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We study the accretion of relativistic Vlasov gas onto a Kerr black hole, regarding the particles as
distributed throughout all of the space, rather than just in the equatorial plane. We solve the relativistic
Liouville equation in the full 3þ 1-dimensional framework of Kerr geometry. For the stationary and axially
symmetric flow, we prove that the distribution function is independent of the conjugate coordinates. For an
explicit distribution that can be approximated as a Maxwell-Jüttner distribution, we further calculate the
particle current density, stress-energy-momentum tensor, and unit accretion rates of mass, energy, and
angular momentum. The analytic results at large distance are shown to be consistent with the limits of the
numerical ones computed at finite distance. In particular, we show that the unit mass accretion rate agrees
with the Schwarzschild result in the case of the low-temperature limit. Furthermore, we find from the
numerical results that the three unit accretion rates vary with the angle in the Kerr metric and the accretion
of Vlasov gas would slow down the Kerr black hole. The closer to the equator, the faster it slows down the
black hole.
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I. INTRODUCTION

An ensemble composed of a large number of massive
particles that only interact with each other through gravi-
tation is called a Vlasov gas. The distribution function of
such an ensemble satisfies the collisionless Liouville
equation, also called the Vlasov equation in mathematics.
Vlasov models have a long history in astrophysics. The
Newtonian systems are often used to model galaxies [1]
and globular clusters [2]. The relativistic Vlasov gas is
often chosen to be the matter when investigating open
problems in general relativity, such as the cosmic censor-
ship hypotheses [3]. In particular, in the strong-gravity
areas, such as the galaxies’ center, the interest in studying
relativistic Vlasov gas is increasing [4,5]. For recent
reviews, we refer to [6].
It is claimed that the gas surrounding M87 or Sgr A*,

both of which are astronomical black holes observed by
the Event Horizon Telescope Collaboration, is also nearly
collisionless and magnetized [7–11]. In Refs. [12,13],
Rioseco and Sarbach performed a detailed study of the
accretion of Vlasov gas onto a Schwarzschild black
hole. They solved the relativistic Liouville equation
in Schwarzschild geometry and obtained the condition

satisfied by the distribution function with an appropriate
symmetry. In a particular model with a spherical steady-
state flow, they derived the current density and the stress-
energy-momentum tensor. Such a relativistic Vlasov model
is also used to provide a partial explanation for the low
accretion rate problem, also called the Bondi-Hoyle-
Lyttleton (BHL) accretion problem [14–17].
Since then, numerous works have extended such a model

to more general situations. Cieślik and Mach generalized
Rioseco and Sarbach’s results to Reissner-Nordström
black holes [18]. In Refs. [19–21], the authors calculated
the accretion of relativistic Vlasov gas onto a moving
Schwarzschild black hole and tried to resolve the BHL
accretion problem. The accretion of Vlasov gas onto a
Schwarzschild black hole at a sphere of finite radius
was also studied by Gamboa et al. [22]. Except for
Schwarzschild black holes, Rioseco and Sarbach’s results
have also been extended to black holes in modified
gravities. Liao and Liu investigated the accretion of a
collisionless Vlasov gas onto a Bardeen regular black
hole [23]. Cai and Yang studied the accretion of Vlasov
gas onto black holes in bumblebee gravity [24]. There are
also many studies of accretion onto Kerr black holes.
Reference [25] showed that a collisionless, relativistic
kinetic gas configuration propagating in the equatorial
plane of a Kerr black hole would eventually settle down
to a stationary, axisymmetric configuration surrounding the
black hole. In the slowly rotating case, Ref. [26] proved the
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decay of a bounded energy and integrated energy for
massless Vlasov gas in Kerr spacetime. More recently,
Cieślik et al. performed a detailed study of the accretion
of Vlasov gas onto a Kerr black hole, occurring in the
equatorial plane [27]. In Ref. [28], Mach et al. studied
equatorial accretion on a moving Kerr black hole.
However, the studies of Vlasov gas accreting onto

Kerr black holes so far have utilized the result of the dis-
tribution function of Vlasov gas obtained in Ref. [12],
which is one of the solutions of the collisionless Liouville
equation in Schwarzschild geometry. When considering
the accretion onto a Kerr black hole, it is reasonable that
the distribution function is the solution of the Liouville
equation in Kerr geometry. In this paper, we solve the rela-
tivistic Liouville equation in the full 3þ 1-dimensional
frame of Kerr geometry and show that the general solution
of the Liouville equation in Kerr geometry is different
from the axisymmetric case in Schwarzschild geometry.
On the other hand, since the total angular momentum L2 is
conserved in Schwarzschild geometry, it is reasonable to
consider the time-like geodesic bounded to a single plane.
However, things become different when working in Kerr
geometry where the conserved quantity is the Carter
constant D rather the total angular momentum L2. It is
not enough to work in the 2þ 1 framework when talking
about the accretion of Vlasov gas in Kerr geometry. In this
paper, we discuss this issue in a full 3þ 1 framework.
Then, the particle current density Jμ and the stress-energy-
momentum tensor Tμν depend on both the radius r and
angle θ. Therefore, when talking about the accretion of
Vlasov gas in Kerr geometry, it is more complete to work
in a full 3þ 1 framework than to consider only the
equatorial plane.
This paper is organized as follows. In Sec. II we review

the Hamiltonian description of time-like geodesics in Kerr
geometry. In Sec. III we solve the relativistic Liouville
equation in a Kerr background and prove that the distri-
bution function only depends on the canonical momentum
Pμ. Furthermore, we simplify the volume element in both
the nonequatorial and equatorial plane. In the special case
that the 2-surface is a spherical surface, we obtain the
expressions for the three accretion rates per unit surface.
In Sec. IV we consider an explicit collisionless flow in a
stationary state and with axial symmetry that can be
approximated as a Maxwell-Jüttner distribution at infinity.
The expressions for the particle current density Jμ and the
stress-energy-momentum tensor Tμν are computed. The
limits of integration are discussed. In Sec. V we analytically
examine the asymptotic behavior at large distances where
the corresponding quantities are all independent of the
angle θ. Using a Taylor expansion of 1

r, the leading terms
and second terms of the unit accretion rates are computed.
In Sec. VI we numerically compute the corresponding
quantities in finite ranges. The last section is a detailed
conclusion. In this paper, we use the units G ¼ c ¼ 1.

