−3 � � � � � �
17 0.6059–0.04490 i 1.995 × 10−6 0.6555–0.1173 i 1.213 × 10−4 0.7132–0.1991 i 3.881 × 10−3 � � � � � �
18 0.6375–0.04349 i 9.371 × 10−7 0.6864–0.1143 i 5.338 × 10−5 0.7420–0.1972 i 1.647 × 10−3 � � � � � �
19 0.6692–0.04218 i 1.541 × 10−6 0.7174–0.1116 i 8.297 × 10−5 0.7700–0.1947 i 2.385 × 10−3 � � � � � �
20 0.7009–0.04094 i 2.534 × 10−6 0.7485–0.1088 i 1.279 × 10−4 0.8011–0.1956 i 3.615 × 10−3 � � � � � �
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with the test model. The Klein-Gordon toy model is a naive
calculation of the perturbation propagating on the M4

ignoring the dynamics on the compactification part of
the spacetime. The results are shown in Fig. 14 with the
same parameters except for the quantum number γ, since
the quantum number γ does not appear in the KG model.
Comparing the various figures, we found the following

differences: For the dimension of the spacetime n, it is
found that the lifetimes of the Klein-Gordon test field for
the low-dimensional spacetime are more dependent on the
dimension of the spacetime than the tensor perturbation
model. For the parameter of mass μ, the performance of
these two models is very different. The biggest difference is
that the overtone n̂ ¼ 1 of the Klein-Gordon test field has
nonmonotonous behavior. The shapes of the three lines are
completely different for the Klein-Gordon test field, but for
the tensor perturbation model, the corresponding three lines
exhibit the same patterns. For the parameter of charge q, the
three lines show a similar shape in both models. However,
the same parameter ranges make the characteristic fre-
quency variation ranges larger in the Klein-Gordon model.
For the Gauss-Bonnet coupling constant α, we think the
behaviors are the same for the tensor perturbation model
and the Klein-Gordon model. For the angular quantum
number l, the Klein-Gordon model has an irregular behav-
ior for low number l, but the tensor perturbation model
does not.
So we see that the tensor perturbation model gives

significantly different results compared with the toy Klein-
Gordonmodel, verifying the influence of the dynamics of the
compactification part on the four-dimensional partM4. If we
can find any possibility of observing this signal, then the
corresponding QNM frequency might be a probe to distin-
guish the difference between the full tensor perturbations and
the toy Klein-Gordon equation and thus be a method to find
the signal of extra dimension.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we investigate the QNMs of tensor
perturbations for Kaluza-Klein black holes in EGB gravity.
The topology of the so-called Kaluza-Klein black holes is
the product of a usual four-dimensional spacetime with a
negative constant curvature space. The metric function
fðrÞ of the black hole with k ¼ 1 is determined by four
parameters. These parameters are the dimension of space-
time n, Gauss-Bonnet coupling constant α, mass parameter
μ, and charge parameter q, respectively. From the asymp-
totic expansion of the metric function, it is found that the
behavior of the metric function is similar to the Reissner-
Nordström anti–de Sitter spacetime, while the Maxwell
field is absent.
The establishment of the tensor perturbations for Kaluza-

Klein black holes in EGB gravity is tedious. In our previous
work, we have got the Kodama-Ishibashi formalism for the
tensor perturbations of the theory and a generalized master
equation is given [13]. The applicability of this master
equation is broad. Indeed, it can be used to calculate the
perturbation of all tensor types for warped product space-
times in EGBgravity theory. Evidently, it is applicable to the
spacetime studied in this paper. It should be emphasized that
our perturbation equation or the Schrödinger-like equation is
based on the equations of motion of EGB theory and the
corrections of the coefficients of the second-order covariant
derivative, i.e., the term ∼αGab, arises naturally. Different
from a simple test field equation, this perturbation equation
can reveal the dynamics of underlying gravitational theories
beyond the given geometry of spacetime. To illustrate this
difference, we give a toy model, i.e., Klein-Gordon test field
on the four-dimensional spacetime in Appendix D. The
differences in the result verify the influence of the dynamics
on the compactification part on the four-dimensional space-
time. Once detected, this might serve as a probe for the
existence of extra dimensions.

