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In astronomy, gravitational lensing of light leads to the formation of multiple images, arcs, Einstein rings,
and, most important, the shadow of black holes. Analogously in the vicinity of a massive compact object
massive particles, following timelike geodesics, are gravitationally lensed. So far gravitational lensing of
massive particles was mainly investigated in the weak and strong field limits. In this paper we will, for the
first time, investigate exact gravitational lensing of massive particles using the example of the charged
Newman-Unti-Tamburino (NUT) metric (and its special cases) which contains three physical parameters,
the mass parameterm, the electric charge e, and the gravitomagnetic charge n. Wewill first discuss and solve
the equations of motion for unbound timelike geodesics using elementary and Jacobi’s elliptic functions and
Legendre’s elliptic integrals. Then we will introduce an orthonormal tetrad to relate the z component of the
angular momentum and the Carter constant to the energy E of the particles along the timelike geodesics and
latitude-longitude coordinates on the celestial sphere of a stationary observer in the domain of outer
communication. We will use these relations to derive the angular radius of the particle shadow of the black
hole, to formulate an exact lens equation, and to derive the travel time of the particles in terms of the time
coordinate and the proper time. Finally, we will discuss the impact of the physical parameters and the energy
of the particles on observable lensing features. Wewill also comment on how we can use these features alone
and in a multimessenger context together with the corresponding features for light rays to determine if an
astrophysical black hole can be described by the charged NUT metric or one of its special cases.
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I. INTRODUCTION

In the recent decades gravitational lensing of light
celebrated huge successes. First correctly predicted by
Albert Einstein in 1915 in the form of the deflection of
light by the Sun, for a thorough version of his original
calculation see Ref. [1], and later confirmed by an expedi-
tion to Príncipe lead by Eddington in 1919 [2] it served as
one of two initial tests of Einstein’s theory of general
relativity. Nowadays we regularly observe multiple images
as well as arcs and Einstein rings. In addition, as a result of
recent technological advances in radio astronomy the Event
Horizon Telescope Collaboration was able to observe the
shadows of the supermassive black holes in the centers of
the galaxy M87 [3] and the Milky Way [4]. Gravitational
lensing of massive particles on the other hand has received
far less attention so far. This has mainly two reasons. First,
for being able to detect particles emitted by distant sources
on Earth they have to be stable on long timescales and they
should not or only weakly interact with other matter.
Second, the weak interaction with other matter has as
consequence that they are very difficult to detect. The result

is that current particle detectors only have a very low
angular resolution of a few square degrees.
Currently we only know one type of particle which meets

both requirements. This type of particle is the neutrino.
However, the detection of neutrinos is rather difficult
because of two main reasons. The first reason is their weak
interaction with other matter and thus their low detection
rate in concurrent neutrino detectors. The second reason is
much more important. In space, outside the Solar System,
currently we can only identify very few strong, individually
detectable and characterizable neutrino sources. In addition,
the emission events of some of these sources, the so-called
burst sources, mainly supernovae, tidal disruption events,
and also, predicted although not yet detected, binary neutron
star mergers, are rather short-lived which further limits the
probability of detecting lensed neutrino signals. However,
within a multimessenger approach the detection of gravi-
tationally lensed massive particles may provide supplemen-
tary information to characterize the nature of their source
and the lens. In particular in the case that the lens is a black
hole it may help to place constraints on the physical
parameters characterizing the black hole spacetime and to
reduce their uncertainties. Therefore, the main aim of this
paper is to investigate gravitational lensing of massive
particles by black holes.*torben.frost@pku.edu.cn
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However, real astrophysical settings are very compli-
cated. Black holes do not exist in isolated environments
and, in particular in the vicinity of supermassive black
holes, smaller objects, e.g., stars, white dwarfs, neutron
stars, or stellar mass black holes, can lead to microlensing.
Furthermore, currently we only have an upper bound for
the sum of the neutrino masses; see, e.g., Palanque-
Delabrouille et al. [5]. However, we know that neutrinos
travel at velocities close to the speed of light and, using
modern neutrino detectors like Super-Kamiokande [6,7]
and IceCube [8], we can now detect neutrinos in the TeV
and even PeV range [9,10]. Therefore, for the remainder of
this article we make two simplifying assumptions. First,
we assume that we have an isolated, nonrotating black
hole; i.e., microlensing does not occur. Second, we assume
that the lensed particles can be described by uncharged test
particles without spin and with fixed energies E (note that
here we a priori assume that the particles can have
arbitrary energies and we do not limit ourselves to the
high-energy range predominantly observed for neutrinos).
In this paper we want to approach this problem from a

spacetime perspective in general relativity. Therefore, we
restrict our discussion to one of the most simple axisym-
metric and stationary spacetimes in general relativity,
the so-called charged Newman-Unti-Tamburino (NUT)
metric. It belongs to the Plebański-Demiański class of
spacetimes of Petrov type D [11] and is an exact solution
to Einstein’s electrovacuum field equations without cosmo-
logical constant. The NUT metric was originally discovered
in two steps. In 1951, Taub [12] derived the nonstationary
part, which was originally interpreted as a cosmological
solution [13]. About 12 years later Newman et al. [14] used
the Newman-Penrose formalism to derive the stationary part
of the spacetime. They also realized that their solution is an
extension of Taub’s solution. The whole spacetime is
commonly referred to as Taub-NUT spacetime; however,
because in this paper we focus on investigating gravitational
lensing of massive particles in the stationary part we will
refer to it as NUT metric throughout the remainder of this
paper. The charged NUT metric was first found by Brill [15]
in 1964 (therefore it is sometimes also referred to as Brill
solution or Brill spacetime).
The charged NUTmetric contains three different physical

parameters: the mass parameterm, the electric charge e, and
the gravitomagnetic charge n. The latter is a gravitational
equivalent to a hypothetical magnetic charge in classical
electrodynamics. In addition, the charged NUT metric
contains a fourth parameter C. It was first introduced by
Manko and Ruiz [16] and is related to the existence of
conical singularities in the spacetime. Misner [13] was the
first to notice the existence of these singularities in the
original NUT metric and concluded that either the metric
tensor or the time coordinate t has a singularity on the axis
ϑ ¼ π. For this historic reason the conical singularities are
commonly also referred to as Misner strings. The nature of

this singularity was first investigated by Bonnor [17] and
later by Sackfield [18]. As a result of his investigations
Bonnor drew the conclusion that the singularity can be
interpreted as a semi-infinite massless rotating rod which in
addition serves as source of angular momentum [17]. While
the original form of the NUT metric only contained one
conical singularity the parameter C generalizes the original
NUT solution and allows one to control the number (one or
two) and location (ϑ ¼ 0, ϑ ¼ π, or on both axes) of the
singularities. One important aspect of the existence of the
conical singularities is that the charged NUT metric is only
asymptotically flat in the sense that for r → ∞ the Riemann
tensor vanishes but it does not become asymptotically
Minkowskian [13]. The charged NUT metric can have
two different interpretations. In the standard interpretation it
contains up to two horizons and is usually interpreted as a
black hole. When the electric charge e exceeds a critical
value the spacetime does not contain any horizons and,
since the charged NUT metric does not possess a curvature
singularity at r ¼ 0, it can be interpreted as a wormhole;
see, e.g., Clément et al. [19].
The charged NUT metric is usually considered to be a

rather exotic solution to Einstein’s electrovacuum field
equations. This has two main reasons. The first reason is
the existence of theMisner strings. The second reason is that
close to the Misner strings the spacetime contains closed
timelike curves. Closed timelike curves violate causality
and thus they are considered to be unphysical. Misner [13]
demonstrated that the conical singularities on the axes
can be removed via a periodic coordinate transformation
of the type t̃ ¼ tþ 2nCφ; however, after the transformation
the spacetime contains closed timelike curves everywhere.
From the physical aspect this is even less desirable and thus
it is a common convention to keep the Misner strings.
In fundamental physics the existence of a gravitomagnetic

charge is still an open question. Therefore, when we exclude
the regions containing closed timelike curves the charged
NUT metric may still serve as a good approximation for a
spacetime realizing a gravitomagnetic charge. This paper has
now two main goals. The first goal is to extend the exact
gravitational lensing investigation of Frost [20] from
light rays to massive particles. For this purpose we will
first exactly solve the equations of motion for unbound
massive test particles using elementary as well as Jacobi’s
elliptic functions and Legendre’s elliptic integrals. In the
second part of this paper we will then use the obtained
solutions to investigate gravitational lensing of massive
particles. The second goal of this paper will then be to
discuss how we can observe the electric and gravitomagnetic
charges using gravitational lensing of massive particles in
three different scenarios (note that commonly one can
assume that in astrophysical environments the electric
charge of a black hole is negligibly small; however, under
the special circumstance that the black hole is embedded in a
plasma with strong magnetic fields it can accumulate a
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significant electric charge [21]). In the first scenario we will
only consider particles with a fixed energy. In the second
scenario we will consider a spectrum of particles with
different energies and in the third scenario we will consider
a spectrum of particles in combination with the emission of
electromagnetic radiation.
For the NUT metric timelike geodesic motion was first

discussed by Zimmerman and Shahir [22]. They first
performed a potential analysis andwrote downa time integral
for radial timelike geodesics. In addition, Zimmerman and
Shahir investigated timelike circular and elliptic bound orbits
and showed that in the NUT metric all geodesics, lightlike
and timelike, lie on spatial cones. Jefremov and Perlick [23]
investigated the positions of circular timelike geodesics with
particular focus on the innermost stable and marginally
bound circular orbits. The most thorough investigation of
lightlike and timelike geodesic motion in the NUT metric
was carried out byKagramanova et al. [24]. In their paper the
authors first classified themotion along lightlike and timelike
geodesics into five different types of orbits (transit, escape,
crossover escape, bound, and crossover bound; for the exact
definitions please refer to [24]). In the second part of their
paper Kagramanova et al. [24] used Weierstraß’ elliptic ℘
and Weierstraß’ ζ and σ functions to solve the equations of
motion for lightlike and timelikegeodesics.While in theNUT
metric (and due to their similar structure also in the charged
NUT metric) the types of motion are well known and it is
straightforward to calculate the solutions to the equations of
motion due to the existence of the Misner strings whether or
not the spacetime is geodesically complete is still an open
question.Whilemany authors advocate that there is sufficient
evidence to assume that the NUT metric is geodesically
incomplete [24–26], Clément et al. [27] investigated this
question and concluded that all geodesics can be smoothly
continued through the Misner strings. However, recent
gravitational lensing results from Frost [20] show that travel
time maps for the NUT metric as well as the charged NUT
metric contain discontinuities for lightlike geodesics crossing
the Misner strings. Thus for lightlike geodesics crossing the
Misner strings the time coordinate is not continuous.
Gravitational lensing of light by (charged) NUT black

holes has already been investigated by several authors. For a
recent summary of the existing literature on gravitational
lensing of light we refer the interested reader to Frost [20].
Here we will only provide a short summary of the main
results. As mentioned above in the NUT metric all geodesics
lie on spatial cones [22]. On these cones we can calculate the
bending angle of light using the same approach as for
spherically symmetric and static spacetimes [22,28–32].
Nouri-Zonoz and Lynden-Bell [28,29] showed that in the
weak field limit the presence of the gravitomagnetic charge
leads to a twist in the lens map. Grenzebach et al. [33,34]
investigated the shadow of Kerr-Newman-NUT–de Sitter
black holes and found that the size of the shadow grows
with increasing gravitomagnetic charge (an exact analytic

formula for the angular radius of the shadow of charged
NUT–de Sitter black holes can be found in Frost [20]).
Frost [20] confirmed the twist for the exact lens map and also
found the existence of the aforementioned discontinuities in
the travel time maps for lightlike geodesics crossing the
Misner strings.
In this paper we will see that a lot of the concepts well

known from gravitational lensing of light rays can be easily
transferred to gravitational lensing of massive particles.
Indeed, in spherically symmetric and static spacetimes
gravitational lensing of massive particles has already
received some interest for quite some time. According to
Zakharov [35], Mielnik and Plebański [36] were the first to
introduce the concept of a particle sphere, the equivalent of
the photon sphere for massive particles. Kobialko et al. [37]
were the first to transfer the concept of a photon surface
originally introduced by Claudel et al. [38] to massive
particles. In their work they first defined what they refer
to as the massive particle surface and then they discussed
several examples, among them the Schwarzschild metric,
the Reissner-Nordström metric (as part of the Reissner-
Nordström dyon), and the NUT metric. In the late 1980s
Zakharov [39] derived the effective particle capture cross
section of a Schwarzschild black hole for particles with
arbitrary velocities at spatial infinity. A few years later he
revisited his work for the Schwarzschild metric and also
extended it to the Reissner-Nordström metric for particles
with E ¼ 1 [40]. In 2002, Accioly and Ragusa [41]
calculated the deflection angle of unbound, relativistic,
massive particles up to the second post-Newtonian order
under the assumption that the gravitational field of the
Sun can be described by the Schwarzschild metric. About
ten years later Tsupko [42] was the first to investigate
gravitational lensing of massive particles in the strong
deflection limit in the Schwarzschild metric. He first wrote
down the exact deflection angle in terms of Legendre’s
elliptic integral of the first kind. Then he continued his
investigation by deriving four different versions of the
strong deflection limit. Two years later Liu et al. [43]
derived the bending angle for unbound massive particles
in the weak and strong deflection limits for low (v ≪ c)
and ultrarelativistic (v ≈ c) particle velocities. In the case
of ultrarelativistic particles they also calculated the mag-
nification. Crisnejo and Gallo [44] were the first to apply
the Gauss-Bonnet theorem to derive the deflection angle
of massive particles in the Schwarzschild metric up to
second order using the approach originally developed by
Gibbons andWerner [45]. In 2019 Jia and Liu [46] derived
exact and approximative relations for the travel time in the
Schwarzschild metric using elementary functions and
Legendre’s elliptic integrals of the first, second, and third
kind. However, their exact result has the disadvantage that
it explicitly contains the imaginary unit. In the weak field
limit they also wrote down a simple lens equation and
derived the time delay between two particle beams with
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different velocities on the same and opposite sides of the
lens. In the same year Pang and Jia [47] investigated
gravitational lensing in the Reissner-Nordström metric.
They first derived the deflection angle in terms of
Legendre’s elliptic integral of the first kind. In the second
step, they derived approximations for the weak and strong
field limits and calculated themagnification for particleswith
velocities close to the speed of light. In the strong deflection
limit they also extended their calculations to images of higher
orders and estimated the size of the shadow of the super-
massive black hole associated with the radio source Sgr A�.
One year later He et al. [48] derived the deflection angle for
massive particles in the Schwarzschild–de Sitter metric up to
the second post-Minkowskian order.
In most of these works the calculation of the deflection

angle was limited to an observer and a particle source in the
equatorial plane at spatial infinity. Therefore, except for the
work of Jia and Liu [46] in the exact gravitational lensing
formalism observers and particle sources at finite distances
to the lens have not been considered. In addition, to the best
of our knowledge, in the charged NUT metric gravitational
lensing of massive particles has not been investigated so far.
Therefore, the main goal of this paper will be to set up the
mathematical formalism for exact gravitational lensing of
massive particles for the charged NUT metrics including the
Schwarzschild metric, the Reissner-Nordström metric, and
the NUT metric for observers and particle sources in the
domain of outer communication at finite distances to the
black hole (note that whenever we use the plural we refer to
the metric itself and all its special cases in the following).
For this purpose in the first part of this paper we will discuss
and analytically solve the equations of motion for the
Schwarzschild metric, the Reissner-Nordström metric, the
NUT metric, and the charged NUT metric using elementary
and Jacobi’s elliptic functions and Legendre’s elliptic
integrals of the first, second, and third kind following the
procedures described in Gralla and Lupsasca [49] and Frost
[20]. Note that we can also use Weierstraß’ elliptic ℘ and
Weierstraß’ ζ and σ functions to solve the equations of
motion (as described in Kagramanova et al. [24]); how-
ever, they have the disadvantage that we have to manually
adjust the branches of the natural logarithm in the travel
time integrals along the whole geodesic because we do not
a priori know how many branch cuts occur. Using Jacobi’s
elliptic functions and Legendre’s elliptic integrals on the
other hand has the advantage that we only have to consider
the turning points and all relations can be written in forms
which are explicitly real. In addition, some authors claim
that using Jacobi’s elliptic functions and Legendre’s
elliptic integrals has the advantage that their evaluation
can be faster than numerical calculations when they are
appropriately implemented [50]. In the second part of the
paper we will then investigate gravitational lensing in the
charged NUT metrics. For this purpose we will assume that
we have a stationary observer and stationary particle

sources in the domain of outer communication. At the
position of the observer we will then introduce an ortho-
normal tetrad to define latitude-longitude coordinates on the
observer’s celestial sphere following the approach of
Grenzebach et al. [51]. In the next step we will transfer
the approach of Perlick and Tsupko [52] for gravitational
lensing of light rays in a plasma to unbound timelike
geodesics. We relate the constants of motion to the latitude-
longitude coordinates on the observer’s celestial sphere. In
addition, we derive the total energy of a particle as measured
by the stationary observer. Then we will derive the angular
radius of the shadow for massive particles with constant
energy and write down a lens equation. We will discuss the
observed lensing features for sources that emit particles with
a constant energy, sources that emit a spectrum of particles,
and sources that emit a spectrum of particles in combination
with electromagnetic radiation. Finally, we will discuss two
different travel time measures. The first is the travel time in
terms of the time coordinate t and the second is the travel
time in terms of the proper time of the particles τ. We will
discuss how we can combine travel time differences
between “images” of different orders generated by particles
with the same and different energies and light rays to
determine the physical parameters of the charged NUT
metric, namely the electric and gravitomagnetic charges. In
addition, we will also discuss the possibility of directly
determining the traveled proper time using particle decay or
neutrino oscillations.
The remainder of this paper is structured as follows. In

Sec. II we will briefly introduce the charged NUT metrics
and discuss their physical properties. Then, in Sec. III we
will discuss and solve the equations of motion. In Sec. IV
we will discuss different lensing features in the charged
NUT metrics. For this purpose we will write down a lens
equation and discuss three different lensing observables.
These are the angular radius of the shadow and the travel
times in terms of the time coordinate t and the proper time
of the particles τ. We will discuss differences with respect
to light rays and how they can be used to identify effects
arising from the presence of the electric and gravitomag-
netic charges. In addition, we will also comment on how we
can combine gravitational lensing of light rays and massive
particles in a multimessenger approach. In Sec. V we will
summarize our results and conclusions. Throughout the
paper we will use geometric units such that c ¼ G ¼ 1. The
metric signature is ð−;þ;þ;þÞ.

II. THE CHARGED NUT SPACETIME

The charged NUT metric is an electrovacuum solution of
Einstein’s field equation without cosmological constant. It is
axisymmetric and stationary and belongs to the Plebański-
Demiański family of spacetimes of Petrov type D [11]. In
Boyer-Lindquist-like coordinates the most general form of
the line element of the charged NUT metric reads (for a full
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discussion of the spacetime structure see, e.g., pp. 213–237
in Griffiths and Podolský [53])

gμνdxμdxν ¼ −
QðrÞ
ρðrÞ ðdtþ 2nðcos ϑþ CÞdφÞ2

þ ρðrÞ
QðrÞ dr

2 þ ρðrÞðdϑ2 þ sin2 ϑdφ2Þ; ð1Þ

where

QðrÞ ¼ r2 − 2mrþ e2 − n2 ð2Þ
and

ρðrÞ ¼ r2 þ n2: ð3Þ
The spacetime contains three physical parameters. The
first is the mass parameter m, the second is the electric
charge e, and the third is the so-called gravitomagnetic
charge n, the gravitational equivalent to a hypothetical
magnetic charge in classical electrodynamics. In addition,
the spacetime also contains a fourth parameter C, com-
monly referred to as Manko-Ruiz parameter [16]. We will
further discuss it below. For e ¼ n ¼ 0 the metric reduces
to the Schwarzschild metric. For n ¼ 0 it reduces to the
Reissner-Nordström metric and for e ¼ 0 it reduces to the
NUT metric.
In theory the four parametersm, e, n, and C can take any

arbitrary real value. However, we can limit them using
physical reasoning and the symmetries of the spacetime as
follows. In nature we only observe positive masses and
thus we havem > 0. In (2) and thus the line element (1) the
electric charge only occurs as square. Thus the sign of the
electric charge does not have any effect on the spacetime;
only its absolute value has and since in this paper we
will only consider uncharged particles we can choose
0 ≤ e ≤ eC. Note that here eC is an upper bound for the
electric charge which has to be chosen based on the desired
nature of the spacetime. Similarly, we can easily see that
when we replace n → −n and C → −C and perform the
coordinate transformation ϑ → π − ϑ the line element (1)
remains invariant and thus we can choose 0 ≤ n andC∈R.
The main structure of the spacetime is strongly influ-

enced by the existence of conical singularities on the axes.
While the original Taub-NUT spacetime [12,14] only
contained one conical singularity at ϑ ¼ π [13] in its
general form given by (1) the number of conical singular-
ities and their strength depend on the choice of the Manko-
Ruiz parameter. For C ¼ 1 the spacetime has a conical
singularity at ϑ ¼ 0. For C ¼ −1 the spacetime has a
conical singularity at ϑ ¼ π. When jCj ≠ 1 the spacetime
contains conical singularities on both axes; however, only
for C ¼ 0 both singularities have the same strength. Due to
the presence of the Misner strings the charged NUTmetric is
asymptotically flat in the sense that for r → ∞ the Riemann
tensor vanishes but the spacetime does not become

asymptotically Minkowskian [13]. The most common inter-
pretation [17] of the Misner strings is that they represent
semi-infinite massless rotating rods which serve as source of
angular momentum and give rise to the gravitomagnetic
charge n. Close to the Misner strings the charged NUT
metric possesses regions in which gφφ ≤ 0 [17] and thus in
these regions closed timelike curves exist. The existence of
closed timelike curves is problematic since particles moving
on these curves violate causality, which according to our
current knowledge is physically not possible. When we look
at the line element (1) we can see that we can remove the
Misner strings by introducing a periodic time coordinate via
the periodic transformation t̃ ¼ t þ 2nCφ [13]. This trans-
formation removes the Misner strings; however, it is only
valid locally becausewe usually assume that theφ coordinate
is periodic while the time coordinate t is not (as a conse-
quence charged NUT spacetimes with differentC are locally
isometric [33]). Furthermore, when we introduce a periodic
time coordinate the spacetime contains closed timelike
curves everywhere, which is physically even less desirable.
Therefore, in this paper we retain the Misner strings.
The only question left to answer is the choice of the

coordinates t, r, ϑ, and φ. As already discussed above in
this paper we retain the Misner strings and thus we have
t∈R. In addition, we choose the angular coordinates ϑ and
φ such that they represent angular coordinates on the two
sphere S2. Therefore, we have ϑ∈ ½0; π� and φ∈ ½0; 2πÞ.
Here, we have to note another interesting aspect of the
charged NUT metric. Although the spacetime is only
axisymmetric it retains some degree of rotational sym-
metry. While for the NUT metric spherical symmetry is
clearly broken it was shown by Newman et al. [14] and
Halla and Perlick [30] that the spacetime possesses four
linearly independent Killing vector fields. Three of these
Killing vector fields now generate isometries which are
isomorphic to the rotation group SOð3;RÞ. Thus the NUT
metric and consequently also the charged NUT metric are
symmetric with respect to rotations about any arbitrary
radial direction (for more information we would like to
refer the interested reader to the original works).
Now the only coordinate range left to discuss is that for

the r coordinate. For this purpose let us have a look at the
roots associated with QðrÞ ¼ 0 and the curvature singular-
ities of the metric tensor. The real roots of QðrÞ ¼ 0 are all
coordinate singularities and thus they correspond to hori-
zons. They can be removed using appropriate coordinate
transformations. Figure 1 shows the horizon structures of the
Schwarzschild metric [Fig. 1(a)], the Reissner-Nordström
metric [Figs. 1(b) and 1(c)], the NUT metric [Fig. 1(d)], and
the charged NUT metric [Figs. 1(e) and 1(f)]. We will start
our discussion by recapitulating the well known horizon
structures of the Schwarzschild and Reissner-Nordström
metrics. Both metrics have a curvature singularity at r ¼ 0
and thus we have 0 < r. For the Schwarzschild metric this
singularity is spacelike while for the Reissner-Nordström
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(a) Schwarzschild metric

(b) Reissner-Nordström metric: 0<e<m

(c) Reissner-Nordström metric: e=m
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FIG. 1. Positions of the horizons (coordinate singularities) in (a) the Schwarzschild metric, the Reissner-Nordström metric with
(b) 0 < e < m and (c) e ¼ m, (d) the NUT metric, and the charged NUT metric with (e) 0 < e < eC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
and

(f) e ¼ eC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
. Note that for panels (a)–(c) the spacetimes end at r ¼ 0 and for panels (d)–(f) large parts of the region

r < 0 are not shown. Also note that the angular coordinates are suppressed and any additional singularities are not shown.
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metric it is timelike. In addition, the Schwarzschild metric
has a coordinate singularity at rH ¼ 2m which marks the
position of a horizon. For 0 < r < rH the vector field ∂t is
spacelike and the vector field ∂r is timelike and thus this part
of the spacetime is nonstatic. For rH < r the vector field ∂t is
timelike and the vector field ∂r is spacelike and thus this part
of the spacetime is static. Similarly, for 0 < e < m the
Reissner-Nordström metric has two coordinate singularities
at rHi

¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − e2

p
and rHo

¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − e2

p
. Here,

the first coordinate singularity marks the position of an inner
horizon and the second coordinate singularity marks the
position of an outer horizon. For 0 < r < rHi

and rHo
< r

the spacetime is static while for rHi
< r < rHo

the spacetime
is nonstatic. For e ¼ m both horizons coincide and we only
have one horizon at rH ¼ m separating two static regions.
For m < e the spacetime does not possess coordinate
singularities and thus we have a naked singularity (not
shown in Fig. 1).
Because we have ρðrÞ > 0 for all r the NUT metric and

the charged NUT metric do not possess curvature singu-
larities at r ¼ 0. Thus for the NUT metric and the charged
NUT metric we have r∈R. However, both spacetimes can
have up to two coordinate singularities marking the posi-
tions of horizons. The horizons of the NUT metric are
located at rHi

¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
and rHo

¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
.

