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The success of analytic waveform modeling within the effective-one-body (EOB) approach relies on the
precise understanding of the physical importance of each technical element included in the model. The
urgency of constructing progressively more sophisticated and complete waveform models (e.g. including
spin precession and eccentricity) partly defocused the research from a careful comprehension of each
building block (e.g. Hamiltonian, radiation reaction, ringdown attachment). Here we go back to the spirit of
the first EOB works. We focus first on nonspinning, quasicircular, black hole binaries and analyze
systematically the mutual synergy between numerical relativity (NR) informed functions and the high post-
Newtonian corrections (up to 5PN) to the EOB potentials. Our main finding is that it is essential to correctly
control the noncircular part of the dynamics during the late plunge up to merger. When this happens, either
using NR-informed nonquasicircular corrections to the waveform (and flux) or high-PN corrections in the
radial EOB potentials ðD;QÞ, it is easy to obtain EOB=NR unfaithfulness ∼10−4 with the noise of either
Advanced LIGO or 3G detectors. We then improve the TEOBResumS-GIOTTO waveform model (dubbed
TEOBResumSv4.3.2) for quasicircular, spin-aligned black hole binaries. We obtain maximal EOB=NR
unfaithfulness F̄max

EOBNR ∼ 10−3 (with Advanced LIGO noise and in the total mass range 10–200M⊙) for the
dominant l ¼ m ¼ 2 mode all over the 534 spin-aligned configurations available through the Simulating
eXtreme Spacetime catalog. The model performance, also including higher modes, is then explored using
the NR surrogates NRHybSur3dq8 and NRHybSur2dq15, to validate TEOBResumSv4.3.2 up to mass ratio
m1=m2 ¼ 15. We find that, over the set of configurations considered, more than 98% of the total-mass-
maximized unfaithfulness lie below the 3% threshold when comparing to the surrogate models.
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I. INTRODUCTION

With the ever-growing sensitivities of gravitational wave
(GW) observatories, the issue of systematic errors due to
modeling is at the forefront of GW astronomy. This topic
has received some attention in the recent literature [1–5],
and such errors are typically quantified in terms of their
impact on parameter estimation, and studied by comparing
the posterior distributions obtained with different models.
Unfortunately, so far only few studies have attempted to
link the observed differences to the specifics of the models
themselves, in large part due to their extreme complexity,
which stems from the need of describing a large class of
systems and physical effects.
In this respect, the effective-one-body (EOB) [6–9]

approach to the general relativistic two-body problem is
currently the only formalism sufficiently flexible and
accurate to generate reliable waveforms for any kind of

coalescing binaries, from quasicircular and eccentric black
holes [10–19], to neutron stars [3,16,20–23] or mixed
binaries [24,25]. This framework is characterized by a few,
well defined, building blocks (i.e. Hamiltonian, radiation
reaction, waveform, ringdown description) that can incor-
porate a variable amount of analytic information—usually
post-Newtonian results repackaged in some resummed
fashion—suitably augmented by numerical relativity
(NR) information.
Within the EOB approach, the issue of understanding

waveform systematics rephrases as the need of evaluating
the impact that each (sub)building block of the model may
have on waveform accuracy.1 This conceptual approach

1This waveform accuracy is typically evaluated using phasing
comparisons with NR waveform data, considered as exact for any
practical purpose.
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was followed in, e.g., Refs. [26–29], and was essential to
identify the best analytical waveform description through
plunge up to merger. Note that this effort was nontrivial, as
the flexibility of the framework implies some degree of
arbitrariness in, e.g., resummation choices. We then define
“analytic” waveform systematics all errors stemming from
the choices in the analytic structure of a model. In recent
years, the rush of constructing physically complete EOB
waveform models, to satisfy the needs of gravitational
wave data analysis, partly defocused the current EOB
research from the scope of minimizing analytic systematics,
and deeply understanding the interplay of the various
analytical elements with each other and with the procedure
of calibrating the analytical model. Here we make an effort
to go back to the original EOB philosophy [26–29]. We
attempt to understand, one by one, the influence of various
building elements of the Hamiltonian, or other well-defined
and established procedure, like the determination of next-
to-quasicircular (NQC) to the waveform and radiation
reaction. This knowledge allows then to better clarify
which directions to follow aiming at improved waveform
accuracy for next generation detectors like Einstein
Telescope [30–32] and Cosmic Explorer [33].
The paper is organized as follows. In Sec. II we present

an improved nonspinning sector of TEOBResumS via a more
precise NR-informed effective-5PN function ac6. Using this
model as a reference baseline, in Sec. III we explore various
analytic systematics, like the effect of changing the ring-
down matching point and the inclusion of high-order
(noncircular) terms in the EOB potentials. This allows
the construction of different quasicircular EOB waveform
models with different analytic content and related levels of
EOB=NR unfaithfulness. To enlarge our battery of EOB
models, and related analytic systematics, in Sec. IV we
present an upgrade of the eccentric EOB model of
Ref. [34], which offers a better performance either for
quasicircular binaries or for scattering angle. In Sec. V we
complement the newly determined ac6ðνÞ function of Sec. II
with progressively different NR-informed spin-orbit sec-
tors. This eventually brings us to the construction of a new,
spin-aligned, waveform model for quasicircular binaries
(including higher modes) that performs better than the
state-of-the-art TEOBResumS. In particular, here we also
incorporate within TEOBResumS the description of the ring-
down of the l ¼ 2, m ¼ 1 mode that is part of the
SEOBNRv5 model [35]. This allows us to eliminate long-
standing issues due to the bad modelization of this mode in
the standard TEOBResumS construction [36]. The notation
and analytical information of this paper strongly builds
upon Refs. [14,34,36], and we assume the reader to
be familiar with the content and notation of those papers.
We only recall a few notational elements: ðm1; m2Þ are the
masses of the two black holes, with q ¼ m1=m2 ≥ 1 the
mass ratio, M≡m1 þm2 the total mass and ν≡
m1m2=M2 the symmetric mass ratio and Xi ≡mi=M with

i ¼ 1, 2. The dimensionless spin magnitudes are χi ≡
Si=m2

1 with i ¼ 1, 2, and we indicate with ã0 ≡ X1χ1 þ
X2χ2 the effective spin, usually indicated as χeff in the
literature. If not stated otherwise, we use geometric units
with c ¼ G ¼ 1.

II. IMPROVING THE CONSERVATIVE
NONSPINNING SECTOR OF TEOBResumS-GIOTTO

The nonspinning Hamiltonian of TEOBResumS-GIOTTO

(only TEOBResumS in the following for simplicity) depends
on a single NR-informed function ac6ðνÞ, which plays the
role of an effective 5PN correction in the EOB radial
potential AðrÞ [29], where r≡ R=M is the dimensionless
relative separation between the two bodies. The original
function ac6ðνÞ employed in TEOBResumS dates back to
Ref. [37], and, for simplicity, was never changed since
(see in particular Table I of [37] and related simulations of
the Simulating eXtreme Spacetimes (SXS) catalog [38–51]
used to determine it). This expression of ac6ðνÞ was rather
conservative, allowing for EOB=NR phase differences of
the same order of (or larger than) the nominal NR phase
uncertainty at merger. The latter is typically defined, for a
given simulation, as the phase difference between the
highest and second highest resolutions available in the
SXS catalog. This uncertainty estimate, however, is quite
conservative on average,2 and may not properly reflect
systematic effects affecting the NR waveform (see, e.g.,
Ref [36] for some discussions). Therefore, in this work we
assume that the uncertainty on the highest resolution
available is substantially negligible. For each dataset, we
tune ac6 so to have an accumulated EOB=NR phase
difference that is as small as possible at NR merger (say,
≲0.05 rad) and moreover (mostly) decreases monotoni-
cally. This qualitative feature of the phase difference is
crucial to obtain EOB=NR unfaithfulness of a few parts in
∼10−4, as we will see below.3 Here we determine ac6
pointwise using the SXS datasets listed in Table I. The
raw values can be accurately fitted versus ν with the usual
rational function,

ac6 ¼ n0
1þ n1νþ n2ν2 þ n3ν3

1þ d1ν
; ð1Þ

with the coefficients listed in Table II under D3Q3_NQC.

2Note in passing that this is a property of the SpEC code.
Though finite-difference codes give results that are in general less
accurate during the inspiral, at least one can extrapolate to infinite
resolution and get a sense of the uncertainties due to finite
resolution. See for example [52].

3In previous EOB models, see for example Refs. [53,54], we
NR informed the EOB model aiming at 10−2 EOB=NR un-
faithfulness only. This is easily reachable also in case the phase
difference is not monotonic but oscillates around merger, see for
example Fig. 1 of [53].
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Figure 1 shows a sample of EOB=NR time-domain
phasings obtained using this expression of ac6ðνÞ.
Following our usual habits, the figure depicts the Regge-
Wheeler-Zerilli normalized quadrupolar waveform Ψ22 that
is connected to the (otherwise commonly used) strain
multipoles hlm as Ψlm ≡ hlm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðlþ 1Þlðl − 1Þp
,

where

hþ − ih× ¼ 1

DL

X∞
l¼2

Xl
m¼−l

hlm−2Ylm; ð2Þ

withDL as the luminosity distance and −2Ylm are the s ¼ −2
spin-weighted spherical harmonics. The waveform Ψ22 is
then decomposed in amplitude and phase asΨ22 ¼ A22e−iϕ22 .

Following standard procedures, the EOB and NRwaveforms
are aligned by applying an arbitrary time and phase shift,
obtained following the standard procedure delineated in, e.g.,
Ref. [55]. Note that, tomaximize accuracy, this comparison is
obtained with five iterations on the NQC amplitude param-
eters ða221 ; a222 Þ, which correct the l ¼ m ¼ 2 waveform, in
order to determine them self-consistently, and not using the
fits of Ref. [14] that were obtained with a different expression
for ac6ðνÞ. To ease the discussion here, we refer the reader to
Sec. II of Ref. [14] for the definition and implementation of
NQC corrections in TEOBResumS.
As additional evaluation of the quality of the EOB wave-

form, we compute the EOB=NR unfaithfulness. Given two
waveforms ðh1; h2Þ, the unfaithfulness is a function of the
total mass M of the binary and it is defined as

TABLE I. Nonspinning SXS simulations used in the first part of the paper to construct and check the various EOB
nonspinning models characterized in Table II. They are selected as nonspinning because the initial effective spin of
the system, ã0 is smaller than 10−6. Only some datasets are used to determine the first-guess values of ac6, then fitted
with functional forms and coefficients also listed in Table II. All datasets are then used to validate the models, either
with time-domain phasing comparisons or EOB=NR unfaithfulness calculations. The fifth column reports the
nominal NR phasing uncertainty at merger δϕNR

mrg, obtained by taking the phase difference between the highest and
second highest resolutions available.

ac6 first-guess values

No. SXS q ν δϕNR
mrg [rad] D3Q3_NQC D5Q5_NQC D5Q5 D3Q3 D5Q3

1 SXS:BBH:0180 1 0.25 þ0.42 −36.0 −98.0 −5 11 −13
2 SXS:BBH:0007 1.5 0.24 −0.0186 −41.5 −92.0 −15 13 −13.5
3 SXS:BBH:0169 2 0:2̄ −0.0271 −48.0 −81.5 −29 15 −15
4 SXS:BBH:0259 2.5 0.2041 þ0.0080 � � � � � � −31 � � � � � �
5 SXS:BBH:0168 3 0.1875 þ0.1144 −51.0 −68.0 −30.2 17 −19
6 SXS:BBH:0294 3.5 0.1728 þ1.325 � � � � � � −29.2 � � � � � �
7 SXS:BBH:0295 4.5 0.1488 −0.240 −45.0 −54.0 −28.5 14.5 −17
8 SXS:BBH:0056 5 0.1389 −0.439 � � � � � � −27.7 � � � � � �
9 SXS:BBH:0296 5.5 0.1302 −0.443 � � � � � � � � � � � � � � �
10 SXS:BBH:0166 6 0.1224 � � � � � � � � � � � � � � � � � �
11 SXS:BBH:0297 6.5 0.1156 −0.053 −34.5 −42.0 −26 11 −12
12 SXS:BBH:0298 7 0.1094 þ0.078 −31.5 −39.5 −25 10 −11
13 SXS:BBH:0299 7.5 0.1038 þ0.050 � � � � � � � � � � � � � � �
14 SXS:BBH:0063 8 0.0988 −1.009 � � � � � � � � � � � � � � �
15 SXS:BBH:0301 9 0.090 þ0.16 � � � � � � � � � � � � � � �
16 SXS:BBH:0302 9.5 0.0826 −0.020 −19.5 −25.9 −14 8.5 −8

TABLE II. Table listing the main features of the various, nonspinning, quasicircular models developed throughout
this paper.

a6c ¼ n0ð1þ n1νþ n2ν2 þ n3ν3 þ n4ν4Þ=ð1þ d1νÞ
Model D Q NQC iteration n0 n1 n2 n3 n4 d1