TABLE VII. QNM frequencies for the quantum number γ. The results are calculated with asymptotic iteration method of 50 iteration
order.

n̂ ¼ 0 n̂ ¼ 1 n̂ ¼ 2 First pure imaginary

γ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2re þ σ2im

p
0 0.2637–0.07207 i 2.841 × 10−5 0.3336–0.1733 i 2.460 × 10−4 0.4155–0.2821 i 2.514 × 10−3 −0.08552 i 5.121 × 10−4
1 0.2622–0.06978 i 3.295 × 10−5 0.3317–0.1703 i 2.749 × 10−4 0.4137–0.2790 i 2.685 × 10−3 −0.08446 i 5.226 × 10−4
2 0.2606–0.06742 i 3.875 × 10−5 0.3298–0.1672 i 3.117 × 10−4 0.4116–0.2758 i 2.862 × 10−3 −0.08342 i 5.333 × 10−4
3 0.2590–0.06500 i 4.122 × 10−5 0.3278–0.1640 i 3.203 × 10−4 0.4092–0.2732 i 2.844 × 10−3 −0.08250 i 6.506 × 10−4
4 0.2573–0.06248 i 4.470 × 10−5 0.3256–0.1606 i 3.343 × 10−4 0.4059–0.2704 i 2.878 × 10−3 −0.08162 i 7.885 × 10−4
5 0.2556–0.05985 i 5.582 × 10−5 0.3233–0.1571 i 3.998 × 10−4 0.4027–0.2661 i 3.097 × 10−3 −0.08064 i 8.070 × 10−4
6 0.2537–0.05708 i 5.686 × 10−5 0.3207–0.1533 i 3.817 × 10−4 0.3984–0.2616 i 3.241 × 10−3 −0.07988 i 1.203 × 10−3
7 0.2517–0.05415 i 6.728 × 10−5 0.3180–0.1492 i 4.216 × 10−4 0.3959–0.2566 i 3.573 × 10−3 −0.07887 i 1.475 × 10−3
8 0.2496–0.05102 i 9.341 × 10−5 0.3150–0.1448 i 5.564 × 10−4 0.3940–0.2521 i 3.907 × 10−3 −0.07771 i 1.437 × 10−3
9 0.2472–0.04759 i 1.216 × 10−4 0.3116–0.1401 i 6.794 × 10−4 0.3917–0.2482 i 4.259 × 10−3 −0.07640 i 1.634 × 10−3
10 0.2446–0.04381 i 2.204 × 10−4 0.3077–0.1347 i 1.172 × 10−3 0.3898–0.2448 i 6.182 × 10−3 −0.07529 i 1.350 × 10−3
11 0.2416–0.03930 i 4.068 × 10−4 0.3025–0.1285 i 2.016 × 10−3 0.3882–0.2437 i 9.990 × 10−3 −0.07406 i 1.348 × 10−3

QUASINORMAL MODES OF TENSOR PERTURBATIONS OF … PHYS. REV. D 108, 124023 (2023)

124023-21



Using the asymptotic iteration method and the numerical
integration method, we calculated the QNMs for different
parameters. As for the AIM, considering that there is
limited literature on how to select expansion points, we
propose a method for selecting the expansion point ξ0 in
Sec. IV. The first three order characteristic frequencies
obtained from the AIM including the first pure imaginary
modes are shown in Sec. VII. The corresponding monot-
onicities are also described for the parameters n, μ, q, α, l,
and γ. Furthermore, to demonstrate the accuracies of
characteristic frequencies, we provide the formula of the
relative error between the results of the two methods. The
conclusion is that the errors are relatively small.
Technically speaking, due to limitations in computa-

tional accuracy, it is difficult for us to find the QNM
frequencies with n̂ ≥ 3. The continued fractions method or
Leaver method is a great benefit for getting more overtones
of QNMs [44–49]. However, the metric function fðrÞ is not
a rational function so that, if one uses this method, an
infinite recurrence relation will be obtained. Fortunately,
Rezzolla and Zhidenko overcame this problem by para-
metrizing the metric function by Padé approximants in the
form of continued fractions [67]. Recently, Konoplya et al.
developed a general procedure allowing one to use the
Leaver method for metrics that are not expressed in terms of
rational functions [68]. Inspired by this work, we aim to do
further calculations with this delicate method to get more
overtones in future work.
The undetermined parameters of the theory can be con-

strained by comparing the results of our calculations and
predictions with data from actual observations. However,
there are several undetermined parameters in the theory,
including total spacetime dimensions n, Gauss-Bonnet
coupling parameter α, and eigenvalues γ of the characteristic
tensors. This complexity makes their determination quite
challenging. Here, we present a potential method for impos-
ing constraints on these parameters. The product

ffiffiffi
α

p
ω is

dimensionless, is independent of α, and can be inferred from
the results we have computed. Therefore, we can rewrite it asffiffiffi