We can easily see that rHi
< 0 < rHo

. For r < rHi
and rHo

<
r the spacetime is stationary while for rHi

< r < rHo
the

spacetime is nonstationary. For the charged NUT metric the
horizons are located at rHi

¼ m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 − e2

p
and

rHo
¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 − e2

p
and the spacetime structure is

similar to that of the NUT metric. For e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
both

horizons coincide and the spacetime has only one horizon at
rH ¼ m separating two stationary regions. For

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
<

e the spacetime does not possess horizons and we only
have a single stationary region (not shown in Fig. 1). Thus
some authors interpret this case as a wormhole; see, e.g.,
Clément et al. [19]. Throughout most of the remainder
of this paper we want the metrics to represent black
hole spacetimes. For the Reissner-Nordström metric and
the charged NUT metric this is only possible when
0 < e ≤ eC ¼ m and 0 < e ≤ eC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
, respec-

tively. Furthermore, we will follow the convention to refer
to the domain outside the (outer) black hole horizon as
domain of outer communication.

III. SOLVING THE EQUATIONS OF MOTION

We start with writing down the equations of motion for
timelike geodesics in the charged NUT metric. For massive
particles moving along timelike geodesics we have four
constants of motion. These are the Lagrangian L ¼ −1=2,
the energy of the particles E, the angular momentum
about the z axis Lz, and the Carter constant K. Using

the constants of motion the equations of motion can be fully
separated. They read

dt
dλ

¼ ρðrÞ2
QðrÞ E − 2nðcos ϑþ CÞLz þ 2nðcos ϑþ CÞE

sin2 ϑ
;

ð4Þ�
dr
dλ

�
2

¼ ρðrÞ2E2 − ρðrÞQðrÞ −QðrÞK; ð5Þ�
dϑ
dλ

�
2

¼ K −
ðLz þ 2nðcos ϑþ CÞEÞ2

sin2 ϑ
; ð6Þ

dφ
dλ

¼ Lz þ 2nðcos ϑþ CÞE
sin2 ϑ

; ð7Þ

where the parameter λ is the so-called Mino parameter [54],
sometimes also referred to as Mino time. It is related to the
proper time τ via

dλ
dτ

¼ 1

ρðrÞ : ð8Þ

In this paper we choose the proper time and the Mino
parameter such that they increase for future-directed time-
like geodesics and decrease for past-directed timelike geo-
desics. This requires that the energy parameter E is positive.
In this paper we are mainly interested in unbound timelike
motion. This requires an even more strict constraint because
in the charged NUTmetric unbound timelike geodesics only
exist for E > 1. Note that (4), (6), and (7) are structurally the
same as for lightlike geodesics; see Eqs. (5), (7), and (8) in
Frost [20]. In the following we will now proceed to discuss
and analytically solve the equations of motion for timelike
geodesics using elementary and Jacobi’s elliptic functions
as well as Legendre’s elliptic integrals of the first, second,
and third kind. We will also explicitly derive analytic
expressions for the proper time τ. For this purpose we will
for now assume that we have arbitrary initial conditions
ðxμi Þ ¼ ðxμðλiÞÞ ¼ ðti; ri; ϑi;φiÞ and τðλiÞ ¼ τi. In the
next section we will then use the obtained solutions to
discuss exact gravitational lensing of massive particles in
the Schwarzschild metric, the Reissner-Nordström metric,
the NUT metric, and the charged NUT metric. Therefore,
we will limit our discussion to timelike geodesics in the
domain of outer communication outside the (outer) black
hole horizon.
Before we proceed we would like to note that many of the

results presented in this section are very similar to the results
for lightlike geodesics presented in Frost [20]. However, we
still provide a thorough discussion for two reasons. First, the
equations of motion for timelike geodesics, in particular for
the r motion and the time coordinate t, have some distinct
differences which do not occur for lightlike geodesics.
Second, for a reader, who is interested in understanding the
mathematical technicalities required to solve the equations
of motion, it is more convenient to find all results in one
paper. In addition, for keeping comparability to our earlier
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paper we will largely keep the same notation and also
heavily lean on the structural outline.

A. The r motion

1. Potential and the particle sphere

We start our discussion with the r motion. Let us first
rewrite (5) in terms of a potential VEðrÞ. It reads

−
1

QðrÞ
�
dr
dλ

�
2

þ VEðrÞ ¼ K; ð9Þ

where the potential VEðrÞ is given by

VEðrÞ ¼
ρðrÞðρðrÞE2 −QðrÞÞ

QðrÞ : ð10Þ

Unlike for lightlike geodesics the potential for unbound
timelike geodesics depends on the particle energy along the
timelike geodesics E. We can easily read from (6) that
geodesic motion can only occur forK ≥ 0. Therefore, in the
domain of outer communication the left-hand side of (9) is
required to be positive or zero. From (9) we can read that
this requirement is only fulfilled when VEðrÞ > 0 and thus
all unbound timelike geodesics in the domain of outer
communication of the charged NUT metrics have to fulfill
this criterion.

Figure 2 shows plots of the potentials VEðrÞ for the
Schwarzschild metric (top left), the Reissner-Nordström
metric with e ¼ m (top right), the NUT metric with n ¼
m=2 (bottom left), and the charged NUT metric with e ¼ m
and n ¼ m=2 (bottom right) for the three energies E1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
(solid line), E2 ¼

ffiffiffi
5

p
=2 (dotted line), and E3 ¼ffiffiffi

2
p

(dashed line). We start our discussion with the potential
for E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
for the Schwarzschild metric. The

potential approaches the limits VEðrÞ → ∞ for r → rH and
r → ∞. In addition, the potential has a minimum at rpa1 .
This minimum marks the position of what we will refer to
as particle sphere (a more formal definition and discussion
of the particle sphere will follow below). When we now
increase the energy E the value of the minimum at rpa
increases and the potential’s width around the minimum
decreases. When we turn on the electric charge e the whole
potential structure is shifted to lower radius coordinates r
and the minimum values of the potentials at the radius
coordinates of the corresponding particle spheres decrease.
The contrary happens when we turn on the gravitomagnetic
charge n. In this case the whole potential structure shifts to
larger radius coordinates rwhile the minimum values of the
potentials at the radius coordinates of the corresponding
particle spheres increase.

FIG. 2. Potential VEðrÞ of the r motion for the Schwarzschild metric (top left), the Reissner-Nordström metric (top right), the NUT
metric (bottom left), and the charged NUT metric (bottom right) for e ¼ m and n ¼ m=2 for three different energy values E1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(solid line), E2 ¼
ffiffiffi
5

p
=2 (dotted line), and E3 ¼

ffiffiffi
2

p
(dashed line). The vertical lines mark the positions of the particle

spheres for the three energy values, respectively. The unlabelled dashes on the horizontal and vertical axes mark the positions of rpa2 and
rpa3 as well as VEðrpa2Þ and VEðrpa3Þ, respectively. The axes have the same scale in all four plots.
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While we discussed the potential structures for timelike
geodesics above we already used the term particle sphere;
however, we did not yet explain what it is. We recall that in
the charged NUT metrics for lightlike geodesics we always
have a photon sphere in the domain of outer communi-
cation. For massive particles on timelike geodesics the
particle sphere is now the equivalent to the photon sphere
for light rays on lightlike geodesics. Like the photon
sphere for black hole spacetimes the particle sphere in the
domain of outer communication is unstable in the sense
that if we slightly perturb a particle moving on a timelike
geodesic on the particle sphere in the radial direction the
particle either falls into the black hole or escapes to
infinity. Note that in this paper only the particle sphere
in the domain of outer communication is of particular
relevance. However, we will see that for the characteriza-
tion of the r motion knowledge about the existence of all
potentially existing unstable particle spheres is required.
Therefore, in the following we will provide a thorough and
general discussion of the particle spheres for particles with
energies E > 1. Here, our discussion will mainly focus on
the existence and stability of particle spheres in black hole
spacetimes; however, for the sake of completeness we will
also discuss these points for the horizonless Reissner-
Nordström and charged NUT metrics.
We can calculate the radius coordinates of the particle

spheres from the conditions dr=dλ ¼ d2r=dλ2 ¼ 0. Combi-
ning both conditions we get as determining equation for the
radius coordinates of the particle spheres

r5 þmð1− 3ðE2 − 1ÞÞ
E2 − 1

r4 þ 2ððe2 − n2ÞðE2 − 1Þ− 2m2Þ
E2 − 1

r3

þ 2mð2ðe2 − n2Þ− n2E2Þ
E2 − 1

r2

þ 2n2e2E2 − 3n4E2 − ðn2 − e2Þ2
E2 − 1

rþmn4E2

E2 − 1
¼ 0: ð11Þ

Equation (11) can have up to five real solutions. As long as
n ≠ 0 (11) is a polynomial of fifth order and cannot be solved
analytically. In the Schwarzschild limit (e ¼ 0 and n ¼ 0)
Eq. (11) effectively reduces to a polynomial of second order
andwehave two real roots. Only one of these roots is positive
and lies outside the black hole horizon. It reads

rpaSðEÞ ¼
mð3E2 − 4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9E4 − 8E2

p
Þ

2ðE2 − 1Þ : ð12Þ

The radius coordinate of the particle sphere depends on the
particle energyE [note that in termsof an (energy-dependent)
parameter or the particle velocity at spatial infinity it was
already derived in amore complicated way by Zakharov [39]
and byLiu et al. [43], respectively, and that when rewritten in
terms of the particle energy the result of Liu et al. is

equivalent to (12)]. It decreases with increasing particle
energy E and for E → ∞ we recover the radius coordinate
of the photon sphere rphS ¼ 3m. In the Reissner-Nordström
limit (n ¼ 0) Eq. (11) reduces to a polynomial of fourth
order. We can derive the roots using Ferrari’s method (note
that Pang and Jia [47] used a slightly more complicated
approach to calculate, in terms of the particle velocity at
spatial infinity, the radius coordinate of the particle sphere;
however, their discussion only focused on the unstable
particle sphere in the domain of outer communication and
not all potential unstable and stable particle spheres). In the
general case we can have up to three real positive roots. Let
us label these roots rpa− , rpaþ , and rpa and sort them such
that in the case of a black hole spacetime we have
0 < rpa− < rHi

≤ rpaþ ≤ rHo
< rpa. As long as we have a

black hole spacetime rpaþ is located between the horizons
in the nonstatic region and thus it cannot mark the position
of a particle sphere. rpa− lies in the interior static domain
between curvature singularity and inner black hole horizon
rHi

. As long as we have a black hole spacetime we have
VEðrpa−Þ < 0 and thus a negative Carter constant. As a
consequence rpa− does not mark the position of a particle
sphere. Thus only rpa marks the position of a particle sphere
and this particle sphere is unstable. When we exceed the
critical value e ¼ m both horizons disappear and now we
have an unstable particle sphere at rpa and a stable particle
sphere at rpaþ . When we keep E constant and further
increase the electric charge e rpaþ approaches rpa.When we
exceed a second critical value eC2

both particle spheres
disappear (for e ¼ eC2

we have rpaþ ¼ rpa). This is analo-
gous to the photon sphere; however, for timelike geodesics
the exact value eC2

beyond which the particle spheres
disappear does not only depend on the electric charge e but
also on the particle energy E.
In the case of the NUT metric (11) commonly has three

real roots. Similarly, for the charged NUT metric (11) can
have up to five real roots. According to our investigations
when (11) has five real roots, two of these roots seem to be
associated with VEðrÞ < 0 and thus a negative Carter
constant K. As was already mentioned above in this case
we cannot have angular motion and thus at these radius
coordinates particle spheres cannot exist. Also for the
remaining three roots the answer to the question how
many of them actually represent real particle spheres
depends on the choice for e, n, and E. For analyzing
how many particle spheres can exist let us first have a look
at (5) for geodesics with K ¼ 0 (we will see below that
these are radial timelike geodesics). In this case we can
write the right-hand side of (5) in terms of ρðrÞ and a
polynomial of second order. As ρðrÞ ¼ r2 þ n2 > 0 the
associated roots are complex conjugate and purely imagi-
nary. The roots of the polynomial of second order on
the other hand can be real or complex conjugate. For
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distinguishing both cases we now define a new quantity

Δ ¼ m2 þ e2ðE2 − 1Þ − n2ðE4 − 1Þ; ð13Þ

which allows one to classify the nature of the roots and
determines the number of particle spheres that can exist. If
Δ > 0 for the NUT metric and the charged NUT metric the
polynomial has two distinct real roots. When we have a
black hole spacetime we only have one unstable particle
sphere at the radius coordinate rHo

< rpa. In the case of the
charged NUT metric we can have three more cases. Forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
< e < eC2

we have a stable particle sphere at
rpaþ and an unstable particle sphere at rpa > rpaþ . When we
have e ¼ eC2

we have rpaþ ¼ rpa and when we have eC2
<

e the charged NUT metric does not possess particle
spheres. When Δ ¼ 0 the polynomial has a real double
root. When we choose 0 ≤ e ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
the NUT metric

and the charged NUT metric represent a black hole and we
have two unstable particle spheres at the radius coordinates
rpa− < rHi

and rHo
< rpa. When Δ < 0 the polynomial has

a pair of complex conjugate roots. When we choose 0 ≤
e ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
for both, the NUT metric and the charged

NUT metric, we again have a black hole spacetime. Also in
this case we only have two unstable particle spheres at the
radius coordinates rpa− < rHi

and rHo
< rpa. Again in the

case of the charged NUTmetric for both,Δ ¼ 0 andΔ < 0,
we can have three more cases. When we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
<

e < eC2
we have two unstable particle spheres at the radius

coordinates rpa− < rpa and a stable particle sphere at the
radius coordinate rpaþ , where we have rpa− < rpaþ < rpa.
For e ¼ eC2

we have rpaþ ¼ rpa. For eC2
< e the particle

spheres at rpaþ and rpa disappear and only the particle
sphere at rpa− remains. Here, the exact value of eC2

depends
on e, n, and E. Note that due to the possible number of
combinations of e, n, and E we could not test all potential
combinations and it is possible that also other cases may
occur. However, because the cases discussed above are
similar to the different cases for the photon sphere we are
convinced that they represent the majority of all realized
cases. In the following we will now restrict our discussion
to black hole spacetimes.
The left panel of Fig. 3 shows the radius coordinate

of the particle sphere rpa as function of E for the
Schwarzschild metric (black solid line) and the NUTmetric
with n ¼ m=4 (blue dashed line), n ¼ m=2 (green dotted
line), and n ¼ m (red dash-dotted line). The horizontal
lines with the same line styles mark the radius coordinates
of the corresponding photon spheres. We can see that in all
four cases for E → ∞ the radius coordinates of the particle
spheres approach the radius coordinates of the correspond-
ing photon spheres. When we increase the gravitomagnetic
charge n and keep the energy E constant the radius
coordinate of the particle sphere increases. Similarly the
right panel of Fig. 3 shows the radius coordinate of the
particle sphere rpa as function of E for the Reissner-
Nordström metric (black solid line) and the charged NUT
metric with n ¼ m=4 (blue dashed line), n ¼ m=2 (green
dotted line), and n ¼ m (red dash-dotted line). In all four
cases we have e ¼ m. It basically shows the same features as
the left panel but shifted to lower radius coordinates.
The left panel of Fig. 4 shows the radius coordinate of

the photon sphere rph (black solid line) and the radius
coordinates rpa of the particle spheres for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

FIG. 3. Radius coordinate of the particle sphere at rHo
< rpa as function of the energy E. Left panel: rpa as function of E for the

Schwarzschild metric (black solid line) and the NUT metric with n ¼ m=4 (blue dashed line), n ¼ m=2 (green dotted line), and n ¼ m
(red dash-dotted line). Right panel: rpa as function of E for the Reissner-Nordström metric (black solid line) and the charged NUTmetric
with n ¼ m=4 (blue dashed line), n ¼ m=2 (green dotted line), and n ¼ m (red dash-dotted line). In all four cases we have e ¼ m. The
horizontal gray lines with the same line styles mark the radius coordinates of the corresponding photon spheres.
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(blue dashed line), E ¼ ffiffiffi
5

p
=2 (red dotted line), and

E ¼ ffiffiffi
2

p
(green dash-dotted line) as functions of the

gravitomagnetic charge n for the NUT metric. As already
indicated in Fig. 3 the radius coordinates of the photon
sphere and the particle spheres increase with increasing n.
In addition the radius coordinates of the particle spheres
decrease with increasing E. Similarly, the right panel of
Fig. 4 shows the radius coordinate of the photon sphere rph
(black solid line) and the radius coordinates rpa of the

particle spheres for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
(blue dashed line),

E ¼ ffiffiffi
5

p
=2 (red dotted line), and E ¼ ffiffiffi

2
p

(green dash-
dotted line) as functions of the gravitomagnetic charge n
for the charged NUT metric. We basically see the same
features as in the left panel; however, turning on the
electric charge shifted them to lower radius coordinates.
Note that in the rest of Sec. III we will assume that the
reader is aware that rpa− and rpa are functions of the energy
E and thus we will not explicitly write the energy
dependency.

2. Types of r motion

We can now use the radius coordinates of the unstable
particles spheres rpa− and rpa, the potential VEðrÞ, and the
Carter constant K for classifying seven different types of
motion (note that we count radial timelike geodesics in the
Schwarzschild metric and the Reissner-Nordström metric
as two different types of motion). These are as follows.

(i) Case 1-S.—This case covers radial timelike geo-
desics with K ¼ 0 in the Schwarzschild metric. In
this case the right-hand side of (5) has four real roots.

Three of these roots are equal and located at
r1 ¼ r2 ¼ r3 ¼ 0. The fourth root is also real and
located at r4 ¼ −2m=ðE2 − 1Þ. These geodesics do
not have turning points in the domain of outer
communication.

(ii) Case 1-RN.—This case covers radial timelike geo-
desics with K ¼ 0 in the Reissner-Nordström met-
ric. In this case the right-hand side of (5) has four
real roots. The first root is positive and located at
r1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2ðE2 − 1Þ

p
−mÞ=ðE2 − 1Þ. Then we

have a double root at r2 ¼ r3 ¼ 0. The fourth root is
negative and located at r4¼−ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þe2ðE2−1Þ

p
þ

mÞ=ðE2−1Þ. Again these geodesics do not
have turning points in the domain of outer
communication.

(iii) Case 1-NUT-a.—This case covers timelike geode-
sics with Δ < 0 and 0 ≤ K < VEðrpa−Þ in the NUT
metric and the charged NUT metric. In this case the
right-hand side of (5) has two pairs of complex
conjugate roots. We sort and label them such that we
have r1 ¼ r̄2 ¼ R1 þ iR2 and r3 ¼ r̄4 ¼ R3 þ iR4,
where we choose the real and imaginary parts such
that R1 < R3, and R2 > 0 and R4 > 0, respectively.
These geodesics do not have turning points in the
domain of outer communication.

(iv) Case 1-NUT-b.—This case covers timelike geode-
sics with Δ ≤ 0 and K ¼ VEðrpa−Þ in the NUT
metric and the charged NUT metric. In this case
the right-hand side of (5) has a real double root and a
pair of complex conjugate roots. We label the real
roots such that r1 ¼ r2 ¼ rpa− and we write the

FIG. 4. Radius coordinates of the photon sphere rph and the particle spheres with rHo
< rpaðEÞ for three different energies E as

functions of the gravitomagnetic charge n. Left panel: radius coordinate of the photon sphere rph (black solid line) and radius coordinates

of the particle spheres rpa for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
(blue dashed line), E ¼ ffiffiffi

5
p

=2 (red dotted line), and E ¼ ffiffiffi
2

p
(green dash-dotted line) as

function of n for the NUT metric. Right panel: radius coordinate of the photon sphere rph (black solid line) and radius coordinates of the

particle spheres rpa for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
(blue dashed line), E ¼ ffiffiffi

5
p

=2 (red dotted line), and E ¼ ffiffiffi
2

p
(green dash-dotted line) as

functions of n for the charged NUT metric with e ¼ m.
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complex conjugate roots in terms of their real and
imaginary parts such that r3 ¼ r̄4 ¼ R3 þ iR4,
where we choose R4 > 0. These geodesics do not
have turning points in the domain of outer commu-
nication.

(v) Case 2.—This case covers timelike geodesics with
three different combinations of Δ and K. For the
Schwarzschild metric and the Reissner-Nordström
metric it occurs when we have 0 < K < VEðrpaÞ
(in this case we always have 0 < Δ). For the
NUT metric and the charged NUT metric it occurs
when 0 < Δ and 0 ≤ K < VEðrpaÞ or Δ ≤ 0 and
VEðrpa−Þ < K < VEðrpaÞ. In this case the right-hand
side of (5) has two distinct real roots and a pair of
complex conjugate roots. We sort and label the real
roots such that r1 > r2. As above we write the
complex conjugate roots in terms of their real and
imaginary parts such that r3 ¼ r̄4 ¼ R3 þ iR4, where
we choose R4 > 0. These geodesics do not have
turning points in the domain of outer communication.

(vi) Case 3.—This case covers timelike geodesics with
K ¼ VEðrpaÞ. In this case the right-hand side of (5)
has four real roots, two of which are equal. We sort
the roots such that r1 ¼ r2 ¼ rpa > r3 > r4. These
are timelike geodesics on or asymptotically coming
from or going to an unstable particle sphere. They do
not have turning points in the domain of outer
communication.