D3Q3_NQC 3PN, P0
3½D� 3PN ✓ 46.5524 −24.2516 120.9594 −167.2242 � � � −3.3998

D5Q5_NQC 5PN, P3
2½D� 5PN ✓ 104.6595 −23.2539 113.8091 −261.8068 � � � 3.6511

D5Q5 5PN, P3
2½D� 5PN ✗ 331.1899 −27.9217 268.4658 −1138.1009 1784.4727 0.063909

D3Q3 3PN, P0
3½D� 3PN ✗ 41.803 −24.5764 251.4175 −926.6667 1080.9227 0.71904

D5Q3 5PN, P3
2½D� 3PN ✗ −42.0938 −28.8863 332.9101 −1494.0405 2275.5579 −2.3295
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F̄ ðMÞ≡ 1 − F ¼ 1 −max
t0;ϕ0

hh1; h2i
jjh1jjjjh2jj

; ð3Þ

where ðt0;ϕ0Þ are the initial time and phase. We used
jjhjj≡ ffiffiffiffiffiffiffiffiffiffiffiffihh; hip

, and the inner product between two
waveforms is defined as hh1; h2i≡ 4R

R
∞
fNRminðMÞ h̃1ðfÞ×

h̃�2ðfÞ=SnðfÞdf, where h̃ðfÞ denotes the Fourier transform
of hðtÞ, SnðfÞ is the detector power spectral density (PSD),
and fNRminðMÞ ¼ f̂NRmin=M is the initial frequency of the NR
waveform at highest resolution, i.e. the frequency measured
after the junk-radiation initial transient. For Sn, in our
comparisons we use either the zero-detuned, high-power
noise spectral density of Advanced LIGO [56] or the
predicted sensitivity of Einstein Telescope [31,32] and
Cosmic Explorer [33]. Waveforms are tapered in the time
domain to reduce high-frequency oscillations in the corre-
spondingFourier transforms. The computation is done over a
sample of nonspinning SXS simulations with mass ratio
ranging from 1 to 9.5, and the EOB=NR unfaithfulness is
then denoted as F̄EOB=NR.
The result of this computation is displayed in Fig. 2. For

aLIGO, the largest values graze the 5 × 10−4 level, corre-
spond to q ¼ 1 and q ¼ 1.5 and are somehow outliers with
respect to the other configurations, where one easily gets to

2 × 10−4. Inspecting the time-domain phasings of Fig. 1,
one understands that this is the effect of lowering the phase
difference at merger from ΔϕEOBNR

22 ≡ ϕEOB
22 − ϕNR

22 ∼
0.2 rad to ΔϕEOBNR

22 ∼ 0.1 rad (see e.g. the q ¼ 9.5 case).
Changing to Einstein Telescope in its D configuration (ET-
D) and Cosmic Explorer (CE) the worst values of F̄EOB=NR

are largely unchanged, with all datasets clustering around
10−4. It thus seems that obtaining a model that is more NR
faithful (i.e. at the 10−5 level or below) mostly amounts at
further reducing the phase difference around merger. By
contrast, an imperfect control of ΔϕEOBNR

22 around merger
yields an important reduction of the EOB=NR agreement.
The reader should now be reminded that we stated that ac6

was carefully chosen such that the phase difference
ΔϕEOBNR

22 is small and decreases monotonically, mentioning
this as an essential qualitative feature to be controlled in the
NR-information process of ac6. Our statement can be under-
stood by inspecting Fig. 3. The top panel of the figure
compares two EOB=NR phase differences for q ¼ 1: one
obtained with the standard value of ac6 of TEOBResumS (that is
ac6 ≃ −41.16) and the other with the improved value
obtained above ac6 ≃ −35.93. We see that in the former
case the phase difference, which is not monotonic around
merger, yields F̄EOB=NR 2 times larger than in the opti-
mized case.
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FIG. 1. D3Q3_NQCmodel: EOB=NR phasing agreement obtained with the new fit for ac6 for the mass ratios q ¼ f1; 2; 4.5; 6.5; 7; 9.5g
of Table I. Differently from previous work, ac6 is tuned so that ΔϕEOBNR

22 decreases monotonically through merger and ringdown. Note
how visible are the modulations due to residual NR eccentricity as the mass ratio is increased.
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In conclusion, this understanding allows to put on a solid
basis what is additionally required to further improve
the model: one needs to flatten the phase difference
further through merger ringdown. This can be achieved
by experimenting with the analytic content of the model,
notably the nonradial pieces of the dynamics or augmenting
the importance of NR data through merger and ringdown.
Some of these effects will be investigated in the next
section. Let us however mention, in passing, that an
important improvement may come from a different deter-
mination of the NR-informed NQC correction to the phase.
The procedure currently implemented in the model is still

the one outlined in Ref. [37] (see Sec. III D therein) and
might need to be revised or updated, e.g. with an additional
NQC phase parameter determined by imposing continuity
between the EOB and NR third derivative of the frequency.
To do this properly, dedicated studies in the test-particle
limit are currently ongoing [58], and we do not pursue this
investigation further here but limit ourselves to mention it.

III. ANALYTIC SYSTEMATICS

In this section we attempt a preliminary investigation of
what we call analytic systematics. By this term we address
features of the EOB waveforms that depend on specific
choices of analytic elements entering the model. A rather
naive way of thinking about analytic systematics is within
post-Newtonian (PN) theory, assuming that they arise from
the lack of higher PN orders and studying the impact of
such missing terms on the waveform generation [4]. This
approach, while useful to test the sensitivity of parameter
estimation to some “small” modifications of a model, is
rather misleading because of the well-known asymptotic,
nonconverging nature of PN series in strong field, exactly
where such high order terms are expected to become most
relevant. Indeed, in place of simple PN expansions, it is
desirable to use resummed analytical expressions [59], even
for the description of inspiral waveforms. In light of this
fact, the EOB approach—with all its different avatars—
represents the most natural formalism to quantitatively
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FIG. 2. EOB=NR unfaithfulness over all SXS nonspinning
datasets listed of Table I. The top panel is obtained using the
Advanced LIGO PSD, the central panel uses the ET-D configu-
ration for the Einstein Telescope (see also Fig. 11 of Ref. [57]),
and the bottom panel uses the expected PSD for Cosmic Explorer.
The dotted blue and black lines mark respectively the 3% and 1%
thresholds.

2000 4000 6000 8000
-0.05

0

0.05

9500 9600

-0.3

-0.2

-0.1

0

20 40 60 80 100 120 140 160 180 200
10-4

10-3

10-2

FIG. 3. Effect of small changes in ac6 for q ¼ 1. The old value is
ac6 ≃ −41.16, the standard TEOBResumS one, while the new one is
ac6 ≃ −35.93. The figure highlights the relation between the
monotonically decreasing ΔϕEOBNR

22 and the unfaithfulness. A
value of ac6 that is suboptimal corresponds to approximately a loss
of 5 × 10−4 in unfaithfulness.
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study this kind of systematic effects, given its robustness
and reliability also in the strong field regime.
There are many elements of EOB-based models that can

be affected by systematics. To quote a few: (i) the PN
truncation of the EOB potentials ðA;D;QÞ, their resummed
expressions and their NR-completion (preliminary
explored in Refs. [12,19,34,52,60]); (ii) the PN truncation
and resummation of the angular momentum flux, that
impacts the radiation reaction and becomes more and more
important for long inspirals and large mass ratios [61–65];
and (iii) the way NR information is incorporated in
the model. Below we focus on two analytic systematics:
(i) the importance of the time where the inspiral-to-plunge
EOB waveform is attached to an analytic description
of the ringdown and (ii) the importance of terms beyond
3PN in the EOB potentials ðD;QÞ, and their link to NQC
parameters.

A. The role of the matching point

So far, we have seen that it is relatively easy to improve
the performance of the state-of-the-art TEOBResumS model
simply by introducing slight changes in the way the
single EOB-flexibility function ac6ðνÞ is determined.
This yields EOB=NR unfaithfulness values that are at
most ∼5 × 10−4, with a gain of a factor 2 in the worst
cases with respect to the previous model. This value is still
larger than, though compatible with, the nominal NR
uncertainty and reflects a phase difference at merger that is
of order ∼0.2 rad. As such, one is expecting that the
EOB=NR agreement can be improved further. In this
respect, we remind the reader that we are NR informing a
single free parametric function, while the SEOBNR lineage
of models [35,66,67] uses two for the same setup (non-
spinning black hole binaries) to obtain comparable results
(see [35]). More specifically, the SEOBNR family NR
calibrates: (i) the analogous of ac6, a function called K
(or even ac6 in the latest SEOBNRv5 model [35]), and (ii) the
temporal location of the peak of the l ¼ m ¼ 2 waveform.
Within TEOBResumS the analogous of this second parameter
is called ΔtNQC, which is defined as follows. Calling Ωorb

the orbital frequency4 and tΩpeak
orb

the time when it peaks, the

interval ΔtNQC identifies on the EOB time axis the time
tNQC, where we compute the NQC corrections,

tEOBNQC ¼ tpeakΩorb
− ΔtNQC; ð4Þ

by imposing there that the EOB waveform (amplitude,
phase and their time derivatives) coincides with the NR
one, the latter evaluated 2M after the NR merger. See in
particular Refs. [68,70] for the technical details of the
procedure. Following Ref. [70], we have that

ΔtNQC ¼ 1: ð5Þ

This choice is motivated by the fact that, in the test-mass
limit, this separation is ≲1. More precisely, for the case of
a test-mass plunging on a nonspinning black hole, one
finds that ΔtNQC ¼ 0.56 (see Table 3 of5 Ref. [69]).
Analogously, for a test-particle plunging on a spinning
black hole, we have that ΔtNQC ≲ 1 and it grows as the
black hole spin increases. See in particular Table A 3 of
Ref. [69]. On the basis of this test-mass knowledge, the
condition of Eq. (5) was considered as a good, and simple,
compromise and we did not attempt to inform also this
parameter using NR simulations, although a priori one is
expecting it to depend on both the mass ratio and the spins.
It is thus interesting to explore to which extent an addi-
tional tuning of ΔtNQC can impact the model performance.
To do so, we focus on the q ¼ 1 case, which is the one
showing the largest disagreement with the NR waveform.
The top panel of Fig. 4 compares three phase differences
ΔϕEOBNR

22 : (i) the standard one, with ΔtNQC ¼ 1 and
ac6 ≃ 35.93; (ii) the one obtained using ΔtNQC ¼ −0.8
but keeping ac6 unchanged (magenta, dash-dotted line);
and (iii) the one with ΔtNQC ¼ −0.8 and ac6 ¼ −55, i.e.
after an additional tuning of this parameter. Interestingly,
one gains about a factor 2 around merger, although some
þ0.02 rad are now lost during the late inspiral. The bottom
panel of the figure quantifies this information in terms of
EOB=NR unfaithfulness: to a gain of about 2 × 10−4 for
high masses corresponds to a loss of ∼1 × 10−4 for low
masses. This analysis evidences that the tuning of ΔtNQC
could actually be helpful in improving the EOB=NR phase
agreement around merger. However, the slight loss during
the late inspiral seems to suggest it is not the best way of
proceeding and alternative routes should probably be
explored. Moreover, it requires an additional complication
(tuning two parameters with NR data instead of one) that
should possibly be faced only after other analytic elements
are carefully considered and evaluated. It is certainly not
impossible to NR tune two parameters at the same time,

4In the presence of spin, this is replaced by the pure orbital
frequency, Ωorb ¼ ∂pφ

Ĥorb, i.e. the orbital frequency without the
contribution coming from the spin-orbit Hamiltonian, see [68].
The use of this function was inspired by features in the test-mass
limit [68,69] that indicate that the peak of the quadrupolar
waveform is always close to the peak of Ωorb [69] for values
of the spin compatible to those of the final black hole that can be
generated from BBH coalescences. As such, it is the pivotal
element of the TEOBResumS construction, since it offers a natural,
and simple, anchor point to define the merger time. Note in
addition that Ωorb always has a maximum, differently from the
complete orbital frequency Ω, whose structure depends on subtle
interplays between the (necessarily approximated) descriptions of
the orbital and spin-orbit sector of the Hamiltonian.

5Actually, the value is 0.38 or 0.56 depending whether it is
calculated using Teukode or by solving directly the Regge-
Wheeler-Zerilli equations with an hyperboloidal layer [71,72].
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and indeed this is currently done for EOB models of the
SEOBNR family [35,66,67]. However, since TEOBResumS

allows for a simple and efficient iterative tuning of ac6
only that yields highly accurate waveforms, we believe that
this complication should be currently avoided. Possibly, it
should be implemented only after a new analysis of the
structure of the merger in the test-mass limit and its
connection to the comparable-mass case is performed. In
this respect, a seminal study was performed in Ref. [55],
see Sec. IV B therein. An update of that analysis with the
current, more accurate, SXS waveforms is in order and will
be considered in future work.

