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Binary boson stars can be used to model the nonlinear dynamics and gravitational wave signals of
merging ultracompact, but horizonless, objects. However, doing so requires initial data satisfying the
Hamiltonian and momentum constraints of the Einstein equations, something that has not yet been
addressed. In this work, we construct constraint-satisfying initial data for a variety of binary boson star
configurations. We do this using the conformal thin-sandwich formulation of the constraint equations,
together with a specific choice for the matter terms appropriate for scalar fields. The free data is chosen
based upon a superposition of isolated boson star solutions, but with several modifications designed to
suppress the spurious oscillations in the stars that such an approach can lead to. We show that the standard
approach to reducing orbital eccentricity can be applied to construct quasicircular binary boson star initial
data, reducing the eccentricity of selected binaries to the ∼10−3 level. Using these methods, we construct
initial data for quasicircular binaries with different mass ratios and spins, including a configuration where
the spin is misaligned with the orbital angular momentum, and where the dimensionless spins of the boson
stars exceeds the Kerr bound. We evolve these to produce the first such inspiral-merger-ringdown
gravitational waveforms for constraint-satisfying binary boson stars. Finally, we comment on how
equilibrium equations for the scalar matter could be used to improve the construction of binary initial data,
analogous to the approach used for quasiequilibrium binary neutron stars.
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I. INTRODUCTION

In recent years, the detection of gravitational wave (GW)
signals have transformed the way we observe the Universe
and probe fundamental physics. Predictions for the gravi-
tational waveforms of inspiraling and merging binary
compact objects, such as black holes and neutron stars,
play a crucial role in the success of GW observation
campaigns. While during the early inspiral one can use
perturbative methods, such an approach breaks down as
nonlinear effects take over at small separations of the
binary. This necessitates the use of numerical relativity to
accurately predict the merger dynamics and gravitational
waveform through merger. Crucially, numerical evolu-
tions of binary compact objects rely on initial data that
satisfies the constraints of the Einstein equations as a
starting point. For binary black holes, binary neutron stars,
and black hole-neutron star binaries, there has been
extensive work addressing the problem of constructing
consistent initial data (see, e.g., Refs. [1–4]), and a whole
suite of formalisms, numerical methods, and tricks have
been developed (see Ref. [5] for a recent review) to obtain

initial data suitable for binary evolutions that can directly
be compared to perturbative methods, both in the late
inspiral, and the ringdown phases of the coalescences (see,
e.g., Refs. [6–8]). Thus, binary initial data is a crucial part
of making the predictions that enable detecting GWs,
characterizing GW sources, and drawing conclusions for
astrophysics and fundamental physics.
All GWobservations of compact binary coalescence thus

far are consistent with arising from black hole and neutron
stars. However, besides these two classes, (ultra) compact
and black hole mimicking objects motivated by extensions
of the Standard Model and models of quantum gravity have
been proposed to solve various problems in high-energy
and particle physics [9]. Boson stars (BSs) are particularly
simple examples of such ultracompact objects [10–15], and
exhibit many common features of black hole mimickers,
such as ergoregions, stable light rings, and the absence
of horizons [16–20] (see Refs. [21,22] for reviews).
Therefore, considerable effort has been put into the devel-
opment of a program to use binary BSs as a simple test bed
to study the nonlinear and highly dynamical regimes of the
larger class of exotic compact objects (see Ref. [23] for a
review). Progress has been made in understanding the early
inspiral of binary BSs and the resulting GWemission using*nsiemonsen@perimeterinstitute.ca
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perturbative methods [24–31]. There is also a significant
body of work considering numerical relativity evolutions
of scalar and vector binary BSs, ranging from head-on
collisions of nonspinning and spinning binaries [32–43], to
orbital inspirals [18,39,40,44–47]. However, despite the
considerable amount of work on the binary BS evolution
problem, the problem of constructing initial data for these
compact binaries that is consistent with the Einstein
equations has yet to be addressed.
The common practice in the literature, when constructing

binary BS initial data, has been so far to simply superpose
two boosted star solutions. More recently, in Refs. [41,43],
a modified superposition trick was utilized to reduce (but
not eliminate) violations of the Hamiltonian and momen-
tum constraints. While simple, superposed initial data leads
to large constraint violations even at moderate separations,
meaning that solutions to the evolution equations do not
accurately approximate solutions of the Einstein equations
and effectively excluding, for example, the quasicircular
binaries relevant to current GW observations of inspiral-
merger-ringdown.1