(vii) Case 4.—This case covers timelike geodesics with
VEðrpaÞ < K. In this case the right-hand side of (5)
has four distinct real roots. We sort and label them
such that r1 > r2 > r3 > r4. For rpa < r these geo-
desics can have a turning point at r1 ¼ rmin (mini-
mum) and for rHo

< r < rpa these geodesics can have
a turning point at r2 ¼ rmax (maximum).

Note that all four metrics have three common types of
motion (cases 2–4). For keeping them consistent we
classified the remaining four types of motion under case
1 (case 1-S and case 1-RN both cover the same type of
motion; however, because their root structure is different
we discussed them separately). In the following we will
now show how to solve the equation of motion for r using
elementary and Jacobi’s elliptic functions.

3. Solving the equation of motion

Case 1-S.—We start with radial timelike geodesics in the
Schwarzschild metric. These geodesics have K ¼ 0 and
thus (5) reduces to

�
dr
dλ

�
2

¼ ðE2 − 1Þr4 þ 2mr3: ð14Þ

We separate variables and integrate from rðλiÞ ¼ ri to
rðλÞ ¼ r. We get

λ − λi ¼ iri

Z
r

ri

dr0

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þr02 þ 2mr0

p ; ð15Þ

where iri ¼ sgnðdr=dλjr¼riÞ. The right-hand side of (15)
has the same structure as I3 given by (A3) in Appendix A 1.
Now we use (A3) to rewrite (15) in terms of elementary
functions and solve for r. We get as solution for rðλÞ

rðλÞ ¼ ri
1− iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððE2 − 1Þri þ 2mÞri

p
ðλ− λiÞ þ mri

2
ðλ− λiÞ2

:

ð16Þ

Case 1-RN.—Nowwe turn to radial timelike geodesics in
the Reissner-Nordström metric. These geodesics have
K ¼ 0. In this case (5) reduces to

�
dr
dλ

�
2

¼ ðE2 − 1Þr4 þ 2mr3 − e2r2: ð17Þ

We again separate variables and integrate from rðλiÞ ¼ ri to
rðλÞ ¼ r. This time we get

λ − λi ¼ iri

Z
r

ri

dr0

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þr02 þ 2mr0 − e2

p : ð18Þ

The right-hand side of (18) has the same structure as I7
given by (A7) in Appendix A 1. We use it to rewrite the
integral in terms of elementary functions. We solve for r
and get as solution for rðλÞ

rðλÞ ¼ e2

m −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þe2 þm2

p
sin

�
arcsin

�
mri−e2

ri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−1Þe2þm2

p
�
þ iri jejðλ − λiÞ

� : ð19Þ

Case 1-NUT-a.—This case covers timelike geodesics with Δ < 0 and 0 ≤ K < VEðrpa−Þ. It only occurs for the NUT
metric and the charged NUT metric. In this case we first rewrite the right-hand side of (5) in terms of the real and imaginary
parts of the roots. We integrate from rðλiÞ ¼ ri to rðλÞ ¼ r and get
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λ−λi¼ iri

Z
r

ri

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−1ÞððR1−r0Þ2þR2

2ÞððR3−r0Þ2þR2
4Þ

p :

ð20Þ

As second step we use the real and imaginary parts of the
complex conjugate roots to define two new constants of
motion [49,55]:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − R4Þ2 þ ðR1 − R3Þ2

q
; ð21Þ

R̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ R4Þ2 þ ðR1 − R3Þ2

q
: ð22Þ

Now we use the substitution

r ¼ R1 − R2

g0 − tan χ

1þ g0 tan χ
; ð23Þ

where g0 is given by

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

2 − ðR − R̄Þ2
ðRþ R̄Þ2 − 4R2

2

s
; ð24Þ

to transform the integral (20) into the Legendre form (C10).
Note that because of tan χ ¼ tanðχ � n̄πÞ, where n̄ is a
positive integer, (23) is valid for all χ̃ ¼ χ � n̄π. Now we
follow the steps outlined in Appendix C to derive the
solution for rðλÞ. It is given in terms of Jacobi’s elliptic sc
function and reads

rðλÞ¼R1−R2

g0−sc

�
iri

ffiffiffiffiffiffiffiffiffiffiffiffi
E2−1

p
RþR̄
2
ðλ−λiÞþλri;k1 ;k1

�

1þg0sc

�
iri

ffiffiffiffiffiffiffiffiffiffiffiffi
E2−1

p
RþR̄
2
ðλ−λiÞþλri;k1 ;k1

� ;
ð25Þ

where in our case λri;k1 , χi and the square of the elliptic
modulus k1 are given, respectively, by

λri;k1 ¼ FLðχi; k1Þ; ð26Þ

χi ¼ arctan

�
ri − R1

R2

�
þ arctanðg0Þ; ð27Þ

and

k1 ¼
4RR̄

ðRþ R̄Þ2 : ð28Þ

Case 1-NUT-b.—This case covers timelike geodesics
with Δ ≤ 0 and K ¼ VEðrpa−Þ. They only occur for the
NUT metric and the charged NUT metric. We again rewrite
(5) in terms of the roots and integrate from rðλiÞ ¼ ri to
rðλÞ ¼ r. This time we get

λ−λi¼ iri

Z
r

ri

dr0

ðr0−rpa−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−1ÞððR3−r0Þ2þR2

4Þ
p : ð29Þ

We can easily see that the right-hand side has the form of
the integral I12 given by (A12) in Appendix A 2. Now we
set ra ¼ rpa− in (A12), insert, and solve for r. We obtain as
solution for rðλÞ

rðλÞ ¼ rpa− þ
ðR3 − rpa−Þ2 þ R2

4

R3 − rpa− þ R4 sinh

�
a− − iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞððR3 − rpa−Þ2 þ R2

4Þ
q

ðλ − λiÞ
� ; ð30Þ

where the coefficient a− reads

a− ¼ arsinh

 
ðrpa− − R3Þðri − rpa−Þ þ ðR3 − rpa−Þ2 þ R2

4

R4ðri − rpa−Þ

!
:

ð31Þ

Case 2.—This case covers timelike geodesics with 0 <
K < VEðrpaÞ in the Schwarzschild metric and the Reissner-
Nordström metric and timelike geodesics with 0 < Δ and
0 ≤ K < VEðrpaÞ orΔ ≤ 0 and VEðrpa−Þ < K < VEðrpaÞ in

the NUT metric and the charged NUT metric. We rewrite
(5) in terms of the roots and integrate from rðλiÞ ¼ ri to
rðλÞ ¼ r. We get

λ−λi¼ iri

Z
r

ri

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−1Þðr0−r1Þðr0−r2ÞððR3−r0Þ2þR2

4Þ
p :

ð32Þ
Now we use the real roots and the real and imaginary parts
of the complex conjugate roots to define two new constants
of motion. They read [49,56]
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R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − r1Þ2 þ R2

4

q
; ð33Þ

R̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − r2Þ2 þ R2

4

q
: ð34Þ

Now we use the transformation

r ¼ r1R̄ − r2Rþ ðr1R̄þ r2RÞ cos χ
R̄ − Rþ ðR̄þ RÞ cos χ ð35Þ

to transform the integral (32) into the Legendre form (C10).
Again we follow the steps outlined in Appendix C to derive
the solution rðλÞ. This time it is given in terms of Jacobi’s
elliptic cn function and reads

rðλÞ ¼ r1R̄ − r2Rþ ðr1R̄þ r2RÞcnðiri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞRR̄

p
ðλ − λiÞ þ λri;k2 ; k2Þ

R̄ − Rþ ðR̄þ RÞcnðiri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞRR̄

p
ðλ − λiÞ þ λri;k2 ; k2Þ

; ð36Þ

where λri;k2 , χi and the square of the elliptic modulus k2 are
given, respectively, by

λri;k2 ¼ FLðχi; k2Þ; ð37Þ

χi ¼ arccos

�ðri − r2ÞR − ðri − r1ÞR̄
ðri − r2ÞRþ ðri − r1ÞR̄

�
; ð38Þ

k2 ¼
ðRþ R̄Þ2 − ðr1 − r2Þ2

4RR̄
: ð39Þ

Case 3.—This case covers timelike geodesics with
K ¼ VEðrpaÞ. These are timelike geodesics on or asymp-
totically coming from or going to an unstable particle
sphere. In this case we have a real double root at
r1 ¼ r2 ¼ rpa. For timelike geodesics on an unstable
particle sphere we have rðλiÞ ¼ ri ¼ rpa and thus the
solution reads rðλÞ ¼ rpa. For all other geodesics we
now rewrite (5) in terms of the roots and integrate from
rðλiÞ ¼ ri to rðλÞ ¼ r. We get

λ−λi¼ iri

Z
r

ri

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−1Þðr0−rpaÞ2ðr0−r3Þðr0−r4Þ

q : ð40Þ

We immediately see that when we pull the term r0 − rpa out
of the root this is an elementary integral. Now we substitute

r ¼ r3 þ
3a3

12y − a2
; ð41Þ

where the two coefficients a2 and a3 read

a2 ¼ 6ðE2 − 1Þr23 þ 6mr3 þ 2n2E2 − e2 − K; ð42Þ

a3 ¼ 4ðE2 − 1Þr33 þ 6mr23 þ 2ð2n2E2 − e2 − KÞr3
þ 2mðn2 þ KÞ: ð43Þ

Now the integral reads

λ − λi ¼ −
iri
2

Z
y

yi

dy0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0 − ypaÞ2ðy0 − y1Þ

q ; ð44Þ

where ypa and y1 are related to rpa and r4 by (41),
respectively. We can easily see that the right-hand side
can be rewritten in terms of the integral I14 given by (A14)
in Appendix A 3. Now we have to distinguish two different
cases. In the first case timelike motion takes place outside
the particle sphere and thus we have rpa < r. In this case we
use (A18) to integrate (44). We solve for r and obtain as
solution for rðλÞ

rðλÞ ¼ r3 −
ðrpa − r3Þðr3 − r4Þ

rpa − r3 − ðrpa − r4Þtanh2
�
artanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðri−r4Þðrpa−r3Þ
ðri−r3Þðrpa−r4Þ

q �
− iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3ðrpa−r4Þ

4ðrpa−r3Þðr3−r4Þ
q

ðλ − λiÞ
� : ð45Þ

In the second case we have timelike motion between (outer) black hole horizon and particle sphere rHo
< r < rpa. Note that

in this paper we do not use this solution in our investigation of gravitational lensing of massive particles; however, we still
include it for the sake of a complete discussion of the exact solutions of the equations of motion for timelike geodesics. In
this case we use (A17) to integrate (44). Again we solve for r and get as solution for rðλÞ

rðλÞ ¼ r3 −
ðrpa − r3Þðr3 − r4Þ

rpa − r3 − ðrpa − r4Þcoth2
�
arcoth

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðri−r4Þðrpa−r3Þ
ðri−r3Þðrpa−r4Þ

q �
þ iri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3ðrpa−r4Þ

4ðrpa−r3Þðr3−r4Þ
q

ðλ − λiÞ
� : ð46Þ
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Case 4.—This case covers timelike geodesics with
VEðrpaÞ < K. The right-hand side of (5) has four distinct
real roots and we can have turning points in the domain of
outer communication. Again we rewrite (5) in terms of the
roots and integrate from rðλiÞ ¼ ri to rðλÞ ¼ r. We get

λ−λi¼ iri

Z
r

ri

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2−1Þðr0− r1Þðr0− r2Þðr0−r3Þðr0−r4Þ

p :

ð47Þ

Again we have to distinguish two different cases. In the
first case we have timelike geodesics with rpa < r. These

geodesics can have a turning point at rpa < r1 ¼ rmin. We
use the substitution [49,56]

r ¼ r2 þ
ðr1 − r2Þðr2 − r4Þ

r2 − r4 − ðr1 − r4Þ sin2 χ
ð48Þ

to transform the integral (47) into the Legendre form (C10).
Once more we follow the steps outlined in Appendix C to
derive the solution for rðλÞ. This time the solution is given
in terms of Jacobi’s elliptic sn function and reads

rðλÞ ¼ r2 þ
ðr1 − r2Þðr2 − r4Þ

r2 − r4 − ðr1 − r4Þsn2
�

iri
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðr1 − r3Þðr2 − r4Þ

p
ðλ − λiÞ þ λri;k3 ; k3

� ; ð49Þ

where λri;k3 , χi, and the square of the elliptic modulus k3 are
given, respectively, by

λri;k3 ¼ FLðχi; k3Þ; ð50Þ

χi ¼ arcsin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðri − r1Þðr2 − r4Þ
ðri − r2Þðr1 − r4Þ

s 1
A; ð51Þ

k3 ¼
ðr2 − r3Þðr1 − r4Þ
ðr1 − r3Þðr2 − r4Þ

: ð52Þ

In the second case we have timelike geodesics between
(outer) black hole horizon and particle sphere rHo

< r < rpa.
As for case 3 these geodesics are not relevant for inves-
tigating gravitational lensing and they are only included in
the discussion for the sake of completeness. These geodesics
can have a turning point at rHo

< r2 ¼ rmax < rpa. In this
case we substitute [56]

r ¼ r1 −
ðr1 − r2Þðr1 − r3Þ

r1 − r3 − ðr2 − r3Þ sin2 χ
ð53Þ

to transform the integral (47) into the Legendre form (C10).
Note that on the first view Gralla and Lupsasca [49] use a
transformation which looks similar to (53); however,
because they sort and label their roots opposite to our
convention the transformations are not the same. In addition,
it is worth noting that the substitution used by Gralla and
Lupsasca has the disadvantage that when we integrate the
time coordinate t below Legendre’s elliptic integral of the
third kind would diverge because we have to integrate over
the horizons. The substitution (53) has the advantage that it
completely avoids this problem.
One last time we follow the steps outlined in Appendix C

to derive the solution for rðλÞ. Again the solution is given in
terms of Jacobi’s elliptic sn function; however, this time
it reads

rðλÞ ¼ r1 −
ðr1 − r2Þðr1 − r3Þ

r1 − r3 − ðr2 − r3Þsn2
�
− iri

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þðr1 − r3Þðr2 − r4Þ

p
ðλ − λiÞ þ λri;k3 ; k3

� ; ð54Þ

where λri;k3 and the square of the elliptic modulus k3 are
given by (50) and (52), respectively. χi on the other hand is
related to ri by

χi ¼ arcsin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 − riÞðr1 − r3Þ
ðr1 − riÞðr2 − r3Þ

s 1
A: ð55Þ

Note that strictly seen the integral (47) is only valid up to
the first turning point; however, because of the periodicity
of the sn the solutions (49) and (54) are also valid beyond
the turning points. As a closing note for this subsection we
would like to point out that the cases 1-NUT-a–4 are
structurally the same as the cases 2–6 for lightlike geo-
desics in Frost [20].
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B. The ϑ motion

Now we turn to the ϑ motion. From (6) we can
immediately see that for K ¼ 0 the right-hand side has
to vanish. This has as consequence that the right-hand side
of (7) has to vanish as well and thus all timelike geodesics
with K ¼ 0 are radial timelike geodesics. As we already
noted above the equations of motion for ϑ and φ are the
same for lightlike and timelike geodesics. Therefore, the
solutions derived in Frost [20,57] for lightlike geodesics
can be immediately transferred to timelike geodesics.
However, as most readers may not be familiar with them
we will briefly summarise the derivations here.
We start with transferring the concept of the individual

photon cone. As for lightlike geodesics timelike geodesics
on cones of constant ϑ have to fulfill the conditions
dϑ=dλ ¼ d2ϑ=dλ2 ¼ 0. When we apply these conditions
to (6) we get from the condition d2ϑ=dλ2 ¼ 0 for the
particle cone

ϑpa ¼ arccos

�
−
2nEð2nECþ LzÞ

K þ 4n2E2

�
: ð56Þ

Inserting the obtained expression for ϑpa into the condition
dϑ=dλ ¼ 0we get that for timelike geodesics on the particle
cone the constants of motion have to fulfill the relation

K þ 4n2E2 − ð2nECþ LzÞ2 ¼ 0: ð57Þ

As for lightlike geodesics these particle cones depend on
the constants of motion and thus they are individual
particle cones. Note that for the Schwarzschild and the
Reissner-Nordström metric (n ¼ 0) we get ϑpa ¼ π=2 and
K ¼ L2

z which corresponds to timelike geodesics in the
equatorial plane. In the following we will now briefly
discuss how to solve the equation of motion for ϑ.
Although for the Schwarzschild metric and the

Reissner-Nordström metric we can always project the lens
equation to the equatorial plane, in Sec. IV we want to
compare the lens equations for the NUT metric and the
charged NUT metric with the lens equations for the
Schwarzschild metric and the Reissner-Nordström metric.
Therefore, in this paper we deviate from this common
approach and solve the equations of motion for arbitrary
timelike geodesics. In addition, we explicitly distinguish
between timelike geodesics in the spherically symmetric
and static Schwarzschild and Reissner-Nordström metrics
and the stationary and axisymmetric NUT and charged
NUT metrics and discuss them separately.

Case 1: Schwarzschild metric and Reissner-Nordström
metric.—For the Schwarzschild metric and the Reissner-
Nordström metric (6) reduces to

�
dϑ
dλ

�
2

¼ K −
L2
z

sin2 ϑ
: ð58Þ

We can easily read from (58) that we have to distinguish
three different cases. In the first case we have K ¼ Lz ¼ 0.
These are radial timelike geodesics. In the second case we
have ϑi ¼ π=2 andK ¼ L2

z . These are timelike geodesics in
the equatorial plane. In both cases we have dϑ=dλ ¼ 0 and
thus the solution to (58) is given by ϑðλÞ ¼ ϑi. The third
case includes all other timelike geodesics. These geodesics
oscillate between the two turning points [57]

ϑmin ¼ arccos

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
L2
z

K

r 1
A and

ϑmax ¼ arccos

0
@−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

L2
z

K

r 1
A: ð59Þ

In this case we first substitute x ¼ cos ϑ. Then we separate
variables and integrate from xi ¼ cos ϑðλiÞ ¼ cos ϑi to
xðλÞ ¼ cos ϑðλÞ ¼ cos ϑ. We solve for ϑ and get as
solution for ϑðλÞ [57]

ϑðλÞ ¼ arccos

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
L2
z

K

r
sin

0
@arcsin

0
@ cos ϑiffiffiffiffiffiffiffiffiffiffiffiffi

1 − L2
z
K

q
1
A

þ iϑi
ffiffiffiffi
K

p
ðλi − λÞ

1
A
1
A; ð60Þ

where iϑi ¼ sgnðdϑ=dλjϑ¼ϑi
Þ.

Case 2: NUT metric and charged NUT metric.—For the
NUT metric and the charged NUT metric we again have to
distinguish three different cases. In the first case we have
K ¼ 0. As discussed above these are radial timelike geo-
desics. In the second case we have ϑi ¼ ϑpa and the
constants of motion fulfill (57). In both cases we have
dϑ=dλ ¼ 0 and thus the solution to the equation of motion
is given by ϑðλÞ ¼ ϑi. The third case includes all other
timelike geodesics. These geodesics oscillate between the
turning points [20,57]

xmin ¼ cos ϑmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
− 2nEð2nECþ LzÞ

K þ 4n2E2
; ð61Þ
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xmax ¼ cos ϑmax ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
þ 2nEð2nECþ LzÞ

K þ 4n2E2
: ð62Þ

Again we first substitute x ¼ cos ϑ. In the next step we separate variables and integrate from xi ¼ cos ϑðλiÞ ¼ cos ϑi to
xðλÞ ¼ cos ϑðλÞ ¼ cos ϑ using the elementary integral

Iϑ1 ¼
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1x2 þ b2xþ b3

p ¼ −
1ffiffiffiffiffiffiffiffi
−b1

p arcsin

 
2b1xþ b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 − 4b1b3

p
!
; ð63Þ

where b1 ¼ −ðK þ 4n2E2Þ, b2 ¼ −4nEð2nECþ LzÞ, and b3 ¼ K − ð2nECþ LzÞ2. We solve for ϑ and obtain as solution
for ϑðλÞ [20,57]

ϑðλÞ ¼ arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

p
K þ 4n2E2

sin

 
arcsin

 
ðK þ 4n2E2Þ cosϑi þ 2nEð2nECþ LzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðK þ 4n2E2 − ð2nECþ LzÞ2Þ
p

!

þ iϑi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4n2E2

p
ðλi − λÞ

!
−
2nEð2nECþ LzÞ

K þ 4n2E2

!
: ð64Þ

Note that also here strictly seen the original integrals we
solved to derive (60) and (64) are only valid up to the first
turning point; however, due to the periodicity of the sine the
solutions are also valid beyond the first turning point.

C. The φ motion

As for the ϑ motion the equations of motion for lightlike
and timelike geodesics have the same structure. As a
consequence the solutions to the equations of motion for
timelike geodesics have the same structure as the solutions
for lightlike geodesics derived in Frost [20,57]. Again we
will only briefly outline how to derive them.
Case 1: Schwarzschild metric and Reissner-Nordström

metric.—We start with the Schwarzschild metric and the
Reissner-Nordström metric. In this case we have n ¼ 0 and
the equation of motion for φ (7) reduces to

dφ
dλ

¼ Lz

sin2 ϑ
: ð65Þ

Now we have to distinguish four different cases. In the
first case we have K ¼ Lz ¼ 0. These geodesics are radial
timelike geodesics and thus we have dφ=dλ ¼ 0.
Therefore, the solution to the equation of motion is given
by φðλÞ ¼ φi. In the second case we have K ≠ 0 and
Lz ¼ 0. These are timelike geodesics crossing the axes.
Since the Schwarzschild metric and the Reissner-
Nordström metric are both spherically symmetric and
static these geodesics form grand circles; however,
because we have dφ=dλ ¼ 0 and the φ coordinate has a
discontinuity when the geodesics cross the axes (65)
cannot be analytically solved. However, we can define
a solution such that φðλÞ ¼ φi þ nðλÞπ, where nðλÞ is the
number of axis crossings. The third case covers timelike

geodesics with ϑi ¼ ϑpa ¼ π=2 and K ¼ L2
z . These are

timelike geodesics in the equatorial plane. Since ϑ is
constant the solution is easy to derive and reads

φðλÞ ¼ φi þ Lzðλ − λiÞ: ð66Þ

The last case includes all remaining geodesics with
arbitrary constants of motion Lz and K. In this case we
first replace sin2 ϑ ¼ 1 − cos2 ϑ and integrate from
φðλiÞ ¼ φi to φðλÞ ¼ φ. We insert (60) and evaluate the
integral. The obtained solution reads [57]

φðλÞ ¼ φiþ iϑi

 
arctan

 
Lz cos ϑiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K−L2
z −K cos2ϑi

p
!