B. D and Q up to 5PN accuracy

Let us now analyze in detail the other obvious source of
analytic systematics, namely the PN accuracy of the EOB
potentials. The impact of currently known analytical
information at high PN order (notably, up to 6PN) was
partially explored in Refs. [12,34]. In particular, in the
context of constructing a spin-aligned EOB model for
generic (nonquasicircular) planar orbits, Ref. [34] already
explored the effect of the currently known analytical
information at 5PN in ðA;D;QÞ. To do so, in order to
avoid the occurrence of spurious poles, the resummation of
the A function was performed using a (3, 3) Padé
approximant; similarly, D was resummed using a (3, 2)
approximant, while the Q function was kept in PN
expanded form. In addition, Ref. [34] also compared
various Padé-based resummations for D, concluding that
the (3, 2) is the best compromise at this PN order. Since
the focus of [34] was on eccentric orbits (and scattering),

the performance of the 5PN-accurate ðD;QÞ potentials was
not explicitly spelled in the context of quasicircular
binaries, i.e. using the standard quasicircular radiation
reaction of TEOBResumS.
The aim of this section is to fill this gap in our knowledge

by exploring how changes in ðD;QÞ affect the quasicircular
model discussed above. We do so either by (i) following
our standard approach of iterating on the NQC amplitude
parameters ða1; a2Þ or (ii) removing the iteration, similar to
the procedure followed for the eccentric model [34]. We
will explore different PN truncations of ðD;QÞ and in each
case we will determine a new ac6ðνÞ function, compute
EOB=NR time-domain phasing and unfaithfulness. The
properties of the nonspinning models we are going to
compare and contrast are listed in Table II. Let us now
analyze them one by one.

1. D5Q5_NQC: 5PN and iteration
on NQC parameters

Let us start by considering a simple modification of
TEOBResumS, dubbed D5Q5_NQC, where we replace D and
Q at 3PN with their 5PN counterparts. The analytic
expressions are precisely those of Eqs. (3) and (5) of
Ref. [34]. In particular, for simplicity we use only the local
part of Q and omit its nonlocal contributions. Similarly, in
D we set to zero the analytically unknown coefficient dν

2

5 .
The D function is then resummed with a (3, 2) Padé
approximant. For each mass ratio considered, we deter-
mine the best ac6 value inspecting the EOB=NR phasing
and requiring, as in the previous case, that the phase
difference possibly decreases monotonically through
merger and ringdown. The corresponding values of ac6,
shown in the top-left panel of Fig. 5, can be easily fitted
with the same rational function given by Eq. (1) above.
The fitting coefficients can be read from Table II. The
corresponding EOB=NR time-domain phasings for q ¼
ð1; 2; 4.5; 6.5; 9.5Þ, obtained with the fitted ac6 function, are
shown in Fig. 5. From visual inspection, it is evident that
the EOB=NR phasing agreement is less good than the one
of Fig. 1, obtained usingD3PN andQ3PN. Note in particular
that there is a non-negligible positive phase difference that
accumulates already during the late inspiral up to merger
and that cannot be absorbed by tuning ac6. This effect is
more evident when q is small: for q ¼ 1 one reaches
ΔϕEOBNR

22 ∼ 0.1 at merger time, which then changes sign to
reach −0.3 during the ringdown. The EOB performance
degrades further for q ¼ 2, although—for larger mass
ratios—ΔϕEOBNR

22 is compatible with the corresponding
cases of Fig. 1. The sign change of ΔϕEOBNR

22 around
merger time negatively impacts on the unfaithfulness
calculation, as illustrated in Fig. 5. The curves are
generally more spread than in Fig. 2, with a few configu-
rations [those with mass ratios q ¼ ð1; 1.5Þ] above the
0.1% level.
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FIG. 4. Equal-mass case: effect of tuning, at the same time, ac6
and ΔtNQC. An improvement around merger ringdown seems to
be balanced by a slight worsening during the late inspiral. This is
apparent also looking at the EOB=NR unfaithfulness.
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This exercise demonstrates that it is possible to con-
struct an EOB model, within a given EOB paradigm, that
incorporates currently available 5PN information in the
ðD;QÞ potentials, that is less NR faithful than an analogous
model that only incorporates 3PN information in the same
functions. This looks somehow counterintuitive. A com-
monly accepted statement within the gravitational wave
modeling community is that the quality of the waveform
model improves by increasing the order of the PN infor-
mation used to construct it. As a consequence, high-PN
results are usually considered an essential element to obtain
highly faithful waveform models for current and future GW
detectors. Our simple exercise demonstrates that this simple
statementmay not always be true, at least for the considered
EOB potentials, as it depends on other features of the
model. In particular, in an attempt to frame this statement in
a wider context, in the next section we will explore what
happens when the well-established practice of iterating on
the amplitude NQC parameters ða1; a2Þ is removed.

2. D5Q5: 5PN and no iteration on NQC parameters

It is well known that NQC corrections are an essential
element of EOB models. They were introduced long ago to
correctly match the structure of the EOBwaveform with the
numerical one around merger [26,27,73]. In particular,
Ref. [29] introduced the iteration on the NQC amplitude
parameters, in order to accomplish consistency between the
waveform and the flux. This proved important in several
cases to get a high level of consistency between analytical
and numerical data (see, e.g., Ref. [57] and references
therein). However, as wewill better understand at the end of

this section, the iteration on ða1; a2Þ introduces an addi-
tional coupling between the conservative (i.e. the
Hamiltonian) and the nonconservative (i.e. the radiation
reaction) parts of the dynamics, so that the actual effect of
each part is somehow hidden by this nonlinear, though
extremely effective, procedure. To comply with the guiding
philosophy of this paper, i.e. understanding the effect of
each single theoretical element of the model, let us now
drop the NQC iteration in order to get a clear under-
standing of the strong-field action of ðD;QÞ. To start
with, we focus on an equal-mass configuration and fix
ac6 ¼ 0 for simplicity. In Fig. 6 we compare the EOB=NR
phase difference ΔϕEOBNR

22 ≡ ϕEOB
22 − ϕNR

22 for three
different choices of ðD;QÞ: (i) the standard one of
TEOBResumS ðD3PN; Q3PNÞ; (ii) the case ðD5PN; Q3PNÞ;
and (iii) ðD5PN; Q5PNÞ. In terms of the dynamics, the figure
shows that the plunge driven by the 3PN functions is faster
than the NR one, so that a non-negligible, positive, phase
difference builds up to merger (vertical dashed line in the
right panel of Fig. 6). By contrast, the D5PN function,
resummed with (3, 2) Padé approximant, acts in the
opposite direction, i.e. by delaying the plunge with respect
to NR, so that ΔϕEOBNR

22 ∼ −0.2 rad at merger. When we
consider also 5PN (local) terms in Q, the phase difference
results almost flat throughout merger and ringdown. This
finding seems to indicate that the iterative procedure for
obtaining self-consistent NQC parameters (either in the
waveform and in the flux), as introduced long ago [29],
conflicts with high-order PN corrections in the D and Q
potentials. To gain a deeper understanding on what is going
on for D5Q5_NQC, in Fig. 7 we switch on the NQC
iteration keeping ac6 ¼ 0 first for consistency with Fig. 6.
One sees immediately that the NQC iteration is equivalent
to a large repulsive effect in the dynamics, with the
EOB merger delayed with respect to the NR one (vertical
dashed line in the right panel of the figure), so that
ΔϕEOBNR

22 is large and negative. The tuning of ac6 allows
one to partly compensate this effect, as the cases ac6 ¼ −40
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FIG. 6. EOB=NR phasing comparison for q ¼ 1. Here we fix
ac6 ¼ 0 and do not iterate on the NQC parameters ða1; a2Þ.
Increasing the amount of PN information in the D and Q
functions seems to go in the good direction and improves the
EOB=NR phasing agreement during the plunge up to merger. See
text for discussion.

FIG. 5. D5Q5_NQC model: EOB=NR phasing analogous to
Fig. 1, though using the complete, analytically known, 5PN
information in ðD;QÞ, with the D function resummed using a (3,
2) Padé approximant. Note that the phase difference accumulated
already before merger for q ¼ 1 is much larger than what occurs
for D3Q3_NQC, Fig. 1.
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and ac6 ¼ −98 in Fig. 6 illustrate. However, the price to pay
to have an acceptable phasing at merger (such to yield
F̄max

EOB=NR ≲ 10−3) is a progressive worsening of the phasing
during the late inspiral, as already pointed out in the above
discussion on D5Q5_NQC. This suggests that, at least
within the current analytic context, we are actually over-
fitting ac6 (which belongs to the quasicircular regime) to fix
some missing physical effects that belong to the genuine
noncircular regime. The drawback of this overfitting is the
loss of performance during the late inspiral. To overcome
this difficulty, one could attempt to tune the noncircular
potentials to further improve the behavior during plunge
and merger without worsening the inspiral. The tuning on
the noncircular dynamics could be implemented, for
example, by tuning the currently unknown6 residual 5PN
coefficient dν

2

5 inD. A successful attempt in this direction is
shown in Fig. 8. In the top panel we tune iteratively ac6 with
the aim of reducing the phase difference at merger as much
as possible keeping ΔϕEOBNR

22 negative and monotonically
decreasing. The bottom panel shows that a rather large
value of dν

2

5 can actually reduce ΔϕEOBNR
22 during late

plunge, merger and ringdown. Note that the phasing here,
though still improvable, is substantially comparable to the
top-left panel of Fig. 1. This exercise thus shows that even
working with ðD5PN; Q5PNÞ it is possible to use NQC
corrections in a self-consistent way and obtain a highly
accurate model, but one should NR inform both the circular
and noncircular part of the dynamics.
Because of the level of additional complication of tuning

two dynamical parameters at the same time, and given the
already good performance of the model without NQC
iterations for q ¼ 1 and ac6 ¼ 0 seen above, it is then

interesting to investigate the performance attainable using
ðD5PN; Q5PNÞ for nonspinning binaries without iterating on
the NQC parameters ða1; a2Þ. Now and below we will refer
to this model as D5Q5. We thus perform a new determi-
nation of ac6 versus ν using the usual procedure, as shown in
the top left panel of Fig. 9. The ν dependence is more
complicated than the previous cases, especially because the
curve becomes rather steep as ν → 0.25. This entails that
one would need more NR simulations in the range 0.2≲
ν≲ 0.25 to correctly determine the shape of the curve. For
consistency with our previous result, we add a few more
datasets, but not many, and we limit ourselves to those
where the initial values of the dimensionless spins are
below 10−4 to avoid contamination from the small spins.
An accurate representation of the points is given by a (4, 1)
rational function in ν, with the coefficients that can be read
off Table II. This gives a representation of the current data
that is good enough, although certainly suboptimal to what
is attainable using more NR simulations. The EOB=NR
unfaithfulness for the usual nonspinning configurations is
shown in the right panel of Fig. 9. At first sight, the
performance is globally compatible to the standard result of
Fig. 2, so that it seems that no special gain is found.
However, looking at F̄max

EOB=NR (top right panel of Fig. 9),
one discovers that D5Q5 performs better than D3Q3_NQC
either for small or large values of q. This is further
highlighted by the plots in the bottom row of Fig. 9, where
the phasing improvement for q ¼ 9.5 with respect to
D3Q3_NQC is evident.

3. D3Q3 and D5Q3: Varying D with no NQC

To complete the findings of the previous section, let us
also explore the performance of TEOBResumS withQ fixed at
3PN order, without the iteration on NQC parameters and
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FIG. 7. Complement to Fig. 6. The iteration on the NQC
parameters is equivalent to a repulsive effect in the potential, i.e.
the merger gets strongly delayed. Note that the ac6 ¼ 0 line here is
how the red dashed curve of Fig. 6 is modified due to the action of
the iterated NQC. This feature can be partly compensated by
tuning ac6, although the price to pay to have an acceptable phasing
at merger is a progressive worsening of the phasing during the
late inspiral (see line for ac6 ¼ −98, that is the value correspond-
ing to D5Q5_NQC). This curve here corresponds to ΔϕEOBNR

22 in
the bottom left panel of Fig. 5.
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FIG. 8. Tuning in progression first ac6 and then dν
2

5 keeping the
iteration on NQC parameters. The performance, for the dν

2

5 -tuned
case, is visually comparable to D3Q3_NQC of Fig. 1.

6See however Ref. [74] for a recent complete calculation of the
5PN dynamics.
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varying D. To start, we fix ðD3PN; Q3PNÞ with D resummed
with a (0, 3) Padé approximant, while A is resummed with
the (1, 5) one and ac6 is informed in the usual way using NR
simulations. This model is simply dubbed D3Q3, see
Table II. We find that the absence of the NQC correction
in the radiation reaction (and thus the absence of the related
repulsive effect discussed above) reduces the flexibility and
accuracy of the model. As in the main text, a good fit of ac6
is given by a (4, 1) rational function (see Table II). The
fitted points and the fitting functions are shown in the top
left panel of Fig. 10. The corresponding EOB=NR unfaith-
fulness, with the usual nonspinning datasets used above, on
the Advanced LIGO PSD is shown in the top-right panel of
Fig. 10, while the bottom panels show two time-domain
phasings for two illustrative configurations. Interestingly,
the largest EOB=NR phase differences (up to ∼1 rad) build
up only during the last part of the plunge up to merger. It is
useful to compare these plots with the corresponding panels
in Fig. 1, which are obtained using the iterated NQC
corrections in the flux. The phasing plots indicate how the
NQC flux corrections, with their intrinsic repulsive char-
acter in strong field, are crucial to improve the dynamics
especially through the late plunge up to merger, thus
playing an essential role to achieve EOB=NR values of
F̄EOB=NR below 10−3 found for D3Q3_NQC. In addition,
thanks to the NQC iteration, the NR-informed ac6, which is

FIG. 9. D5Q5: performance of the model with ðD5PN; Q5PNÞ and no iterations on the NQC amplitude parameters ða1; a2Þ, see Table II.
Top row: the left panel shows the NR-informed ac6, the middle F̄ EOB=NRðMÞ, and right one compares the corresponding F̄max

EOB=NR with
that of D3Q3_NQC. A few illustrative time-domain phasings are also reported in the bottom row.