II. REVIEW OF GEODESIC MOTION
IN KERR SPACETIME

A. Hamilton formulas of geodesic motion
in Kerr spacetime

The geodesic motion in Kerr spacetime has been widely
discussed in many papers and books. In this section, we give
a brief review. This is done in Boyer-Lindquist coordinates
ðt; r; θ;φÞ, where the Kerr metric can be written as

ds2 ¼
�
1 −

2Mr
ρ2

�
dt2 þ 4Marsin2θ

ρ2
dtdφ −

ρ2

Δ
dr2

− ρ2dθ2 −
sin2θ
ρ2

Σ2dφ2; ð1Þ

where

ρ2 ¼ r2 þ a2 cos2 θ; ð2Þ

Δ ¼ r2 − 2Mrþ a2; ð3Þ

Σ2 ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð4Þ

The inverse Kerr metric can be expressed as

½gμν� ¼

0
BBBBBB@

Σ2

Δρ2 0 0 2Mar
Δρ2

0 − Δ
ρ2

0 0

0 0 − 1
ρ2

0

2Mar
Δρ2 0 0 − Δ−a2sin2θ

ρ2Δsin2θ

1
CCCCCCA
; ð5Þ

which satisfies gμαgαν ¼ δμν . The metric (1) is characterized
by the black hole’smassM and angularmomentum J ¼ Ma.
In this paper, we are only concerned with the range r > rþ,
where rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the outer horizon.

The geodesic motion in Kerr spacetime can be written as
decoupled, first-order equations:

ρ2ṫ ¼ 1

Δ
ðΣ2E − 2aMrLzÞ; ð6Þ

ρ2φ̇ ¼ 1

Δ
ð2aMrEþ ðρ2 − 2MrÞLzcsc2θÞ; ð7Þ

ρ4ṙ2 ≡ R ¼ E2r4 þ ða2E2 − L2
z −DÞr2 − a2Dþ 2MrðD

þ ðLz − aEÞ2Þ −m2rΔ; ð8Þ

ρ4θ̇2 ≡ Θ ¼ Dþ ða2E2 − L2
z csc2 θÞ cos2 θ −m2a2 cos2 θ;

ð9Þ

where a dot stands for a derivativewith respect to the proper
time s. These equations involve four constants of motion:
the rest mass m, energy E, angular momentum Lz in the
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z direction, and Carter constant D. The rest mass m is
defined by

m2 ¼ gμνẋμẋν: ð10Þ

Equations with m ¼ 0 stand for null geodesics, and those
with m ≠ 0 stand for time-like geodesics. In this paper, we
are only concerned with the case of m ≠ 0. The energy E
and z-axis angular momentum Lz are defined by

E ¼
�
1 −

2Mr
ρ2

�
ṫþ 2Marsin2θ

ρ2
φ̇; ð11Þ

Lz ¼ −
2Marsin2θ

ρ2
ṫþ sin2θ

ρ2
Σ2φ̇: ð12Þ

The Carter constant D is defined by

D¼ 1

Δ
ðΔṫ−aΔsin2θφ̇Þ2−ρ4

Δ
ṙ2−m2r2−ðLz−aEÞ2: ð13Þ

Because the angular momentum L2 is no longer a con-
served quantity, the geodesic cannot travel in the same
plane. This is the main difference between geodesic motion
in a Kerr background and in a Schwarzschild background.
The Hamilton formulas can be used to describe the

particle motion in Kerr spacetime. The Hamiltonian
H ¼ 1

2
gμνpμpν ¼ m2

2
of geodesic motion is expressed as

H ¼ 1

2

��
1 −

2Mr
ρ2

�
ṫ2 þ 4Marsin2θ

ρ2
ṫ φ̇−

ρ2

Δ
ṙ2

− ρ2θ̇2 −
sin2θ
ρ2

Σ2φ̇2

�
: ð14Þ

The corresponding canonical momenta ðpt; pr; pθ; pφÞ
can be calculated by

pt ¼
∂H
∂ṫ

¼ E; ð15Þ

pφ ¼ −
∂H
∂φ̇

¼ −Lz; ð16Þ

pr ¼ −
∂H
∂ṙ

¼ ρ2

Δ
ṙ ¼ �

ffiffiffiffi
R

p

Δ
; ð17Þ

pθ ¼ −
∂H

∂θ̇
¼ ρ2θ̇ ¼ �

ffiffiffiffi
Θ

p
: ð18Þ

Since the Hamiltonian does not contain t and φ, the
Hamilton formulas show that E and Lz are constants,
which are

ṗt ¼
∂H
∂t

¼ 0; ṗφ ¼ ∂H
∂φ

¼ 0:

The symplectic variables ðxμ; pμÞ are understood as phase-
space coordinates.

B. r motion

As ρ4ṙ2 ¼ R, the function R
ρ4

can be understood as
the equivalent kinetic energy in the radial direction,
whose properties are mainly determined by the function
R. Simplifying Eq. (8), we obtain

R¼ ðE2 −m2Þr4 þ 2m2Mr3 þ ða2ðE2 −m2Þ−L2
z −DÞr2

þ 2MðDþ ðLz − aEÞ2Þr− a2D: ð19Þ

Particles in a Kerr background appear with non-negative
kinetic energy, implying R ≥ 0. Notice that R only depends
on r and not on θ, therefore, the properties of r motion are
independent of θ.
We consider the particles incident from infinity towards

the black hole. The requirement that R ≥ 0ðr → ∞Þ indi-
cates that the energy satisfies E ≥ m. Generally speaking,
the function RðrÞ has four zero points including both real
and imaginary roots. For physical reasons, we only discuss
positive real points. Let us define r0 as the biggest real
root of the equation R ¼ 0. A test particle coming from
infinity can travel to r ¼ r0. Once it arrives at r ¼ r0, its
radial kinetic energy becomes zero. There exist three cases
to discuss.
(1) r0 < rþ: The test particle falls into the black hole.
(2) r0 > rþ, and R < 0 for r < r0: The test particle

cannot enter the range r < r0. It will be scattered by
the black hole and travel to infinity. In this case, the
position r ¼ r0 is the closest location, also known as
the perihelion rp ¼ r0.