− arctan

�
Lzffiffiffiffi
K

p tan
�
aφþ iϑi

ffiffiffiffi
K

p
ðλi − λÞ

��!
; ð67Þ

where the coefficient aφ is given by

aφ ¼ arcsin

0
@ cos ϑiffiffiffiffiffiffiffiffiffiffiffiffi

1 − L2
z
K

q
1
A: ð68Þ

Note that for the explicit evaluation of (67) the multi-
valuedness of the arctan has to be taken into account.
Case 2: NUT metric and charged NUT metric.—For the

NUT metric and the charged NUT metric we only have to
distinguish three different cases. In the first case we have
K ¼ 0. These are radial timelike geodesics. In this case
we have dφ=dλ ¼ 0. Thus the solution reads φðλÞ ¼ φi.
In the second case we have ϑi ¼ ϑpa and K þ 4n2E2−
ð2nECþ LzÞ2 ¼ 0. These are timelike geodesics on
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individual particle cones. The right-hand side of (7) is
constant. A simple integration gives for the solution φðλÞ

φðλÞ ¼ φi þ
Lz þ 2nðcos ϑpa þ CÞE

sin2 ϑpa
ðλ − λiÞ: ð69Þ

The third case includes all other timelike geodesics with
arbitrary constants of motion. In this case we first rewrite the
right-hand side of (7) in terms of cos ϑ. Then we perform a
partial fraction decomposition and rewrite the result such

that only terms with cos ϑ in the denominator remain. We
insert (64) and integrate from φðλiÞ ¼ φi to φðλÞ ¼ φ. Here,
we rewrite the integrals over λ such that they have the form

Z
dλ̃

1þ a sin λ̃
¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p arctan

 
tanðλ̃

2
Þ þ affiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2
p

!
: ð70Þ

We integrate and rearrange all terms. We then obtain as
solution for φðλÞ [20,57]

φðλÞ ¼ φi þ iϑi

�
arctan

�
cϑ1

cϑ2cϑ5

�
tan

�
λ̃ðλiÞ
2

�
−
cϑ6
cϑ1

��
− arctan

�
cϑ1

cϑ2cϑ5

�
tan

�
λ̃ðλÞ
2

�
−
cϑ6
cϑ1

��

þ arctan

�
cϑ3

cϑ4cϑ5

�
tan

�
λ̃ðλÞ
2

�
þ cϑ6
cϑ3

��
− arctan

�
cϑ3

cϑ4cϑ5

�
tan

�
λ̃ðλiÞ
2

�
þ cϑ6
cϑ3

���
; ð71Þ

where the six coefficients cϑ1 , cϑ2 , cϑ3 , cϑ4 , cϑ5 , and cϑ6 read

cϑ1 ¼ K þ 4n2E2 þ 2nEð2nECþ LzÞ;
cϑ2 ¼ 2nEð1þ CÞ þ Lz; ð72Þ

cϑ3 ¼ K þ 4n2E2 − 2nEð2nECþ LzÞ;
cϑ4 ¼ 2nEð1 − CÞ − Lz; ð73Þ

cϑ5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ 4n2E2

p
;

cϑ6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 4n2E2 − ð2nECþ LzÞ2Þ

q
: ð74Þ

The quantity λ̃ðλ0Þ is given by

λ̃ðλ0Þ ¼ arcsin

 
ðK þ 4n2E2Þ cos ϑi þ 2nEð2nECþLzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KðKþ 4n2E2 − ð2nECþLzÞ2Þ
p

!

þ iϑi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ 4n2E2

p
ðλi − λ0Þ: ð75Þ

Note that also in this case for the explicit evaluation of (71)
the multivaluedness of the arctan has to be taken into
account.

D. The time coordinate t

Now we turn to the time coordinate t. The right-hand
side of (4) has an r-dependent and a ϑ-dependent part. In
the first step we integrate from tðλiÞ ¼ ti to tðλÞ ¼ t. Now
the integral reads

tðλÞ ¼ ti þ trðλÞ þ tϑðλÞ; ð76Þ

where trðλÞ and tϑðλÞ are given, respectively, by

trðλÞ ¼
Z

λ

λi

ρðrðλ0ÞÞ2Edλ0
Qðrðλ0ÞÞ ; ð77Þ

tϑðλÞ¼−2n
Z

λ

λi

ðcos ϑðλ0ÞþCÞLzþ2nðcos ϑðλ0ÞþCÞE
sin2ϑðλ0Þ dλ0:

ð78Þ
Note that these equations are structurally identical to those
for lightlike geodesics. We will now briefly outline how to
evaluate them.

1. Evaluating tϑðλÞ
We start with evaluating tϑðλÞ. For the Schwarzschild

metric and the Reissner-Nordström metric we have n ¼ 0
and the right-hand side vanishes. Thus in this case we
always have tϑðλÞ ¼ 0. For the NUT metric and the charged
NUT metric we have to distinguish the same three cases as
for the φ motion. In the first case we have K ¼ 0 (radial
timelike geodesics) and the right-hand side of (78) vanishes.
Thus in this case we have tϑðλÞ ¼ 0. In the second case we
have ϑi ¼ ϑpa and K þ 4n2E2 − ð2nECþ LzÞ2 ¼ 0. These
are timelike geodesics on individual particle cones. In this
case the right-hand side of (78) is constant. A simple
integration gives for tϑðλÞ

tϑðλÞ ¼ −2nðcos ϑpa þCÞLz þ 2nðcos ϑpa þCÞE
sin2 ϑpa

ðλ− λiÞ:

ð79Þ
The third case covers all remaining timelike geodesics with
arbitrary constants of motion. In this case we first rewrite the
integrand in terms of cos ϑ and perform a partial fraction
decomposition such that only a constant term and two terms
with cosϑ in the denominator remain. We insert the solution
for ϑðλÞ given by (64) and evaluate the obtained integrals
using (70). The final result reads [20,57]
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tϑðλÞ ¼ 4n2Eðλ − λiÞ þ iϑi2n
�
ð1þ CÞ

�
arctan

�
cϑ1

cϑ2cϑ5

�
tan
�
λ̃ðλÞ
2

�
−
cϑ6
cϑ1

��
− arctan

�
cϑ1

cϑ2cϑ5

�
tan
�
λ̃ðλiÞ
2

�
−
cϑ6
cϑ1

���

þð1 − CÞ
�
arctan

�
cϑ3

cϑ4cϑ5

�
tan

�
λ̃ðλÞ
2

�
þ cϑ6
cϑ3

��
− arctan

�
cϑ3

cϑ4cϑ5

�
tan

�
λ̃ðλiÞ
2

�
þ cϑ6
cϑ3

����
; ð80Þ

where the six coefficients cϑ1 − cϑ6 and λ̃ðλ0Þ are given by
(72)–(74) and (75), respectively. Note that again for the
explicit evaluation of (80) the multivaluedness of the arctan
has to be taken into account.

2. Evaluating trðλÞ
Now we turn to trðλÞ. Here, we first rewrite (77) using

the root of (5) and obtain

trðλÞ ¼
Z

…rðλÞ

ri…

ρðr0Þ2Edr0
Qðr0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2E2 − ρðr0ÞQðr0Þ −Qðr0ÞK

p ;

ð81Þ
where the sign of the root in the denominator has to be
chosen in agreement with the direction of the r motion and
the dots in the limits shall indicate that we have to split the
integral at potential turning points. For the evaluation of this
integral we have to consider the same seven different types
of motion as for r. Note that due to the large number of cases

and the length of the resulting terms in the following wewill
only explicitly present a few selected solutions, namely
those for radial timelike geodesics in the Schwarzschild and
Reissner-Nordström spacetimes and those for timelike geo-
desics on a particle sphere. In all other cases we will only
briefly outline the steps necessary for the derivation.
Case 1-S.—In this case we have radial timelike geodesics

in the Schwarzschild metric. These geodesics have K ¼ 0
and thus (81) reduces to

trðλÞ ¼ iri

Z
rðλÞ

ri

r03Edr0

Qðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02E2 −Qðr0Þ

p : ð82Þ

Now we rewrite the factor r03=Qðr0Þ in (82) such that only
terms with r0 in the nominator or the denominator remain.
The result contains three elementary integrals of the form of
the integrals I1, I2, and I4 given by (A1), (A2), and (A4) in
Appendix A 1. We integrate and obtain as result for trðλÞ

trðλÞ ¼ iriE

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðλÞððE2 − 1ÞrðλÞ þ 2mÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riððE2 − 1Þri þ 2mÞ

p
E2 − 1

þ2m
3 − 2E2

ðE2 − 1Þ32 ln
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 − 1Þri
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þri þ 2m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞrðλÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞrðλÞ þ 2m

p
1
A

þ 4m
E

0
@arcoth

0
@E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri

ðE2 − 1Þri þ 2m

r 1
A − arcoth

0
@E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðλÞ

ðE2 − 1ÞrðλÞ þ 2m

s 1
A
1
A
1
A: ð83Þ

Case 1-RN.—In this case we have radial timelike geodesics in the Reissner-Nordström metric. Again these geodesics
have K ¼ 0 and (81) reduces to (82). Now, using a partial fraction decomposition if necessary, we rewrite the factor
r03=Qðr0Þ in (82) such that only terms with r0 in the nominator or the denominator remain. For 0 < e < m the resulting
expression contains three elementary integrals of the form of I5, I6, and I8 given by (A5), (A6), and (A8) in Appendix A 1.
We integrate and obtain for trðλÞ

trðλÞ ¼ iriE

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðrðλÞÞp
−

ffiffiffiffiffiffiffiffiffiffiffi
PðriÞ

p
E2 − 1

þ ðE2 − 1ÞðrHo
þ rHi

Þ−m

ðE2 − 1Þ32 ln

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 − 1ÞPðrðλÞÞ
p

þ ðE2 − 1ÞrðλÞ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞPðriÞ

p
þ ðE2 − 1Þri þm

1
A

þ r3Ho

ðrHo
− rHi

Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHo

Þp
0
@ln

 
rðλÞ− rHo

ri − rHo

!
þ ln

0
@ PðrHo

Þ þ ððE2 − 1ÞrHo
þmÞðri − rHo

Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHo

ÞPðriÞ
p

PðrHo
Þ þ ððE2 − 1ÞrHo

þmÞðrðλÞ− rHo
Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðrHo
ÞPðrðλÞÞp

1
A
1
A

þ r3Hi

ðrHo
− rHi

Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHi

Þp
0
@ln

 
ri − rHi

rðλÞ− rHi

!
þ ln

0
@PðrHi

Þ þ ððE2 − 1ÞrHi
þmÞðrðλÞ− rHi

Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHi

ÞPðrðλÞÞp
PðrHi

Þ þ ððE2 − 1ÞrHi
þmÞðri − rHi

Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHi

ÞPðriÞ
p

1
A
1
A
1
A;

ð84Þ
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where we defined

Pðr0Þ ¼ ðE2 − 1Þr02 þ 2mr0 − e2: ð85Þ

For e ¼ m we proceed analogously. In this case the right-hand side of (82) contains four elementary integrals of the form of
I5, I6, I8, and I9 given by (A5), (A6), (A8), and (A9) in Appendix A 1. Again we integrate and obtain as result for trðλÞ

trðλÞ ¼ iriE

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrðλÞÞp

−
ffiffiffiffiffiffiffiffiffiffiffi
PðriÞ

p
E2 − 1

þ r3H
PðrHÞ

 ffiffiffiffiffiffiffiffiffiffiffi
PðriÞ

p
ri − rH

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrðλÞÞp

rðλÞ − rH

!

þ 2rHðE2 − 1Þ −m

ðE2 − 1Þ32 ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞPðrðλÞÞ

p
þ ðE2 − 1ÞrðλÞ þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 − 1ÞPðriÞ
p

þ ðE2 − 1Þri þm

!

þ 3r2HPðrHÞ − r3HððE2 − 1ÞrH þmÞ
PðrHÞ32

 
ln

 
rðλÞ − rH
ri − rH

!

þ ln

 
PðrHÞ þ ððE2 − 1ÞrH þmÞðri − rHÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHÞPðriÞ

p
PðrHÞ þ ððE2 − 1ÞrH þmÞðrðλÞ − rHÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðrHÞPðrðλÞÞ

p
!!!

: ð86Þ

Case 1-NUT-a.—In this case we have timelike geodesics
with Δ < 0 and 0 ≤ K < VEðrpa−Þ in the NUT metric and
the charged NUTmetric. We recall that in this case the right-
hand side of (5) has two pairs of distinct complex conjugate
roots. For 0 ≤ e <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
we first use a partial fraction

decomposition and rewrite ρðr0Þ2=Qðr0Þ such that only
terms with r0 in the nominator or the denominator remain.
Then we substitute using (23) and rewrite the obtained
expression in terms of Legendre’s elliptic integral of the first
kind and the two nonstandard elliptic integrals given by
JL1

ðχi; χðλÞ; k1; ñÞ and JL2
ðχi; χðλÞ; k1; ñÞ given by (B6)

and (B7) in Appendix B. Now we use (B16)–(B18) to
rewrite (81) in terms of elementary functions and
Legendre’s elliptic integrals of the first, second, and third
kind. For e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
we proceed analogously; however,

we have to explicitly distinguish the case K ¼ 0 from all
other cases. In this case we have rH ¼ m ¼ R2=g0 þ R1 and
thus we rewrite (81) in terms of Legendre’s elliptic integral
of the first kind and the four nonstandard (pseudo)
elliptic integrals JL1

ðχi; χðλÞ; k1; ñÞ, JL2
ðχi; χðλÞ; k1; ñÞ,

JL3
ðχi; χðλÞ; k1Þ, and JL4

ðχi; χðλÞ; k1Þ given by (B6)–(B9)
in Appendix B. In this case we use Eqs. (B16)–(B20) to
rewrite (81) in terms of elementary functions and
Legendre’s elliptic integrals of the first, second, and third
kind. For 0 < K < VEðrpa−Þ, with the exception of the
partial fraction decomposition, the integration procedure is
the same as before.
Case 1-NUT-b.—In this case we have timelike geodesics

with Δ ≤ 0 and K ¼ VEðrpa−Þ in the NUT metric and the
charged NUT metric. We recall that in this case the right-
hand side of (5) has a real double root at r1 ¼ r2 ¼ rpa−
and a pair of complex conjugate roots. We again use a
partial fraction decomposition and rewrite ρðr0Þ2=Qðr0Þ
such that only terms with r0 in the nominator or the

denominator remain. For 0 ≤ e <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
we rewrite

the resulting integrals in terms of the elementary integrals
I10, I11, and I12 given by (A10)–(A12) in Appendix A 2.
We integrate and insert the results to rewrite trðλÞ in terms
of elementary functions. For e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
we follow the

same procedure. The only difference is that this time we use
I10, I11, I12, and I13 given by (A10)–(A13) in Appendix A 2
to rewrite trðλÞ in terms of elementary functions.
Case 2.—In this case we either have timelike geodesics

with 0 < K < VEðrpaÞ in the Schwarzschild metric or
the Reissner-Nordström metric or timelike geodesics with
0 < Δ and 0 ≤ K < VEðrpaÞ orΔ ≤ 0 and VEðrpa−Þ < K <
VEðrpaÞ in the NUT metric or the charged NUT metric. We
recall that in this case the right-hand side of (5) has two
distinct real roots and a pair of complex conjugate roots.
In this case the r motion does not have a turning point in
the domain of outer communication. We again rewrite
ρðr0Þ2=Qðr0Þ such that only terms with r0 in the nominator
or the denominator remain. Now we substitute using (35).

For 0 ≤ e <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
we rewrite the obtained expressions

in terms of Legendre’s elliptic integral of the first kind and
the two nonstandard elliptic integrals JL5

ðχi; χðλÞ; k2; ñÞ
and JL6

ðχi; χðλÞ; k2; ñÞ given by (B10) and (B11) in
Appendix B. We use (B24), (B26), and (B27) to rewrite
trðλÞ in terms of elementary functions and Legendre’s
elliptic integrals of the first, second, and third kind. Note

that again we have to consider a special case. When e ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
and K ¼ 0 we have rH ¼ m ¼ ðr1R̄ − r2RÞ=

ðR̄ − RÞ. In this case we rewrite the right-hand side
of (81) in terms of Legendre’s elliptic integral of the
first kind and the four nonstandard (pseudo)elliptic
integrals JL5

ðχi; χðλÞ; k2; ñÞ, JL6
ðχi; χðλÞ; k2; ñÞ, JL7

ðχi;
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χðλÞ; k2Þ, and JL8
ðχi;χðλÞ;k2Þ given by (B10)–(B13) in

Appendix B. We now use (B24) and (B26)–(B29) to rewrite
trðλÞ in terms of elementary functions and Legendre’s
elliptic integrals of the first, second, and third kind. In all
other cases with e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
the integration procedure is

the same as before.
Case 3.—In this case we have timelike geodesics with

K ¼ VEðrpaÞ. We recall that in this case the right-hand side
of (5) has four real roots. Two of these roots form a double
root at r1 ¼ r2 ¼ rpa. These are timelike geodesics on or
asymptotically coming from or going to an unstable particle
sphere. They do not have turning points in the domain of
outer communication. In the case that we have a timelike
geodesic on an unstable particle sphere we have rðλÞ ¼ rpa
and thus the integrand on the right-hand side of (77) is
constant. We integrate and get

trðλÞ ¼
ρðrpaÞ2E
QðrpaÞ

ðλ − λiÞ: ð87Þ

In all other cases we again rewrite ρðr0Þ2=Qðr0Þ in (81) such
that only terms with r0 in the nominator or the denominator
remain. In the next step we substitute using (41). We rewrite
the right-hand side of (81) in terms of the two elementary
integrals given by I14 (A14) and I15 (A15) in Appendix A 3.
Now we rewrite them in terms of elementary functions
using I141 , I142 (for the term with ra ¼ rpa and only for
rHo

< r < rpa), I143 (for the term with ra ¼ rpa only for
rpa < r), I151 , and I152 given by (A16)–(A20) in
Appendix A 3 and obtain trðλÞ.
Case 4.—In this case we have timelike geodesics with

VEðrpaÞ < K.We recall that in this case the right-hand side of
(5) has four distinct real roots. For rHo

< r < rpa these
timelike geodesics can have a turning point at r2 ¼ rmax
(maximum). For rpa < r these timelike geodesics can have a
turning point at r1 ¼ rmin (minimum). One last time we
rewrite ρðr0Þ2=Qðr0Þ such that only terms with r0 in the
nominator or the denominator remain. For timelike geodesics
with rHo

< r < rpa wenowsubstitute using (53). For timelike
geodesics with rpa < r we substitute using (48). We rewrite
the right-hand side of (81) in terms of Legendre’s elliptic
integrals of the first and third kind and the nonstandard elliptic
integral JL9

ðχi; χðλÞ; k3; ñÞ given by (B14) in Appendix B.
We now use (B30) fromAppendix B to rewrite trðλÞ in terms
of elementary functions and Legendre’s elliptic integrals of

the first, second, and third kind. Note that for timelike
geodesics passing through a turning point we have to split
the integral at the turning point into two terms and for the
second term we have to change iri to −iri .

E. The proper time τ

The last quantity related to the equations of motion we
have to discuss is the proper time. While for lightlike
geodesics the affine parameter s is not a physically meas-
urable quantity, this is different for the proper time τ. It
measures the time a clock moving with a particle along a
timelike geodesic would show and thus is another time
measure which in general differs from the time coordinate t.
We can easily derive it from (8).Wewrite r as function of the
Mino parameter λ and separate variables. We integrate from
τðλiÞ ¼ τi to τðλÞ ¼ τ. Then we use the root of (5) to rewrite
the integral over λ as integral over r (note that we can also
integrate using two fixed limits for r; however, in the most
general case, which we consider here, the upper limit still
depends on λ and thus the result for τ is also a function of λ).
The result reads

τðλÞ ¼ τi þ
Z

…rðλÞ

ri…

ρðr0Þdr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2E2 − ρðr0ÞQðr0Þ −Qðr0ÞK

p :

ð88Þ
Again we have to choose the sign of the root in the
denominator such that it agrees with the direction of the r
motion and the dots in the limits shall indicate that we have
to split the integral at potential turning points.Againwe have
to distinguish the same seven different types ofmotion as for
r. Again we will only explicitly present the solutions for
radial timelike geodesics in the Schwarzschild metric and
the Reissner-Nordström metric and for timelike geodesics
on a particle sphere while in all other cases we will only
outline the steps of their derivation.
Case 1-S.—Again we start with radial timelike geodesics

in the Schwarzschild metric. These geodesics have K ¼ 0
and thus (88) reduces to

τðλÞ ¼ τi þ iri

Z
rðλÞ

ri

r0dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þr02 þ 2mr0

p : ð89Þ

We notice that the integral on the right-hand side has the
form of I1 given by (A1) in Appendix A 1. We integrate and
obtain for τðλÞ

τðλÞ ¼ τi þ iri

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðλÞððE2 − 1ÞrðλÞ þ 2mÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riððE2 − 1Þri þ 2mÞ

p
E2 − 1

þ 2m

ðE2 − 1Þ32 ln
0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 − 1Þri
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þri þ 2m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞrðλÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞrðλÞ þ 2m

p
1
A
1
A: ð90Þ
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Case 1-RN.—We have radial timelike geodesics in the
Reissner-Nordström metric. Again we have K ¼ 0. This
time (88) reduces to

τðλÞ ¼ τi þ iri

Z
rðλÞ

ri

r0dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1Þr02 þ 2mr0 − e2

p : ð91Þ

The integral over r0 has the same form as I5 given by (A5)
in Appendix A 1. We use I5 to integrate the right-hand side
of (91) and get for τðλÞ

τðλÞ ¼ τi þ iri

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðrðλÞÞp
−

ffiffiffiffiffiffiffiffiffiffiffi
PðriÞ

p
E2 − 1

þ m

ðE2 − 1Þ32

× ln

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE2 − 1ÞPðriÞ
p

þ ðE2 − 1Þri þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − 1ÞPðrðλÞÞ

p
þ ðE2 − 1ÞrðλÞ þm

1
A
1
A;

ð92Þ

where PðrðλÞÞ and PðriÞ are given by (85).
Case 1-NUT-a.—In this case we have timelike geodesics

with Δ < 0 and 0 ≤ K < VEðrpa−Þ in the NUT metric and
the charged NUT metric. We recall that in this case the
right-hand side of (5) has two distinct pairs of complex
conjugate roots and no turning points in the domain of
outer communication. We substitute using (23) and rewrite
the obtained expression in terms of Legendre’s elliptic
integral of the first kind and the two nonstandard elliptic
integrals JL1

ðχi; χðλÞ; k1; ñÞ and JL2
ðχi; χðλÞ; k1; ñÞ given

by (B6) and (B7) in Appendix B. Then we use (B16)–
(B18) to rewrite (88) in terms of elementary functions and
Legendre’s elliptic integrals of the first, second, and
third kind.
Case 1-NUT-b.—In this case we have timelike geodesics

with Δ ≤ 0 and K ¼ VEðrpa−Þ in the NUT metric and the
charged NUT metric. We recall that in this case the right-
hand side of (5) has a real double root at r1 ¼ r2 ¼ rpa− and
two complex conjugate roots. We rewrite the right-hand
side of (88) in terms of the integrals I10, I11, and I12 given
by (A10)–(A12) in Appendix A 2 and integrate. We use the
obtained expressions to write down τðλÞ in terms of
elementary functions.
Case 2.—In this case we either have timelike geodesics

with 0 < K < VEðrpaÞ in the Schwarzschild metric or the
Reissner-Nordström metric or timelike geodesics with 0 <
Δ and 0 ≤ K < VEðrpaÞ or Δ ≤ 0 and VEðrpa−Þ < K <
VEðrpaÞ in the NUT metric or the charged NUT metric. We
recall that in this case the right-hand side of (5) has two
distinct real roots and a pair of complex conjugate roots but
no turning points in the domain of outer communication.
We substitute using (35) and rewrite the obtained expression
in terms of Legendre’s elliptic integral of the first kind and
the two nonstandard elliptic integrals JL5

ðχi; χðλÞ; k2; ñÞ
and JL6

ðχi; χðλÞ; k2; ñÞ given by (B10) and (B11) in

Appendix B. Now we use (B24), (B26), and (B27) to
rewrite (88) in terms of elementary functions and
Legendre’s elliptic integrals of the first, second, and third
kind.
Case 3.—In this case we have timelike geodesics with

K ¼ VEðrpaÞ. We recall that in this case the right-hand side
of (5) has four real roots, two of which form a double root at
r1 ¼ r2 ¼ rpa. These are timelike geodesics on or asymp-
totically coming from or going to an unstable particle
sphere. When we have a timelike geodesic on an unstable
particle sphere we have rðλÞ ¼ rpa and thus the right-hand
side of (8) is constant. In this case we deviate from the
standard procedure and directly integrate over λ and get

τðλÞ ¼ τi þ ρðrpaÞðλ − λiÞ: ð93Þ

In all other cases we substitute using (41) and rewrite the
obtained expression in terms of the elementary integrals I14
and I15 given by (A14) and (A15) in Appendix A 3. We
rewrite the right-hand side of (88) in terms of the expres-
sions I141 , I142 (for rHo

< r < rpa), I143 (for rpa < r), and
I151 given by (A16)–(A19) in Appendix A 3 and obtain τðλÞ
in terms of elementary functions.
Case 4.—In this case we always have timelike geodesics

with VEðrpaÞ < K. We recall that in this case the right-hand
side of (5) has four distinct real roots. Timelike geodesics
with rHo

< r < rpa can have a turning point at r2 ¼ rmax

(maximum) while timelike geodesics with rpa < r can have
a turning point at r1 ¼ rmin (minimum). For the former we
substitute using (53), while for the latter we substitute using
(48). We rewrite the resulting expressions in terms of
Legendre’s elliptic integrals of the first and third kind and
the nonstandard elliptic integral JL9

ðχi; χðλÞ; k3; ñÞ given by
(B14) in Appendix B. In the next step we use (B30) from
Appendix B to rewrite τðλÞ in terms of elementary functions
and Legendre’s elliptic integrals of the first, second, and
third kind. Note that analogously to the r component of the
time coordinate trðλÞ for timelike geodesics passing through
a turning point we have to split the integral at the turning
point into two terms and for the second term we have to
change iri to −iri .