FIG. 10. D3Q3: performance of the model with ðD3PN; Q3PNÞ
and no NQC iteration. From left to right, top to bottom: the
behavior of ac6ðνÞ, F̄EOB=NR and two illustrative time-domain
phasings. Note that the phase difference is positive and is
accumulated only during the last orbit. Consistently with Fig. 7,
and the effective repulsive effect due to the NQC iteration that
here is missing, the EOB waveform is shorter than the NR one,
with the plunge occurring earlier on.
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a priori expected to only affect the circular part of the
dynamics, in practice propagates its action also on the
noncircular part of the dynamics, allowing for a fine-
tuning of the plunge-merger dynamics that is otherwise
impossible.
To further support the importance of a the descrip-

tion of the radial part of the dynamics, Fig. 11 shows
the performance of the model D5Q3, obtained with
ðD5PN; Q3PNÞ. By comparing Figs. 10 and 11, it is apparent
the improvement brought by moving from D3PN to D5PN,
although the global performance is also influenced by the
new determination of ac6.

IV. ECCENTRICITY AND SCATTERING

In Ref. [34] we developed an eccentric waveform model
relying on the same ðD5PN; Q5PNÞ functions discussed
above, but with an A function resummed with a (3, 3)
Padé approximant. In addition, the model of Ref. [34] was
including explicit noncircular effects in radiation reaction
(at leading Newtonian order) and in the waveform (includ-
ing up to 2PN corrections [75–77]), both in factorized (and
possibly resummed) form. In particular, the state-of-the-art
TEOBResumS eccentric model now incorporates the new
waveform introduced in Ref. [77] that relies on the direct
differentiation of the quadrupole moment without explicit
replacement of the 2PN-accurate equations of motion. As
discussed in Ref. [77] this yields improved accuracy and
robustness with respect to previous approaches [75,76].
Given our detailed analysis of the circular model of the
previous section, it is then interesting to compare the
performance of the quasicircular limit of the eccentric

model. To do so, we do not precisely use the model of
Refs. [34,76], but a version that is improved in three
directions: (i) postadiabatic initial conditions, valid in the
eccentric case, which continuously reduce to the postadia-
batic conditions in the circular limit. This is important to
avoid systematics in going to the circular limit of TEOBResumS
that were recently pointed out [78]; (ii) a new expression of
the radial force F r� where the quasicircular part is explicitly
factorized, as proposed in Ref. [79]; and (iii) we find it
unnecessary to use NR-informed NQC corrections to the
waveform phase. Among these features, let us only note that
the change of the radiation reaction is motivated by the fact
that the F r� used in Ref. [34] is the main reason why the
model is less NR faithful (see Fig. 8 of Ref. [34]) than the
native quasicircular model for q ∼ 1. As we will see below,
this feature disappears once the following, circular-factor-
ized, radial force is used:

F r� ¼ −
5

3

pr�
pφ

Fφf̂pr�
; ð6Þ

where f̂pr�
is a quadratic function in u that reads

f̂pr�
¼ 1þ

�
5317

1680
−
227

140
ν

�
u

þ
�
1296935

1016064
−
274793

70560
νþ 753

560
ν2
�
u2; ð7Þ

which is then resummed using a (0, 2) Padé approximant.
The corresponding best ac6 values are fitted by the function

ac6 ¼ 175.5440ν3 þ 487.6862ν2 − 471.7141νþ 0.8178;

ð8Þ

FIG. 11. D5Q3: model with ðD5PN; Q3PNÞ and no NQC iter-
ation. From left to right, top to bottom: the behavior of ac6ðνÞ,
F̄EOB=NR and two illustrative time-domain phasings. Note the
improved performance with respect to the D3Q3 model shown
in Fig. 10.

FIG. 12. Eccentricity: quasicircular limit of the eccentric non-
spinning model. The EOB=NR performance is comparable to the
improved TEOBResumS quasicircular model (with NQC itera-
tions), and slightly better than the eccentric model of Ref. [34]
for q ≈ 1.
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which is shown in the top-left panel of Fig. 12. Note that,
although the values of ac6 are slightly different from the best
ones determined in Ref. [34], the qualitative shape of
the function remains unchanged. The top-right panel of
Fig. 12 shows the EOB=NR unfaithfulness, while the
bottom panel the time-domain phasings for two illustrative
configurations. We see that the performance of the quasi-
circular limit of the model is more than acceptable, though
about 1 order of magnitude less good than the native
quasicircular model with the same analytic choices for
ðA;D;QÞ (see the top-middle panel of Fig. 9 as well as

Fig. 13, where we compare F̄max
EOB=NR for all noncircular

nonspinningmodels considered so far).Note that F̄max
EOB=NR ∼

0.1% (also when q ¼ 1) which shows an improvement by a
factor 2with respect toRef. [34] (see Fig. 8 therein) due to the
different choice of F r� . When moving to eccentric configu-
rations (on bound orbits) we perform the same kind of
comparisons with the available SXS datasets discussed in
previous works [34,80]. The various modifications we have
introduced to the model call for small modifications to
the initial EOB eccentricity and frequency at periastron

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5 10-3

FIG. 13. The values of F̄max
EOB=NR for the quasicircular limit of

the generic, noncircular (eccentric) model discussed in this
section compared with the corresponding values obtained with
quasicircular models discussed in Sec. III.

FIG. 14. Eccentricity: EOB=NR comparison for nonspinning
configurations with different initial eccentricities. Top left panel:
EOB=NR unfaithfulness. Other panels: time-domain phasing
plots for the most eccentric configurations.

TABLE III. Comparison between EOB and NR scattering angle. From left to right the columns report: the
ordering number; the EOB impact parameter rmin; the NR and EOB radiated energies, ðΔENR=M;ΔEEOB=MÞ; the
NR and EOB radiated angular momentum, ðΔJNR=M2;ΔJEOB=M2Þ; the NR and EOB scattering angles ðχNR; χEOBÞ
and their fractional difference Δ̂χNREOB ≡ jχNR − χEOBj=χNR.

No. rmin ΔENR=M ΔEEOB=M ΔJNR=M2 ΔJEOB=M2 χNR [deg] χEOB[deg] Δ̂χNREOB½%�
1 3.43 0.01946(17) 0.018003 0.17007(89) 0.166250 305.8(2.6) 315.6022 3.20
2 3.76 0.01407(10) 0.012124 0.1380(14) 0.124784 253.0(1.4) 258.2949 2.09
3 4.06 0.010734(75) 0.008743 0.1164(14) 0.098849 222.9(1.7) 225.0784 0.98
4 4.86 0.005644(38) 0.004152 0.076920(80) 0.058812 172.0(1.4) 171.5614 0.25
5 5.35 0.003995(27) 0.002842 0.06163(53) 0.045379 152.0(1.3) 151.2741 0.48
6 6.50 0.001980(13) 0.001370 0.04022(53) 0.027736 120.7(1.5) 119.9820 0.59
7 7.60 0.0011337(90) 0.000789 0.029533(53) 0.019227 101.6(1.7) 101.0896 0.50
8 8.68 0.007108(77) 0.000505 0.02325(47) 0.014333 88.3(1.8) 87.9789 0.36
9 9.73 0.0004753(75) 0.000347 0.01914(76) 0.011213 78.4(1.8) 78.1769 0.28
10 10.79 0.0003338(77) 0.000251 0.0162(11) 0.009081 70.7(1.9) 70.4980 0.28

11 3.03 0.0281(11) 0.0291 0.2220(64) 0.2366 307.1316 337.6476 9.94
12 3.91 0.01194(27) 0.0101 0.1252(10) 0.1098 225.5430 229.8746 1.92
13 4.41 0.00793(34) 0.0062 0.09456(70) 0.0780 207.0259 207.4499 0.20
14 4.99 0.004925(30) 0.0038 0.069504(39) 0.0560 195.9340 194.5736 0.69
15 6.68 0.001625(16) 0.0013 0.034511(71) 0.0280 201.9091 200.1535 0.87
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ðeEOBωa
;ωEOB

a Þ. Once this is taken into account, we compute
the EOB=NR unfaithfulness, which is shown in the top-left
panel of Fig. 14. On this diagnostics, the performance is
substantially equivalent to previous versions of the model.
On the contrary, the time-domain phasings, shown for the
most eccentric configurations of the set, show evidence of
some improvement with respect to previous versions of the
model, especially through merger and ringdown. As a last
investigation, we obtain the scattering angle for the q ¼ 1
nonspinning configurations whose correspondingNRvalues
are computed in Refs. [81,82]. Also here one finds a small,
though non-negligible, improvement for most of the con-
figurations, see Table III. This is particularly evident for the
configurations simulated inRef. [82], which generally span a
stronger field regime than those of Ref. [81]. In particular,
configuration number 11 in Table III has a EOB=NR frac-
tional difference∼10%, whichmeans a∼2.6% improvement
with respect toRef. [82] (seeTable II therein) thatwas relying
on the EOBmodel of Ref. [34]. The table also lists the values
of the NR and EOB radiated energy and angular momentum
as well as the closest EOB separation reached, indicated
as rmin.

V. SPINNING CONFIGURATIONS: IMPROVING
THE TEOBResumS MODEL

A. From TEOBResumSv4.1.4 to TEOBResumSv4.2.0

Now that we have understood the importance of the
modelization of the noncircular part of the dynamics in the
nonspinning case, let us move to considering spins in
TEOBResumS. In particular, we want to evaluate how the
quality of the D3Q3_NQC expression of ac6ðνÞ propagates
on the spin sector of the model. To do so efficiently, we
mostly use the C implementation of TEOBResumS comple-
mented, for simplicity, by the fits for the NQC parameters7

entering the radiation reaction presented in [14]. Figure 15
shows the EOB=NR unfaithfulness all over the full SXS
catalog obtained with the N3LO c3 parameter of
TEOBResumS but with different choices for ac6. The left
panel of Fig. 15 is F̄EOB=NR with the standard ac6ðνÞ of
TEOBResumS, while the right panel the same quantity
obtained with the D3Q3_NQC ac6. It is interesting to note
that the improvement in the orbital sector are by themselves
sufficient to reduce the number of outliers above the 2 ×
10−3 level. Note however that little improvement is
obtained, for example, for the (1.5, 0.95, 0.95) configura-
tion, although it remains the only outlier above 0.5%. In
any case, the global lowering of the EOB=NR unfaithful-
ness is non-negligible already up toM ¼ M⊙ ∼ 100, i.e. for
the total mass range covered by most of the events detected
so far by the LVK collaboration [83]. Evidently, the
EOB=NR performance is expected to improve further by

a new determination of c3 that is either more consistent
with the current choice of ac6 or uses more NR data to better
determine its dependence on the spins and mass ratio. In
this respect, Ref. [57] introduced a new version of
TEOBResumS that differs from the standard one because
of: (i) more (NR-informed) NQC corrections in the flux, to
achieve a closer EOB=NR flux consistency during the
plunge phase up to merger and (ii) a different expression for
c3 obtained using a carefully chosen set of SXS NR
simulations, see Table II in Ref. [57]. As a start, we can
simply replace the standard TEOBResumS c3 with the one
given in Eq. (22) of Ref. [57] and explore whether the
EOB=NR unfaithfulness is reduced. In general, the analytic
expression of c3 is made by two terms, one determined
using only equal-mass and equal-spin configurations, c¼3 ,
and another one corresponding to all other combinations of
mass ratios and spins, c≠3 . Globally, the c3 function reads

c3ðν; ã0; ã12Þ ¼ c¼3 þ c≠3 ; ð9Þ

where

c¼3 ≡ p0

1þ n1ã0 þ n2ã20 þ n3ã30 þ n4ã40
1þ d1ã0

ð10Þ

c≠3 ≡ ðp1ã0 þ p2ã20 þ p3ã30Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p

þ p4ã0ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
þ ðp5ã12 þ p6ã212Þν2; ð11Þ

and ãi ≡ Xiχi, ã0 ¼ ã1 þ ã2, and ã12 ≡ ã1 − ã2, while
ðp0; ni; d1; piÞ are fitting coefficients obtained by fitting
the pointwise cfirst−guess3 values obtained for a (possibly
limited) number of NR configurations. The coefficients for
the fit are found in the first row of Table IV, with the model
dubbed TEOBResumSv4.2.0. Note that, following [57], we
exactly impose p3 ¼ p6 ¼ 0. This constraint will be
eventually relaxed below. Figure 16 illustrates that this
expression of c3 already brings a relevant improvement, so

FIG. 15. EOB=NR unfaithfulness comparisons. Left panel:
standard TEOBResumS. Right panel: improved model with the
D3Q3_NQC ac6ðνÞ function of Table II but with the standard, NR-
informed, N3LO spin-orbit effective parameter c3. The red curves
correspond to all reliable nonspinning datasets. In this second
case, the only outlier above 0.5% is ð1.5;þ0.95;þ0.95Þ, SXS:
BBH:1146.