(3) r0 > rþ, and R > 0 for r < r0: The test particle
cannot travel to r < r0, i.e., it keeps getting closer
to r ¼ r0 but never reaches it. The position r ¼ r0
stands for an unstable orbit rc ¼ r0.

Case 3 is a critical situation lying between case 1 and
case 2. Since RðrÞ > 0 is true for both r > r0 and r < r0,
Rðr0Þ ¼ 0 is the minimum of the function RðrÞ. Then,
case 3 satisfies

Rðrc; DcÞ ¼ 0; ð20Þ

∂rRðrc; DcÞ ¼ 0: ð21Þ

The critical Carter constant parameter Dc ¼ DcðEmin;
Lz;mÞ determines whether there is a perihelion along the
geodesic motion, where Emin is the minimum energy
possessed by a particle that can escape from the black hole.
For geodesic motion with the parameter D > Dc, the
perihelion exists and the particle should be scattered to
infinity by the black hole; otherwise, the perihelion does
not exist and the particle should be captured by the
black hole. The numerical results are shown in Fig. 1.
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The perihelion rp only appears in the geodesic motion with
the parameter D > Dc. Besides, the perihelion rp lies in the
range rp > rc.

C. θ motion

The behavior of θ motion is similar to that of r motion.
As ρ4θ̇2 ¼ Θ, we take Θ

ρ4
as the equivalent kinetic energy

in the θ direction, which is mainly influenced by the
function ΘðθÞ. Defining y ¼ cos2 θ∈ ½0; 1�, one simplifies
Eq. (9) to

Θ ¼ Dþ
�
a2ðE2 −m2Þ − L2

z

1 − y

�
y: ð22Þ

The root y0 of Θjy¼y0 ¼ 0 determines the range of θ in
geodesic motion. We are only concerned with the physical
situation where the zero point y0 lies in y0 ∈ ½0; 1�. It is
further divided into two cases.
(1) Lz ¼ 0: One obtains

Θ ¼ Dþ a2ðE2 −m2Þy; ð23Þ
which is monotonically increasing if E > m. For the
parameter D ≥ 0, the result Θjy¼0 · Θjy¼1 ¼ DðDþ
a2ðE2 −m2ÞÞ > 0 indicates that no zero points exist
in the range [0, 1]. That is to say, the kinetic energy
in the θ direction is always positive and the test
particle can travel throughout the range of θ∈ ½0; π�.

(2) Lz ≠ 0: It can be proven that there is only one
zero point in the interval [0, 1]. Denoting y ¼ y0 as
the root, the particle can move in the range
θ∈ ½θ0; π − θ0�, where θ0 ¼ arccos

ffiffiffiffiffi
y0

p ∈ ½0; π
2
�.

III. VLASOV GAS IN KERR GEOMETRY

A. Distribution function of Vlasov gas

A Vlasov gas is a collection of relativistic, free, and
collisionless kinetic particles moving along geodesic
lines. Unlike accretion onto a Schwarzschild black hole,

accretion onto a Kerr black hole is no longer spherically
symmetric, and considering the situation in only one plane
is not enough. The distribution function fðxμ; pμÞ satisfies
the collisionless Liouville equation

ḟ ≡ ff;Hg ¼ 0; ð24Þ
where the bracket f:; :g stands for the Poisson bracket.
The spherically symmetric solution of Eq. (24) has been
discussed in detail in Ref. [12]. Similar to this, we seek
the axisymmetric solution based on the transformation of
symplectic variables ðxμ; pμÞ → ðQμ; PμÞ.
Following Carter’s study [29], the abbreviated action S in

Kerr geometry can be written as

S ¼ 1

2
m2τ − Etþ Lzφþ

Z
r

ffiffiffiffi
R

p

Δ
drþ

Z
θ

ffiffiffiffi
Θ

p
dθ; ð25Þ

where the integral bounds are the intervals of the geodesic
motion. The new momenta Pμ are defined by the conserved
quantities

P0 ¼
ffiffiffiffiffiffiffi
2H

p
¼ m; ð26Þ

P1 ¼ E; ð27Þ
P2 ¼ −Lz; ð28Þ

P3 ¼
ffiffiffiffi
D

p
: ð29Þ

The corresponding conjugate coordinates Qμ are obtained
as follows:

Q0 ¼ ∂S
∂m

¼ m

�
τ −

Z
r

r2ffiffiffiffi
R

p dr −
Z
θ

a2cos2θffiffiffiffi
Θ

p dθ

�
; ð30Þ

Q1 ¼ ∂S
∂E

¼ −tþ
Z
r

Er4 þ a2Er2 − 2MarðLz − aEÞ
Δ

ffiffiffiffi
R

p dr

þ
Z
θ

a2Ecos2θffiffiffiffi
Θ

p dθ; ð31Þ

FIG. 1. Critical parameter
ffiffiffiffiffiffi
Dc

p
(left) and the unstable orbit rc (right) as functions of the energy Emin. Other parameters are chosen to

be M ¼ 1, m ¼ 0.01, and Lz ¼ 0.
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Q2 ¼ ∂S
∂ð−LzÞ

¼ −φþ
Z
r

Lzr2 − 2ðLz − aEÞMr

Δ
ffiffiffiffi
R

p dr

þ
Z
θ

Lzcot2θffiffiffiffi
Θ

p dθ; ð32Þ

Q3 ¼ ∂S

∂
ffiffiffiffi
D

p ¼
ffiffiffiffi
D

p �
−
Z
r

1ffiffiffiffi
R

p drþ
Z
θ

1ffiffiffiffi
Θ

p dθ

�
: ð33Þ

The canonical transformations ðxμ; pμÞ → ðQμ; PμÞ keep
the Poisson bracket (24) covariant,