IV. GRAVITATIONAL LENSING

A. The observer’s celestial sphere
and the particle’s energy

1. The observer’s celestial sphere: The orthonormal tetrad
and the celestial coordinates

When we observe a source on the sky we usually mark
its position using latitude-longitude coordinates on our
celestial sphere (or what is visible thereof). However,
a priori the coordinates on the celestial sphere are not
fixed. In astronomy the most common convention is that we
take a known reference source on the sky and then measure
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the positions of all other sources in relation to this
reference. We now transfer this approach to gravitational
lensing of massive particles by a black hole. We place a
stationary observer in the domain of outer communication
at the coordinates ðxμOÞ ¼ ðtO; rO; ϑO;φOÞ and take the
black hole as reference direction. As in Frost [20] for
lightlike geodesics, we now follow the approach of
Grenzebach et al. [51] and introduce an orthonormal tetrad.
The four tetrad vectors e0, e1, e2, and e3 read

e0 ¼
ffiffiffiffiffiffiffiffiffiffi
ρðrÞ
QðrÞ

s
∂t

�����
ðxμOÞ

; ð94Þ

e1 ¼
1ffiffiffiffiffiffiffiffiffi
ρðrÞp ∂ϑ

�����
ðxμOÞ

; ð95Þ

e2 ¼ −
∂φ − 2nðcos ϑþ CÞ∂tffiffiffiffiffiffiffiffiffi

ρðrÞp
sin ϑ

�����
ðxμOÞ

; ð96Þ

e3 ¼ −

ffiffiffiffiffiffiffiffiffiffi
QðrÞ
ρðrÞ

s
∂r

�����
ðxμOÞ

: ð97Þ

Here, the tetrad vector e0 is also the four velocity of the
observer. Having introduced the orthonormal tetrad we now
define the celestial latitude Σ and the celestial longitude Ψ
on the observer’s celestial sphere as depicted in Fig. 5. The
celestial latitude Σ is measured from the direction of the

tetrad vector e3. The celestial longitudeΨ on the other hand
is measured from the tetrad vector e1 in the direction of the
tetrad vector e2. Now let us consider the tangent vector to a
timelike geodesic of a particle detected by the observer:

dη
dλ

¼ dt
dλ

∂t þ
dr
dλ

∂r þ
dϑ
dλ

∂ϑ þ
dφ
dλ

∂φ: ð98Þ

We now use the approach of Perlick and Tsupko [52] for
lightlike geodesics in a plasma and transfer it to our test
particles. Using their notation and transferring it to Mino
parametrization the tangent vector to a timelike geodesic
ending at the observer reads in terms of the tetrad vectors,
the celestial angles Σ and Ψ, and two normalization
constants α and β

dη
dλ

����
ðxμOÞ

¼ −αe0 þ βðsin Σ cos Ψe1 þ sin Σ sin Ψe2

þ cos Σe3Þ: ð99Þ

We now use (99) to rewrite β in terms of α via

g

 
dη
dλ

����
ðxμOÞ

;
dη
dλ

����
ðxμOÞ

!
¼ −α2 þ β2 ¼ −ρðrOÞ2: ð100Þ

Solving for β we get

β ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − ρðrOÞ2

q
: ð101Þ

Note that here we originally had a sign ambiguity for the
root; however, we already fixed it such that for n ¼ 0 the
sign of Lz is consistent with the sign for lightlike geodesics
in Frost [20]. The remaining normalization constant α can
now be calculated via

α ¼ g

 
dη
dλ

����
ðxμOÞ

; e0

!
: ð102Þ

Inserting (94) and (98) we get for α and β

α ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ3
QðrOÞ

s
E; ð103Þ

β ¼ −ρðrOÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞE2 −QðrOÞ

QðrOÞ

s
: ð104Þ

Now we insert the tetrad vectors as well as the normali-
zation constants α and β in (99) and sort all terms.
A comparison of coefficients with (98) now allows us to
rewrite Lz and K in terms of the energy E and the celestial
latitude Σ and longitude Ψ. We get

Particle

Beam

xO

FIG. 5. Illustration of the celestial sphere of a stationary
observer located in the domain of outer communication (green
dot) and the three tetrad vectors e1, e2, and e3. The observer
detects a particle beam (orange dotted line) at the event xO. The
celestial latitude Σ is measured from e3 and the celestial longitude
is measured from e1 in the direction of e2.
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Lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞðρðrOÞE2 −QðrOÞÞ

QðrOÞ

s
sin ϑO sin Σ sin Ψ

− 2nðcos ϑO þ CÞE; ð105Þ

K ¼ ρðrOÞðρðrOÞE2 −QðrOÞÞ
QðrOÞ

sin2 Σ: ð106Þ

2. Particle energy measured by the observer

We solved the equations of motion and rewrote the z
component of the angular momentum as well as the Carter
constant in terms of the particle energy E along the
geodesic. However, the energy E is not the energy a
stationary observer (or better a detector) would measure
when the particle is detected. Let us for now assume a
particle with four-momentum ðppartμÞ and a stationary
observer with four-velocity ðuμOÞ at the coordinates
ðxμOÞ ¼ ðtO; rO; ϑO;φOÞ. In terms of ðppartμÞ and ðuμOÞ the
total energyEtot of the particle measured by the observer can
now be calculated via (see, e.g., [58], p. 69)

Etot ¼ −ppartμu
μ
O: ð107Þ

In our case the four-velocity uO is given by e0 and thus we
have urO ¼ uϑO ¼ uφO ¼ 0. Consequentially, the only non-
vanishing component is

utO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ
QðrOÞ

s
: ð108Þ

We now rewrite the four-momentum in terms of the metric
coefficients and the components of the tangent vector (98)
using the relation

pμ ¼ gμνẋν ¼ gμν
dλ
dτ

dxν

dλ
: ð109Þ

Using this relation and (8) we now get for Etot

Etot ¼ −
gμν

ρðrOÞ
dxμpart
dλ

����
ðxρOÞ

uνO: ð110Þ

In the next step we insert the metric coefficients, the four-
velocity of the particle, and the four-velocity of the observer
and obtain as relation between the total energy Etot of the
particle measured by the observer at ðxμOÞ and the energy E
along the geodesic

Etot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ
QðrOÞ

s
E: ð111Þ

Analogously we can also calculate the total energy of the
particle at the position of a stationary particle source. Note
that for simplicity we continue to use the energy E along the
timelike geodesic to parametrize the timelike geodesics in
the following. The corresponding energy Etot in the frame of
the observer can simply be calculated using Eq. (111).

B. Angular radius of the particle shadow

In analogy to the shadow of a black hole for light rays we
can also define a shadow for massive particles. To dis-
tinguish between both in the following we will call the
former photon shadow while we call the latter particle
shadow (ignoring to some degree the particle-wave duality
for photons). For massive particles we construct the shadow
as depicted in Fig. 6. Let us assume that we have a black
hole and that we place a stationary observer (in our case
with a particle detector) in the domain of outer commu-
nication outside the particle sphere. Then we distribute

Detector/

Observer

rpa(E)

pa(E)

pa(E)

FIG. 6. Illustration of the construction of the shadow of a black hole for massive particles with a fixed energy E. The black circle marks
the region hidden behind the (outer) horizon of the black hole. The orange dotted circle around the black hole marks the position of the
particle sphere with radius coordinate rpaðEÞ at the energy E. The orange dots with the dashed circles mark particle sources. The orange
dotted lines ending at the detector mark timelike geodesics asymptotically coming from the particle sphere.
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particle sources everywhere except between black hole and
observer. Now, for timelike geodesics with constant energy
E, the directions on the observer’s sky with particle sources
are associated with signals in the particle detector. On the
other hand the directions on the sky without particle
sources are associated with silence in the particle detector.
The boundary between both areas marks timelike geodesics
asymptotically coming from a particle sphere. Note that
since we have a particle sphere for each value of the energy
E the definition of the particle shadow is only valid for
particles with constant energy E. However, we can define a
collective particle shadow. It is simply the shadow which
remains when we superpose the shadows for all particle
energies and its boundary is infinitesimally close to the
photon shadow.
For each value of the energy E we can now derive the

angular radius of the particle shadow analogously to the
angular radius of the photon shadow. For this purpose we
use the fact that timelike geodesics asymptotically coming
from a particle sphere have the same constants of motion as
timelike geodesics on this particle sphere. We recall that
these geodesics have a double root at r1 ¼ r2 ¼ rpaðEÞ. We
evaluate (5) at r ¼ rpaðEÞ and insert K given by (106). We
solve for Σ and get as result for the angular radius of the
particle shadow (note that rpa is still energy dependent and
we only omit the energy E as argument for brevity)

ΣpaðEÞ ¼ arcsin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrpaÞðρðrpaÞE2 −QðrpaÞÞQðrOÞ
ρðrOÞðρðrOÞE2 −QðrOÞÞQðrpaÞ

s 1
A:

ð112Þ

For n ¼ 0 the obtained expression reduces to the angular
radius of the particle shadow for the Reissner-Nordström
metrics. It reads

ΣpaðEÞ ¼ arcsin

0
@rpa
rO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − Q̃ðrpaÞÞQ̃ðrOÞ
ðE2 − Q̃ðrOÞÞQ̃ðrpaÞ

s 1
A; ð113Þ

where we defined Q̃ðrÞ ¼ QðrÞ=r2. For E → ∞ (112)
and (113) reduce to the angular radii of the photon shadows
for the charged NUT metrics [20,57]

ΣphCN ¼ arcsin

0
@ρðrphÞ
ρðrOÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrOÞ
QðrphÞ

s 1
A ð114Þ

and the Reissner-Nordström metrics

ΣphRN ¼ arcsin

0
@rph
rO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̃ðrOÞ
Q̃ðrphÞ

s 1
A; ð115Þ

respectively.
Figure 7 shows the angular radius of the particle shadow

as function of the energy E. In the left panel we have the
results for the Schwarzschild metric (black solid line) and
the Reissner-Nordström metric with e ¼ m=2 (blue dashed
line), e ¼ 3m=4 (green dotted line), and e ¼ m (red dash-
dotted line). In the right panel we have the results for the
NUT metric (black solid line) and the charged NUT metric
with e ¼ m=2 (blue dashed line), e ¼ 3m=4 (green dotted
line), and e ¼ m (red dash-dotted line) for n ¼ m=2. For

FIG. 7. Angular radius of the particle shadow Σpa as function of the energy E. Left panel: Schwarzschild metric (black solid line) and
Reissner-Nordström metric with e ¼ m=2 (blue dashed line), e ¼ 3m=4 (green dotted line), and e ¼ m (red dash-dotted line). Right
panel: NUT metric (black solid line) and charged NUT metric with e ¼ m=2 (blue dashed line), e ¼ 3m=4 (green dotted line), and
e ¼ m (red dash-dotted line) for n ¼ m=2. For both panels the observers are located at rO ¼ 10m. The gray horizontal lines with the
same line styles mark the corresponding angular radii of the photon shadows Σph.
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both panels the observers are located at rO ¼ 10m and the
gray horizontal lines mark the angular radii of the corre-
sponding photon shadows. As already mentioned above in
both panels we see that for E → ∞ the angular radii of the
particle shadows asymptotically approach the angular radii
of the photon shadows.
Figure 8 shows the angular radii of the photon shadows

(black solid lines) and the particle shadows for E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
(blue dotted lines), E ¼ ffiffiffi

5
p

=2 (green dotted

lines), and E ¼ ffiffiffi
2

p
(red dash-dotted lines) for the NUT

metric (left panel) and the charged NUT metric with e ¼ m
(right panel) as function of the gravitomagnetic charge n.
Again for both panels the observers are located at
rO ¼ 10m. For n ¼ 0 we have the Schwarzschild (left
panel) and Reissner-Nordström (right panel) limits. When
we turn on and slowly increase the gravitomagnetic charge
n the photon shadows and the particle shadows expand.
The reason behind this is simply that for increasing n the
photon spheres and the particle spheres expand and
approach the position of the observer. When we have rph ¼
rO or rpaðEÞ ¼ rO the corresponding shadows cover half of
the observer’s sky and thus we have Σph ¼ π=2 or
ΣpaðEÞ ¼ π=2, respectively. When we turn on the electric
charge and, in the case of the particle spheres, keep the
energy E constant the angular radii of the photon shadow
and the particle shadows decrease. Therefore, when we
increase the gravitomagnetic charge n the photon shadow
and the particle shadows approach Σph ¼ π=2 or ΣpaðEÞ ¼
π=2 for slightly larger n.
When we compare the photon shadow with the particle

shadow for fixed spacetime parameters and particle energies

we see that both are circular and that the particle shadow is
always larger than the photon shadow. However, when we
have real astrophysical settings we usually do not only have
particles at one fixed energy but rather a large number of
different particles each of which can have a different energy
distribution. While the energy distributions vary for each
type of particle we can tendentially say that particles with
particularly high energies are less likely to occur than
particles with lower energies (note though that some
particles like neutrinos always move at velocities close to
the speed of light). As a consequence we will detect less
particles with particularly high energies and thus toward the
photon shadow we will observe a fading out effect of
particle detections; i.e., toward the photon shadow the
particle shadow becomes darker. Thus from the theoretical
perspective the size of the observable particle shadow is
determined by the particles with the highest energy.
Unfortunately, in astrophysics observing the particle

shadow has two caveats. On one hand currently the only
particles which could be effectively used to observe the
particle shadow are neutrinos. However, the observation of
neutrino emission events with an identified and well-
characterized source is quite rare. In particular currently
we do not have the technical abilities to identify and
continuously observe individual sources with a steady
emission of neutrinos and characteristic neutrino energy
spectra outside the Solar System. In addition, due to their
weak interaction neutrinos are difficult to detect and
neutrino detectors only have an angular resolution of a
few square degrees. Thus even with the recent advances in
technology it is questionable if we will be able to resolve the
particle shadow in the near future. In addition, when we
want to use the particle shadow to distinguish between the

FIG. 8. Angular radius of the photon shadow Σph and the particle shadow Σpa as function of the gravitomagnetic charge n for the NUT
metric (left panel) and the charged NUT metric with e ¼ m (right panel). For both panels the observers are located at rO ¼ 10m. The
black solid line represents the angular radius of the photon shadow. The blue dashed, green dotted, and red dash-dotted lines represent
the angular radii of the particle shadows for particles with the energies E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

, E ¼ ffiffiffi
5

p
=2, and E ¼ ffiffiffi

2
p

, respectively.
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Schwarzschild metric, the Reissner-Nordström metric, the
NUT metric, and the charged NUT metric we encounter the
same difficulties as for the photon shadow. In all four cases
the particle shadow is circular. Its size does not only depend
on the spacetime parameters and the energy of the particles
but also on the spacetime coordinate of the observer rO. As
discussed in Frost [20,57] the photon shadow shrinks with
increasing distance between black hole and observer, and
the same holds for the particle shadow created by particles
with a fixed energy E (not shown). Therefore, as long as we
do not know the distance between observer and black hole
we have a degeneracy between the particle shadows for
different rO and different electric and gravitomagnetic
charges. The only effect which to some degree may be
able to help us to distinguish between different black hole
spacetimes is the darkening effect. When we have a closer
look at Fig. 7 we can see small variations in how fast the
angular radius of the particle shadow approaches the angular
radius of the photon shadow with increasing energy E for
different combinations of the electric charge e and the
gravitomagnetic charge n. However, while these variations
may allow one to distinguish different black hole space-
times, for the actual detection of these effects we need
particle detectors with very high angular resolution and
particle types which can have a broad energy spectrum.

C. The lens equation

For lightlike geodesics a general exact lens map or also
lens equation was first brought forward by Frittelli and
Newman [59]. It was later adapted to spherically symmetric
and static spacetimes by Perlick [60] and to the charged
NUT–de Sitter metrics by Frost [20,57]. While in its
original form it was only applied to lightlike geodesics it
can be easily transferred to timelike geodesics.
In this paper we set up the lens map as illustrated in Fig. 9.

We place a stationary observer with a particle detector in
the domain of outer communication at the coordinates
ðxμðλOÞÞ ¼ ðxμOÞ ¼ ðtO; rO; ϑO;φOÞ outside the particle
sphere. Then we distribute stationary particle sources on a
two-sphere S2P at a radius coordinate rO < rP. We follow
particles moving on timelike geodesics ending at the
observer backward in time. Here, we have to distinguish
two different types of past-directed timelike geodesics. The
first type of past-directed timelike geodesics will intersect
with the particle sphere and thus these geodesics will end in
the black hole. The second type of past-directed timelike
geodesics will intersect with the two-sphere of particle
sources S2P. The latter now constitute a map from the
angular coordinates on the celestial sphere of the observer
to the spacetime coordinates on the two-sphere of particle
sources S2P:

Sphere of Particle Sources SP

φP=π

Black Hole

ϑP=π/2

Observer
Detector/

FIG. 9. Illustration of the lens map. The black hole, in the figure depicted by a black dot, acts as gravitational lens. We place a
stationary observer with a detector at the coordinates ðxμOÞ ¼ ðtO; rO;ϑO;φOÞ in the domain of outer communication between particle
sphere and spatial infinity. The celestial sphere is marked by the gray-shaded sphere around it. We then distribute stationary particle
sources on a two-sphere S2P with rO < rP. We divide the two-sphere in four different quadrants and assign to each quadrant a color
following the color convention of Bohn et al. [62]: 0 ≤ ϑP ≤ π=2 and 0 ≤ φP < π, green; π=2 < ϑP ≤ π and 0 ≤ φP < π, blue;
0 ≤ ϑP ≤ π=2 and π ≤ φP < 2π, red; π=2 < ϑP ≤ π and π ≤ φP < 2π, yellow. The colored dotted lines represent particles on timelike
geodesics emitted by particle sources on the corresponding quadrant of the two-sphere.
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ðΣ;ΨÞ → ðϑPðΣ;ΨÞ;φPðΣ;ΨÞÞ: ð116Þ

Because of the symmetries of the charged NUT spacetimes
and the fact that the Mino parameter is defined up to an
affine transformation we will choose λO ¼ 0 and φO ¼ 0 in
the following. We now want to use the exact solutions to the
equations of motion for ϑ and φ derived in Secs. III B and

III C to derive the lens maps. For this purposewe still have to
determine λP < λO ¼ 0. In our setting we know the radius
coordinates of the observer and the two-sphere of particle
sources rO and rP and thus we can determine λP by
separating variables in (5), inserting (106), and integrating.
The result reads

λP ¼
Z

…rP

rO…

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2E2 − ρðr0ÞQðr0Þ −Qðr0Þ ρðrOÞðρðrOÞE2−QðrOÞÞ

QðrOÞ sin2 Σ
q ; ð117Þ

where again the dots in the limits of the integral indicate that
we have to split the integral at potential turning points into
two terms. The sign of the root in the denominator has to be
chosen according to the direction of the r motion. We now
rewrite the integral in terms of elementary functions or
Legendre’s elliptic integral of the first kind. The computa-
tional evaluation of the lens equations for massive particles
(as well as the travel time measures, which will be discussed
in Sec. IV D) was carried out in the programming language
Julia [61]. The computational evaluation of the lens equations
(and the travel times) for lightlike geodesics was carried out
following the procedure described in Frost [20,57].
For the visualization of the lens maps we divide the two-

sphere of particle sources S2P into four quadrants as shown
in Fig. 9. To each quadrant we assign a color following a
slightly adapted version of the color convention of Bohn
et al. [62]. Here, we assign the colors as follows. The first
quadrant with 0 ≤ ϑP ≤ π=2 and 0 ≤ φP < π is colored
green. The second quadrant with π=2 < ϑP ≤ π and 0 ≤
φP < π is colored blue. The third quadrant with 0 ≤ ϑP ≤
π=2 and π ≤ φP < 2π is colored red. The fourth quadrant
with π=2 < ϑP ≤ π and π ≤ φP < 2π is colored yellow.
Here, we adapt the color convention of Bohn et al. [62] as
follows. When we plot the lens maps we have images of
different orders. Here, we define images of first order as
timelike geodesics for which the covered angle ΔφP is
0 ≤ jΔφPj < π. Analogously, we define images of second
order as timelike geodesics with π ≤ jΔφPj < 2π and so
on. In the visual representation of the lens maps we now
plot images of even order in slightly fainter colors than
images of odd order. In addition, for the discussion of the
lens maps and the travel time maps in Sec. IV D we agree
on the following conventions. We divide the visible part of
the observer’s celestial sphere into two halves separated
by the longitudinal lines Ψ ¼ π=2 and Ψ ¼ 3π=2. We refer
to this line as celestial equator. In addition, we agree to
refer to all longitudes π=2 < Ψ < 3π=2 as northern hemi-
sphere and to all longitudes 0 ≤ Ψ < π=2 and 3π=2 < Ψ as
southern hemisphere. Note that because we divide along
longitudes this terminology is actually not correct; how-
ever, it will strongly simplify the discussion of the lens and
travel time maps. In addition, we divide the observer’s

celestial sphere along the lines marked by the longitudes
Ψ ¼ 0 and Ψ ¼ π. For simplicity we will call the former
meridian and the latter antimeridian in the following. In
addition, we will refer to the longitudes 0 < Ψ < π as
western hemisphere and to the longitudes π < Ψ < 2π as
eastern hemisphere. As last convention we agree on
referring to particle detections as images on the celestial
sphere although technically this is not correct since we
cannot really see these images.
We start with discussing the lens map for the

Schwarzschild metric. Figure 10 shows lens maps for
the Schwarzschild metric for observers at rO ¼ 10m and
ϑO ¼ π=2. The first three maps are for massive particles
with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left), E ¼ ffiffiffi
5

p
=2 (top right), and

E ¼ ffiffiffi
2

p
(bottom left). The two-spheres of particle sources

S2P are located at rP ¼ 15m. The bottom right panel shows a
reference lens map for light rays emitted by light sources
distributed on a two-sphere of light sources S2L at
rL ¼ 15m. The observers look in the direction of the black
hole. At the center of each panel we see a black area which
is the shadow of the black hole (in the case of massive
particles for the respective energy E). We start with the
image in the top left panel with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

. Images of
particle sources from the different quadrants on the two-
sphere of particle sources are clearly separated and form
rings around the shadow. At the outer boundary of the
image we have images of first order, on the eastern
hemisphere in green and blue and on the western hemi-
sphere in red and yellow. Then further in we have images of
second order, on the eastern hemisphere in faint yellow and
faint red, and on the western hemisphere in faint blue and
faint green. Further in we also have, well visible, images of
third and fourth order. In addition, when we zoom in we can
also see images of fifth and, in very close proximity to the
shadow, very faint and hard to recognize, images of sixth
order. The boundaries between the images of different
orders mark the positions of the critical curves. Because of
the ring structure of the images of different orders these are
circular. When we increase the energy to E ¼ ffiffiffi