In this work, we develop and implement methods for
constructing constraint-satisfying binary scalar BS initial
data for a wide variety of configurations. (We also used
these methods recently in Ref. [47].) We solve the con-
straint equations in the conformal thin-sandwich (CTS)
formalism [48], using free data based on superposing
stationary BS solutions, similar to what was done in
Ref. [49] for black hole and fluid stars. However, consid-
ering scalar matter introduces several new complications
which we address here, including the choice of which
matter degrees of freedom to fix, as well as how to
minimize spurious oscillations which may be induced in
the BSs. Our approach is very flexible, and we use it to
construct binary BSs with different mass ratios, spin
magnitudes, and spin orientations. We evolve several such
binaries, including several cases where the BSs are super-
spinning (i.e., have dimensionless spins exceed the Kerr
bound of unity), through inspiral and merger. We do this
both for physical interest, as well as to demonstrate that we
can construct quasi-circular binaries by adapting eccen-
tricity reduction techniques.
The remainder of this paper is organized as follows. We

briefly review the relevant physics of isolated stationary
BSs in Sec. II A, and proceed in Sec. II B to introduce our
procedure to self-consistently solve the elliptic constraint
equations in the CTS formalism [48] numerically, given an
initial guess for the binary, utilizing the elliptic solver
introduced in Ref. [49]. To that end, we identify the most
suitable parametrization of the matter content of BSs in
Sec. II C. We comment on possible equilibrium conditions

for the scalar matter of these stars in Sec. II D, though
we do not implement such an approach in this study. In
Sec. III B, we analyze the quality of the constructed initial
data and devise methods to reduce spurious oscillations in
each star, as well as in the resulting gravitational radiation,
and lastly, in Sec. III C, we test eccentricity reduction
schemes in the context of binary BS inspirals and comment
on their possible limitations. We consider binary configu-
rations in two different scalar potentials, with equal and
unequal masses, as well as nonspinning and spinning
constituent stars with aligned and misaligned spins.
Finally, in Sec. IV, we analyze the dynamics of selected
eccentricity-reduced binary configurations, and present
inspiral-merger-ringdown gravitational waveforms. We
give details on the numerical evolution scheme, present
convergence results, and briefly compare the constraint
satisfying initial data we construct in this study to super-
posed initial data in Appendix A. We provide some further
details on spurious high frequency components to the GWs
and correcting for center-of-mass motion of the BS binaries
in Appendixes B and C, respectively. We use G ¼ c ¼ 1
units throughout.

II. METHODOLOGY

A. Isolated boson star

Before turning to the construction of binary BS data, we
briefly review isolated BSs in their rest frames. Here and
throughout, we focus entirely on scalar BSs, and leave a full
consideration of vector BSs to future work. Scalar BSs are
regular, asymptotically flat, stationary, and axisymmetric
solutions to the globally U(1)-invariant Einstein-Klein-
Gordon theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gαβ∇ðαΦ̄∇βÞΦ − VðjΦjÞ
�
; ð1Þ

where R is the Ricci scalar of the spacetime gμν, Φ is the
complex scalar field (with an overbar denoting complex
conjugation), and VðjΦjÞ is the global U(1)-preserving
scalar potential. We consider cases where the lowest-order
term in jΦj of V is a mass term μ2jΦj2. The conserved
Noether current associated with the Uð1Þ symmetry of the
action (1) is

∇μjμ ¼ 0; jμ ¼ −iðΦ̄∇μΦ −Φ∇μΦ̄Þ: ð2Þ

Intuitively, the charge Q of a BS counts the number bosons
in the solution. This is in direct analogy to the conservation
of baryon number in the case of fluid stars.
The metric ansatz for isolated star solutions in Lewis-

Papapetrou coordinates takes the form

ds2 ¼ −fdt2 þ lf−1fgðdr2 þ r2dθ2Þ
þ r2sin2θðdφ −Ωr−1dtÞ2g; ð3Þ

1Note that this can not necessarily be addressed by including
constraint damping terms in the evolution equations. See
Appendix A.
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where the metric functions f, l, g, andΩ depend, in general,
on both r and θ. The boundary conditions on these
functions for BS solutions can be found in Ref. [19];
generally, the solution is regular at the star’s center and
asymptotically flat. The scalar field ansatz for BSs is

Φ ¼ ϕðr; θÞeiðωt−mφÞ; ð4Þ

where ϕ is the magnitude, while ω is the star’s internal
frequency, and m is the integer azimuthal index. At large
distances, due to the nonzero scalar mass, the field falls off
exponentially as

lim
r→∞

ϕ ∼ e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r; ð5Þ

ensuring that the solution is asymptotically flat. Spherically
symmetric star solutions attain a nonzero scalar field
magnitude at the center, ϕjr¼0 ≠ 0, while rotating solutions
(i.e., those with jmj ≥ 1) exhibit a vortex line through their
centers, and hence, are toroidal in shape (see Ref. [47] for a
discussion of the vortex structure). Details on the numerical
construction of these solutions used in this work are
discussed in the Appendixes of Ref. [50].
We are interested in testing our methods to construct

binary BS initial data in various physically interesting
regimes. Therefore, we focus entirely on scalar models with
nonvanishing self-interactions, as these have shown to lead
to highly compact [17,18], as well as stably rotating BS
solutions [50]. To that end, we consider the solitonic scalar
potential [16]

VðjΦjÞ ¼ μ2jΦj2
�
1 −

2jΦj2
σ2

�
2

; ð6Þ

controlled by the coupling σ, as well as the leading
repulsive scalar self-interaction