∂H
∂pμ

∂

∂xμ
−
∂H
∂xμ

∂

∂pμ
¼ ∂H

∂Pμ

∂

∂Qμ −
∂H
∂Qμ

∂

∂Pμ
: ð34Þ

In the new canonical variables ðQμ; PμÞ, the Hamiltonian

becomes H ¼ P2
0

2
. Therefore, the collisionless Liouville

equation (24) is simplified to

∂

∂Q0
f ¼ 0: ð35Þ

The general solution is given by

f ¼ fðQ1; Q2; Q3; P0; P1; P2; P3Þ: ð36Þ

Besides, there exist more symmetry conditions to restrict the
distribution function (24) from Kerr geometry. The Kerr
metric is independent of t and φ which appear inQ1 andQ2.
Then, the distribution function f can be simplified to a more
simple form f ¼ fðQ3; P0; P1; P2; P3Þ. Moreover, asD is a
constant, one has ∂S

∂D ¼ 0 [30] which further leads toQ3 ¼ 0.
At last, it is indicated that the distribution function f in Kerr
geometry depends only on the new momenta Pμ,

f ¼ fðP0; P1; P2; P3Þ: ð37Þ

B. Observable quantities

The observable quantities we are concerned with are
the particle current density Jμ and the stress-energy-
momentum tensor Tμν, which are defined at a spacetime
point x of Kerr spacetime M by

Jμjx ¼
Z
π
pμfðxγ; pγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgαβÞ

q
d4p; ð38Þ

Tμνjx ¼
Z
π
pμpνfðxγ; pγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgαβÞ

q
d4p; ð39Þ

where the integral range π is the subset of the cotangent
space T�

xM , which will be determined according to the
properties of the geodesic. Using Eq. (24), one can
show that the particle current density Jμ and the energy-
momentum tensor Tμν satisfy the conservation laws

∇μJμ ¼ 0; ð40Þ

∇μTμν ¼ 0: ð41Þ

The particle number density ns is defined by Jμ through the
relationship

ns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνJμJν

p
: ð42Þ

In the actual calculation, the momentum variables
ðpt; pr; pθ; pφÞ transform to the variables ðm2; E; Lz; DÞ,
which can be reexpressed as follows:

m2 ¼ g00p2
t þ 2g03ptpφ þ g33p2

φ þ g11p2
r þ g22p2

θ; ð43Þ

E ¼ pt; ð44Þ

K ¼ ðr2 þ a2Þ2
Δ

p2
t þ

2aða2 þ r2Þ
Δ

ptpφ þ
a2

Δ
p2
φ

− Δp2
r −m2r2; ð45Þ

Lz ¼ −pφ: ð46Þ

Using the above equations, we obtain the Jacobian deter-
minant

J ¼ ∂ðm2; E; Lz; DÞ
∂ðpt; pr; pθ; pφÞ

¼ 4
ffiffiffiffiffiffiffi
RΘ

p

ρ2
; ð47Þ

and simplify the volume element as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p
dptdprdpθdpφ ¼ dm2dEdLzdD

4
ffiffiffiffiffiffiffi
RΘ

p
sin θ

: ð48Þ

Next, we further simplify the volume element in two
different cases.
(1) Nonequatorial plane θ ≠ π

2
:

In a nonequatorial plane θ ≠ π
2
, there exist con-

straints on Lz to ensure that Θ > 0. Let us define

X2 ¼ τsin2θ þ ðE2 −m2Þa2sin2θ; ð49Þ

τ ¼ D
cos2 θ

: ð50Þ

Inserting these expressions into Eq. (9), one obtains

Θsin2θ ¼ cos2θðX2 − L2
zÞ: ð51Þ

Thus, the integral range of Lz is Lz ∈ ½−X;X�.
Furthermore, we make the substitution

Lz ¼ X sin σ ð52Þ
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and obtain

dLzffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θsin2θ

p ¼ dσ
j cos θj : ð53Þ

The integral range of σ is σ ∈ ½− π
2
; π
2
�. At last, the

volume element is reexpressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

p
dptdprdpθdpφ ¼ j cos θj

4
ffiffiffiffi
R

p dm2dEdτdσ:

ð54Þ

Notice that the definition (50) becomes divergent
when θ ¼ π=2, and thus the above expression for the
volume element is not applicable to the case of the
equatorial plane. Therefore, for the case of θ ¼ π=2
we have to do the calculations separately.

(2) Equatorial plane θ ¼ π
2
:

In the equatorial plane θ ¼ π
2
, Θ degenerates to D.

There is no constraint on Lz. The integral range of Lz
is simply Lz ∈ ð−∞;∞Þ and the volume element is
expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgμνÞ

p
dptdprdpθdpφ¼

dm2dEdLzdD

4
ffiffiffiffi
D

p ffiffiffiffi
R

p : ð55Þ

In Sec. II, the geodesic motion coming from infinity,
also named the unbounded orbit and satisfying E > m,
was divided into three classifications. The key of the
classification is based on the values of the parameters ðm2;
E; Lz; DÞ or, equivalently, the parameters ðm2; E; σ; τÞ. For
particles absorbed by the black hole, there is no perihelion
along their trajectories, which indicates that the parameter τ
lies in the range τ < τc. For particles scattered by the black
hole, the perihelion rp exits and the parameter τ is in the
range τ > τc. In the critical case between them, particles are
neither absorbed nor scattered by the black hole, but get
infinitely close to the unstable orbit rc. In this case, the value
of the parameter τ is τ ¼ τc. According to the classification
of the orbit, the observable quantity Jμ or Tμν consists of
three parts: the absorbed part, the scattered part, and the
critical part. That is,

Jμ ¼ Jabsμ þ Jscatμ þ Jcriμ ; ð56Þ

Tμν ¼ Tabs
μν þ Tscat

μν þ Tcri
μν; ð57Þ

where the critical part does not have a substantial contribu-
tion and attracts no attention in most cases. Notice that the
observable quantities (38) and (39) depend on both r and θ.
If the distribution function fðxμ; pμÞ is given, Jμ and Tμν can
be calculated.