5
p

=2 the
area covered by the shadow shrinks. The overall structure
remains the same but the rings with images of second, third,
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and higher order shift to lower latitudes. In addition, the
apparent latitudinal width of the rings of images of second,
third, and higher order decreases. The images of fifth order
close to the shadow are now only barely visible and the
images of sixth order seem to not be visible anymore (it is
not clear if, close to the shadow, what might be an image of
sixth order is real or a plotting effect). When we increase
the energy to E ¼ ffiffiffi

2
p

the shadow shrinks further. Again the
overall structure remains the same. The rings of images of
second, third, and higher order shift to lower latitudes and
the apparent latitudinal width of the rings also appears to

shrink; however, the differences are not as pronounced as
before. In addition, images of fifth order close to the
shadow are now barely visible or, at least on three of the
four quadrants, not visible at all (note that the latter is very
likely a plotting effect since the images were created with
the same latitude range for all four quadrants). When we
now compare the lens maps for massive particles with the
lens map for light rays, we immediately see that the overall
structure is the same. The only difference is that for
lightlike geodesics the shadow is smaller and the images
of second, third, and higher order can be found at lower

FIG. 10. Lens maps for massive particles and light rays in the Schwarzschild spacetime. For all four maps the observers are located at
the coordinates rO ¼ 10m and ϑO ¼ π=2. The first three panels show the lens maps for massive particles (timelike geodesics) with
E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left), E ¼ ffiffiffi
5

p
=2 (top right), and E ¼ ffiffiffi

2
p

(bottom left). The bottom right panel shows a reference lens map for light
rays (lightlike geodesics). For all four plots the corresponding two-spheres of particle sources S2P and the two-sphere of light sources S2L
are located at rP ¼ rL ¼ 15m.
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latitudes. In addition, images of fifth order or higher are
much more difficult to recognize than for massive particles.
Now let us turn to the NUT metric. Figure 11 shows lens

maps for the NUT metric with n ¼ m=2 for observers
located at rO ¼ 10m and ϑO ¼ π=2. The Manko-Ruiz
parameter is C ¼ 1 and thus the Misner string is located
at ϑ ¼ 0. Again the first three maps are for massive
particles with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left), E ¼ ffiffiffi
5

p
=2 (top

right), and E ¼ ffiffiffi
2

p
(bottom left). For these maps the

corresponding two-spheres of particle sources S2P are
located at rP ¼ 15m. The bottom right panel shows a
reference lens map for light rays emitted by light sources
distributed on a two-sphere S2L at rL ¼ 15m.
Again the black circles at the centers of the maps are the

shadows of the black holes. As we can easily see the lens
maps for massive particles with fixed energy E and for light
rays show the same features. When we turn on the
gravitomagnetic charge n and compare the top left panel

FIG. 11. Lens maps for massive particles and light rays for the NUT spacetime with n ¼ m=2. For all four maps the observers are
located at the coordinates rO ¼ 10m and ϑO ¼ π=2. The first three panels show the lens maps for massive particles (timelike geodesics)
with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left), E ¼ ffiffiffi
5

p
=2 (top right), and E ¼ ffiffiffi

2
p

(bottom left). The bottom right panel shows a reference lens map for
light rays (lightlike geodesics). For all four plots the corresponding two-spheres of particle sources S2P and the two-sphere of light
sources S2L are located at rP ¼ rL ¼ 15m. The Manko-Ruiz parameter is C ¼ 1 and thus we have a Misner string at ϑ ¼ 0.
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of Fig. 11 with the top left panel of Fig. 10
(E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

) we can easily see that the formerly
disconnected patches with images of first and second order
from the same quadrants on the two-sphere of particle
sources connect resulting in a twist in the lens map. In
addition, we see that close to the meridian and the
antimeridian images of first and second order from the
same quadrant on the two-sphere of particle sources are
separated by a sharp line. The longer lines east of the
antimeridian and west of the meridian mark timelike geo-
desics, which cross the axes at ϑ ¼ 0 (this is the position of
the Misner string as we have C ¼ 1) and ϑ ¼ π, respec-
tively. As already discussed in Frost [20], although we see a
sharp transition between images of first and second order,
across the transition the φ coordinate is indeed continuous
(in another context this was also discussed in Clément
et al. [27]).
West of the antimeridian and east of the meridian we can

find regions with images of odd order. As already discussed
in Frost [20] for lightlike geodesics these are formally
images of first order; however, they are rather special
images. The particles associated with these timelike geo-
desics move on cones not enclosing one of the axes. Thus
for these particles the direction of the φ motion reverses.
Closer to the shadow we can also see images of third and
fourth as well as, when we zoom in, barely visible images
of fifth and sixth order (in Fig. 11 these are rather difficult
to distinguish). Images of first and second order are
separated from the images of third and fourth order by a
circular boundary (the same seems to hold for the boundary
between images of third and fourth order and images of
fifth and sixth order). As discussed for lightlike geodesics
in Frost [20] the circular boundaries between images of first
and second and images of third and fourth order as well as
images of third and fourth and images of fifth and sixth
order are very likely indicating the positions of critical
curves. This is also supported by the fact that the spacetime
retains an SOð3;RÞ symmetry and therefore it is very likely
that also for timelike geodesics the critical curves are still
circular. However, as for light rays from the lens map alone
it is rather difficult to determine the critical curves between
images of first and second order, between images of third
and fourth order, and between images of fifth and sixth
order. When we increase the energy to E ¼ ffiffiffi

5
p

=2 (top right
panel) the shadow shrinks and all lens map features shift to
lower latitudes. As already observed for the Schwarzschild
metric the apparent latitudinal width of the single features
decreases. In addition, the lines marking the axes crossings
shift to longitudes closer to the meridian and the anti-
meridian. When we increase the energy to E ¼ ffiffiffi

2
p

the
effects become even more pronounced. As already noted in
Frost [20] the strength of the twist serves as a good
indicator for the magnitude of the gravitomagnetic charge;
however, because it is very difficult to construct a full lens
map for massive particles it will be very difficult to observe.

Figure 12 shows lens maps for the Reissner-Nordström
metric (left column) and the charged NUT metric with n ¼
m=2 (right column) for e ¼ m=2 (top row), e ¼ 3m=4
(middle row), and e ¼ m (bottom row) for massive par-
ticles with E ¼ ffiffiffi

5
p

=2 for the same particle source-observer
geometry as Figs. 10 and 11. For the charged NUT metric
the Manko-Ruiz parameter is C ¼ 1 and thus the Misner
string is located at ϑ ¼ 0. When we compare the top right
panel of Fig. 10 with the top left panel of Fig. 12 we
immediately see that turning on the electric charge has the
effect that the particle shadow shrinks and the rings with
images of second, third, and higher order shift to lower
latitudes. When we now increase the electric charge first to
e ¼ 3m=4 and then to e ¼ m the particle shadow continues
to shrink and the rings with images of second, third, and
higher order shift to lower latitudes. However, we also
observe that with increasing electric charge the rings of
images of second, third, and higher order appear to broaden
in latitudinal direction. This effect was already observed for
light rays in Frost [57] and, although this is not surprising,
our results show that it also occurs for massive particles.
When we now turn on the gravitomagnetic charge the lens
maps show the same basic features as for the NUT metric.
In addition, when we increase the electric charge from
e ¼ m=2 to e ¼ m we observe the same latitudinal broad-
ening effect for the features around the shadow which we
already observed for the Reissner-Nordström metric.
So far we only discussed the lens maps for massive

particles for distinct energies E separately. Now the
interesting question is what happens when we consider a
spectrum of particles following an energy distribution. Let
us first discuss this for the spherically symmetric and static
Schwarzschild and Reissner-Nordström spacetimes. Let us
assume for now that we only have a single particle source
(point source) on the sphere of particle sources. In this case
for a distinct energy E we have a very well-defined image
on the observer’s sky. The image is simply a dot. When we
increase the energy E this dot shifts toward lower latitudes
and thus when we combine the images for different
energies E the dots form a line along a constant longitude
and the innermost end of this line is marked by an image
generated by light rays (or when we have a source that also
emits gravitational waves and a supermassive black hole as
lens we will detect a gravitational wave signal from this
direction). Along this line the maximal particle flux can be
found for the image which is associated with the particle
energy at which the particle density distribution has its
maximum. The same effect also occurs for images of higher
order just that the overall particle flux at the position of
these images is lower. When we turn on the gravitomag-
netic charge and consider the (charged) NUT metric the
overall pattern for images of point sources is the same as for
spherically symmetric and static spacetimes. The images of
particles with low energy can be found at high latitudes
while images of particles with high energy can be found at
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FIG. 12. Lens maps for massive particles with E ¼ ffiffiffi
5

p
=2 in the Reissner-Nordström spacetime (left column) and the charged NUT

spacetime with n ¼ m=2 (right column) for e ¼ m=2 (top row), e ¼ 3m=4 (middle row), and e ¼ m (bottom row). For the charged NUT
spacetime the Manko-Ruiz parameter is C ¼ 1 and thus the Misner string is located at ϑ ¼ 0. For all six maps the observers are located
at the coordinates rO ¼ 10m and ϑO ¼ π=2 and the two-spheres of particle sources S2P are located at rP ¼ 15m.
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lower latitudes. The main difference will come from the
twist. Since the gravitomagnetic charge leads to a twist in
the lens maps we can assume that when we superpose the
images for particles with different energies E emitted by
the same point source wewill observe a similar effect on the
combined image. The images will stretch along different
longitudes and most likely have an arcletlike shape. Note
that a line stretching along different latitudes and longi-
tudes is also possible but with view on the overall changes
due to the gravitomagnetic charge highly unlikely. Besides
the general lensing pattern for particles with constant
energies the exact shape of this arclet may also be a good
indicator for the strength of the gravitomagnetic charge.
In addition, when we superpose the lens maps for

an energy spectrum of particles we observe another effect.
For illustrating this effect let us take the example of three
particle energies E1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
< E2 ¼

ffiffiffi
5

p
=2 < E3 ¼ffiffiffi

2
p

as shown in Figs. 10 and 11 for the Schwarzschild metric
and the NUT metric. When we compare the three lens maps
for massive particles for the Schwarzschild metric we
immediately see that in general the boundaries between
images of successive orders (e.g., order one and order two)
of particle sources on different quadrants on the two-sphere
of particle sources S2P overlap. In addition, when the
maximal particle energy is high enough images of third
order generated by particles with low energies can overlap
with images of first order generated by particles with higher
energies, both emitted by particle sources on the same
quadrant on the two-sphere of particle sources S2P. Under
very special circumstances these can even be images of the
same particle source. For the NUT metric we observe a
similar pattern. However, because of the twist it is rather
unlikely that images of third and first order generated by

low- and high-energy particles emitted by the same particle
source, respectively, overlap.

D. Travel time measures

In this subsection we will discuss two different travel
time measures for gravitationally lensed massive particles.
The first is derived from the time coordinate t and the
second is derived from the proper time τ. Both measure the
time a particle needs to travel from the particle source to an
observer with a detector. For distinguishing between them
we will refer to the former as travel time using the standard
terminology from gravitational lensing of light rays. The
second travel time measure is derived from the proper time
and thus we will refer to it as traveled proper time in the
following.

1. Travel time

The travel time measures in terms of the time coordinate
t the time a particle needs to travel from the particle source
to an observer with a detector. In terms of the time
coordinate tP at which the particle is emitted by the particle
source and the time coordinate tO at which it is detected by
the observer with the detector it reads

TðΣ;ΨÞ ¼ tO − tPðΣ;ΨÞ: ð118Þ

For the explicit calculation of the travel time we now
assume that tðλOÞ ¼ tO ¼ 0. We insert the relations
between the constants of motion Lz and K and the
coordinates on the celestial sphere of the observer (105)
and (106) into (78) and (81). We evaluate both integrals and
insert them into (76) and get

TðΣ;ΨÞ ¼
Z

…rP

rO…

ρðr0Þ2Edr0

Qðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2E2 − ρðr0ÞQðr0Þ −Qðr0Þ ρðrOÞðρðrOÞE2−QðrOÞÞ

QðrOÞ sin2 Σ
q

− 2n
Z

λP

0

ðcos ϑðλ0Þ þ CÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðrOÞðρðrOÞE2−QðrOÞÞ
QðrOÞ

q
sin ϑO sin Σ sin Ψþ 2nðcos ϑðλ0Þ − cos ϑOÞE

�
dλ0

1 − cos2 ϑðλ0Þ ; ð119Þ

where the dots in the limits of the first term indicate that we
have to split the integral into two terms when we have a
turning point for r and that we have to evaluate each term
separately. The sign of the root in the denominator has to be
chosen according to the direction of the r motion. Note that
λP also depends on the celestial latitude. We only dropped it
for brevity. In the case of the Schwarzschild spacetime and
the Reissner-Nordström spacetime the second term vanishes
and we only have to evaluate the first term.We now evaluate
the travel time integrals as described in Sec. III D using
(117) for calculating the Mino parameter λP.

Figure 13 shows travel time maps for massive particles
with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left panel), E ¼ ffiffiffi
5

p
=2 (top right

panel), and E ¼ ffiffiffi
2

p
(bottom left panel) as well as a

reference travel time map for light rays (bottom right
panel) on the observer’s celestial sphere for the
Schwarzschild metric. For all four maps the observers
are located at the coordinates rO ¼ 10m and ϑO ¼ π=2.
The two-spheres of particle sources S2P and the two-sphere
of light sources S2L are located at rP ¼ rL ¼ 15m. Again
the observers look into the direction of the black hole and
the black circles at the centers of the maps are the shadows
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of the black holes. Let us start our discussion with the travel
time map for massive particles with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

.
Levels of constant travel time form circles around the
shadow. The travel time increases with decreasing latitude
and diverges for timelike geodesics asymptotically coming
from the particle sphere. When we compare the travel time
of massive particles with the travel time for light rays
(bottom right panel) we see that it is significantly longer.

When we increase the particle energy to E ¼ ffiffiffi
5

p
=2 (top

right panel) the shadow shrinks and the travel time
decreases because the particles have a higher velocity.
Overall levels of constant travel time shift to lower
latitudes. This effect is even more pronounced when we
increase the energy of the particles to E ¼ ffiffiffi

2
p

. In addition,
with increasing particle energy the travel time approaches
the travel time of light rays.

FIG. 13. Travel time maps for massive particles and light rays in the Schwarzschild spacetime. For all four maps the observers are
located at the coordinates rO ¼ 10m and ϑO ¼ π=2. The first three panels show travel time maps for massive particles (timelike
geodesics) with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left), E ¼ ffiffiffi
5

p
=2 (top right), and E ¼ ffiffiffi

2
p

(bottom left). The bottom right panel shows a reference
travel time map for light rays (lightlike geodesics). For all four plots the corresponding two-spheres of particle sources S2P and the two-
sphere of light sources S2L are located at rP ¼ rL ¼ 15m.
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Now we turn to the NUT metric. Figure 14 shows travel
time maps for massive particles with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top
left panel), E ¼ ffiffiffi

5
p

=2 (top right panel), E ¼ ffiffiffi
2

p
(middle

left panel), and light rays (middle right panel) for the NUT
metric for the same observer-source geometry as in Fig. 13.
The gravitomagnetic charge is n ¼ m=2 and the Manko-
Ruiz parameter is C ¼ 1 (Misner string at ϑ ¼ 0). In
addition, the bottom panels show travel time maps for
massive particles with E ¼ ffiffiffi

5
p

=2 for two observers located
at rO ¼ 10m and ϑO ¼ π=4 (left panel) and ϑO ¼ 3π=4
(right panel) and two-spheres of particle sources S2P
at rP ¼ 15m.
Again the observers look into the direction of the black

hole and the black circle in the center of each map is the
particle shadow (or photon shadow for light rays) of the
corresponding black hole. We again start with the travel
time map for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

. Overall the travel time of the
particles has the same magnitude as for the Schwarzschild
metric. However, there are also a few differences. While for
the Schwarzschild metric the travel time was symmetric
with respect to rotations about the direction Σ ¼ 0 for the
NUT metric this is not the case anymore. The steps in the
travel time east to the meridian and the antimeridian
indicate that at these positions the travel time has two
discontinuities. These mark the positions of timelike geo-
desics crossing the Misner string (for lightlike geodesics
this was already noted in Frost [20,57] and thus it is not
surprising that it also occurs for timelike geodesics). When
we start at the first discontinuity close to the antimeridian
and move along a constant latitude in clockwise direction
the travel time decreases. We observe a similar feature
when we start at the discontinuity close to the meridian and
move along a constant latitude in counterclockwise direc-
tion. However, the effect is much weaker and ends after a
short angular distance. In addition the discontinuity close to
the antimeridian extends nearly to the real celestial equator
at Σ ¼ π=2. When we increase the energy to E ¼ ffiffiffi

5
p

=2 the
shadow shrinks and overall the travel time decreases. The
discontinuities are now located closer to the meridian and
the antimeridian and are more pronounced and thus better
visible. However, they are now confined to lower latitudes.
Similarly, the spiral-shaped pattern shifts to lower latitudes
and is more pronounced. When we increase the particle
energy to E ¼ ffiffiffi

2
p

we basically observe the same effects.
The discontinuities shift to longitudes closer to the merid-
ian and the antimeridian and are confined to lower latitudes.
In addition, the spiral pattern becomes even more pro-
nounced. When we further increase the particle energy the
pattern in the travel time map slowly approaches the pattern
in the travel time map for light rays (middle right panel
in Fig. 14).
When we shift the observer to ϑO ¼ π=4 (for E ¼ ffiffiffi

5
p

=2
the travel time map is shown in the bottom left panel of
Fig. 14) the discontinuity close to the antimeridian extends

well beyond the real celestial equator at Σ ¼ π=2 up to
about Σ ¼ 7π=12 (not shown) and the spiral pattern
becomes much more pronounced. The discontinuity at
the meridian on the other hand is confined to latitudes much
closer to the particle shadow. In addition, both disconti-
nuities are now observed at longitudes closer to the
meridian and the antimeridian. When we move the observer
to ϑO ¼ 3π=4 the discontinuity close to the antimeridian is
confined to latitudes much closer to the particle shadow.
The discontinuity close to the meridian appears to extend to
roughly the same latitude as for ϑO ¼ π=2. However, it was
already shown by Frost [20,57] that for lightlike geodesics
the discontinuity extends to higher latitudes and thus this is
most likely only an effect due to the choice of the color
scale and the discontinuity does indeed extend to higher
latitudes. In addition, now both discontinuities are located
at longitudes further away from the meridian and the
antimeridian.
The only question we did not address so far is how the

electric charge affects the travel time. Figure 15 shows
travel time maps for the Reissner-Nordström metric (left
column) and the charged NUT metric (right column) for
three different electric charges e ¼ m=2 (top row), e ¼
3m=4 (middle row), and e ¼ m (bottom row). The energy
of the particles is E ¼ ffiffiffi

5
p

=2. For the charged NUT metric
the gravitomagnetic charge is n ¼ m=2 and the Manko-
Ruiz parameter is C ¼ 1 (Misner string at ϑ ¼ 0). The
observers are located at the coordinates rO ¼ 10m and
ϑO ¼ π=2 and the two-spheres of particle sources S2P are
located at rP ¼ 15m. When we turn on the electric charge
and slowly increase it the shadow shrinks and all features
shift to lower latitudes. In addition, as for the lens maps we
observe an apparent latitudinal broadening when we
approach the shadow.

2. Traveled proper time

In addition to the travel time T for massive particles we
can also define another travel time measure using the
proper time along a timelike geodesic. It is the traveled
proper time. Similar to the travel time the traveled proper
time measures in terms of the proper time τ the time a
particle needs to travel from the particle source by which it
was emitted to the observer. It can be interpreted as the
time we could measure with a clock if it moved together
with the particle along a timelike geodesic. Initially the
traveled proper time does not offer any advantage over the
travel time as it is much more difficult to measure.
However, when we have particle decay or neutrino
oscillations and know the number of particles emitted
by the source (in the case of neutrinos with a specific
flavor) it can be directly inferred by using an appropriate
model for the particle decay or the neutrino oscillations.
We can then compare the detected number of particles with
the number of particles which should be detected accord-
ing to the model estimates. We can then vary the proper
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FIG. 14. Travel time maps for massive particles and light rays in the NUT spacetimewith n ¼ m=2. In the first four panels the observers
are located at the coordinates rO ¼ 10m and ϑO ¼ π=2. The first three panels show travel time maps for massive particles (timelike
geodesics) with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(top left), E ¼ ffiffiffi
5

p
=2 (top right), and E ¼ ffiffiffi

2
p

(middle left). The middle right panel shows a reference
travel time map for light rays (lightlike geodesics). The panels in the bottom row show travel time maps for massive particles with
E ¼ ffiffiffi

5
p

=2 for observers at rO ¼ 10m and ϑO ¼ π=4 (bottom left) and ϑO ¼ 3π=4 (bottom right). For all six plots the corresponding two-
spheres of particle sources S2P and the two-sphere of light sources S2L are located at rP ¼ rL ¼ 15m. The Manko-Ruiz parameter is C ¼ 1
and thus we have a Misner string at ϑ ¼ 0.
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FIG. 15. Travel time maps for massive particles with E ¼ ffiffiffi
5

p
=2 in the Reissner-Nordström spacetime (left column) and the charged

NUT spacetime with n ¼ m=2 (right column) for e ¼ m=2 (top row), e ¼ 3m=4 (middle row), and e ¼ m (bottom row). For the charged
NUT spacetime the Manko-Ruiz parameter is C ¼ 1 and thus the Misner string is located at ϑ ¼ 0. For all six maps the observers are
located at the coordinates rO ¼ 10m and ϑO ¼ π=2 and the two-spheres of particle sources S2P are located at rP ¼ 15m.
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time until both agree (note that in the most general case we
have to also consider the spacetime in which the particles
travel). In terms of the proper time τP at which the particle
is emitted by the particle source and the proper time τO at
which it is detected by the observer with the detector
it reads

τðΣÞ ¼ τO − τPðΣÞ: ð120Þ

Because the proper time is defined up to an affine para-
metrization in our case we choose τðλOÞ ¼ τO ¼ 0. We
insert (106) in (88) and obtain

τðΣÞ ¼
Z

…rP

rO…

ρðr0Þdr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðr0Þ2E2 − ρðr0ÞQðr0Þ −Qðr0Þ ρðrOÞðρðrOÞE2−QðrOÞÞ

QðrOÞ sin2 Σ
q ; ð121Þ

where again the dots in the limits of the integral shall
indicate that we have to split the integral at potential turning
points into two terms and the sign of the root in the
denominator has to be chosen according to the direction of
the r motion. When we use the celestial coordinates to
parametrize the timelike geodesics we can immediately
read from (121) that unlike the travel time the traveled
proper time only depends on the celestial latitude Σ and not
on the celestial longitude Ψ. We now evaluate the traveled
proper time as described in Sec. III E.
Figure 16 shows the traveled proper time for an observer

at the radius coordinate rO ¼ 10m and a particle source at
the radius coordinate rP ¼ 15m for the Schwarzschild
metric (top left panel), the Reissner-Nordström metric with
e ¼ m (top right panel), the NUT metric with n ¼ m=2
(bottom left panel), and the charged NUT metric with e ¼
m and n ¼ m=2 (bottom right panel) for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(black solid line), E ¼ ffiffiffi
5

p
=2 (blue dashed line), and E ¼ffiffiffi

2
p

(green dotted line).
Let us again start the discussion with the Schwarzschild

metric. We start our discussion with the traveled proper time
for E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

. We see that the traveled proper time
increases from Σ ¼ π to Σ ¼ ΣpaðEÞ. When Σ approaches
ΣpaðEÞ the particles make more and more turns around the
particle sphere and thus the traveled proper time diverges.
When we increase the energy to E ¼ ffiffiffi

5
p

=2 the angular
radius of the particle shadow ΣpaðEÞ shrinks and the traveled
proper time decreases. Further increasing the energy to E ¼ffiffiffi
2

p
has the same effect. When we turn on the electric charge

and consider the Reissner-Nordströmmetric (top right panel)
we do not see any major changes for π=2 < Σ and the
traveled proper time is roughly the same. For Σ → ΣpaðEÞ
the divergences shift to lower latitudes and the traveled
proper time generally decreases. However, the larger E the
smaller the effect. In addition, for particles with E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101=100

p
for the Reissner-Nordström metric close to

the divergence the increase in traveled proper time is lower.
Nowwe turn on the gravitomagnetic charge (bottom panels).
Again for π=2 < Σ we do not observe any major changes
and the traveled proper time remains roughly constant. For

Σ < π=2 the divergences shift to higher latitudes and overall
the traveled proper time increases for the NUT metric and
the charged NUT metric in comparison to the Schwarzschild
metric and the Reissner-Nordström metric, respectively.