7We have verified that the differences with the iterated model
are practically negligible.
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that TEOBResumS4.2.0 is closer to NR than its previous
avatars. This is by itself remarkable considering that this
c3 was determined for a model with a different ac6 and
radiation reaction. One is left with only 11 outliers with
F̄max

EOB=NR > 0.2% (listed in Table V) with the worst
performance (0.42%) obtained for a ð3.64;þ0.80;−0.43Þ
configuration. From the table we see that most of the largest
values are in the range 2≲ q≲ 3 and large values of the
individual (unequal) spins. This is a priori not surprising
considering that the c3 above was determined using only
three q ¼ 2 and six q ¼ 3 datasets, see Table II of
Ref. [57], mostly equal-spin ones. On the one hand, this
is a proof of the robustness of the analytic structure of
TEOBResumS, as it can somehow automatically accommo-
date for the lack of additional NR information. On the other
hand, it makes us a priori confident that a different
determination of c3 that relies on some more unequal-spin

datasets should allow us to additionally lower F̄max
EOB=NR,

possibly below 10−3 for all configurations.

B. From TEOBResumSv4.2.0 to TEOBResumSv4.3.2

Let us then embark into the enterprise of improving
TEOBResumSv4.2.0 further. We anticipate that, by carefully
understanding the origin of the EOB=NR (small) discrep-
ancies, we will eventually succeed in obtaining a model,
dubbed TEOBResumSv4.3.2, with F̄max

EOBNR ∼ 0.1% all over the
public SXS catalog. We note that this result will be
achieved by only working on the NR-informed part of
the model, without incorporating additional analytical
information.
To start with, the simplest way to proceed seems to

compute a new c3 function by incorporating in the NR-
informing data the ten outlier configurations of Table V.

FIG. 16. Performance of TEOBResumSv4.2.0: the EOB=NR unfaithfulness over 534 datasets of the SXS catalog. The plot is obtained
using the public implementation of the C TEOBResumS code where the native expression of ac6 is replaced by the D3Q3_NQC one of
Table II for ac6 while c3 is given by the first row of Table IV. Left panel: the EOB=NR unfaithfulness F̄ EOB=NR versus the total mass of the
binary. Middle: F̄max

EOB=NR highlighting the dependence on q and ã0. Right panel: F̄max
EOB=NR versus the dimensionless spins ðχ1; χ2Þ. One

finds 11 configurations with F̄max
EOB=NR > 0.2%, which are listed in Table V for convenience.

TABLE IV. Coefficients for the fit of c3 for models that share the same new determination of ac6 but change mostly because of c3. More
precisely TEOBResumSv4.2.0 uses the c3 function of Ref. [57]; TEOBResumSv4.3.0 shares the same c¼3 but implements a new c≠3 informed
with NR datasets not used in Ref. [57] and all listed in Table; TEOBResumSv4.3.1 implements an improved representation of c¼3 informed
from the dataset of Table VIII that also yields a correspondingly updated c≠3 . As a last step TEOBResumSv4.3.2 implements a further

modification of c≠3 related to having changed the first-guess value for the SXS:BBH:1432 dataset from cfirst−guess3 ¼ 25 to

cfirst−guess3 ¼ 21. Furthermore, this model also implements a different analytical representation of the NR NQC point used to determine
(iteratively) the NQC corrections that is essential to remove the few outliers with unfaithfulness slightly above 0.2% always present for
the other models.

c¼3 ≡ p0ð1þ n1ã0 þ n2ã20 þ n3ã30 þ n4ã40Þ=ð1þ d1ã0Þ
c≠3 ≡ ðp1ã0 þ p2ã20 þ p3ã30Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p þ p4ã0ν
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p þ ðp5ã12 þ p6ã212Þν2
Model p0 n1 n2 n3 n4 d1 p1 p2 p3 p4 p5 p6

TEOBResumSv4.2.0 43.873 −1.849 1.0112 −0.0864 −0.0384 −0.888 26.553 −8.6584 0 −84.7473 24.0418 0
TEOBResumSv4.3.0 43.873 −1.849 1.0112 −0.0864 −0.0384 −0.888 16.6957 2.0250 −6.6009 −53.1461 34.0979 −101.0037
TEOBResumSv4.3.1 42.195 −2.0107 1.258 −0.1210 −0.1063 −0.9665 20.9956 1.5806 −10.428 −61.1980 37.1134 −37.6681
TEOBResumSv4.3.2 42.195 −2.0107 1.258 −0.1210 −0.1063 −0.9665 18.8003 0.6175 −10.398 −47.1696 33.4449 −32.5157
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Since these are all unequal-mass configurations, we will
only update c≠3 . In following this procedure, we realized
that it is useful to also update some of the first-guess values
used in Ref. [57]. All datasets used to this aim are listed in
Table VI. For the reader’s convenience, we mark with an �
the new datasets (coming from Table V) added to inform c3,
while with a † the configurations that receive an updated
value of cfirst−guess3 . The parameters of this new model,
dubbed TEOBResumSv4.3.0, are listed in the second row of
Table IV. The corresponding accuracy checks, versus NR,
are exhibited in Fig. 17. The number of outliers above 2% is
now reduced, with only three remaining configurations,
listed in Table VII. However, from Fig. 17 we see that the
performance is visibly lower for equal-mass binaries, and in
particular in the range 0≲ ã0 ≲ 0.4. This calls for an
improved determination of c¼3 in that spin range. To do
so, we list in Table VIII the equal-mass, equal-spin
configurations with the corresponding first-guess values.
The table includes two datasets more than in Ref. [57] to
constrain better the function for small, positive, spins. The
corresponding new coefficients for both c¼3 and c≠3 are
listed in the third row of Table IV, with the model now
dubbed TEOBResumSv4.3.1. The performance is evaluated in
Fig. 18. Globally, the number of dataset below 0.1%
unfaithfulness is slightly larger than before. However,
we find now four outliers above 0.2%, see Table IX.
Notably, some are the same as Table V. These suggest that,
whatever is incorrect in the EOB model in this special
corner of the parameter space, it should not be related to the
determination of c3. We thus performed a more careful
investigation of the waveform properties for a particular
configuration, the SXS:BBH:0258 one. We concluded that
the waveform inaccuracies effectively come from the
determination of the NQC corrections to the waveform
and not from the choice of c3. Let us discuss this in some
detail. We remind the reader that the determination of the
NQC parameters ða221 ; a222 ; b221 ; b222 Þ needs some represen-
tation of the NR amplitude and frequency (and first
derivatives) ðA22; Ȧ22;ω22; ω̇22Þ across the parameter space.
More precisely, Ref. [36] represented these quantities via
NR-informed fits, in the form discussed in Appendix C 5.
By computing the waveform using the exact NR values of
ðA22; Ȧ22;ω22; ω̇22Þ for SXS:BBH:0258 we concluded that
these fits are not sufficiently accurate in this corner of the
parameter space and that are thus responsible of all outliers.

TABLE V. SXS datasets of Fig. 16 considered outliers, with
F̄max

EOB=NR > 0.2%. Note that datasets SXS:BBH:0258 and SXS:
BBH:2132 represent the same configuration.

No. ID ðq; χ1; χ2Þ F̄max
EOB=NR½%�

1 BBH:0552 ð1.750100;þ0.799926;−0.399972Þ 0.2126
2 BBH:1466 ð1.896882;þ0.698849;−0.799666Þ 0.2182
3 BBH:0258 ð1.999666;þ0.871258;−0.849486Þ 0.3899
4 BBH:2132 ð1.999854;þ0.871263;−0.849645Þ 0.3920
5 BBH:1453 ð2.352106;þ0.800164;−0.784292Þ 0.3684
6 BBH:0292 ð2.999266;þ0.731359;−0.849301Þ 0.3887
7 BBH:1452 ð3.641386;þ0.800138;−0.426550Þ 0.4252
8 BBH:1428 ð5.516491;−0.800166;−0.699341Þ 0.2201
9 BBH:1440 ð5.638278;þ0.769754;þ0.306334Þ 0.2094
10 BBH:1437 ð6.037524;þ0.799933;þ0.147520Þ 0.3061
11 BBH:1419 ð7.997128;−0.799957;−0.798880Þ 0.2364

TABLE VI. First-guess values for c3 determined modifying the
unequal-mass part. This gives the TEOBResumSv4.3.0 model whose
performance is illustrated in Fig. 17.

# ID ðq; χ1; χ2Þ ã0 cfirst guess3

15 BBH:0004 ð1;−0.50; 0.0Þ −0.25 55.5
16 BBH:0005 ð1;þ0.50; 0.0Þ þ0.25 35
17 BBH:2105 ð1;þ0.90; 0.0Þ þ0.45 27.7
18 BBH:2106 ð1;þ0.90;þ0.50Þ þ0.70 19.1
19 BBH:0016 ð1.5;−0.50; 0.0Þ −0.30 56.2
20 BBH:1146 ð1.5;þ0.95;þ0.95Þ þ0.95 14.35
21 BBH:0552� ð1.75;þ0.80;−0.40Þ þ0.36 29
22 BBH:1466� ð1.90;þ0.70;−0.80Þ þ0.18 33
23 BBH:2129 ð2;þ0.60; 0.0Þ þ0.40 29.5
24 BBH:0258� ð2;þ0.87;−0.85Þ þ0.296 32
25 BBH:2130 ð2;þ0.60;þ0.60Þ þ0.60 23
26 BBH:2131† ð2;þ0.85;þ0.85Þ þ0.85 15.8
27 BBH:1453� ð2.352;þ0.80;−0.78Þ þ0.328 29
28 BBH:2139 ð3;−0.50;−0.50Þ −0.50 65.3
29 BBH:0036† ð3;−0.50; 0.0Þ −0.38 61
30 BBH:0174 ð3;þ0.50; 0.0Þ þ0.37 28.5
31 BBH:2158 ð3;þ0.50;þ0.50Þ þ0.50 27.1
32 BBH:2163 ð3;þ0.60;þ0.60Þ þ0.60 24.3
33 BBH:0293† ð3;þ0.85;þ0.85Þ þ0.85 16.0
34 BBH:0292� ð3;þ0.73;−0.85Þ þ0.335 30.6
35 BBH:1447 ð3.16;þ0.7398;þ0.80Þ þ0.75 19.2
36 BBH:1452� ð3.641;þ0.80;−0.43Þ þ0.534 25.6
37 BBH:2014 ð4;þ0.80;þ0.40Þ þ0.72 21.5
38 BBH:1434 ð4.37;þ0.7977;þ0.7959Þ þ0.80 19.8
39 BBH:0111 ð5;−0.50; 0.0Þ −0.42 54
40 BBH:0110† ð5;þ0.50; 0.0Þ þ0.42 29.5
41 BBH:1428� ð5.516;−0.80;−0.70Þ −0.784 80
42 BBH:1440� ð5.64;þ0.77;þ0.31Þ þ0.70 21.5
43 BBH:1432 ð5.84;þ0.6577;þ0.793Þ þ0.68 25
44 BBH:1437� ð6.038;þ0.80;þ0.15Þ þ0.7076 21.5
45 BBH:1375† ð8;−0.90; 0.0Þ −0.80 70
46 BBH:1419� ð8;−0.80;−0.80Þ −0.80 81.5
47 BBH:0114† ð8;−0.50; 0.0Þ −0.44 61
48 BBH:0065† ð8;þ0.50; 0.0Þ þ0.44 26.5
49 BBH:1426 ð8;þ0.4838;þ0.7484Þ þ0.51 30.3

TABLE VII. SXS outliers with F̄max
EOB=NR > 0.2% for TEOBRe-

sumSv4.3.0.