C. Accretion rates

Because the geodesic motion is not in a single plane, the
collisionless particles are no longer in a single plane, too.
We suppose that they are distributed throughout all of the
space outside the black hole. Since the flow is stationary
and axisymmetric, the equation ∇μJμ ¼ 0 becomes

ðρ2 sin θJrÞ;r þ ðρ2 sin θJθÞ;θ ¼ 0: ð58Þ

Let V be a region in Kerr spacetime and S be a 2-surface
boundary of V. The above equation shows that the integral
of the left side in V is a constant, which is called the mass
accretion rate. Consider that a vector n̂ ¼ ðnr; nθ; 0Þ is the
unit normal field of S that is directed outside. Using Stokes’
theorem, the mass accretion rate is expressed as

dM
dt

¼ −
Z
V
ððρ2 sin θJrÞ;r þ ðρ2 sin θJθÞ;θÞdV; ð59Þ

¼ −
Z
S
ðJrn̂r þ Jθn̂θÞρ2dΩ; ð60Þ

where dΩ ¼ sin θdθdφ and the current flux Jμ traverses
through S. On the other hand, Tμν are also divergence free,
so there exist two more accretion rates besides the mass
accretion rate in Kerr geometry. They are the energy and
angular momentum accretion rates and are expressed as
follows:

dE
dt

¼ −
Z
S
ðTr

tn̂r þ Tθ
tn̂θÞρ2dΩ; ð61Þ

dL
dt

¼ −
Z
S
ðTr

φn̂r þ Tθ
φn̂θÞρ2dΩ: ð62Þ

As considered by other authors, we are only concerned
with the fact that the 2-surface S is a spherical surface with
the surface element dS ¼ r2dΩ, where the unit external
normal vector is chosen as n̂ ¼ ð1; 0; 0Þ. The correspond-
ing accretion rates through a unit surface are expressed as

d2M
dSdt

¼ Jr
Δ
r2
; ð63Þ

d2E
dSdt

¼ Trt
Δ
r2
; ð64Þ

d2L
dSdt

¼ Trφ
Δ
r2
: ð65Þ

IV. EXPLICIT EXAMPLE AND LIMITS
OF INTEGRATION

We consider a stationary, axially symmetric, collisionless
gas distributed throughout all of the Kerr spacetime. Notice
that it is no longer a disk confined to a constant θ0 plane.
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At infinity, the Kerr metric is asymptotically flat and we
suppose that the gas satisfies the same asymptotic condition
as in a spherically symmetric spacetime. As an explicit
example, we choose the distribution function

f ¼ δðP0 −m0Þf∞ðP1ÞjP1¼E

¼ AδðP0 −m0Þe−βP1 ; ð66Þ
where m0 is the mass of the particles and A is the
normalization factor. The variable β ¼ 1

kbT
, where kb is the

Boltzmann constant and T is the asymptotic temperature.
The distribution function (66) fulfills the conclusion (37) of a
Vlasov gas in Kerr geometry.

A. Nonequatorial plane θ ≠ π
2

Using dimensionless variables, we redefine

E ¼ m0ε; ð67Þ

τ ¼ m2
0τ̄; ð68Þ

X2 ¼ m2
0X̄

2; ð69Þ
R ¼ m2

0R̄; ð70Þ

where X is expressed as in Eq. (49) and R is expressed as in
Eq. (19). Therefore, we have

X̄2 ¼ ðτ̄ þ ðε2 − 1Þa2Þsin2θ; ð71Þ

Θ ¼ m2
0X̄

2cos2σ
cos2θ
sin2θ

; ð72Þ

R̄¼ ðε2− 1Þr4þ 2Mr3þða2ðε2− 1Þ− X̄2sin2σ− τ̄cos2θÞr2
þ 2Mðτ̄cos2θþðX̄ sinσ−aεÞ2Þr−a2τ̄cos2θ: ð73Þ

Next, we discuss the upper and lower limits of the integral
element corresponding to the absorption part and the
scattering part.
We solve the simultaneous equations

∂rR̄ ¼ 0; ð74Þ

R̄ ¼ 0; ð75Þ

and obtain the solutions

r ¼ rcðε; σ; θÞ; ð76Þ

τ̄ ¼ τ̄cðε; σ; θÞ: ð77Þ

For the absorption part, as we have stated, there is no
perihelion on these geodesic orbits. Thus, the interval of the
element τ̄ is in the range τ̄∈ ½0; τ̄c�. From Eq. (72), Θ is
always positive, and no additional conditions are provided

for constraining σ from Θ. So the range of σ is σ ∈ ½− π
2
; π
2
�.

The limits of the element ε are related to the energy
condition of the Vlasov gas. In this paper, we are only
concerned with the fact that the black hole accretes par-
ticles traveling from infinity and the parameter ε satisfies
ε∈ ½1;∞Þ. Plugging the distribution function (66) into the
observable quantities (38) and (39), we obtain the absorp-
tion part as follows:

Jabst ðr;θÞ ¼ Am4
0

Z π
2

−π
2

dσ
Z

∞

1

dε
Z

τ̄c

0

dτ̄
εe−β̄εjcosθj

2
ffiffiffiffī
R

p ; ð78Þ

Jabsr ðr; θÞ ¼ Am4
0

Z π
2

−π
2

dσ
Z

∞

1

dε
Z

τ̄c

0

dτ̄
e−β̄εj cos θj

2Δ
; ð79Þ

Jabsθ ðr; θÞ ¼ Am4
0

Z π
2

−π
2

dσ
Z

∞

1

dε
Z

τ̄c

0

dτ̄
X̄e−β̄ε cos σcos2θ

2
ffiffiffiffī
R

p
sin θ

;

ð80Þ

Jabsφ ðr;θÞ ¼−Am4
0

Z π
2

−π
2

dσ
Z

∞

1

dε
Z

τ̄c

0

dτ̄
X̄e−β̄ε sinσjcosθj

2
ffiffiffiffī
R

p ;

ð81Þ

where β̄ ¼ m0β. Notice that Tμν have ten components and
we list them in the Appendix.
By evaluating the integrals through new coordinates

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − 1

p
sin σ, y ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − 1

p
cos σ, and z ¼ τ̄

ε2−1, we
can prove that Jθ ¼ 0; Trθ ¼ 0; Tθϕ ¼ 0; Ttθ ¼ 0 and
Jϕ ≠ 0; Ttϕ ≠ 0. Since we consider the fluid passing
through a 2-sphere, and as is shown in Eq. (58), the
accretion rates are defined by two Killing vectors ∂t and ∂ϕ.
Thus, Jϕ and Tt