3. Implications for astrophysical observations

As discussed above for massive particles we can calcu-
late two different travel time measures: on one hand the
travel time in terms of the time coordinate t and on the other
hand the traveled proper time τðΣÞ. However, the travel
time is not directly accessible to observations. We can only
observe travel time differences. In our case at hand we
assumed that we have a stationary observer that detects a
signal at the event ðxμOÞ and that the corresponding proper
time along the timelike geodesic is τO ¼ 0. The observed
travel time differences are all recorded in terms of the
proper time in the observer’s frame. Therefore, we now
have to relate the proper time in the observer’s frame to the
time coordinate t. For this purpose let us first denote the
coordinates along the worldline of the observer as ðx̄μÞ and
the corresponding proper time as τ̄. Because we only
consider a stationary observer we have dr̄=dτ̄ ¼ dϑ̄=dτ̄ ¼
dφ̄=dτ̄ ¼ 0 and thus also r̄ðλÞ ¼ rO, ϑ̄ðλÞ ¼ ϑO and
φ̄ðλÞ ¼ φO. Now we only have to calculate the relations
between the proper time in the observer’s reference frame
and the time coordinate t̄. The calculation is straightfor-
ward. Let us first denote the constants of motion along the
worldline of the observer as EO, LzO, and KO. Now we first
evaluate (7) and see that

LzO þ 2nðcosϑO þ CÞEO ¼ 0: ð122Þ

In the next step we insert this relation in (6) and get
KO ¼ 0. Then we insert the latter in (5) and solve for EO.
We obtain

EO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
QðrOÞ
ρðrOÞ

s
: ð123Þ

Now we use (122) and (123) in (4) after reparametrizing it
in terms of the proper time τ̄ and get
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dt̄
dτ̄

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ
QðrOÞ

s
: ð124Þ

We integrate from t̄ðτ̄iÞ ¼ t̄i to t̄ðτ̄Þ ¼ t̄ and obtain as
relation between the time coordinate t̄ and the proper time τ̄
along the timelike curve of the observer

t̄ðτ̄Þ ¼ t̄i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ
QðrOÞ

s
ðτ̄ − τ̄iÞ; ð125Þ

where in our case the proper time τ̄i and the corresponding
time coordinate t̄i mark the time at which the first particle
signal is detected. When we assume that the observer

detects the first particle signal at τ̄1 ¼ τO and the second
signal at τ̄2 > τ̄1 we obtain for the relation between the
travel time difference in the observer’s frame and the travel
time difference in terms of the time coordinate t̄

ΔT̄ ¼ t̄2 − t̄1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðrOÞ
QðrOÞ

s
ðτ̄2 − τOÞ: ð126Þ

Note that this relation is valid for travel time differences
between arbitrary combinations of particle and light
signals. When we observe two different signals gravita-
tionally lensed by a black hole and suspect that they were
emitted by the same source, we now have to use a priori

FIG. 16. Traveled proper time as function of the celestial latitude Σ for massive particles in the Schwarzschild spacetime (top left), the
Reissner-Nordström spacetime (top right), the NUT spacetime (bottom left), and the charged NUT spacetime (bottom right) for
E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

101=100
p

(black solid line), E ¼ ffiffiffi
5

p
=2 (blue dashed line), and E ¼ ffiffiffi

2
p

(green dotted line). The electric and gravitomagnetic
charges are e ¼ m and n ¼ m=2, respectively. The observers are located at rO ¼ 10m and the particle sources are located at rP ¼ 15m.
The gray vertical lines mark the positions of the corresponding particle shadows.
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estimates to iteratively determine the travel time along
each geodesic (note that here we iterate with respect to the
celestial coordinates). When both geodesics end at the
same spatial position ðxiPÞ and we get ΔT ¼ TðΣ2;Ψ2Þ −
TðΣ1;Ψ1Þ ¼ ΔT̄ as travel time difference we know they
really come from the same source. However, we have to be
cautious to draw conclusions on the underlying spacetime
describing the black hole because we still may have a
degeneracy with respect to the spacetime’s physical
parameters as well as the radius coordinates of the observer
and the particle or light source.
Transforming the proper time along the worldline of the

observer to the proper time along the worldline of a particle
is much more difficult. We cannot derive a direct relation
between the proper time which elapsed for the observer
and the traveled proper time. However, when we know the
nature of the source and the exact particle spectrum it
emits, we can directly determine the traveled proper time
for two different astrophysical scenarios. In the first
scenario the particle source emits particles which decay
along the timelike geodesic. The half-life of the particles is
then measured in terms of the proper time τ. In the case that
the interaction of the particles with their environment can
be neglected, we know the underlying decay processes and
are able to write down the corresponding decay laws, we
can determine the traveled proper time τðΣÞ from the
detected number of particles and the estimated number of
emitted particles determined using numerical particle
emission models for the observed source. In the second
scenario we have neutrino emission by the source. In the
case that we know the source and the flavor composition of
the neutrinos it emits, again from, e.g., an appropriate
numerical model, and we can observe the flavor compo-
sition of the detected neutrinos, we can use an appropriate
model for the propagation of the neutrinos along the
geodesic under consideration of their flavor oscillations
to determine the proper time from the difference between
the detected neutrino flavor composition and the estimated
neutrino flavor composition of the emission of the source
which we should detect according to the source and
propagation models. However, in this case we have to
make an initial guess for the spacetime describing the
black hole lens.
Now the most important question is how we can use

these two travel time measures for astronomical observa-
tions. As long as we only consider one particle source we
can have two different scenarios. In the first scenario
we only consider particles with the same energy E. In this
case we have the same situation as for light rays discussed in
Frost [20,57]. The travel time increases for images of the
same particle source with increasing order of the image.
Turning on the electric charge reduces this increase
(however, at latitudes close to the shadow for which the
geodesics, along which the particles travel, closely approach
the particle sphere the travel time of the particles still

increases rapidly). When we turn on the gravitomagnetic
charge we observe a discontinuity in the travel time for
timelike geodesics crossing the Misner string. As already
discussed in Frost [20,57] for light rays, this is a real
discontinuity and together with the spiral-shaped pattern it is
the most distinct indicator for the presence of a gravito-
magnetic charge. When we have a multiple-imaging sit-
uation with four images we can expect that two of these
images are located relatively close to the discontinuity. For
these images we then observe a larger travel time difference
than for all other image combinations. The magnitude of the
travel time differences, each calculated for two particle
signals with the same energy E, for massive particles with
different energies may now allow us to place a tighter
constraint on the magnitude of the gravitomagnetic charge
than we could obtain with electromagnetic radiation alone.
Moreover, when the particle source also emits electromag-
netic radiation we can combine the travel time differences
for massive particles with the travel time differences for
light rays. In this case the obtained estimate for the
magnitude of the gravitomagnetic charge will be even more
precise. However, we have to note here that even for light
rays multiple images created by gravitational lensing by
black holes have not been observed so far and thus it is
rather unlikely that we will observe multiple images for
massive particles in the near future.
Let us now assume that the particle source emits a

particle spectrum with a particle flux density with a peak at
an unspecified energy Emax. We already saw that the travel
time decreases with increasing particle energy E. However,
only taking the travel time maps and the travel time
differences into account limits the information we can
infer. Luckily, when we include the lens maps we get a
much clearer picture. We recall that for particles with high
energies images of first order are located at lower latitudes
than for particles with lower energies. In the same context
we also saw that for the same particle source images of first
order generated by particles with high energy and images of
third order generated by particles with low energy, can have
a very low angular separation or even overlap (but also
remember that the latter is only the case for the spherically
symmetric and static Schwarzschild and Reissner-
Nordström spacetimes and not for the rotationally sym-
metric NUT and charged NUT spacetimes). Let us assume
that we have a particle source with a known particle
emission spectrum and that this source also emits electro-
magnetic radiation. Now we can determine the travel time
differences between images of first and/or third order at
different particle energies and also between the images
generated by particle signals and the images created by
light rays. In general these will vary depending on the
nature of the black hole spacetime and may allow one to
distinguish different types of black holes in the framework
of general relativity. In the case of the charged NUT metric
comparing the calculated travel time differences with
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measured travel time differences between light and particle
signals lensed by an astrophysical black hole will allow us
to place constraints on the electric and gravitomagnetic
charges of the black hole. However, a priori degeneracies
with respect to the radius coordinates of the observer and
the particle source rO and rP as well as e and n cannot be
excluded. Investigating this is beyond the scope of this
paper and may be part of future work.

V. SUMMARY

In this paper we performed a detailed and thorough
investigation of gravitational lensing of massive particles
in the charged NUT metrics. For this purpose we first
discussed and solved the equations of motion with focus
on unbound timelike geodesics. In analogy to the photon
sphere for light rays we rewrote the equation of motion
for r in terms of an energy-dependent potential and derived
the radius coordinates of the unstable particle spheres
in the Schwarzschild metric, the Reissner-Nordström
metric, the NUT metric, and the charged NUT metric.
Contrary to the radius coordinates of the unstable photon
spheres they depend on the energy E of the particles. That
spherically symmetric and static spacetimes possess a
particle sphere is nothing new. The concept of a particle
sphere was first introduced by Mielnik and Plebański [36]
in 1962. For the Schwarzschild metric and the Reissner-
Nordström metric in terms of an (energy-dependent)
parameter or the particle velocity at infinity the radius
coordinates of the particle spheres have already been
derived by Zakharov [39] and Liu et al. [43], and Pang
and Jia [47], respectively. However, to our knowledge this
paper is the first to derive the radius coordinates of the
particle spheres using the potential without introducing a
parameter or the particle velocity at infinity and an impact
parameter and to directly present a general form in terms of
the particle energy along the geodesic (although in the
works mentioned above we can easily restore the energy
dependency). For the Schwarzschild metric and the
Reissner-Nordström metric we derived these solutions
analytically while for the NUT metric and the charged
NUTmetric the solutions could only be determined numeri-
cally (note that although Kobialko et al. [37] applied the
concept of a particle surface to the NUT metric they did not
explicitly derive the radius coordinate of the unstable
particle sphere in the domain of outer communication).
Then we solved the equations of motion using elemen-

tary and Jacobi’s elliptic functions as well as Legendre’s
elliptic integrals of the first, second, and third kind.
Structurally they are very similar or even identical to the
solutions for lightlike geodesics derived in Frost [20,57].
In the second part of this paper we then used these solutions
to investigate gravitational lensing ofmassive particles in the
Schwarzschild metric, the Reissner-Nordström metric, the
NUT metric, and the charged NUT metric for stationary
observers and stationary particle sources distributed on

two-spheres S2P in the domain of outer communication
outside the particle sphere. For this purpose we first used
the tetrad approach of Grenzebach et al. [51] and adapted it
to timelike geodesics by modifying the plasma lensing
approach of Perlick and Tsupko [52]. We related the
constants of motion Lz and K to the particle energy E
and to latitude-longitude coordinates on the observer’s
celestial sphere. This effectively allowed us to parametrize
the timelike geodesics along which the particles travel in
terms of the particle energy E and the celestial latitude and
longitude on the observer’s celestial sphere.We then derived
the relation between the particle energy along a timelike
geodesic and the particle energy as detected in the reference
frame of a stationary observer with a particle detector.
As first part of our lensing analysis we derived the

angular radius of the particle shadow of a black hole. For all
four metrics it depends on the energy E and the particle
shadow is circular. When we increase the energy of the
particles the angular radius of the particle shadow shrinks
and for E → ∞ it approaches the angular radius of the
photon shadow. With respect to the electric and gravito-
magnetic charges the particle shadow shows the same
behavior as the photon shadow. Its size shrinks with
increasing electric charge and it grows when we increase
the gravitomagnetic charge. When we have only particles
with the same energy or a particle distribution with a very
narrow peak it is unfortunate that the particle shadow is
circular because we have a degeneracy with respect to up to
four different parameters, the particle energy E, the radius
coordinate of the observer rO, the electric charge e, and the
gravitomagnetic charge n. We also addressed the question
how we can combine the photon shadow and the particle
shadow in a multimessenger approach to determine the
underlying spacetime. We came to the conclusion that when
we have accurate observations of the photon shadow we
also know the boundary of the collective particle shadow.
We concluded that the darkening (or fading-out) effect of
the particle shadow, in particular the details how the particle
shadow darkens for particles with higher energies, may
allow us to draw conclusions about the nature of the
spacetime and its physical parameters. Thus, theoretically
this effect can be used to characterize the spacetime of an
astrophysical black hole we observe. However, the angular
resolution of current particle detectors like Super-
Kamiokande [6,7] and IceCube [8] is far too low to observe
this effect, in particular since their main targets are neu-
trinos, which move at velocities close to the speed of light
and interact only very weakly with other matter.
We also wrote down, to our knowledge for the first time,

an exact lens equation for massive particles for a stationary
and axisymmetric spacetime, namely the charged NUT
metric. For this purpose we transferred the approach for
lightlike geodesics presented in Frost [20,57] to unbound
timelike geodesics. It was not surprising that for a fixed
particle energy the lens maps show the same patterns as the
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lens maps for light rays. For the spherically symmetric and
static Schwarzschild and Reissner-Nordström spacetimes
for fixed particle energies images of different orders from
the same quadrant on the two-sphere of particle sources are
clearly separated. The critical curves lie on circles marking
the boundaries between rings of images of different orders.
For the NUT metric and the charged NUT metric the
lensing pattern shows a twist. The formerly disconnected
areas with images of first and second order of particle
sources on the same quadrant of the two-sphere of particle
sources connect and we have two sharp boundaries
between images of first and second order for timelike
geodesics crossing the axes (the same is the case for images
of third and fourth order and so on). As for lightlike
geodesics [20,57] the critical curves are very likely circles
because on one hand the NUT and charged NUT space-
times have an SOð3;RÞ symmetry and on the other hand
the boundaries between images of first and second, and
third and fourth order (and so on) are still circles. Again if
we only have particles with a fixed energy or a particle
distribution with a very narrow energy peak we have the
same problem as for the shadow.We have a degeneracy with
respect to the energy E, the radius coordinates of the
observer and the particle source rO and rP, the electric
charge e, and the gravitomagnetic charge n. However, the
strength of the twist pattern may allow one to some degree
to infer the magnitude of the gravitomagnetic charge n.
Luckily, an interesting fact came to light when we consid-
ered a particle distribution with a broader energy spectrum.
For the spherically symmetric and static Schwarzschild and
Reissner-Nordström spacetimes we saw that in this case the
images of one specific particle source form a line along a
constant longitude. For low-energy particles images of third
order can even overlap with images of first order of particles
with higher energies from the same particle source. For the
NUT metric and the charged NUT metric the twist will very
likely lead to the formation of small arclets, whose shape
can potentially be used to determine the magnitude of the
gravitomagnetic charge. In addition, we observed that the
presence of an electric charge leads to an apparent latitu-
dinal broadening of the features in the lens maps when we
approach the particle shadow. This effect was, according to
our knowledge, first noted by Frost [57] in the lens map for
light rays. It is also implicitly contained in the results of
earlier work (see, e.g., Bozza [63]) and seems to be a
characteristic feature in the presence of an electric charge
and when we combine the image positions for massive
particles and light rays it may help to determine the electric
charge of a black hole.
Finally we discussed two different travel time measures:

on one hand the travel time and on the other hand the
traveled proper time. The travel time maps generally
show the same patterns as for lightlike geodesics. For
the spherically symmetric and static Schwarzschild and
Reissner-Nordström spacetimes the travel time maps are

rotationally symmetric about the center of the shadow. In
the travel time maps for the NUT spacetime and the
charged NUT spacetime this symmetry is broken and we
observed the same discontinuities for timelike geodesics
crossing the Misner string(s) as well as the same spiral-
shaped pattern as for lightlike geodesics [20,57]. However,
for both types of spacetimes the travel time for massive
particles is generally longer than for light rays. The second
travel time measure we discussed is the traveled proper
time. For all four spacetimes the traveled proper time
turned out to be independent of the celestial longitude. It
decreased with increasing energy of the particle and
increasing electric charge. On the other hand the presence
of a gravitomagnetic charge lead to an increase of the
traveled proper time.
The question in how far the results presented in this paper

are of astrophysical relevance is difficult to answer. On one
hand the angular resolution of currently existing particle
detectors such as Super-Kamiokande [6,7] or IceCube [8] is
too low to resolve most of the lensing features discussed in
this article. Even the resolution of future particle detectors
such as Hyper-Kamiokande [64,65] (the angular resolution
of Hyper-Kamiokande is expected to be similar to that of
Super-Kamiokande [66]) and PINGU [67] will still be too
low to resolve the features we discussed in this article.
However, if we assume that we have a particle spectrum
with particles with different energies, the detectors may still
to some degree be able to indirectly resolve the images of
particle sources and their shape via the probability distri-
bution function of the sky localization on the observer’s
celestial sphere. For the spherically symmetric and static
Schwarzschild and Reissner-Nordström spacetimes in the
ideal case the probability distribution function for the sky
localization of the spectrum is located on a line along a
constant longitude. For the NUT spacetime and the charged
NUT spacetime we can expect the probability distribution
function of the sky localization to be slightly curved.
However, because the electric charge e and the distances
of the observer and the particle source to the black hole rO
and rP result in a scaling we still have a degeneracy with
respect to these parameters. In addition, the discontinuities in
the travel time maps also provide a clear indicator for
the absence or presence of a gravitomagnetic charge.
Furthermore, a thorough discussion of the lens and travel
time maps revealed that combining travel time differences
between images of particle signals with the same or different
energies, between images generated by light rays, and
between images generated by particle signals and light
rays has the potential to allow the characterization of the
spacetime describing an astrophysical black hole and to
determine its physical parameters, in the case of the charged
NUT metric in particular the determination of the gravito-
magnetic charge.
Unfortunately, in space, outside the Solar System, most

neutrino emissions can either not be directly associated
with one particular source or in the case of burst sources
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with very characteristic particle emission, such as supernova
explosions, binary neutron star mergers (for these neutrino
emission is expected but has not yet been observed), or tidal
disruption events, they tend to be very short-lived. Thus in
the near future it will be difficult to measure travel time
differences between two neutrino signals emitted by these
sources (due to their weak interaction with their environ-
ment only neutrinos are suitable candidates). In addition,
considering the sensitivity and the angular resolution of
current and near future neutrino detectors observing travel
time differences between two neutrino signals is still beyond
our technological capabilities. On the other hand when
we have enough information about the source, e.g., from
observations in the full electromagnetic spectrum, and can
determine the nature and particle spectrum of the source,
decay processes as well as neutrino oscillations along
timelike geodesics (for most astrophysical observations
most likely only the latter) may allow us to infer the
traveled proper time. When the source emits particles which
decay along the geodesic along which they travel we can
estimate the number of particles emitted by the source and
compare it to the number of particles detected by an
appropriate particle detector. Assuming that the specific
decay laws for these particles are known we can calculate
the proper time along the geodesic. A second option for
directly observing the traveled proper time is offered by
neutrino oscillations. On their path from the source to a
detector on Earth neutrinos oscillate between different
flavors. When we know the neutrino flavor composition
at the source and at the observer we can model the neutrino
oscillations along the timelike geodesic and infer the
traveled proper time. Note, however, while both approaches
in theory sound rather easy because of the complexity of and
our limited knowledge about astrophysical particle sources
and the complexity of the astrophysical environments along
the path of these particles from their source to Earth
inferring the traveled proper time from particle decay or
neutrino oscillations will be rather complicated.
As already mentioned above in nature particle emission

by strong burst sources which can be more easily detected
and characterized with the currently available detector
technology, in particular neutrino sources such as super-
nova explosions, binary neutron star mergers, or tidal
disruption events, tends to be rather rare and short-lived.
Therefore, observing all features discussed during our
theoretical treatment will be very hard to achieve; however,
in the context of a multimessenger approach information
gained from the observation of gravitationally lensed
particles in combination with information from gravita-
tionally lensed electromagnetic radiation, namely the pho-
ton shadow, the positions of multiple images of the source
on the observer’s celestial sphere, and the travel time
differences between these images may help to determine
the nature of an astrophysical black hole by constraining
the parameters in different black hole models in general

relativity. In particular in the presence of circular photon
and particle shadows combining these information may
help to observe the presence and magnitude of an electric or
gravitomagnetic charge.
As already pointed out above, treating neutrinos as

quantum mechanical particles will very likely allow us
to get more information about the background spacetime, in
particular when neutrino oscillations are properly consid-
ered. First calculations for the Schwarzschild spacetime
show already promising results. The first investigations on
this topic have already been performed more than 25 years
ago. As one of the first Fornengo et al. [68] investigated the
effect of a curved spacetime on the propagation of
neutrinos. In their work they assumed that the neutrinos
propagate along the trajectories of light rays in the
Schwarzschild spacetime. They found that gravitational
effects affect the phase when it is written in terms of the
energy and proper distance as measured by a local observer.
Their results indicate that gravitational lensing affects the
interference pattern resulting from neutrinos traveling
along different paths around the black hole and the
flavor-changing probability. Cardall and Fuller [69] per-
formed a similar analysis and also found that neutrino
oscillations are affected in the presence of a Schwarzschild
geometry. Since these initial investigations several authors,
among them Crocker et al. [70], and Alexandre and Clough
[71] investigated the effect of gravitational scattering in a
Schwarzschild spacetime on neutrino oscillations and
found that under the right circumstances when source,
lens, and observer are properly aligned an observer on
Earth can detect a neutrino pattern which differs from the
pattern expected for neutrinos propagating in a flat space
vacuum. Dvornikov [72] investigated the influence of a
Schwarzschild geometry on neutrino spin oscillations. He
found that close to the critical impact parameter after the
scattering initially only left polarized ultrarelativistic neu-
trinos have a transition probability of about 25% to right
polarized neutrinos. Furthermore, very recent results from
Swami et al. [73] indicate that the phase difference of
neutrinos traveling along different paths in a Schwarzschild
geometry depends on the difference of the squared neutrino
masses and also on the neutrino masses themselves. These
results let us hope that once more sensitive neutrino
detectors are available neutrino lensing will not only serve
as supplement but as a fully fledged contributor to multi-
messenger observations.
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APPENDIX A: ELEMENTARY INTEGRALS

While solving the equations of motion for r, the time
coordinate t, and the proper time τ in Secs. III A, III D,
and III E we encountered several elementary integrals. In this
appendix we briefly summarize them and their solutions.