VðjΦjÞ ¼ μ2jΦj2 þ λjΦj4; ð7Þ

in the following simply referred to as the repulsive potential
(restricted to λ > 0). Imposing the appropriate asymptoti-
cally flat condition at spatial infinity, and regularity con-
ditions at the origin, in conjunction with the ansatz (3)
and (4), and the field equations resulting from (1), yields a
one-parameter family of solutions for each azimuthal index
m parametrized by the internal frequency ω.2 For each
member of the family of spacetimes, the total mass M is
given by the Komar expression, coinciding with the
Arnowitt-Deser-Misner (ADM) mass, and the radius R is

defined as the areal (circular) radius r� at which 99% of the
mass of the spherical (rotating) star solution lies within r�.
The angular momentum J is well-defined by means of
the Komar expression in this stationary and axisymmetric
class of spacetimes. Finally, the charge Q of each star
follows from the U(1)-Noether charge of the action (1)
(details can be found in Ref. [50]). For these isolated BS
solutions, this Noether charge satisfies the “quantization”
relation J ¼ mQ.
In Fig. 1, we show the mass-radius relationships of the

isolated BS solutions considered in this work. As can be
seen there, there is a regime where the solitonic families
have highly compact solutions; as a result, some of these
solutions exhibit regions of stable trapping of null geo-
desics, as well as large ergoregions if m > 0. Hence, this
class of spacetimes exhibit highly relativistic features
potentially leading to interesting phenomenology in the
context of binary systems. In contrast to this, solutions of
families in the scalar model with repulsive self-interactions
are mostly less compact, Cmax ≈ 0.14, enabling the study of
BSs in the Newtonian regime. Importantly, both scalar
models contain spinning solutions with m ¼ 1 that have
been shown to be stable [50] against the nonaxisymmetric
instability discovered in Ref. [51] on long timescales.

B. Conformal thin-sandwich formulation

Moving now to the formalism used to construct con-
straint satisfying binary BS initial data, we introduce the
CTS formulation of the Hamiltonian and momentum
constraints of the Einstein equations. To that end, the
spacetime is foliated into a series of spacelike hyper-
surfaces Σt, parametrized by the coordinate time t, with

FIG. 1. We plot the relationship between the mass M and the
radius R, in units of the boson mass parameter μ, for four families
of BS solutions. We show the solitonic scalar model (6) with
coupling σ ¼ 0.05 (blue curves), and the repulsive potential (7)
with coupling λ=μ2 ¼ 103 (orange curves), including both
spherically symmetric (dotted) and m ¼ 1 rotating families of
stars (solid). The regime with M=R > 1=2 is labeled as “BH.”

2We focus solely on stars in their respective radial ground
states, i.e., the scalar field profiles have no additional radial
nodes.
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future-pointing unit-normal to the hypersurface nμ. The
tangent of lines of constant spatial coordinates is then

tμ ¼ αnμ þ βμ; ð8Þ
with lapse function α and shift vector βμ, with nμβμ ¼ 0.
Furthermore, let γμν ¼ gμν þ nμnν be the projector onto the
hypersurface Σt, such that γij is the spatial metric induced
on Σt. Lastly, the extrinsic curvature of Σt,

Kij ¼ −
1

2
Lnγij; ð9Þ

is defined by means of the Lie derivative Ln along the
hypersurface normal. In this 3þ 1 language, the
Hamiltonian and momentum constraints, i.e., the projec-
tions of the Einstein equations along the hypersurface
normal, are

ð3ÞRþ K2 þ KijKij ¼ 16πE;

DjKij −DiK ¼ 8πpi; ð10Þ

with trace K ¼ γijKij, Ricci scalar ð3ÞR and derivative Di

defined with respect to the induced metric γij, and finally,
the energy density E ¼ nμnνTμν and momentum density
pi ¼ −γiμnνTμν of the matter content of the space in the
Eulerian frame.
The CTS formulation [48] of the Hamiltonian and

momentum constraints (10) relies on relating the constraint
satisfying metric components γij to a freely specifiable
conformal metric γ̃ij as

γij ¼ Ψ4γ̃ij; ð11Þ
with conformal factor Ψ. Furthermore, the traceless part of
the extrinsic curvature Aij is conformally decomposed as
Aij ¼ Ψ−10Âij with

Âij ¼ 1

2α̃
½ðL̃βÞij þ ∂tγ̃

ij�; ð12Þ

in terms of the conformal Killing form ðL̃βÞij ¼ D̃iβj þ
D̃jβi − 2γ̃ijD̃kβ

k=3. The conformal lapse and the time-
derivative of the conformal metric are α̃ ¼ Ψ−6α and
∂tγ̃

ij ¼ Ψ4ð∂tγij − γijγkl∂tγ
kl=3Þ, respectively. Utilizing

this decomposition, the metric constraints (10) are cast
into the CTS equations

D̃iD̃iΨ −
R̃
8
Ψþ ÂijÂ

ij

8
Ψ−7 −

K2

12
Ψ5 ¼ −2πΨ5E;

D̃jÂ
ij −

2

3
Ψ6D̃iK ¼ 8πΨ10pi: ð13Þ

The geometric free data (i.e., those metric variables that
need to be specified) are comprised of the metric γ̃ij and its
coordinate time derivative ∂tγ̃ij, as well as the trace K of the

extrinsic curvature and the lapse function α̃. This formu-
lation is supplemented by a choice of energy and momen-
tum densities, E and pi, of the complex scalar matter, as
well as the corresponding scalar free data. This will be
discussed in detail in the next section.
To specify the metric free data, we proceed as follows.