ϕ would not appear in the accretion rates.
On the other hand, to compare with the accretion of an
isotropic perfect fluid is also an interesting topic [13] but it
is not within the scope of this paper. We will do a more
detailed study in the future to compare our model with the
accretion of a perfect fluid.
For the scattering part, the range of σ is also simply in

σ ∈ ½− π
2
; π
2
�. Particles with energy ε > 1 can escape from

the black hole at a close position rc, which is determined
by Eqs. (74) and (75), and also illustrated in Fig. 1. For
scattering particles, the radial coordinate is divided into
two segments according to whether r ≥ rc1, where rc1 is
determined by ∂rR̄jε¼1 ¼ 0; R̄jε¼1 ¼ 0; see the intersection
point of the rc curve with the Emin ¼ 1 line in Fig. 1. In
the range r ≥ rc1, the lower energy of scattering particles
is εmin ¼ 1. For those particles that can escape from the
black hole in the range r < rc1, they must have energy
ε > εmin > 1. When performing the actual calculation, we
use the FindRoot command to obtain the inverse function
rcðEminÞ appearing in Fig. 1. Therefore, the lower limit of ε is
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εmin ¼
�
εðrÞ; r < rc1;

1; r ≥ rc1:
ð82Þ

The upper limit of ε is still infinity. For the limits of τ, the
scattering part must have a perihelion, and thus τ > τc. At
the same time, the signature of the function R must be
positive. Solving R̄ ¼ 0, one obtains τ̄ ¼ τ̄max. Notice that
τ̄max depends on both ε and σ. Thus, the range of τ̄ satisfies
τ̄c > τ̄ > τ̄max. In addition, we have to note that the
trajectory of the scattering part contains both þ ffiffiffiffi

R
p

and
−

ffiffiffiffi
R

p
, and thus

Jscatt ðr; θÞ ¼ Am4
0

X
�

Z π
2

−π
2

dσ
Z

∞

εmin

dε
Z

τ̄max

τ̄c

dτ̄
εe−β̄εj cos θj

2
ffiffiffiffī
R

p ;

ð83Þ

Jscatr ðr; θÞ ¼ Am4
0

X
�

Z π
2

−π
2

dσ
Z

∞

εmin

dε
Z

τ̄max

τ̄c

dτ̄
e−β̄εj cos θj

2Δ
;

ð84Þ

Jscatθ ðr; θÞ ¼ Am4
0

X
�

Z π
2

−π
2

dσ
Z

∞

εmin

dε
Z

τ̄max

τ̄c

dτ̄

×
X̄e−β̄ε cos σ cos2 θ

2
ffiffiffiffī
R

p
sin θ

; ð85Þ

Jscatφ ðr; θÞ ¼ −Am4
0

X
�

Z π
2

−π
2

dσ
Z

∞

εmin

dε
Z

τ̄max

τ̄c

dτ̄

×
X̄e−β̄ε sin σj cos θj

2
ffiffiffiffī
R

p : ð86Þ

B. Equatorial plane θ= π
2

The calculation in the equatorial plane is very similar to
that in a nonequatorial plane. We define

Lz ¼ m0lz; ð87Þ

D ¼ m2
0ξ; ð88Þ

and

R̄0 ¼ ðε2 − 1Þr4 þ 2Mr3 þ ða2ðε2 − 1Þ − l2z − ξÞr2
þ 2Mðξþ ðlz − aεÞ2Þr − a2ξ; ð89Þ

where R ¼ m0R̄0. Jμ in the absorption part are expressed as

Jabst

�
r;
π

2

�
¼ Am4

0

Z
∞

−∞
dlz

Z
∞

1

dε
Z

ξc

0

dξ
εe−β̄ε

2
ffiffiffi
ξ

p ffiffiffiffiffiffi
R̄0

p ; ð90Þ

Jabsr

�
r;
π

2

�
¼ Am4

0

Z
∞

−∞
dlz

Z
∞

1

dε
Z

ξc

0

dξ
e−β̄ε

2Δ
ffiffiffi
ξ

p ; ð91Þ

Jabsθ

�
r;
π

2

�
¼ Am4

0

Z
∞

−∞
dlz

Z
∞

1

dε
Z

ξc

0

dξ
e−β̄ε

2
ffiffiffiffiffiffi
R̄0

p ; ð92Þ

Jabsφ

�
r;
π

2

�
¼−Am4

0

Z
∞

−∞
dlz

Z
∞

1

dε
Z

ξc

0

dξ
lze−β̄ε

2
ffiffiffi
ξ

p ffiffiffiffiffiffi
R̄0

p ; ð93Þ

and in the scattering part they are expressed as

Jscatt

�
r;
π

2

�
¼ Am4

0

X
�

Z
∞

−∞
dlz

Z
∞

εmin

dε
Z

ξmax

ξc

dξ
εe−β̄ε

2
ffiffiffi
ξ

p ffiffiffiffiffiffi
R̄0

p ;

ð94Þ

Jscatr

�
r;
π

2

�
¼ Am4

0

X
�

Z
∞

−∞
dlz

Z
∞

εmin

dε
Z

ξmax

ξc

dξ
e−β̄ε

2Δ
ffiffiffi
ξ

p ;

ð95Þ

Jscatθ

�
r;
π

2

�
¼ Am4

0

X
�

Z
∞

−∞
dlz

Z
∞

εmin

dε
Z

ξmax

ξc

dξ
e−β̄ε

2
ffiffiffiffiffiffi
R̄0

p ;

ð96Þ

Jscatφ

�
r;
π

2

�
¼−Am4

0

X
�

Z
∞

−∞
dlz

Z
∞

εmin

dε
Z

ξmax

ξc

dξ
lze−β̄ε

2
ffiffiffi
ξ

p ffiffiffiffiffiffi
R̄0

p :

ð97Þ

In fact, the values of Jμðr; θÞ and Tμνðr; θÞ are continuous
as θ increases from θ ¼ 0 to θ ¼ π

2
.

V. ASYMPTOTIC BEHAVIOR

Before doing the numerical computation, we analytically
discuss the asymptotic behavior of Jμðr; θÞ and Tμνðr; θÞ.
By using Taylor series, the asymptotic behavior can be
calculated at large distance. For brevity, we simply define
Am4

0 ¼ Am5
0 ¼ 1 and choose β̄ ¼ 1.