# ID ðq; χ1; χ2Þ F̄max
EOB=NR½%�

1 BBH:0258 ð1.999666;þ0.871258;−0.849486Þ 0.227161
2 BBH:0292 ð2.999266;þ0.731359;−0.849301Þ 0.280737
3 BBH:1453 ð2.352106;þ0.800164;−0.784292Þ 0.236153
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Luckily, a way to overcome this problem was already found
and discussed in Ref. [36], i.e. computing the quantities
useful for the NQC determination directly from the NR-
informed model for the postmerger discussed therein. If we
do so, the inaccuracies are largely reduced and the resulting
waveform is much closer to the one that employs the exact
values. In doing so, we realized that the former c3 fits need
a bit of adjustment, which is obtained by simply changing
the first-guess value for SXS:BBH:1432 from cfirst−guess3 ¼
25 to cfirst−guess3 ¼ 21. This eventually yields new
fitting coefficients for c≠3 and a new model, dubbed
TEOBResumSv4.3.2, as detailed in the last row of Table IV.
The performance of the model versus the SXS catalog is
evaluated in Fig. 19. The top row of the figure shows the
same analyses as above. We see now that the (minor)
changes implemented in the model are such that F̄max

EOB=NR ∼
0.1% all over the catalog. A more careful look at the other
plot is in order. Combining the middle and right panel of the
first row of Fig. 19, one sees that the model is (relatively)

FIG. 17. Performance of TEOBResumSv4.3.0 looking at the EOB=NR unfaithfulness over 534 datasets of the SXS catalog. The model
implements a new fit for the unequal-mass part of the function of c3. Left panel: the EOB=NR unfaithfulness versus the total mass of the
binary. Right panel: F̄max

EOB=NR highlighting the dependence on q and ã0. Only two configurations are left with F̄max
EOB=NR > 0.2% that are

listed in Table VII.

TABLE VIII. First-guess values for new c3 values for equal-
mass, equal-spin configurations. Together with the unequal-mass
configurations of Table VI this gives the TEOBResumSv4.3.1
model whose performance is evaluated in Fig. 18.

# ID ðq; χ1; χ2Þ ã0 cfirst guess3

1 BBH:1137 ð1;−0.97;−0.97Þ −0.97 89.7
2 BBH:0156 ð1;−0.9498;−0.9498Þ −0.95 88.5
3 BBH:0159 ð1;−0.90;−0.90Þ −0.90 84.5
4 BBH:2086 ð1;−0.80;−0.80Þ −0.80 82
5 BBH:2089 ð1;−0.60;−0.60Þ −0.60 71
6 BBH:2089 ð1;−0.20;−0.20Þ −0.60 52
7 BBH:0150 ð1;þ0.20;þ0.20Þ þ0.20 33
8 BBH:0170 ð1;þ0.4365;þ0.4365Þ þ0.20 33
9 BBH:2102 ð1;þ0.60;þ0.60Þ þ0.60 21.0
10 BBH:2104 ð1;þ0.80;þ0.80Þ þ0.80 15.9
11 BBH:0153 ð1;þ0.85;þ0.85Þ þ0.85 15.05
12 BBH:0160 ð1;þ0.90;þ0.90Þ þ0.90 14.7
13 BBH:0157 ð1;þ0.95;þ0.95Þ þ0.95 14.3
14 BBH:0177 ð1;þ0.99;þ0.99Þ þ0.99 14.2

FIG. 18. Performance of TEOBResumSv4.3.1 looking at the EOB=NR unfaithfulness over 534 datasets of the SXS catalog. Despite the
global improvement, there are still four outliers above the 0.2% level.
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less accurate for 1 ≤ q ≤ 2 and large spins. Possibly, this is
related to the fact that, to determine c3 we used just ∼10
datasets in that mass ratio range, with spins that are not
extremely high. The use of more datasets should be helpful
to further reduce F̄max

EOB=NR. Modulo this little island, it is
worth stressing that the model performs equally well either
at low and at large mass ratios. This is a priori expected,
also on the basis of the findings of Ref. [52]. It thus does
not seem an issue, at least for TEOBResumS, to produce
accurate waveforms for large mass ratios. We will come
back to discussing this topic below. Let us additionally

comment on the bottom row of Fig. 19. To have a better
handle on where the improvements are needed most, it is
instructive to plot F̄max

EOB=NR versus ðŜ; Ŝ�Þ that are the actual
spin variables entering the Hamiltonian. The plot indicates
that the criticalities mostly occur around the Ŝ ¼ Ŝ� and
Ŝ� ¼ 0 lines. This suggests that a new determination of c3
using NR data along these lines could easily improve the
model further. Finally, the middle and rightmost panels in
the bottom row of Fig. 19 show the improvement with
respect to the original TEOBResumSv4.1.4 model. For con-
venience, Fig. 20 shows the location in the ðν; ã0Þ plane of
the 55 SXS simulations used to determine ðac6; c3Þ

C. Higher modes: Comparisons with NR surrogates

To have a more robust and informative handle on the
performance of the new model we conclude this section by
comparing it with the NR surrogates NRHybSur3dq8 [51] and
NRHybSur2dq15 [84] To do so, we use the C, public,
implementation of TEOBResumS upgraded with the new ac6
fit and c3 as described above (notably D3Q3_NQC of
Table II for ac6). We compute the waveforms including
either only the (2, 2) mode or the (2, 2), (3, 3), (4, 4), and

TABLE IX. SXS outliers, with F̄max
EOB=NR > 0.2%, for TEOBRe-

sumSv4.3.1, see Fig. 18. Some configurations are the same as
Table V.

No. ID ðq; χ1; χ2Þ F̄max
EOB=NR½%�

1 BBH:2132 ð1.999854;þ0.871263;−0.849645Þ 0.258972
2 BBH:0258 ð1.999666;þ0.871258;−0.849486Þ 0.257633
3 BBH:1453 ð2.352106;þ0.800164;−0.784292Þ 0.247826
4 BBH:0292 ð2.999266;þ0.731359;−0.849301Þ 0.273188
5 BBH:1452 ð3.641386;þ0.800138;−0.426550Þ 0.294905

FIG. 19. Final result: the TEOBResumSv4.3.2 model and its performance looking at the EOB=NR unfaithfulness over 534 datasets of the
SXS catalog. The differences with respect the original TEOBResumSv4.3.1 model are: (i) the improved analytical representation of ac6;
(ii) the improved analytical representation of c3; and (iii) the improved calculation of the NQC corrections based on a more accurate
analytical representation of the NR NQC determination point that removes the residual outliers with 0.3≲ ã0 ≲ 0.6 found with
TEOBResumSv4.3.1. Top left, the EOB=NR unfaithfulness F̄EOB=NR. Top, middle and top right: F̄max

EOB=NR versus ðã0; qÞ and ðχ1; χ2Þ.
Bottom, left: F̄max

EOB=NR versus ðŜ; Ŝ�Þ. Bottom middle and right: comparing F̄max
EOB=NR of TEOBResumSv4.1.4 and TEOBResumSv4.3.2. The

solid histograms refer to nonspinning configurations.
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(5, 5) subdominant modes.8 We compute mismatches from
20 Hz and—crucially—to avoid noise in the FFT due to
border effects generate the waveforms from 5 Hz, and taper
them at the beginning. Notably, while mismatches com-
puted with waveforms constructed from ðl; jmjÞ ¼ ð2; 2Þ
modes only are independent of the sky position and
reference phase of the target waveform (NRHybSur3dq8 or
NRHybSur2dq15, in our case), when subdominant modes are
included in the waveform construction this simplification
does not hold. The usual definition of mismatch depends on
the extrinsic parameters of the source. Following, e.g.,
Refs. [85–88], we define the template sky-maximized (SM)
unfaithfulness as

F̄ SM
EOB=NR ¼ 1 − max

th
0
;φh

0
;κh

ðs; hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs; sÞðh; hÞp ; ð12Þ

where s is the target waveform, h is our template waveform,
κh is the template effective polarizability (which encodes
information on the sky location of the binary [85,86]) and
we fix9 the target’s reference phase φs

0 ¼ 0, effective
polarizability κs ¼ 0 and inclination ι ¼ π=3 between the
orbital angular momentum and the line of sight.

1. Mass ratio q ≤ 8

The left panel of Fig. 21 focuses on nonspinning systems
and displays the (2, 2)-only mismatches computed between
TEOBResumSv4.3.2 and NRHybSur3dq8, using the Advanced
LIGO noise curve in the frequency interval between [20,
2048] Hz. We consider the NR surrogate in the mass ratio
q∈ ½1; 8�, total mass M∈ ½40; 150�M⊙ and dimensionless
spins jχ1;2j ≤ 0.8. Mismatches always lie below the 8 ×
10−4 threshold, with the largest values of F̄ SM

EOB=NR observed
for equal mass binaries, for which the effect of radiation
reaction is larger causing fewer in-band cycles. When we
also explore the spins parameter space (right panel of
Fig. 21), we find maximum values of F̄ SM

EOBNR around
2 × 10−3, corresponding to unequal mass systems with large
spins. In both cases, more than 99% of the configurations
we considered have mismatches below 10−3.
Further considering higher modes (HMs), the scenario

remains qualitatively similar, although mismatches degrade
overall. Figure 22 summarizes our results, comparing the
mismatches obtained with the various binaries and with
different mode content. When subdominant modes are
included in the construction of the waveform, the median
of mismatches distributions shifts to larger values, with
∼75% of the total mismatches below 0.1%. The impact of
the (3, 2) and (2, 1) modes is gauged in Fig. 23. As
expected, including such modes decreases the overall
faithfulness of the model, especially for spinning binaries.
As previously discussed, this behavior can be traced back
to the unphysical behavior of the NQC for the (2, 1) and
(3, 2) modes for systems with large spins antialigned
with the orbital angular momentum. This produces an
incorrect waveform behavior during the plunge phase up
to merger [36]. This result is further investigated in
Fig. 24. The plot shows, versus the effective spin ã0,
the fraction of configurations with F̄ < F̄ thrs, where F̄ thrs

can take the values indicated in the legend. The (negative)
impact of the modes with l ≠ m is evident, while the
performance of the modes with l ¼ m is satisfactory.

2. Mass ratio: 8 ≤ q ≤ 15

We now repeat the comparison for systems with q up to
15 and jχ1j ≤ 0.5, χ2 ¼ 0, comparing the NR surrogate
NRHybSur2dq15 of Ref. [84] with TEOBResumSv4.3.2, employ-
ing the same range of frequencies and total mass used
above, as well as the same detector PSD. We consider the
NR surrogate in the mass ratio q∈ ½8; 15�, and dimension-
less spins jχ1;2j ≤ 0.5, χ2 ¼ 0, corresponding to the val-
idity range of NRHybSur2dq15. The left panel of Fig. 25
shows the (2, 2)-only mismatches for nonspinning sys-
tems, while the right panel also explores the impact of
spins. Over the set of studied configurations, ∼97%
(∼92%) of the mismatches lie below the 10−3 threshold
for nonspinning (spinning) systems.
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FIG. 20. Location in the ðν; ã0Þ space of the 55 SXS
simulations used to NR inform the ðac6; c3Þ functions for
TEOBResumSv4.3.2.

8It is well known [36] that the (2, 1) and (3, 2) modes are badly
modeled for large spins antialigned with the angular momentum
due to a nonphysical behavior of the NQC corrections. A way to
overcome this problem has been found and is discussed in
Ref. [58]. In addition, the (3, 2) mode is not modeled by
NRHybSur2dq15, and will therefore not be included in our
comparisons.

9We have found that the SNR-averagingF SNR over a grid of κs
and ϕs values typically gives very similar results to the non-
averaged unfaithfulness. As such, for computational reasons, we
choose to fix κs and φs.
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To get a better understanding of the meaning of
such values of the mismatches, let us produce a few
phasing comparisons with some of the original datasets
used to compute the surrogate NRHybSur2dq15. Figure 26
illustrates EOB=NR phasings for ð15;−0.5; 0Þ, (15, 0, 0),
and ð14;þ0.50; 0Þ, this latter belonging to the region
of the parameter space where the EOB=NR matches with
the surrogate have the largest values (top-right panel
of Fig. 25).
It is a well-known fact that, when binaries are

very asymmetric, the importance of subdominant modes
increases. As a consequence, the inclusion of HMs for

high mass ratio systems largely impacts the mismatches
obtained. Figure 27 compares the mismatches obtained
with ð2; j2jÞ modes with those computed using l ¼ m
modes up to (5, 5) for both spinning and nonspinning
configurations. When HMs are employed, mismatches can
increase by up to 1 order of magnitude, with 99.4% of them
lying below 1% and ∼59% below 0.1%.

D. Improving the higher modes:
The importance of the l= 2, m= 1 mode

Let us now explore in deeper detail the role of the (2, 1)
mode and discuss a way to improve the mode further. As
mentioned above and in Ref. [36] (see also Ref. [70]), the
problems in the construction of the (2, 1) mode are related
to the (incorrect) determination of the NQC corrections.
The reason for this is that, by construction, the NQC
parameters are determined by imposing continuity
between the EOB and NR waveform at some time after
the peak of each multipole, like the (2, 2) case. However,
for the procedure to work, one needs that the NQC
functions do not develop any unphysical behavior in the
strong-field region close to merger, like poles. In this
respect, as already mentioned in Ref. [70], the origin of the
unphysical features in the NQC basis for the (2, 1) mode is
due to the fact that for antialigned spins the orbital
frequency passes through zero and thus, entering at the
denominator, introduces a singularity in the functions.
Overcoming this difficulty is conceptually simple, as it is
sufficient to determine NQC corrections at a moment
where the orbital frequency is sufficiently larger than zero
so to avoid any pathological behavior. In practice, this
means taking as NQC-determination point any time before
the peak of the (2, 1) mode. The simplest choice (though
not the only one) is to do it at the location of the peak of the

FIG. 21. Left panel: nonspinning configurations. Right panel: aligned spin configurations. Performance of the TEOBResumSv4.3.2
model against the NR surrogate NRHybSur3dq8, including only the ðl; jmjÞ ¼ ð2; 2Þ mode. We consider systems with mass ratio
q∈ ½1; 8�, total mass M∈ ½40; 140�M⊙ and dimensionless spins jχij < 0.8 (right panel). The maximal values of FEOB=NR correspond to
high mass systems, for which the merger-ringdown gives the largest in-band contribution, and systems with large positive effective spin
ã0. Notably, however, the largest values of unfaithfulness are at most 2 × 10−3 for both scenarios.