First, we solve for stationary isolated BSs in Lewis-
Papapetrou coordinates, as outlined in Sec. II A. These
solutions are subsequently transformed to Cartesian coor-
dinates3 and boosted using initial coordinate velocities viðAÞ,
where A∈ f1; 2g labels each star in the binary, and placed
at coordinate positions ziðAÞ. Therefore, for each star we

obtain the set of variables γðAÞij , ∂tγ
ðAÞ
ij , αðAÞ, and βiðAÞ (for

both stars in Cartesian-type coordinates). For all binary
configurations presented in this work, ziðAÞ and viðAÞ are

chosen such that the initial center-of-mass location coin-
cides with the origin of the numerical grid, and the initial
linear momentum of the center of mass vanishes (at the
Newtonian level); limitations of this approach are discussed
in Appendix C. These two solutions are then superposed as

γsupij ¼ ηij þ fð2Þ
�
γð1Þij − ηij

�þ fð1Þ
�
γð2Þij − ηij

�
;

∂tγ
sup
ij ¼ fð2Þ∂tγ

ð1Þ
ij þ fð1Þ∂tγ

ð2Þ
ij ;

αsup ¼ 1þ fð2Þ
�
αð1Þ − 1

�þ fð1Þ
�
αð2Þ − 1

�
;

βisup ¼ fð2Þβið1Þ þ fð1Þβið2Þ; ð14Þ

where ηij ¼ δij is the flat 3-metric, and fðAÞ is an attenu-
ation function, which we introduce here for convenience
and discuss in detail in Sec. III B. For now, we simply point
out that the choice fðAÞ ≡ 1 corresponds to a plain super-
position of the isolated stars. As discussed in Ref. [49], the
metric free data is then obtained from

γ̃ij ¼ γsupij ;

∂tγ̃
ij ¼ −γ̃ikγ̃jl

�
∂tγ

sup
kl −

1

3
γ̃klγ̃

mn
∂tγ

sup
mn

�
;

α̃ ¼ αsup;

K ¼ 1

2α̃
½2∂iβisup þ γ̃ij∂tγ̃

ij þ γ̃ijβksup∂kγ̃ij�: ð15Þ

The CTS equations admit solutions provided appropriate
boundary conditions are specified. In the context of binary
BSs, i.e., asymptotically flat spacetimes, we require that

lim
jxj→∞

Ψ ¼ 1; lim
jxj→∞

βi ¼ βisupj∞; ð16Þ

3We transform from Lewis-Papapetrou to Cartesian coordi-
nates by applying the usual flat relations between spherical and
Cartesian coordinates.
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where βisupj∞ is the shift of the free data at large distances.
With these boundary conditions, we solve the CTS equa-
tions numerically using a multigrid schemewith fixed mesh
refinement (further details can be found in Ref. [49]). In the
context of axisymmetry, we employ a generalized Cartoon
method that provides derivatives about the axis of sym-
metry by means of a the axisymmetric Killing field,
allowing also for harmonic azimuthal dependencies in
the scalar sector.

C. Binary boson star sources

So far, we have left the precise parametrization of the
scalar matter sourcing the spacetime, E and pi, unspecified.
In principle, various choices of energy and momentum
densities measured by an Eulerian observer, are possible for
time-dependent complex scalar field matter. However, we
find the precise choice to be crucial to achieve convergence
of our numerical implementation. Therefore, in the follow-
ing we outline possible matter source parametrizations, and
especially, highlight the method we found to robustly yield
consistent binary BS initial data in any considered context.
We begin by introducing the necessary projections of the

nonlinear complex scalar energy-momentum tensor with
respect to the foliation introduced in the previous section.
The latter is readily obtained from (1) in covariant form:

Tμν ¼ 2∂ðμΦ̄∂νÞΦ − gμν½gαβ∂ðαΦ̄∂βÞΦþ VðjΦjÞ�: ð17Þ

For convenience, we define the conjugate momentum of the
complex field with respect to a spatial slice as

η ≔ LnΦ ¼ nα∂αΦ ¼ 1

α
ð∂tΦ − βiDiΦÞ: ð18Þ

With this, the scalar energy-momentum tensor can be
written in the Eulerian frame as

E ¼ nαnβTαβ ¼ ηη̄þDiΦDiΦ̄þ VðjΦjÞ
pi ¼ −γiαnβTαβ ¼ −ηDiΦ̄ − η̄DiΦ

Sij ¼ γiαγ
j
βTαβ ¼ 2DðiΦDjÞΦ̄

þ γij½ηη̄ −DkΦDkΦ̄ − VðjΦjÞ�: ð19Þ

Starting from these expressions, we discuss possible
approaches to parametrize the scalar matter, as well as
the associated choices of scalar free data accompanying the
metric free data (15). To that end, and before presenting
the source parametrization that we found to work for any
type of binary BS configuration, it is instructive to
consider two other approaches that, while natural, exhibit
fundamental issues.