Far away from the black hole, the absorption part
becomes zero and only contributions of the scattering part
remain. Using a Taylor expansion of 1

r, the function 1ffiffiffī
R

p is
expressed as

1ffiffiffiffī
R

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
ε2 − 1

p
�
1

r2
−

M
ðε2 − 1Þr3

�
; ð98Þ

where only the first two terms are listed. Since the integrand
is independent of τ̄, the integral with respect to τ̄ is simplyZ

τ̄max

τ̄c

dτ̄ ¼ τ̄max − τ̄c; ð99Þ

where τ̄c does not depend on r. Since τ̄max is determined by
R̄ ¼ 0, it is expressed as
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τ̄max ¼
r2

cos2 θ þ sin2 θ sin2 σ

�
ðε2 − 1Þ þ 2Mε2

1

r

�
ð100Þ

using a Taylor expansion. The direct calculation of Eq. (83)
gives

Jtðr→∞Þ ¼
Z π

2

−π
2

dσ
Z

∞

1

dε
τ̄maxffiffiffiffī
R

p εe−εjcosθj

¼ π

�
K2ð1Þþ ð2K0ð1Þþ 5K1ð1ÞÞ

M
r

�
; ð101Þ

where KnðxÞ is the second Bessel function. The values of
KnðxÞ can be found in the related books. Thus, the above
expression approximates to

Jtðr → ∞Þ ¼ 5.104þ 12.100
M
r
; ð102Þ

which agrees with the numerical computation in the next
section. Notice that the expression for Jt is independent of θ
at infinity. If β̄ is an arbitrary constant, the first term of
Jtðr → ∞Þ is

Jtðr → ∞Þ ¼ πK2ðβ̄Þ
β̄

: ð103Þ

Thus, the particle density n∞ at infinity is

n∞ ¼ π
K2ðβ̄Þ
β̄

: ð104Þ

This result is proportional to that in Ref. [12]; see also
Appendix B in Ref. [27]. The difference can be eliminated
by choosing the normalized constant A appropriately.
Similar to the calculation of Jtðr → ∞Þ, the values of

other components at infinity can be calculated as follows:

Jrðr → ∞Þ ¼ 4π

e
þ 18π

e
M
r
; ð105Þ

Ttrðr → ∞Þ ¼ 14π

e
þ 60π

e
M
r
; ð106Þ

Trφðr → ∞Þ ¼ 0: ð107Þ

At large distance, the Kerr metric can be approximated as
the Schwarzschild one and the parameter a has no effect.
This is the main reason that Jμ and Tμν are independent of θ
at infinity.
Our results can be approximated by the Schwarzschild

case in the low-temperature limit. The process is as follows.
Near the horizon rþ, the scattering part is omitted. In the
special case a ¼ 0, the background spacetime is approxi-
mated by the Schwarzschild metric. The critical value of τ̄c
can be calculated as

τ̄c ¼
M2ð9ð3ϵ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð9ϵ2 − 8Þ

p
− 4Þϵ2 − 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð9ϵ2 − 8Þ

p
þ 8Þ

2ðϵ2 − 1Þðsin2θsin2σ þ cos2θÞ : ð108Þ

We notice that as r → rþ, ΔðrþÞ turns into 0 and Jr becomes infinity. However, the unit accretion mass d2M
dSdt is a finite

value. We obtain

d2M
n∞dSdt

����
rþ

¼ β̄

16K2ðβ̄Þ
Z

∞

1

9ð3ϵ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð9ϵ2 − 8Þ

p
− 4Þϵ2 − 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð9ϵ2 − 8Þ

p
þ 8

ðϵ2 − 1Þ e−β̄εdε: ð109Þ

In the low-temperature limit β̄ → ∞, Ref. [12] gave a result for mass accretion rate,

1

n∞

dM
dt

����
low

¼ 16
ffiffiffiffiffiffi
2π

p
M2

ffiffiffī
β

q
; ð110Þ

where, compared to Ref. [12], the difference is just due to the normalization we chose,m0 ¼ 1. Considering the area of the
horizon surface S ¼ 4πr2þ ¼ 16πM2, we have

FIG. 2. Asymptotic behavior of the unit mass accretion rate in
the low-temperature limit. As β̄ increases, the unit mass accretion

rate coincides with the function
ffiffiffiffi
2β̄
π

q
.
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d2M
n∞dSdt

����
low

¼
ffiffiffiffiffi
2β̄

π

s
: ð111Þ

The numerical calculation shows that Eqs. (109) and (111)
coincide with each other as β̄ increases; see Fig. 2.

VI. NUMERICAL RESULTS

In doing the numerical computation, without loss of
generality, we choose M ¼ β̄ ¼ m0 ¼ A ¼ 1. Similar to
Fig. 1, the numerical relationship between ε and rc is
plotted in Fig. 3. In the calculation of the scattering part,
the function εðrcÞ determines the lower integral bound
of ε. The common method is to find the inverse function
of rcðεÞ through FindRoot.
The variations of Jt with r are plotted in Fig. 4, which

shows that with increasing r, the absorption part is
monotonically decreasing, and the scattering part and the
total are monotonically increasing. Jr; Ttr, and Tφr have
similar behaviors shown in Figs. 5–7, respectively.
We also consider the variations of the particle current

densities and the stress-energy-momentum with respect
to θ at the horizon. Since Jr; Ttr, and Tφr approach infinity
at the horizon, we plot Jtjrþ as a function of θ in Fig. 8.
It is shown that Jtjrþ increases slightly when θ changes
from 0 to π

2
.

Furthermore, the unit accretion rates of the black hole are
very relevant in physics. In this paper, we are concerned
with the accretion rates changing with θ at the horizon. We
plot the unit mass accretion rate d2M

n∞dSdt jrþ as a function of θ
in Fig. 9, which shows a weak growth as θ approaches the
equatorial plane. A similar behavior also appears in the
energy accretion rate d2E

n∞dSdt jrþ ; see Fig. 10. However, as
seen in Fig. 11, the unit momentum accretion rate grows
more rapidly as θ increases. These behaviors imply that the
unit accretion rates at the horizon surface have different
growth trends. As the accretion goes on, the background

FIG. 3. Numerical relationship between ε and rc. The minimum
value of rc approaches the photon sphere of the Kerr black hole.
The parameters are chosen to be θ ¼ π

3
; σ ¼ π

3
; a ¼ 0.1.