FIG. 22. Summary of all the mismatches computed in this
section between TEOBResumS and NRHybSur3dq8. Even when
including progressively more information (subdominant modes,
spins), the performance of TEOBResumS is overall satisfactory,
with ∼97% of mismatches below 1% and 75% below 0.1%.
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(2, 2) mode on the EOB time axis, defined as tEOBAmax
22

. In

practice, this needs to extend the ringdown model also
before the peak of (2, 1), which implies that the NR-
informed fits discussed in Ref. [36] are not useful for this
purpose and should be redone. However, the approach of
NR informing the ringdown from tEOBAmax

22
for all modes was

followed in all SEOBNR waveform models that incorporated
higher modes [35,67]. In particular, Ref. [35] gives
updated NR-informed fits that describe the ringdown for
several waveform modes (up to l ¼ 5) starting from tNRAmax

22

instead of tNRAmax
lm

as it is normally done for TEOBResumS.

Let us briefly review the general procedure for modeling
the ringdown that is adopted by TEOBResumS and SEOBNR,

which relies on the procedure of Ref. [89]. The difference
in the two model families is discussed below. For each
waveform mode, one fits the quasi-normal-modes (QNM)-
rescaled waveform

h̄lm ¼ hrnglme
þσlmτ; ð13Þ

where hrnglm is the numerical ringdown waveform, σ ¼ α1 þ
iω1 is the fundamental complex QNM frequency and
τ ¼ t − tmatch

lm . The QNM-rescaled wave is then written
as h̄ ¼ Ah̄e

iϕh̄ , where h is always ν normalized and

Ah̄ ¼ cA1 tanh ðcA2 τ þ cA3 Þ þ cA4 ; ð14Þ

ϕh̄ ¼ ϕ0 − cϕ1 log

�
1þ cϕ3e

−cϕ
2
τ þ cϕ4e

−2cϕ
2
τ

1þ cϕ3 þ cϕ4

�
; ð15Þ

where we adopt the notation10 introduced in Ref. [89]. In
passing, we also remind the reader that the fitting provided

FIG. 24. Summary of the TEOBResumSv4.3.2/NRHybSur3dq8 per-
formance as higher modes are progressively included. Shown is
the fraction of configurations with F̄ < F̄ thrs, where F̄ thrs can
take different values indicated in the legend. The model performs
less well as long as the effective spin ã0 becomes negative and
large. This is mostly due to the (currently inefficient) modeliza-
tion of modes (2, 1) and (3, 2) during the plunge up to merger in
that corner of parameter space.

FIG. 23. Comparison between mismatches computed
between TEOBResumSv4.3.2 and NRHybSur3dq8 (top) or NRHyb-
Sur2dq15 (bottom) with l ¼ jmj modes only or with (2, 2), (2,
1), (3, 3), (3, 2), (4, 4), and (5, 5) modes. The inclusion of the (2,
1) and (3, 2) modes shifts the mismatch distribution to higher
values, especially when considering spinning binaries. This is due
to the performance of the (2, 1) and (3, 2) modes, which are
known to display unphysical behavior when spins are large and
antialigned with the orbital angular momentum [36].

10Note that in the SEOBNR family, notably in Refs. [35,66], uses
precisely the same functional form introduced in Ref. [89] but
the coefficients are named differently (and one omitted). More
precisely, for the amplitude, one has fcA1 ¼ clm1;c ; c

A
2 ¼ clm1;f ;

cA3 ¼ clm2;f ; c
A
4 ¼ clm2;cg, while for the phase fcϕ1 ¼ dlm1;c ; c

ϕ
2 ¼ dlm1;f ;

cϕ3 ¼ dlm2;f ; c
ϕ
4 ¼ 0g. Moreover, consider that there are some

different sign conventions; for the QNM frequencies we have
α1 ¼ −σRlm and ω1 ¼ −σIlm, and in our case the waveform
frequency is defined as positive, while the one used in
Eq. (53) of Ref. [35] is negative. Although we adopt the fits
of Ref. [35] we prefer to stick to the notation of Ref. [89] for
consistency with previous work.
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by Eq. (14) is not suitable for large mass ratios, as discussed
in Refs. [58,90]. To ensure continuity, some coefficients are
constrained and are linked to NR quantities. Here, the two
EOB families adopt different strategies. In particular,
TEOBResumS adopts the strategy outlined in Refs. [36,89],
imposing the constraints at the peak of the (l; m) amplitude
for each mode and constraining ðcA1 ; cA2 ; cA4 ; cϕ1 ; cϕ2 Þ in terms
of QNM frequencies, Amax

lm and ωmax
lm . On the other hand, the

SEOBNR family imposes continuity conditions always at
the peak of the quadrupolar amplitude for each mode; this
results in the constraints [35,67]

cA1 ¼ ðȦtmatch
lm

þ α1Atmatch
lm

Þ cosh2 cA3=cA2 ; ð16Þ

cA4 ¼ Atmatch
lm

− ðȦtmatch
lm

þ α1Atmatch
lm

Þ cosh cA3 sinh cA3=cA2 ð17Þ

cϕ1 ¼ ðω1 − ωtmatch
lm

Þ 1þ cϕ3
cϕ2c

ϕ
3

; ð18Þ

cϕ4 ¼ 0; ð19Þ

which leave as free coefficients ðcA2 ; cA3 ; cϕ2 ; cϕ3 Þ.
In the following, we proceed implementing the SEOBNR

strategy for some of the higher modes. We obtain the
fitted coefficients ðcA2 ; cA3 ; cϕ2 ; cϕ3 Þ and the NR quantities
ðAtmatch

lm
; Ȧtmatch

lm
;ωtmatch

lm
Þ from the global fits presented in

Ref. [35] (see Appendixes C and D therein). Although
our main goal here is to fix the behavior of the EOB (2, 1)
mode, we will also consider modes (3, 3) and (4, 4) to gain
more precise insights on the relevance of tiny details in
ringdown modeling.
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FIG. 26. EOB=NR phasing comparisons with some of the SXS simulations of Ref. [84] used to construct the NRHybSur2dq15 NR
surrogate. Note that the accumulated phase difference is substantially independent of the spin value. The origin of the EOB=NR
discrepancies might be due to missing physics in the analytical description of the fluxes, as advocated in Ref. [52]. Despite the phase
differences may look large, F̄max

EOB=NR ∼ 10−3 for these configurations, see Fig. 25.

FIG. 25. Performance of TEOBResumSv4.3.2 against the NRHybSur2dq15 NR surrogate, including only the ðl; jmjÞ ¼ ð2; 2Þ mode. We
consider systems with mass ratio q∈ ½8; 15�, total mass M∈ ½40; 140�M⊙, zero spins (left panel) or aligned spins with dimensionless
spin magnitudes jχ1j < 0.5 and χ2 ¼ 0 (right panel). The largest values of unfaithfulness (F̄ ∼ 10−3) are found for unequal mass systems
with large, positive, spin.
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Figure 28 highlights the improvement in the total
EOB=NR unfaithfulness brought by replacing only the
(2, 1) ringdown part with the one of Ref. [35]. The other
modification implemented is that NQC corrections are now
determined at tEOBAmax

22
, though using the same NQC basis that

was used before. One appreciates how the number of
configurations with F̄ SM < 0.01 (solid lines) is now much
smaller than before (dashed lines). A better insight in the
accuracy of the model is given by Figs. 29 and 30. The first
figure shows that the correct modelization of the (2, 1)
mode is essential. By contrast, the impact of changes in the
(3, 3) and (4, 4) modelization is marginal and in fact found
to slightly worsen the global performance of the model (see
the violet violin plots in Fig. 29). Figure 30 reports the
values of the unfaithfulness maximized and minimized as
the total massM is varied between 40M⊙ and 200M⊙. The
largest values of unfaithfulness are typically obtained for
heavy binaries (M > 100M⊙), indicating that the modeli-
zation of the transition from late plunge to merger ringdown
needs further improvements. More precisely, Fig. 31 offers
an insight on the distribution of the total-mass-averaged
mismatches in the two-dimensional parameter space of q
and ã0. We find that the largest mismatches are obtained for
systems with large mass ratio q > 4 and large spins
jã0j > 0.5. In these cases, the degradation of the perfor-
mance of the model can be attributed to the modelization of
the (3, 3) and (4, 4) modes close to merger. Overall, ∼98%
(99%) of the total-mass-maximized mismatches lie below
the 3% threshold when q < 8 (q > 8).

1. Interference between corotating and counterrotating
QNMs for (2, 1) and (3, 2) modes

Now that we have seen the changes brought by the
improvement of the (2, 1) mode, we turn our attention to

other physical elements that may affect the accuracy of the
higher modes in our model. In particular, we will focus on
mode mixing. There are two kinds of mode mixing that
occur when considering the ringdown of rotating black
holes. The first one is due to the contribution of the
counterrotating QNMs, i.e. to the modes with m < 0. The
late behavior of this effect can be modeled considering only
the fundamental corotating and counterrotating QNMs, as
detailed in Refs. [58,73,91,92]. The second kind of mixing
occurs between modes with the same m but different l, as
noted in Ref. [93]. This occurs because thewaveformmodes
are written using the spherical harmonic basis −2Ylm, while
the natural base for the QNMs is the spheroidal harmonic
one, −2Slmn. We model this mode mixing for the (3, 2) and
(4, 3) modes as done in SEOBNR_v5, following the approach
outlined in Sec. III C of Ref. [35], whose main ideas are
recalled here (see also Ref. [94]). Reliable relations between

FIG. 28. Relevance of the (2, 1) mode. Unfaithfulness compari-
son between TEOBResumSv4.3.2 and NRHybSur3dq8 (top panel) or
NRHybSur2dq15 (bottom panel) with the (2, 2), (2, 1), (3, 3), (3, 2),
(4, 4), and (5, 5) modes, using either the previous prescription for
the NQCs and merger/ringdown of the (2, 1) mode or the one from
SEOBNRv5 [35]. The high mismatch tail of the distribution almost
disappears when employing this latter.

FIG. 27. Summary of all the mismatches computed in this
section between TEOBResumSv4.3.2 and NRHybSur2dq15. When
considering spinning systems including subdominant modes with
l ¼ jmj, we find ∼99.3% of mismatches below 1%.
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spheroidal Shlm and spherical hlm modes can be obtained
neglecting the contributions of the overtones and consider-
ing only contribution of the l0 < l modes. Once the
relations are found, the numerical spheroidal modes are
extracted from the spherical ones and fitted using the usual
templates of Eqs. (14) and (15). The coefficients found with
the primary fits of the spheroidal modes are then fitted over
the parameter space, so that the spheroidal ringdown can be
reconstructed from the global fits. Then to obtain the
spherical modes it is sufficient to invert the spheroidal-
spherical relations.

The inclusion of these effects in the complete EOB
model requires several modifications and testing of the
TEOBResumS infrastructure that we postpone to future work.
Here we just test the NR-informed ringdown waveform of
Ref. [35] in a significative case. We consider the NR
simulation BBH:1375 of the SXS catalog [95], which
corresponds to a BBH with ðq; χ1; χ2Þ ¼ ð8;−0.9; 0Þ.
Figure 32 shows the waveform and the frequency (black)
for the (2, 1) and (3, 2) modes of the aforementioned

FIG. 30. Total mass maximized (red) or minimized (pink)
mismatches computed between TEOBResumSv4.3.2 and NRHyb-
Sur3dq8 (q < 8) or NRHybSur2dq15 (q > 8). We consider here
the same 1000 configurations of mass ratio (and spins) employed
within the rest of the paper, and vary the total mass between 40
and 200 solar masses.

FIG. 31. Mass-averaged mismatches computed between TEO-

BResumSv4.3.2 and NRHybSur3dq8 (q < 8) or NRHybSur2dq15
(q > 8) for configurations with varying mass ratio and spins.
Red crosses indicate systems for which the average unfaithful-
ness lies above the 3% threshold. Such cases are typically
characterized by large values of q and large jã0j.

FIG. 32. Configuration ð8;−0.9; 0Þ, beating (mode mixing)
between different QNMs. Top panel: mode (2, 1) with and
without the interference between corotating and counterrotating
QNMs. Bottom panel: same effect for the (3, 2) mode superposed
to the modulation due to the mixing between (2, 2) and
(3, 2) QNMs.