1. Fixed-energy and momentum densities

In the context of binary neutron star initial data, it is
natural to choose the conformal Eulerian energy Ẽ and
momentum densities p̃i as free data for the CTS system of
Eq. (13). The corresponding physical momentum density
pi is typically chosen to be pi ¼ Ψ−10p̃i. One choice for
the conformal scaling of the energy is E ¼ Ψ−8Ẽ, which is
motivated by uniqueness arguments and the preservation
of the dominant energy condition (i.e., if the free data

satisfies Ẽ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̃ijp̃ip̃j

q
so does the constraint satisfying

initial data). In the case of fluid stars, the initial physical
pressure P and density ρ are recovered by means of an
algebraic relation between E, pi, P, and ρ derived from the
expression for the fluid energy-momentum tensor com-
bined with the fluid equation of state. This provides a
means to reconstruct the constraint satisfying fluid var-
iable initial conditions directly from the free data and
constrained data.
A complex scalar field, on the other hand, has kinetic and

gradient energy, in addition to potential energy. The energy
therefore depends on spatial gradients DiΦ and time
derivatives ∂tΦ of the scalar field, as can be seen in (19).
Therefore, unlike in the binary neutron star scenario, the
relation between the physical energy and momentum
densities, and the matter field Φ, is not purely algebraic,
but rather of differential form. This renders the
reconstruction of the scalar field initial data Φ and ∂tΦ
(or equivalently Φ and η) from the constraint satisfying
energy and momentum densities nontrivial.
Irrespective of these shortcomings, we test this choice

of matter source variables with a set of single isolated
nonspinning and spinning BSs. The metric free data is
constructed following the discussion in Sec. II B (setting

γð2Þij ¼ 0 etc.), while the scalar sources Ẽ and p̃i are
determined from (19). The CTS equations are then numeri-
cally solved iteratively as outlined above. We succeeded in
recovering isolated, boosted, nonspinning, and spinning
BSs utilizing this approach, i.e., the elliptic CTS solver
removed truncation error of the isolated solution to the
precision allowed by the resolution of the discretization
of the CTS equations. This shows that, within our numeri-
cal setup, solutions to isolated stars are in fact local
attractors in the space of solutions using this scalar matter
parametrization.

2. Fixed-scalar initial data

In order to circumvent the issue discussed in the previous
section, i.e., instead of fixing the energy and momentum
densities directly, one could provide the scalar-field initial
data itself—Φ and ∂tΦ—as free data to the CTS equations.
This makes the reconstruction of the scalar field trivial,
ensuring that the metric and scalar initial data consistently
solve the Hamiltonian and momentum constraints. To that
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end, we rewrite (19) in terms of the scalar fieldsΦ and ∂tΦ,
leading to

E ¼ Ψ−12

α̃2
j∂tΦ − βi∂iΦj2 þΨ−4D̃iΦ̄D̃iΦþ VðjΦjÞ;

pi ¼ −
Ψ−10

α̃2
ðð∂tΦ − βi∂iΦÞD̃iΦ̄þ ð∂tΦ̄ − βi∂iΦ̄ÞD̃iΦÞ;

ð20Þ
in terms of the conformal variables. The different scaling of
the kinetic, gradient, and potential energies with conformal
factor Ψ, as well as the dependencies on the shift vector βi

indicate that this approaches differs from providing E and
pi as free data by more than a simple Ψ-rescaling.
We tested the above choice of sourceswithin our numerical

setup, similarly to our tests of the formulation presented in
Sec. II C 1. We found robust convergence of the numerical
schemes in the case of isolated boosted nonspinning BSs.
However, we were unable to recover an isolated stationary
rotating BS solution using (20) in the CTS equations. Despite
theCTS equation residuals converging to zero at the expected
order before the first iteration, the solution of the elliptic
solver moves away from the true solution exponentially
quickly with each iteration. This indicates that rotating
BSs are not attractors in the space of solutions when
using (20) and our numerical framework, or suggests a
break-down in the uniqueness of this solution for the given
free and boundary data.Note, tests of uniqueness based on the
maximum principle (see, e.g., Ref. [3]) are not applicable in
this case, since the momentum constraint is not trivially
satisfied by stationary rotating BS solutions.4

3. Fixed-scalar kinetic energy

We turn now to the choice of scalar matter free data that
we found to robustly lead to constraint satisfying binary BS
metric and scalar-field initial data. Similar choices of free
data were considered recently in cosmological contexts in
Refs. [52,53]. Here, instead of setting the scalar initial data
fΦ; ∂tΦg as free data for the CTS equations, we replace
∂tΦ by the scalar field’s conformal conjugate momentum
η̃ ¼ Ψ6η as free data. With this, and in terms of the above
conformal decomposition, the energy and momentum
densities turn into

E ¼ Ψ−12η̃ ¯̃ηþΨ−4D̃iΦD̃iΦ̄þ VðjΦjÞ;
pi ¼ −Ψ−10ðη̃D̃iΦ̄þ ¯̃ηD̃iΦÞ: ð21Þ

The scalar data satisfying the constraint equations can then
be recovered via the algebraic relation