α
p

ω ¼ Fðn; μ; q; l; γÞ: ð8:1Þ
Consider the dimensionless quantity

Meffω ¼ 1

2
α1=2ωμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 4Þðn − 5Þ

p
¼ 1

2
Fðn; μ; q; l; γÞμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 4Þðn − 5Þ

p
; ð8:2Þ

where the absence of any dependence on α should be noted.
One can compare this quantity with the actual observed
quantity and impose constraint on n, μ, q, l, and γ and
therefore determine the potential specific value of F, i.e.,ffiffiffi
α

p
ω. Once the precise value of

ffiffiffi
α

p
ω is determined, one can

leverage the observed value of ω to obtain the specific value
of α. However, to do this specifically requires a lot of effort

and is beyond the scope of our present work. Nevertheless,
we may limit these parameters through the methods given
above in the later studies.
Another pointworth noting is that, by the use of the gauge-

invariant variables proposed by Ishibashi and Kodama [9],
the most general perturbation equations of general relativity
in the (mþ n)-dimensional spacetimewith awarped product
metric have been obtained in [11]. In the EGBgravity theory,
it is worthwhile to use similar methods to get the master
equations of the scalar and vector type for the (mþ n)-
dimensional spacetime. With these equations, we can cal-
culate the QNMs under different black hole backgrounds. In
the frame of EGB gravity theory with (mþ n)-dimensional
spacetime, computing the perturbation equations and QNMs
are both nontrivial things, which will be considered in the
future.
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APPENDIX A: THE FOUR-DIMENSIONAL
SCALAR EQUATION

In this appendix, we will show how the four-dimensional
scalar equation (3.10) is derived from the master equation
of the tensor perturbations (3.3). Substituting Eq. (3.8) into
Eq. (3.3), we have

ðPabDaDbþPmnD̂mD̂nþPaDaþVÞ½ΦðyÞh̄ij� ¼ 0: ðA1Þ

With the help of Eq. (3.9), a scalar equation in the four-
dimensional manifold M4,�

PabDaDb þ PaDa þ V þQγ

r2

�
ΦðyÞ ¼ 0; ðA2Þ

is obtained. Note that r ¼ r0, and the terms with deriva-
tives with respect to r are all vanished. Therefore, from
Eqs. (3.4)–(3.7), we have

Pab ¼ 4n − 22

ðn − 4Þðn − 5Þ g
ab − 4α · 4Gab; ðA3Þ

Q ¼ 6ðn − 6Þ
ðn − 4Þðn − 5Þ þ 2α·4R; ðA4Þ
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Pa ¼ 0; ðA5Þ

and

V ¼ 2

ðn − 4Þðn − 5Þ
4Rþ 6ðn − 6Þ

αðn − 4Þ2ðn − 5Þ2 ; ðA6Þ

where we have used Eqs. (2.6) and (2.8) with a relation
between α and Λ, i.e.,

αΛ ¼ −
n2 − 5n − 2

8ðn − 4Þðn − 5Þ : ðA7Þ

It should be noted that, since r20 > 0 and α > 0, we have
K ¼ −1, and Λ < 0. Hence, Eq. (A2) becomes�

4n−22

ðn−4Þðn−5Þg
ab−4α · 4Gab

�
DaDbΦ

þ
�

2þ γ

ðn−4Þðn−5Þ
4Rþ 3ðn−6Þð2þ γÞ

αðn−4Þ2ðn−5Þ2
�
Φ¼ 0: ðA8Þ

APPENDIX B: THE PROOF OF Veffðr+ Þ= 0
In this appendix, we will give a proof of VeffðrþÞ ¼ 0.

First, we have the function BðrÞ given by Eq. (3.14). As
r → rþ, the function f → 0. On the one hand,