FIG. 29. Comparison between mismatches computed between
TEOBResumSv4.3.2 and NRHybSur3dq8 (q < 8) or NRHybSur2dq15
(q > 8) with different mode content and various strategies for the
computation of the (2, 1), (3, 3), and (4, 4) modes.
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configuration, compared with different analytical prescrip-
tions. Note that in this figure the multipoles are normalized
with clþϵ ¼ Xlþϵ−1

2 þ ð−ÞmXlþϵ−1
1 , where ϵ is the parity of

the mode (0 if lþm is even, 1 otherwise). From the
analytical point of view, we consider different prescrip-
tions. We start by showing in green the waveform obtained
with the primary fits; for the (2, 1) multipole it is simply
obtained fitting the numerical spherical mode, while for the
(3, 2) spherical mode it is obtained combining the fit of the
spheroidal (3, 2) mode and of the spherical (2, 2) mode, as
discussed above. We also show in blue the waveform
obtained with the global fits of Ref. [35] (see Appendixes C
and D therein). While for the (2, 1) mode this waveform is
comparable to the one obtained directly with the primary
fit, the (3, 2) waveform obtained from the global fits is less
accurate for what concerns the amplitude. This seems to
suggest that in this specific region of the parameter space
the global fits of Ref. [35] do not provide precise values and
might need some improvements. However, despite this
inaccuracy the waveform is still qualitatively reliable, and
in particular is able to catch the frequency modulation due
to them ¼ 2mode mixing. Finally, we also show in red the
waveform in which we have included the beating between
corotating and counterrotating fundamental QNMs; the
coefficients needed to reproduce this effect are extracted
from the numerical waveform (see Ref. [58] for more
details). In this case, we are also able to reproduce the
higher-frequency oscillations in the multipole frequency,
both in the (2, 1) and (3, 2) multipoles. Such proof of
principle study thus indicates that, provided a number of
NR waveforms well placed in the parameter space, all
mode-mixing effects can be modeled at a reasonable level
of accuracy.

VI. CONCLUSIONS

The basic guiding principle behind the construction of
robust and flexible EOB models is to explore, one by one,
each physical element entering the construction of the
model [73]. At the dawn of the development of EOB
models this guiding principle was followed carefully
because of the need for understanding in detail the effect
of each analytical choice and its impact on describing
accurately the physics of the plunge and merger. However,
in the rush of constructing waveform models with higher
and higher NR faithfulness, the original attitudes have
progressively lost importance. In particular, the attitude of
using automatized calibration procedures involving several
parameters at the same time [35,66,67] may eventually hide
the importance of each analytical element of the model.
Although some recent studies in this direction were
attempted recently (see, e.g. [34,60,96]) the role of some
building blocks of the procedure of NR-informing EOB
models (and in particular TEOBResumS) was not spelled out
systematically so far. The understanding of the impact of

each building block within the EOB construction can be
rephrased as understanding waveform analytic systematics.
To make well-precise statements around the concept of
waveform systematics within the EOB formalism, we
focused on some pivotal building blocks of the models
and illustrated how a careful mastery of their properties is
important to yield improved waveform accuracy. We
mainly considered nonspinning binaries and analyzed the
importance of either the NR tuning of the EOB flexibility
parameters or the impact of high-order PN terms in the
EOB (radial) potentials. Our findings can be summarized as
follows:

(i) We have shown that a more precise way of NR
informing the effective 5PN function ac6ðνÞ allows us
to improve the performance of TEOBResumS (on
nonspinning SXS data) of at least a factor 2 with
respect to current state of the art: the maximum value
of the EOB=NR unfaithfulness (on the Advanced
LIGO PSD) is lowered to ∼5 × 10−4. We remark
that this is obtained by NR tuning the single
function ac6ðνÞ.

(ii) In order to better understand the potentialities of the
model, we have also attempted to NR tune the time
interval ΔtNQC that, loosely speaking, defines the
merger location on the EOB time axis. This pro-
cedure is similar to the one routinely adopted in
SEOBNR models [66], although the precise under-
standing of the impact of each element was not
spelled out so far. For the illustrative q ¼ 1 case, we
found that the tuning of ΔtNQC allows one to reduce
the EOB=NR phase difference of about a factor 2
during plunge and merger (see Fig. 4). Unfortu-
nately, this also yields a slight, though noticeable,
degradation of the phasing performance of the model
during the inspiral. For this reason, we generally
advocate to avoid using ΔtNQC as an NR-informed
parameter. In addition, the advantages in terms of
EOB=NR unfaithfulness look so small with respect
to tuning only ac6 that it does not seem worth
introducing such complication in the TEOBResumS

model. We stress, however, that in principle one
should tuneΔtNQC in a way that it is compatible with
the test-mass case (see e.g. [55]). Given the subtlety
of this approach, we defer it to forthcoming studies.

(iii) We then explored whether the use of recently
obtained (quasicomplete) 5PN information in the
D and Q EOB potentials helps to obtain a model as
flexible and as accurate as the standard one (with or
without iteration on next-to-quasicircular waveform
amplitude corrections). We highlighted that the
performance of a (nonspinning) EOB waveform
model crucially depends on the NR-faithful mode-
lization of noncircular effects during the plunge up
to merger. The new, and a priori unexpected, finding
is that NR-informed NQC corrections, which are
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purely phenomenological, are practically equivalent
to analytically known noncircular effects entering the
noncircular sector of the Hamiltonian. The fact that
theNR-informedNQC iterations are crucial aspects of
themodel suggests that, possibly, genuine noncircular
effects in thewaveform (e.g. the leading-order ones as
implemented in the eccentric model [97]) could be
useful to improve the EOB=NR agreement further
during the late plunge up to merger.

(iv) Thanks to our enhanced understanding of noncir-
cular effects in the strong field (and in particular of
the radial force F r), we present a slightly modified
version of the eccentric model of Ref. [34], although
for the moment only limited to nonspinning binaries.
This model presents slightly improved matches with
the SXS eccentric simulations available as well as an
excellent EOB=NRagreement for the scattering angle
for strong-field configurations. The extension to spins
is postponed to future work as it requires an improve-
ment of the description of spin-orbit interaction
for large, positive, spins, as already pointed out
in Ref. [34].

(v) We then obtained several new versions of the
TEOBResumS model for spin-aligned binaries that rely
on the newly determined ac6 and (essentially) only
differ by the NR-informed effective N3LO function
c3. Eventually, by changing only ac6 and c3 with
respect to the TEOBResumS default choices [14,36],
we obtain a highly NR-faithful new model, dubbed
TEOBResumSv4.3.2, which has maximal EOB=NR
unfaithfulness Fmax

EOB=NR ∼ 10−3 for the (2, 2) mode
all over the publicly available SXS catalog. This
seems to suggest that TEOBResumSv4.3.2 is currently
the EOB waveform model with the lowest EOB=NR
unfaithfulness, compatible with the SEOBNRv5 model
[35]. It must be noted, however, that some of the
NR datasets of Ref. [35] for large mass ratios are not
public, so that we could not perform an actual apple-
with-apple comparison. To comply with the spirit of
this paper, we also kept all incremental steps that
brought us to obtain TEOBResumSv4.3.2, i.e. we kept
track of four different EOB models, summarized in
Table IV, which always have Fmax

EOB=NR ≲ 4 × 10−3

and differ from details in the representation of the c3
function. Each one of these models can be used in
injection/recovery studies to explore how such small
differences in EOB=NR mismatches impact the
unbiased recovery of injected parameters. We finally
want to remark that the values of the NR-informed
parameters were obtained using simple procedures.
For example, the first-guess c3 values, were obtained
only by visual inspection of the time-domain phas-
ings and then similarly fitted using simple fitting
functions. Notably, the number of NR datasets used
to do so is only composed by eight nonspinning and
47 spin-aligned datasets, for a total of 55. This

amounts to only the 10.3% of the public SXS
waveform catalog. We also note that the calculation
of mismatches only occurs as a validation check
a posteriori of the model. We remark that this is
different from other approaches [66] where the NR
calibration is done on the EOB=NR mismatches
themselves. This seems to indicate that the analytical
structure of TEOBResumS (in all its avatars) is robust
and a relatively moderate amount of NR information
is needed to determine the dynamical parameters.11

(vi) We also validated the TEOBResumSv4.3.2 model
against two NR surrogate models, NRHybSur3dq8

and NRHybSur2dq15, i.e. up to mass ratios q ¼ 15.
When focusing on the ðl; jmjÞ ¼ ð2; 2Þ mode, our
results reflect the previous investigations performed
against NR directly. The mismatches with NRHyb-

Sur2dq15 are at most ∼10−3, despite no NR simu-
lations were used to inform the model for q ≥ 10.
This finding is also consistent with previous NR
validation of TEOBResumS, in the nonspinning case
only, for intermediate-mass-ratio binaries [52], no-
tably up to q ¼ 100. When higher modes are addi-
tionally included, the performance of the model
degrades for systems with high mass ratio and large
spin magnitudes. Appropriate modeling of the (2, 1)
and (3, 2) modes, especially, appears critical (nota-
bly, for antialigned spins) in order to obtain mis-
matches below 10−2. This is in line with previous
findings using TEOBResumS [36]. The accurate mode-
lization of (2, 1), (3, 2), as well as (4, 3), modes
during the plunge up to merger is known to be the
current Achilles’ heel of the model. This is funda-
mentally related to the current implementation of
NQC waveform corrections that do not work for
those configurations where the orbital frequency Ω
crosses zero. This is a standard feature that occurs
for certain configurations with antialigned spins and
that is present also in the test-mass limit [69]. Note,
however, that in SEOBNR models [35,67] this prob-
lem is efficiently avoided because the ringdown of
each ðl; mÞmode is matched at the peak of the (2, 2)
mode and not at the peak of the ðl; mÞ waveform
mode itself. As a pragmatical solution to this long-
standing issue, we implemented within TEOBResumS

the (2, 1) mode of the SEOBNRv5 model, precisely in
the form described in Ref. [35]. This by itself is
sufficient, as shown in Fig. 28, to have more than the
98% of the total-mass-maximized unfaithfulness to
lie below the 3% threshold when comparing to the
surrogate models. In this respect, we also remind the
reader that of the important features of the NR (2, 1)

11Note that a separate issue is the modeling of postpeak
(ringdown) waveform. Here we rely on the model of Ref. [36],
which was obtained using a large number of simulations for
convenience, despite the evident redundancy of many datasets.
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waveform amplitude, i.e. which can develop a zero
during the late inspiral for certain special configu-
rations of the spins [67], is naturally accounted for
by the TEOBResumS, resummed, waveform (see [36],
Fig. 15), without the need for resorting to NR
calibration (note that this seems partly necessary
for the SEOBNR models [35,67]). Moreover, in the
spirit of understanding the impact of the ringdown
modelization on the global performance of the
model, in Figs. 29 and 30 we explore the relevance
of using different representations for the ringdown
of the (4, 4) and (3, 3) modes. We also prelimi-
narily investigate the impact of mode mixing in the
ringdown of TEOBResumS, adopting the modelization
of Ref. [35] and improving it further by additionally
incorporating corotating and counterrotating QNMs
(see Fig. 32) in the spirit of Ref. [58]. The complete
modelization of QNMs mode mixing in the (3, 2),
and possibly also (4, 3), modes all over the param-
eter space is however postponed to future work.

(vii) Finally, our detailed analysis of the nonspinning case
in Fig. 1 indicates that, assuming that NR is exact,
TEOBResumSv4.3.2 has to gain only between 0.1 and
0.2 rad at merger to obtain EOB=NR unfaithful-
nesses below 10−4 for present (and future) ground-
based detectors. In particular, we remark that our
simple study highlights that this phasing loss only
occurs in the last orbit before merger. Although
some studies claim that the accuracy of NR simu-
lations should be improved further by at least 1 order
of magnitude in terms of unfaithfulness [2], improv-
ing the EOB phasing by 0.2 rad around merger looks
like an easy task as it seems to be mostly controlled
by the NR-informed functions than by high-order
contributions to the EOB potentials. In this respect,
we recall that the NR-informed NQC corrections,
which are key to correctly shape the EOB waveform
at merger, are currently not very sophisticated, as
one only imposes the EOB=NR consistency between
ðω22; ω̇22; A22; Ȧ22Þ, but there are no conditions
imposed on second-order time derivatives. Prelimi-
nary investigations in the test-mass limit [58] sug-

gest that additional noncircular corrections (either
NR informed or built in due to the use of the native
generic Newtonian prefactor in the waveform) may
play an important role in improving the analytic
waveform behavior up to merger. This is discussed
extensively in Ref. [58].

The improvements introduced in TEOBResumS-GIOTTO in this
work are automatically available to calculate spin precessing
BBH waveforms [10,15], binary neutron star waveforms
[23,98,99], and black-hole–neutron-star waveforms [25].

TEOBResumS is developed open source and publicly
available [100]. The code uses semantic versioning and
the versions (v?.?.?) used in this work correspond to the
code tags on the master branch. TEOBResumS can also be
installed via pip install teobresums. The code is
interfaced to state-of-art gravitational-wave data-analysis
pipelines: BAJES [101], Bilby [102] and PyCBC [103].
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