∂tΦ ¼ α̃ η̃þβi∂iΦ; ð22Þ

where β is the solution to the vector CTS equation provided
the free data fΦ; η̃g; notice αη ¼ α̃ η̃. For completeness,
we include here also the expressions (21) in terms of
ΦR ¼ ðΦþ Φ̄Þ=2, and ΦI ¼ ðΦ − Φ̄Þ=ð2iÞ, as these are
the variables used in our numerical implementation of the
elliptic CTS solver, as well as the hyperbolic evolution
scheme:

E¼ ½Ψ−12η̃2RþΨ−4D̃iΦRD̃iΦRþðR↔ IÞ�þVðΦ2
RþΦ2

I Þ;
pi ¼−2Ψ−10½η̃RD̃iΦRþðR↔ IÞ�: ð23Þ

We found this matter source parametrization to robustly
recover any kind of single BS solution in those tests
outlined in Sec. II C 1. Given this parametrization passes
these tests, we are now able to move to binary BS. To that
end, we construct the scalar free data in a similar fashion to
the superposed metric free data presented in (14). First, the
scalar fields ΦðAÞ of each star are boosted with the same
boost as the metric, then the conjugate momenta η̃ðAÞ are
determined,5 and finally, the variables are superposed to
obtain the scalar free data as follows:

Φsup ¼ f̂ð2ÞΦð1Þ þ f̂ð1ÞΦð2Þ;

η̃sup ¼ f̂ð2Þη̃ð1Þ þ f̂ð1Þη̃ð2Þ: ð24Þ

Here f̂ðAÞ are attenuation functions (directly analogous to
fðAÞ, defined in Sec. II B), which we discuss in detail below
and simply note here that f̂ðAÞ ¼ 1 corresponds to a simple
superposition of the two star’s scalar field variables. Notice,
while the constraint equations are invariant under a global
phase shift Φ → Φeiα, the source functions (21) are not
invariant under the phase of a single constituent of a binary,
e.g., Φð1Þ → Φð1Þeiα.

D. Scalar matter equilibrium

We focused so far on finding a scalar matter para-
metrization that robustly yields constraint satisfying binary
BS initial data. Since no assumptions on the stars’
trajectories, spin orientations, or mass ratio were built into
the formalism, this approach is very flexible. However, as
we show in Sec. III, the simple construction of the free data
described above results in stars with large internal oscil-
lations and ejected scalar matter. In the case of binary
neutron stars, various methods have been introduced to

4Even if the maximum principle could be applied in this case,
perturbations ϵ away from a solution Ψ0 to the Hamiltonian
constraint follow to linear order the equation D̃iD̃iϵ ¼ Γϵ, with
Γ ¼ R̃=2 − 14πΨ−8

0 α̃−2j∂tΦ − βi∂iΦj2 þ � � �, where we ignored
all positive-definite terms. Hence, nonvanishing kinetic energy and
momentum densities pi, present even in isolated rotating BSs, may
result in violations of the maximum principle, i.e., in Γ < 0.

5Recall, the scalar field has a nontrivial time dependence [see
also (4)], so that we first boost the vector ∂μΦ, and then determine
its conjugate momentum in the boosted frame.
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alleviate these issues by explicitly equilibriating the fluid
and metric degrees of freedom [54–56]. These approaches
are based on assuming the existence of a helical Killing
field lμ, which provides a notion of equilibrium not just for
the metric, i.e., Llgμν ¼ 0, but also for the matter variables.
In the case of binary neutron stars, combining the con-
servation of rest mass density, the conservation of the
fluid’s energy-momentum, and matter equilibrium with
respect to lμ, results in an elliptic equation for the
equilibriated initial velocity of the fluid. In the following,
we apply these arguments qualitatively to the case of scalar
field matter and outline approaches to equilibriating the
scalar matter. However, as we are not testing these
formalisms here explicitly, this is to be understood as a
first step guiding more thorough future analyses.
To that end, we assume the existence of a helical Killing

field lμ, such that lμ ¼ αnμ þ Ṽμ. In the asymptotically
inertial frame, the spatial velocity takes the form
Ṽμ ¼ βμ þ Ω̃mμ, where mμ is spacelike generating the
azimuthal direction and Ω̃ is the orbital period of the
helical field lμ. On the other hand, in the corotating frame,
the Killing field lμ → tμ, such that Ṽμ → βμ (for a
discussion on the subtleties associated with this choice,
see, e.g., Ref. [57]). From the perspective of the observer
associated with nμ, the Noether-current, defined in (2),
decomposes as

jμ ¼ ρnμ þ Jμ; ð25Þ

ρ ¼ −nμjμ ¼ iðΦ̄η −Φη̄Þ; ð26Þ

with local boson number density ρ, and spatial current

Jμ ¼ −iðΦ̄DμΦ −ΦDμΦ̄Þ: ð27Þ

In direct analogy to the rest-mass conservation equation
for fluids, the global U(1) symmetry of the scalar theory
implies the boson number conservation [see (2)]. With
this above decomposition of the current, the conservation
law (2) reduces to