lim
r→rþ

f2ðrÞB2ðrÞ
4

¼ lim
r→rþ

f2

4

�
4n − 22

ðn − 4Þðn − 5Þ
�
f0 þ 2f

r

�
− 4α

−f0 þ 3ff0 þ rðf0Þ2 þ rff00

r2

�
2

×

�
4n − 22

ðn − 4Þðn − 5Þ f −
4αfð−1þ f þ rf0Þ

r2

�
−2

¼ 1

4
lim
r→rþ

�
4n − 22

ðn − 4Þðn − 5Þ f
0 − 4α

−f0 þ rðf0Þ2
r2

�
2
�

4n − 22

ðn − 4Þðn − 5Þ −
4αð−1þ rf0Þ

r2

�
−2

¼ ðf0ðrþÞÞ2
4

: ðB1Þ

On the other hand, the derivative of BðrÞ is

B0ðrÞ¼ 1

f2½ 4n−22
ðn−5Þðn−4Þ−

4αðrf0þf−1Þ
r2 �2

�
−
� ð4n−22Þf0
ðn−5Þðn−4Þþ

8αfðrf0 þf−1Þ
r3

−
4αðrf0 þf−1Þf0

r2
−
4αfðrf00 þ2f0Þ

r2

�

×

�ð4n−22Þðf0 þ 2f
r Þ

ðn−5Þðn−4Þ −
4αðrff00 þrðf0Þ2þð3f−1Þf0Þ

r2

�
þf

�
4n−22

ðn−5Þðn−4Þ−
4αðrf0 þf−1Þ

r2

�

×

�ð4n−22Þðf00 þ 2f0
r − 2f

r2Þ
ðn−5Þðn−4Þ þ8αðrff00 þrðf0Þ2þð3f−1Þf0Þ

r3
−
4αðrffð3Þ þð4f−1Þf00 þ4ðf0Þ2þ3rf0f00Þ

r2

��
: ðB2Þ

Therefore, we have

lim
r→rþ

f2ðrÞB0ðrÞ
2

¼ lim
r→rþ

1

2

�
4n− 22

ðn− 5Þðn− 4Þ−
4αðrf0 þ f − 1Þ

r2

�
−2
�
−
� ð4n− 22Þf0
ðn− 5Þðn− 4Þ þ

8αfðrf0 þ f − 1Þ
r3

−
4αðrf0 þ f − 1Þf0

r2

−
4αfðrf00 þ 2f0Þ

r2

�
×

�ð4n− 22Þðf0 þ 2f
r Þ

ðn− 5Þðn− 4Þ −
4αðrff00 þ rðf0Þ2 þ ð3f − 1Þf0Þ

r2

�

þ f

�
4n− 22

ðn− 5Þðn− 4Þ−
4αðrf0 þ f − 1Þ

r2

�
×

�ð4n− 22Þðf00 þ 2f0
r − 2f

r2Þ
ðn− 5Þðn− 4Þ þ 8αðrff00 þ rðf0Þ2 þ ð3f − 1Þf0Þ

r3

−
4αðrffð3Þ þ ð4f − 1Þf00 þ 4ðf0Þ2 þ 3rf0f00Þ

r2

��

¼ lim
r→rþ

1

2

�
4n− 22

ðn− 5Þðn− 4Þ−
4αðrf0 − 1Þ

r2

�
−2
�
−
� ð4n− 22Þf0
ðn− 5Þðn− 4Þ−

4αðrf0 − 1Þf0
r2

�

×

� ð4n− 22Þf0
ðn− 5Þðn− 4Þ−

4αðrðf0Þ2 − f0Þ
r2

��

¼ −
ðf0ðrþÞÞ2

2
: ðB3Þ
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From Eqs. (B1) and (B3), as r → rþ, the limit of Veff is

VeffðrþÞ¼ lim
r→rþ

�
ω2−f2Cþðf0Þ2

4
−
ff00

2
þf2B0

2
þf2B2

4

�

¼ðf0ðrþÞÞ2
4

−
ðf0ðrþÞÞ2

2
þðf0ðrþÞÞ2

4
¼ 0: ðB4Þ

APPENDIX C: THE ASYMPTOTIC
BEHAVIOR OF φ

In this appendix, we will look at the asymptotic behavior
ofφ in order to apply the boundary condition (4.11). In terms
of r, consider that dr⋆ ¼ dr=f, so Eq. (3.22) becomes

φ00 þ pðrÞφ0 þ qðrÞφ ¼ 0; ðC1Þ
where

pðrÞ ¼ f0ðrÞ
fðrÞ ; qðrÞ ¼ ω2 − VeffðrÞ

f2ðrÞ : ðC2Þ

For the sake of findingout the asymptotic behavior ofφ, there
is a useful theorem [69]:

The necessary and sufficient condition for
Eq. (C1) to have two regular solutions in the
neighborhood 0 < jr − r0j < δ of its singular
point r0 is that the functions

ðr − r0ÞpðrÞ; ðr − r0Þ2qðrÞ ðC3Þ
are analytic in jr − rþj < δ.