FIG. 4. Jt as a function of r. The parameters are chosen to be
θ ¼ π

3
; a ¼ 0.1. The upper integral bound of ε is truncated to

ε ¼ 8. The dotted line stands for the photon sphere r ¼ rph. In the
range r < rph, there are no scattered particles.

FIG. 5. Jr as a function of r. The parameters are chosen to be
θ ¼ π

3
; a ¼ 0.1.

FIG. 6. Ttr as a function of r. The parameters are chosen to be
θ ¼ π

3
; a ¼ 0.1.
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would deviate from the Kerr one, depending on the total
mass of particles falling into the black hole. Figure 9 also
shows that the unit mass accretion rate increases non-
linearly as a grows, which would further alleviate the BHL

accretion problem. From Fig. 11, we also know that for
larger a, the black hole is slowed down more quickly by
accretion.

VII. CONCLUSION

In this paper, we studied the accretion of Vlasov gas
onto a Kerr black hole, where particles are distributed
throughout all of the spacetime. The main conclusions are
as follows.
We solved the relativistic Liouville equation in the Kerr

background. We proved that the distribution function is
independent ofQμ if the flow is stationary and axisymmetric.
We derived the expression of the volume element

corresponding to the equatorial plane and nonequatorial
plane. We also obtained the expressions of three unit
accretion rates surrounded by a sphere.
In an example of a Maxwell-Jüttner distribution at

infinity, we further calculated the particle current density
Jμ, stress-energy-momentum tensor Tμν, and three unit
accretion rates. At large distance, we first gave a convenient
analytical computing method, which shows that all quan-
tities are independent on θ, and the correlative results are

FIG. 7. Tφr as a function of r. The parameters are chosen to be
θ ¼ π

3
; a ¼ 0.1.

FIG. 8. Jtjrþ as a function of θ. The parameter is chosen to be
a ¼ 0.1. It increases slightly when θ changes from 0 to π

2
.

FIG. 9. Unit mass accretion rate d2M
n∞dSdt jrþ as a function of θ.

The range of θ is throughout the northern hemisphere θ∈ ½0; π
2
�.

The behavior in the southern hemisphere is symmetric to that
in the northern hemisphere.

FIG. 10. Unit energy accretion rate d2E
n∞dSdt jrþ as a function of θ.

FIG. 11. Unit angular momentum accretion rate − d2L
n∞dSdt jrþ as a

function of θ.
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approximated by those in the Schwarzschild case. In the
nonrotating case a → 0, the unit mass accretion rate is
computed by numerical methods and is coincident to the
result in the Schwarzschild case. In the finite range, the
corresponding calculation results were obtained by numeri-
cal methods.
The numerical results show growths of the accretion

rates as θ approaches the equatorial plane. If the mass of
particles falling into the black hole is much less than the
mass of the black hole, that is, mgas ≪ M, the background
metric remains unchanged. However, as the Vlasov par-
ticles keep flowing into the black hole, mgas increases
continuously, and the background metric may change
inevitably.
The numerical results also show nonlinear growth of

the accretion rates as a approaches M, which implies the
possibility of alleviating the BHL accretion problem if the
black hole is rotating.
As is known, a realistic accretion flow will involve

magnetic fields, which will mediate the effective collision-
ality between the particles. To consider the effect of
magnetic fields will be an interesting topic worth studying
in the future.

APPENDIX: COMPONENTS OF Tμν

The components of Tμν are

Ti
ttðr; θÞ ¼ Am5

0

Z Z Z
Vi

ε2e−β̄εj cos θj
2

ffiffiffiffī
R

p dσdεdτ̄; ðA1Þ

Ti
trðr; θÞ ¼ Am5

0

Z Z Z
Vi

εe−β̄εj cos θj
2Δ

dσdεdτ̄; ðA2Þ

Ti
tθðr; θÞ ¼ Am5

0

Z Z Z
Vi

X̄εe−β̄ε cos σ cos2 θ

2
ffiffiffiffī
R

p
sin θ

dσdεdτ̄; ðA3Þ

Ti
tφðr;θÞ¼−Am5

0

ZZZ
Vi

εX̄e−β̄ε sinσjcosθj
2

ffiffiffiffī
R

p dσdεdτ̄; ðA4Þ

Ti
rrðr; θÞ ¼ Am5

0

Z Z Z
Vi

ffiffiffiffī
R

p
e−β̄εj cos θj
2Δ2

dσdεdτ̄; ðA5Þ

Ti
rθðr; θÞ ¼ Am5

0

Z Z Z
Vi

X̄e−β̄ε cos σ cos θ2

2Δ sin θ
dσdεdτ̄; ðA6Þ

Ti
rφðr; θÞ ¼ −Am5

0

Z Z Z
Vi

X̄e−β̄ε sin σ cos θ
2Δ

dσdεdτ̄; ðA7Þ

Ti
θθðr;θÞ¼Am5

0

ZZZ
Vi

X̄2e−β̄εcos2σjcos3θj
2

ffiffiffiffī
R

p
sin2θ

dσdεdτ̄; ðA8Þ

Ti
θφðr;θÞ ¼ −Am5

0

ZZZ
Vi

X̄2e−β̄ε sinσ cosσ cos2 θ

2
ffiffiffiffī
R

p
sinθ

dσdεdτ̄;

ðA9Þ

Ti
φφðr; θÞ ¼ Am5

0

Z Z Z
Vi

X̄2e−β̄ε sin2 σj cos θj
2

ffiffiffiffī
R

p dσdεdτ̄;

ðA10Þ

where i stands for absorption or scattering. The domain Vi
of integration is determined by the case of absorption
or scattering. For the absorption part, the intervals are
σ ∈ ½− π

2
; π
2
�; ε∈ ½1;∞Þ, and τ̄∈ ½0; τ̄c�. For the scattering

part, the intervals are σ ∈ ½− π
2
; π
2
�; ε∈ ½εmin;∞Þ, and

τ̄∈ ½τ̄c; τ̄max�.
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