Lnρ ¼ ρK −
1

α
DiðαJiÞ: ð28Þ

Correspondingly, the evolution equation for the scalar
field—the Klein-Gordon equation—is readily obtained
from (1):

½∇μ∇μ − ∂jΦj2VðjΦjÞ�Φ ¼ 0: ð29Þ

Using the foliation defined by nμ, the Klein-Gordon
equation takes the form

Lnη ¼
1

α
DiðαDiΦÞ þ Kη −Φ∂jΦj2VðjΦjÞ; ð30Þ

and similarly for the conjugate equation. To proceed, a
series of equilibrium conditions, utilizing the helical
Killing vector, must be imposed on the matter variables.
Contrary to the matter variables relevant for fluid stars,

the scalar matter making up BSs is not time independent.
To understand possible equilibrium conditions, recall that
the scalar field ansatz (4), with η ∼ iðω −mΩ=rÞΦ, con-
tains a harmonic time dependence of the scalar variables
due to the linear time dependence of the scalar phase.
Therefore, here we explore how the ansatz underlying the
isolated BS solution, i.e.,

LlΦ ¼ iω̃Φ; ð31Þ

may generalize to a binary system. To that end, we
specialize to the corotating frame for the remainder of
this section. This implies that Llα ¼ 0 and Llβ

μ ¼ 0,
which together with (31) imply thatLlη ¼ iω̃η. With these,
the Klein-Gordon equation (30) reduces to the complex
equation

−βiDiηþ iω̃η−αKη¼DiðαDiΦÞ−αΦ∂jΦj2VðjΦjÞ; ð32Þ

where η ¼ ðiω̃Φ − βiDiΦÞ=α in the corotation frame.
This second-order elliptic equation for Φ is directly
analogous to the scalar equation obtained from plugging
the metric and scalar field ansatz of an isolated stationary
BS [given in (3) and (4), respectively] into the Klein-
Gordon equation (29). The binary BS boundary condi-
tions are limjxj→∞Φ ¼ 0.
In this approach, the frequency ω̃ must be chosen. Even

in the equal-frequency regime, we expect the binary’s
frequency ω̃ to differ from the isolated star’s frequency
ω1 ¼ ω2 ≠ ω̃ due to the increase in binding energy; hence,
the naive expectation is that ω̃ < ω1. The frequency ω̃
could be iteratively adjusted to achieve a desired property
for the binary initial data (e.g., a value for the mass or scalar
charge), or a new binary BS solution may be found at fixed
ω̃ (analogous to the case of an isolated BS). For unequal-
mass binaries, the binary’s frequency is spatially dependent
since ω1 ≠ ω2. A simple choice is to construct a differ-
entiable ω̃ transitioning from a fraction of ω1 around the
first star to the same (or different) fraction of ω2 around the
second star.6

The previous ansatz, based on assumption (31), requires
specifying the binary frequency ω̃. An alternative is to
specify some profile for the scalar field (or conjugate
momentum) and then assume only the equilibrium

6Instead of making an ad hoc choice for ω̃, the total charge of
the binary may be kept fixed following the approach introduced
in Ref. [19] for isolated BSs. While this approach is convenient
for isolated solutions with spatially constant frequency, a gen-
eralization to unequal-frequency binary BSs with a spatially
dependent frequency may be challenging.
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conditions7 Lljηj2 ¼ Llρ ¼ 0 [which are implied by (31)].
Assuming these equilibrium conditions, Eqs. (28) and (30)
reduce to

Di½αðΦ̄DiΦ−ΦDiΦ̄Þ�¼−ðViDiþαKÞðΦ̄η−Φη̄Þ; ð33Þ

as well as

η̄DiðαDiΦÞþ ηDiðαDiΦ̄Þ
¼−ðViDiþ 2αKÞjηj2þαðη̄Φþ ηΦ̄Þ∂jΦj2VðjΦjÞ; ð34Þ

respectively. Notice, both equations are real. In the para-
metrization of Sec. II C 3, it is natural to interpret these
equations as elliptic equations for either η; η̄ or Φ; Φ̄
(keeping the respective other fixed). Here, no choice of
the binary’s frequency is required, since the ω̃ dependence
in (32) is canceled when adding (32) and its complex
conjugate to arrive at (34). Instead, the implicit assumption
is that the free data provides a sufficiently accurate
profile for either the conjugate momenta or scalar field
to equilibriate the binary by adjusting the other using (33)
and (34). In principle, either approach could be applied to
constructing spinning binary BS initial data, assuming
one starts with free data that is sufficiently close to the
desired solution.
Ultimately, only the direct implementation of these

approaches may test their applicability in reducing spurious
perturbations and equilibriating the matter in binary con-
figurations, which we leave to future work.

III. QUALITY OF BINARY INITIAL DATA

With the formalism in place to compute constraint
satisfying binary initial data, we now assess the quality
of the constructed data for some specific examples. Note,
we are not equilibriating the scalar matter using the ansatz
discussed in the previous section. To that end, we compare
the physical properties of the free data with those of the
constraint-satisfying initial data in Sec. III A. We proceed
in Sec. III B by addressing the spurious excitation of
oscillation modes insides the BSs of the initial data,
which shows up in the emitted GW signal, by using two
prescriptions to systematically remove such artifacts.
Finally, in Sec. III C, we utilize the standard procedure
for reducing orbital eccentricity and discuss its limitations
in the context of binary BSs.