The singular point satisfied with the theorem is called the
regular singular point. Otherwise, the points are called
irregular singular points. Since we are considering the
nondegenerate case, i.e., f0ðrþÞ ≠ 0, it is easy to find that

ðr − rþÞpðrÞ ¼ ðr − rþÞ
f0ðrÞ
fðrÞ and

ðr − rþÞ2qðrÞ ¼ ðr − rþÞ2
ω2 − VeffðrÞ

f2ðrÞ ðC4Þ

are both analytic in jr − rþj < δ. Hence, r ¼ rþ is the
regular singular point. The index equation is given by

ρðρ − 1Þ þ a0ρþ b0 ¼ 0; ðC5Þ
where

a0 ¼ lim
r→rþ

ðr − rþÞpðrÞ ¼ lim
r→rþ

ðr − rþÞ
f0ðrÞ
fðrÞ ¼ 1; ðC6Þ

b0 ¼ lim
r→rþ

ðr − rþÞ2qðrÞ ¼ lim
r→rþ

ðr − rþÞ2
ω2 − VeffðrÞ

f2ðrÞ

¼ ω2

ðf0ðrþÞÞ2
: ðC7Þ

The index equation (C5) becomes

ρ2 þ ω2

ðf0ðrþÞÞ2
¼ 0: ðC8Þ

Therefore, we have ρ ¼ �iω=f0ðrþÞ. Considering the
boundary condition, we have the asymptotic behavior of
φ at r → rþ reading as

φ ∼
�
r − rþ
r − r−

�
−iω=f0ðrþÞ

: ðC9Þ

As for the behavior of r → þ∞, define t ¼ 1=r, and then
Eq. (C1) becomes

d2φ
dt2

þ
�
2

t
−

1

t2
p

�
1

t

��
dφ
dt

þ 1

t4
q

�
1

t

�
φðtÞ ¼ 0: ðC10Þ

Since we have

lim
t→0

1

t
p

�
1

t

�
¼ lim

r→þ∞

rf0ðrÞ
fðrÞ ¼ lim

r→þ∞

r · 2r
2ðn−4Þα

h
1−

ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q i

r2
2ðn−4Þα

h
1−

ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q i

¼ 2; ðC11Þ

and

lim
t→0

1

t2
q

�
1

t

�
¼ lim

r→þ∞

r2ðω2 − VeffðrÞÞ
f2ðrÞ

¼ lim
r→þ∞

−r2 · V0r2n
r2

2ðn−4Þα
h
1 −

ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q io

2

¼ −
4ðn − 4Þ2α2V0h
1 −

ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q i

2
; ðC12Þ

as a result, r ¼ ∞ is a regular singular point. Now, a0 and
b0 in the index equation (C5) are given by

a0 ¼ lim
t→0

t

�
2

t
−

1

t2
p

�
1

t

��
¼ 2 − lim

t→0

1

t
p

�
1

t

�
¼ 0; ðC13Þ

and

b0 ¼ lim
t→0

t2
�
1

t4
q

�
1

t

��
¼ lim

t→0

1

t2
q

�
1

t

�
¼ −

4ðn − 4Þ2α2V0h
1−

ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q i

2
:

ðC14Þ

The condition V0 > 0 is required in our paper. So, we
obtain b0 < 0. There are two different roots of the index
equation ρ2 − ρþ b0 ¼ 0 with b0 < 0. The roots are
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ρ1 ¼
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4b0
p
2

> 0; ðC15Þ

and

ρ2 ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4b0

p
2

< 0: ðC16Þ

The boundary condition is φðtÞ → 0 as t → 0. Therefore,
ρ ¼ ρ1 > 0 is requisite. For convenience, we define

ρ≡ ρ1 ¼
1

2

8<
:1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ðn − 4Þ2α2V0h

1 −
ffiffiffiffiffiffiffiffiffiffiffi
n−4

3ðn−5Þ
q i

2

vuut
9=
;: ðC17Þ

In order to apply the boundary condition (4.11), we define
the following solution:

φðrÞ ¼
�
r − rþ
r − r−

�
−iω=f0ðrþÞ�rþ − r−

r − r−

�
ρ

φ̃ðrÞ: ðC18Þ

APPENDIX D: THE TOY MODEL
(KLEIN-GORDON EQUATION)

In this appendix, we use the Klein-Gordon equation as a
toy model to compute the QNM frequencies in the four-
dimensional spacetime ðM4; gabÞ. In this case, the effective
potential has a simple form

VeffðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ f0ðrÞ

r

�
; ðD1Þ

where the metric is given by Eq. (2.11). After considering
the boundary conditions of QNMs, we define the following
solution:

φðrÞ ¼
�
r − rþ
r − r−

�
−iω=f0ðrþÞ�rþ − r−

r − r−

�
2

φ̃ðrÞ: ðD2Þ

Substituting the above expression into the AIM algorithm,
we get the QNM frequencies shown in Fig. 14.
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