1. Radial timelike geodesics

We start with the integrals which occurred for radial
timelike geodesics with K ¼ 0 for the Schwarzschild
metric and the Reissner-Nordström metric. The integrals
for the Schwarzschild metric can be rewritten in terms
of the following four elementary integrals and their
solutions:

I1 ¼
Z

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2x

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc1xþ c2Þx

p
c1

−
c2

c
3
2

1

ln
�
c1

ffiffiffi
x

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðc1xþ c2Þ

p �
; ðA1Þ

I2 ¼
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2x

p ¼ 2ffiffiffiffiffi
c1

p ln
�
c1

ffiffiffi
x

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðc1xþ c2Þ

p �
; ðA2Þ

I3 ¼
Z

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2x

p ¼ −
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðc1xþ c2Þ

p
c2x

; ðA3Þ

I4 ¼
Z

dx

ðx − c3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2x

p ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc1c3 þ c2Þc3

p arcoth

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1c3 þ c2Þx
ðc1xþ c2Þc3

s 1
A; ðA4Þ

where in our case we have c1 ¼ E2 − 1 and c2 ¼ c3 ¼ 2m. Similarly the integrals for the Reissner-Nordström metric can
be rewritten in terms of the following five elementary integrals and their solutions:

I5 ¼
Z

xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3

p
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3
2
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�
2
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c1ðc1x2 þ c2xþ c3Þ

q
þ 2c1xþ c2

�
; ðA5Þ

I6 ¼
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3

p ¼ 1ffiffiffiffiffi
c1

p ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðc1x2 þ c2xþ c3Þ

q
þ 2c1xþ c2

�
; ðA6Þ

I7 ¼
Z

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3

p ¼ 1ffiffiffiffiffiffiffiffi−c3
p arcsin

 
c2xþ 2c3

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 − 4c1c3

p
!
; ðA7Þ

I8 ¼
Z

dx

ðx − c4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q ��
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I9 ¼
Z

dx
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3

p ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1x2 þ c2xþ c3
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�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1c24 þ c2c4 þ c3Þðc1x2 þ c2xþ c3Þ

q ��
; ðA9Þ

where this time we have c1 ¼ E2 − 1, c2 ¼ 2m, c3 ¼ −e2, and c4 can be rHo
[only in (A8)], rHi

[only in (A8)], or rH.

2. Timelike geodesics with K =VEðrpa− Þ
In this subsection we discuss the elementary integrals associated with timelike geodesics with a real double root at

r1 ¼ r2 ¼ rpa− . They do not have turning points in the domain of outer communication and only occur for the NUT metric
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and the charged NUT metric. In total we have four different elementary integrals. The integrals and their solutions read

I10 ¼
Z

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

q
þ R3arsinh

�
r − R3

R4

�
; ðA10Þ

I11 ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼ arsinh

�
r − R3

R4

�
; ðA11Þ

I12 ¼
Z

dr

ðr − raÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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4
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ðra − R3Þðr − raÞ þ ðR3 − raÞ2 þ R2

4
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!
; ðA12Þ

I13 ¼
Z

dr
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p ¼ ra − R3

ððR3 − raÞ2 þ R2
4Þ

3
2

arsinh

 
ðra − R3Þðr − raÞ þ ðR3 − raÞ2 þ R2

4

R4ðr − raÞ

!

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR3 − rÞ2 þ R2

4

p
ððR3 − raÞ2 þ R2

4Þðr − raÞ
; ðA13Þ

where in (A12) the parameter ra can either be r1 ¼ r2 ¼
rpa− , rHo

, rHi
, or rH, while in (A13) ra can only be rH.

3. Timelike geodesics with K =VEðrpaÞ
In this subsection we discuss the elementary integrals

associated with timelike geodesics asymptotically coming
from or going to an unstable particle sphere at rpa. In total
we have two different elementary integrals. After applying
the coordinate transformation (41) they read

I14 ¼
Z

dy
ðy − yaÞ ffiffiffiffiffiffiffiffiffiffiffiffi

y − y1
p ; ðA14Þ

I15 ¼
Z

dy
ðy − yaÞ2 ffiffiffiffiffiffiffiffiffiffiffiffi

y − y1
p : ðA15Þ

Here, in (A14) the parameter ya can take the values ypa,
a2=12, yHo

, yHi
, or yH while in (A15) it can only take the

values a2=12 or yH. Here, the coordinate transformation
(41) relates y1, ypa, yHo

, yHi
, and yH to r4, rpa, rHo

, rHi
, and

rH, respectively. Now we have to distinguish the cases
ya ¼ a2=12, ya ¼ ypa for rHo

< r < rpa, and ya ¼ ypa for
rpa < r from all other cases.
We start with calculating (A14). We have to distinguish

two different cases. When ra > rwe have y > ya. This also
includes the case ya ¼ a2=12. In this case we substitute
z ¼ y − ya. In the second case we have r > ra and thus
y < ya. In this case we substitute z ¼ y − y1. We integrate
and rewrite the obtained results in terms of r. In total we
obtain three structurally different results. They read

I141 ¼ −4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − r4
a3

r
arcoth

 ffiffiffiffiffiffiffiffiffiffiffiffi
r − r4
r − r3

r !
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I142 ¼−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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0
@
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s 1
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I143 ¼−4
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s
artanh

0
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s 1
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ðA18Þ

where the first result I141 (A16) is only valid for
ya ¼ a2=12. The second result I142 (A17) only occurs
for timelike geodesics with rHo

< r < rpa and thus the
parameter ra only takes the value rpa. In the third result I143
(A18) the parameter ra can take four different values. These
are rpa, rHo

, rHi
, and rH, however, the integral with ra ¼ rpa

only occurs for timelike geodesics with rpa < r.
Analogously we proceed for the second integral (A15).

Here, we only have to distinguish two different cases. After
the integration and rewriting the obtained results in terms of
r we get

I151 ¼
8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − r4

p

a
3
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3
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−
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I152 ¼
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where the first result I151 (A19) is only valid for ya ¼
a2=12 and in the second result I152 (A20) the parameter ra
can only take the value rH.

APPENDIX B: ELLIPTIC INTEGRALS

In Sec. III, in particular Secs. III D and III E, we
encountered several general (pseudo)elliptic integrals. All
of them can be rewritten in terms of elementary functions
and Legendre’s elliptic integrals of the first, second, and
third kind. Since not all readers might be familiar with
Legendre’s elliptic integrals in this appendix we will briefly
introduce them and then show how we can use them and
elementary functions to rewrite nine different nonstandard
(pseudo)elliptic integrals in terms of elementary functions
and Legendre’s elliptic integrals of the first, second, and
third kind.
Legendre’s incomplete elliptic integrals of the first,

second, and third kind are defined by

FLðχ; kÞ ¼
Z

χ

0

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðB1Þ

ELðχ; kÞ ¼
Z

χ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

q
dχ0; ðB2Þ

ΠLðχ; k; ñÞ ¼
Z

χ

0

dχ0

ð1 − ñ sin2 χ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðB3Þ

where χ is the so-called amplitude, k is the square of the
elliptic modulus and ñ∈R is an arbitrary real parameter.
Note that when we add or subtract an integer multiple n̂ of
π in the limits and transform χ → χ ∓ n̂π the integrands
remain invariant. When we have χ ¼ π=2 the elliptic
integrals are commonly referred to as complete elliptic
integrals and the amplitude χ is omitted. In addition, the
complete elliptic integral of the first kind is usually written
as KLðkÞ ¼ FLðπ=2; kÞ. As we can easily read from (B3)
the denominator of the integrand of the elliptic integral
of the third kind leads to a singularity whenever 1 ≤ ñ.
In this case we can use (17.7.7) and (17.7.8) in [74] to
rewrite (B3) as

ΠLðχ; k; ñÞ ¼ FLðχ; kÞ − ΠL

�
χ; k;

k
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þ 1

2p
ln
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j cos χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ
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− p sin χj

!
;

ðB4Þ

where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðñ − 1Þðñ − kÞ

ñ

r
: ðB5Þ

In addition, in the course of this paper we encountered nine
different nonstandard elliptic and pseudoelliptic integrals.
They read
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p ; ðB6Þ

JL2
ðχi;χ;k1; ñÞ¼
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ðB11Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ0

p ; ðB13Þ

JL9
ðχi;χ; k̃; ñÞ ¼

Z
χ

χi

dχ0

ð1− ñ sin2 χ0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− k̃ sin2 χ0

p : ðB14Þ

In the following we will summarize how we can rewrite
them in terms of elementary functions and Legendre’s
elliptic integrals of the first, second, and third kind. We
start with the integrals JL1

ðχi; χ; k1; ñÞ and JL2
ðχi; χ; k1; ñÞ.

In this case χi and χ are related to ri and rðλÞ (note that here
we omit λ for χ) by (27) and the square of the elliptic
modulus k1 is given by (28). Note that after the substitution
(23) we effectively obtain the forms given by (267.01) and

TORBEN C. FROST PHYS. REV. D 108, 124019 (2023)

124019-46



(267.02) in Byrd and Friedman [55]. In both integrals we can
have ñ ¼ g0 or ñ ¼ n1, where

n1 ¼
R2 þ g0ðR1 − rH̃Þ
R1 − g0R2 − rH̃

; ðB15Þ

whereR and R̄ are given by (21) and (22). rH̃ can be rHi
, rHo

,
or rH. Using elementary functions and Legendre’s elliptic

integrals of the first, second, and third kind (B6) and (B7)
can now be rewritten as (note that here we omit χi in the
argument of the functions)

JL1
ðχ; k1; ñÞ ¼

FLðχ; k1Þ þ ñ2ΠLðχ; k1; 1þ ñ2Þ
1þ ñ2

þ ñJLðχ; k1; ñÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ñ2Þð1 − k1 þ ñ2Þ

p ; ðB16Þ

JL2
ðχ; k1; ñÞ ¼

FLðχ; k1Þ
ð1þ ñ2Þ2 þ

ñ2

ð1þ ñ2Þð1 − k1 þ ñ2Þ

 
ñþ sin χ − ñ cos χ

cos χ þ ñ sin χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ

q
− ELðχ; k1Þ

!

þ 2ð1 − k1 þ ñ2Þ − ñ2k1
ð1þ ñ2Þð1 − k1 þ ñ2Þ

 
ñ2ΠLðχ; k1; 1þ ñ2Þ

1þ ñ2
þ ñJLðχ; k1; ñÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ñ2Þð1 − k1 þ ñ2Þ

p
!
; ðB17Þ

where in both cases the function JLðχ; k1; ñÞ is given by

JLðχ; k1; ñÞ ¼ ln

0
BBB@
���������

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þñ2

1−k1þñ2

q ��
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þñ2

1−k1þñ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ

p �
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þñ2

1−k1þñ2

q ��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þñ2

1−k1þñ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ

p �
���������

1
CCCA: ðB18Þ

Note that because 1 < 1þ ñ2 we use (B4) to avoid the
divergence of Legendre’s elliptic integral of the third kind.
Now we continue with JL3

ðχi; χ; k1Þ and JL4
ðχi; χ; k1Þ. We

have the same relations for χi, χ, and k1 as for
JL1

ðχi; χ; k1; ñÞ and JL2
ðχi; χ; k1; ñÞ. Both integrals occur

as special cases for e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
,K ¼ 0, andΔ < 0when

we rewrite (81) in terms of elementary functions and
Legendre’s elliptic integrals (we can easily show that in
this case we have rH ¼ m ¼ R2=g0 þ R1). Note that in this
case χH ¼ χðr ¼ rHÞ ¼ π=2 and thus we have π=2 < χi; χ.
In terms of elementary functions and Legendre’s elliptic
integral of the second kind (B8) and (B9) now read (we
again omit χi in the argument and rewrite (B8) as anti-
derivative without integration constant)

JL3
ðχ; k1Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1

p arcoth

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ

1 − k1

s 1
A; ðB19Þ

JL4
ðχ; k1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k1 sin2 χ

p
tan χ − ELðχ; k1Þ

1 − k1
: ðB20Þ

Note that because we can write (B19) in terms of elementary
functions (B8) is a so-called pseudoelliptic integral.
Now we turn to JL5

ðχi; χ; k2; ñÞ and JL6
ðχi; χ;

k2; ñÞ. For both integrals χi and χ are related to ri and
rðλÞ (note that we again omit λ for χ) by (38) and the square
of the elliptic modulus k2 is given by (39). In this case we
have either ñ ¼ n2 or ñ ¼ n3, where n2 and n3 are given by

n2 ¼
R̄þ R
R̄ − R

; ðB21Þ

n3 ¼
ðrH̃ − r1ÞR̄þ ðrH̃ − r2ÞR
ðrH̃ − r1ÞR̄ − ðrH̃ − r2ÞR

; ðB22Þ

where R and R̄ are given by (33) and (34). In n3 rH̃ can be
rHi

, rHo
, or rH. For both integrals the integration procedure

is straight forward. For (B10) we first expand by 1 −
ñ cos χ0 and split the integral into two terms. Now it reads
(we again drop χi in the argument)

JL5
ðχ; k2; ñÞ ¼

1

1− ñ2

0
B@ΠL

�
χ; k2;

ñ2

ñ2 − 1

�

− ñ
Z

χ

0

cos χ0dχ0�
1− ñ2

ñ2−1 sin
2 χ0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− k2 sin2 χ0
p

1
CA;

ðB23Þ

where we already rewrote the first term as Legendre’s
elliptic integral of the third kind. The second term is an
elementary integral. The evaluation of the elementary
integral requires several case by case analyses which we
will not reproduce here. The final result reads
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JL5
ðχ; k2; ñÞ ¼

ΠL

�
χ; k2; ñ2

ñ2−1

�
1 − ñ2

þ ñJ̃Lðχ; k2; ñÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðñ2 − 1Þðñ2ð1 − k2Þ þ k2Þ

p ; ðB24Þ

where J̃Lðχ; k2; ñÞ is given by (B27) below. For (B11) we proceed analogously. First we expand by ð1 − ñ cos χ0Þ2
and get

JL6
ðχ; k2; ñÞ ¼

2

ðñ2 − 1Þ2

0
B@Z χ

0

dχ0�
1 − ñ2

ñ2−1 sin
2 χ0
�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 χ0
p − ñ

Z
χ

0

cos χ0dχ0�
1 − ñ2

ñ2−1 sin
2 χ0
�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 χ0
p

1
CA

þ
ΠL

�
χ; k2; ñ2

ñ2−1

�
ñ2 − 1

: ðB25Þ

This time we got three different terms. The first and the third term are again elliptic integrals. The latter we already rewrote
in terms of Legendre’s elliptic integral of the third kind. The second term is an elementary integral. Again the evaluation of
the elementary integral requires several case by case analyses, which are too long to be reproduced here. The first term can
be rewritten in terms of elementary functions and Legendre’s elliptic integrals of the first, second, and third kind using (B30)
below. When we evaluate all terms and simplify them the result reads

JL6
ðχ; k2; ñÞ ¼

ñ3 sin χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ

p
ðñ2 − 1Þðñ2ð1 − k2Þ þ k2Þð1þ ñ cos χÞ −

ñðñ2ð1 − 2k2Þ þ 2k2ÞJ̃Lðχ; k2; ñÞ
2ððñ2 − 1Þðñ2ð1 − k2Þ þ k2ÞÞ32

þ FLðχ; k2Þ
ñ2 − 1

−
ñ2ELðχ; k2Þ

ðñ2 − 1Þðñ2ð1 − k2Þ þ k2Þ
þ
ðñ2ð1 − 2k2Þ þ 2k2ÞΠL

�
χ; k2; ñ2

ñ2−1

�
ðñ2 − 1Þ2ðñ2ð1 − k2Þ þ k2Þ

: ðB26Þ

In both (B24) and (B26) the function J̃Lðχ; k2; ñÞ is
given by

J̃Lðχ; k2; ñÞ ¼ ln

0
BBB@

sin χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ñ2ð1−k2Þþk2

ñ2−1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ

p
���� sin χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ñ2ð1−k2Þþk2

ñ2−1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ

p ����

1
CCCA:

ðB27Þ

In both (B24) and (B26), we have ñ2=ðñ2 − 1Þ > 1 for all ñ
and thus we again use (B4) to avoid the divergence of
Legendre’s elliptic integral of the third kind.
Now we proceed to JL7

ðχi; χ; k2Þ and JL8
ðχi; χ; k2Þ. The

former is a pseudoelliptic integral while the latter is a true
elliptic integral. We have the same relations for χi, χ, and k2
as for JL5

ðχi; χ; k2; ñÞ and JL6
ðχi; χ; k2; ñÞ. Both integrals

occur as special cases for e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
, K ¼ 0, and Δ >

0when we rewrite (81) in terms of elementary functions and
Legendre’s elliptic integrals. Note that we can easily show
that in this case we have rH ¼ m ¼ ðr1R̄ − r2RÞ=ðR̄ − RÞ.
Note that also in this case we have χH ¼ χðr ¼ rHÞ ¼ π=2
and thus we have π=2 < χi; χ. When we rewrite
JL7

ðχi; χ; k2Þ and JL8
ðχi; χ; k2Þ in terms of elementary

functions and Legendre’s elliptic integrals of the first and
second kind they read (again we omit the first argument χi)

JL7
ðχ; k2Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p artanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
sin χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2 sin2 χ
p

!
; ðB28Þ

JL8
ðχ; k2Þ ¼ FLðχ; k2Þ −

ELðχ; k2Þ
1 − k2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 χ

p
1 − k2

tan χ:

ðB29Þ

Note that both integrals diverge when χ ¼ π=2.
Now the last remaining nonstandard elliptic integral is

JL9
ðχi; χ; k̃; ñÞ. It occurs when we rewrite (81) in terms of

elementary functions and Legendre’s elliptic integrals for
timelike geodesics which can have turning points at r1 ¼
rmin or r2 ¼ rmax, and when we rewrite (B25) as (B26).
Note that for the former χi and χ are related to ri and rðλÞ
(again we omit λ for χ) by (51) or (55), respectively, and the
square of the elliptic modulus k̃ is given by k3 (52). For
the latter χi and χ are related to ri and rðλÞ by (38) and the
square of the elliptic modulus k̃ is given by k2 (39). After
rewriting (B14) in terms of elementary functions and
Legendre’s elliptic integrals of the first, second, and third
kind and omitting the first argument χi it reads
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JL9
ðχ; k̃; ñÞ ¼ ñ2 sin ð2χÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k̃ sin2 χ

p
4ðñ − k̃Þðñ − 1Þð1 − ñ sin2 χÞ

þ FLðχ; k̃Þ
2ðñ − 1Þ −

ñELðχ; k̃Þ
2ðñ − k̃Þðñ − 1Þ

þ ñðñ − 2Þ − ð2ñ − 3Þk̃
2ðñ − k̃Þðñ − 1Þ ΠLðχ; k̃; ñÞ: ðB30Þ

For timelike geodesics which can have turning points at
r1 ¼ rmin or r2 ¼ rmax we can use (B30) as is. However,
when we use (B30) to rewrite (B25) in terms of elementary
functions and Legendre’s elliptic integrals of the first,
second, and third kind we have to replace ñ → ñ2=ðñ2 − 1Þ.

APPENDIX C: SOLVING DIFFERENTIAL
EQUATIONS USING JACOBI’S

ELLIPTIC FUNCTIONS

In Sec. III A we encountered several differential equa-
tions which can only be solved using elliptic functions. For
this purpose in general different types of elliptic functions
can be used. The most popular are certainly Jacobi’s elliptic
functions and Weierstraß’ elliptic ℘ function. In this paper
we will use Jacobi’s elliptic functions. In this appendix we
will briefly introduce Jacobi’s elliptic functions and show
how to use them to solve differential equations of the
general type�

dz
dλ

�
2

¼ d4z4 þ d3z3 þ d2z2 þ d1zþ d0; ðC1Þ

where in our case d4, d3, d2, d1, and d0 are real coefficients
and λ is an arbitrary variable, which, for now, has no
relation to the Mino parameter.
Before we proceed to demonstrate how to solve (C1)

using Jacobi’s elliptic functions let us briefly introduce
them. For this purpose let us start with the differential
equation �

dχ
dλ

�
2

¼ 1 − k sin2 χ; ðC2Þ

where k is the square of the elliptic modulus. Now we
separate variables and integrate using the initial condition
χðλi ¼ 0Þ ¼ χi ¼ 0. We get

λ ¼
Z

χ

0

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðC3Þ

where χ is called the amplitude of λ (χ ¼ amλ). We now
define the so-called sinus amplitudinis and the cosinus
amplitudinis (also known as Jacobi’s elliptic sn and cn
functions) as

sin χ ¼ sin amλ ¼ snðλ; kÞ; ðC4Þ

cos χ ¼ cos amλ ¼ cnðλ; kÞ: ðC5Þ

Together with the so-called delta amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ksn2ðλ; kÞ

q
¼ dnðλ; kÞ ðC6Þ

they form a set of basic elliptic functions. However, in this
paper we will only use Jacobi’s elliptic sn and cn functions.
Using the definitions of the sinus amplitudinis and the
cosinus amplitudinis we can also define another elliptic
function. It is the elliptic analog of the tangent and reads

tan χ ¼ sin χ

cos χ
¼ snðλ; kÞ

cnðλ; kÞ ¼ scðλ; kÞ: ðC7Þ

It is called Jacobi’s elliptic sc function. However, note that
due to its similarity to the tangent in the older literature one
can also find the notation scðλ; kÞ ¼ tnðλ; kÞ. Jacobi’s
elliptic sn, cn, and sc functions have now the unique
property to solve (C2). In the following we will now
demonstrate how to use them to solve differential equations
of the form (C1). For this purpose let us first rewrite (C1) in
terms of its roots. We get�

dz
dλ

�
2

¼ d4ðz − z1Þðz − z2Þðz − z3Þðz − z4Þ; ðC8Þ

where in our case the four roots z1, z2, z3, and z4 can be two
pairs of distinct complex conjugate roots, a pair of complex
conjugate roots and two distinct real roots, or four distinct
real roots. So for applying Jacobi’s elliptic functions to
solve (C8) we require that we do not have real multiple roots
[in these cases we can use, e.g., the elementary integrals
from Appendix A to solve (C1)] or a pair of complex
conjugate double roots. In all other cases we now apply
coordinate transformations of the form z ¼ fðsin χÞ (four
real roots), z ¼ fðcos χÞ (two real roots and a pair of
complex conjugate roots), or z ¼ fðtan χÞ (two pairs of
complex conjugate roots) to transform (C8) into the form�

dχ
dλ

�
2

¼ d4CLð1 − k sin2 χÞ; ðC9Þ

where CL is a constant whose exact form depends on the
chosen coordinate transformation. We can easily see that the
form of (C9) is already very similar to the Legendre form
(C2). Again we separate variables and integrate using the
initial conditions χðλiÞ ¼ χi. We get

λ − λi ¼
iχiffiffiffiffiffiffiffiffiffiffiffi
d4CL

p
Z

χ

χi

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p ; ðC10Þ

where iχi ¼ sgnðdχ=dλjχ¼χi
Þ. We now rewrite the elliptic

integral in terms of two incomplete elliptic integrals of the
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first kind and move all terms containing the initial con-
ditions to the left-hand side. We obtain

iχi
ffiffiffiffiffiffiffiffiffiffiffi
d4CL

p
ðλ−λiÞþFLðχi;kÞ¼

Z
χ

0

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ksin2χ0

p : ðC11Þ

We now define

λ̃ðλÞ ¼ iχi
ffiffiffiffiffiffiffiffiffiffiffi
d4CL

p
ðλ − λiÞ þ λχi;k; ðC12Þ

where we defined λχi;k ¼ FLðχi; kÞ, and get

λ̃ðλÞ ¼
Z

χ

0

dχ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k sin2 χ0

p : ðC13Þ

Comparing (C13) with (C3) we now see that in this case we
have χ ¼ amλ̃ðλÞ and thus the solutions are given by
snðλ̃ðλÞ; kÞ, cnðλ̃ðλÞ; kÞ, and scðλ̃ðλÞ; kÞ. Using the solutions
to (C9) we can now write the solutions to (C1) as zðλÞ ¼
fðsnðλ̃ðλÞ; kÞÞ (four real roots), zðλÞ ¼ fðcnðλ̃ðλÞ; kÞÞ (two
real roots and a pair of complex conjugate roots), or zðλÞ ¼
fðscðλ̃ðλÞ; kÞÞ (two pairs of complex conjugate roots).
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