A. Superposed free data

To assess the quality of the constructed initial data, we
consider a series of binary BS configurations. For now, the

focus is entirely on configurations obtained with fðAÞ ¼
f̂ðAÞ ¼ 1, i.e., the case of superposed free data, as defined in
Secs. II B and II C 3. The main properties of the considered
configurations are summarized in Table I. For binaries
B1;2;3, we analyze the impact of solving the constraint
equations on the physical properties of the resulting binary
BS initial data as a function of coordinate separation. To
that end, in the top panels of Fig. 2, we compare the ADM
masses M, charges Q, and angular momenta J of the
constraint-satisfying data to the corresponding quantities of
the binary at infinite separation labeled M0 ¼ M1 þM2

and Q0 ¼ Q1 þQ2. The physical properties of the initial
data differ from the superposed configuration at infinite
separation by up to ∼10%; these differences roughly scale
as ∼1=D0 with the coordinate separation D0 of the binary.
Furthermore, in the bottom left panel of Fig. 2, we show
how much the conformal factor Ψ differs from unity.
Generally, this difference is at most a few percent for
reasonable separations; max jΨ − 1j≲ 0.02.
Since the scalar matter is not equilibriated, solving the

constraint equations (10) in this form with superposed free
data leads to spurious oscillations in the constituents of the
binary. In the case of binary neutron stars, these artifacts are
identified by monitoring the central density of the stars
during the subsequent evolution of the initial data. Here, we

TABLE I. The properties of the isolated constituents of the
binaries used throughout the remainder of this work. The
configurations with coupling λ are solutions in the repulsive
scalar model (7), while those with coupling σ are stars in the
scalar theory with the solitonic potential (6). Here, ω is the star’s
frequency,m is the azimuthal index,Ci is the compactness, and Si
and Mi are its individual spin angular momentum and mass,
respectively. Binaries B1;2;5;6 consist of identical stars, whereas
B3;4 are made of two stars with different frequencies (and hence,
masses, spins, etc.). The mass ratio of the last mentioned binaries
are q ¼ 1.43 and q ¼ 1.13, respectively. We also consider
nonzero initial complex scalar phase offsets α (as defined at
the end of Sec. II C 3) between the two stars. Note, in the case of
B6, we vary the phase offset α∈ ½0; π� in Sec. IVA; hence, we
leave α unspecified here. In the axisymmetric setup, the stars are
boosted by the Newtonian free-fall velocity at the given coor-
dinate separation, whereas in the 3D context, the stars are
initialized with quasicircular orbital frequency and spins aligned
with the orbital angular momentum; note, however, we also
consider a binary with the parameters of B3 with misaligned spins
in detail in Sec. IV C.

Label Coupling m ω=μ Ci Si=M2
i Setup α

B1 σ ¼ 0.05 1 0.4 0.12 2.0 Axisymmetry 0
B2 λ=μ2 ¼ 103 0 0.9 0.08 0 Axisymmetry 0
B3 σ ¼ 0.05 1 0.3,0.350.17,0.141.37,1.70 3D π

3

B4 λ=μ2 ¼ 103 0 0.86,0.90.12,0.08 0 3D 0
B5 σ ¼ 0.05 0 0.25 0.13 0 3D π

2

B6 σ ¼ 0.05 1 0.3 0.17 1.37 Axisymmetry � � �

7Notice, these approaches are manifestly slice dependent. Due
to the scalar time dependence, the covariant equilibrium assump-
tions are Ll½Φ̄Φ� ¼ 0, and Ll½Φ̄∂μΦ� ¼ 0. This, in general,
implies Llρ ≠ 0 in the corotating frame.
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proceed analogously by tracking the global maximum of
the magnitude of the scalar field max jΦj throughout the
first few oscillation periods T0 of excited modes in the stars.
Specifically, we focus on those oscillation modes of the
normalized maximum on each time slice ϕmðtÞ ¼
max jΦjt=max jΦjt¼0 and quantify the amplitude of these
perturbations with

Δϕm ¼ maxt∈ ½t0;t0þT0�ϕmðtÞ
mint∈ ½t0;t0þT0�ϕmðtÞ

− 1: ð35Þ

In the case of binaries in the repulsive scalar model,
measuring Δϕm with t0 ¼ 0 suffices, while for binary
configurations in the solitonic scalar theory, we typically
extract Δϕm with t0 > 5T0 (once the binary settles into the
dominant oscillation mode). We find the maximum of the
gauge-dependent U(1)-charge density to track these oscil-
lations equally well. In the bottom right panel of Fig. 2, we
show Δϕm for different binary configurations and initial
separations. The amplitude of these oscillations increases
with decreasing initial binary separation. At large separa-
tions, Δϕm → 0, indicating that the construction of the

initial data (without assuming matter equilibrium) excites
these oscillation modes. Notably, the magnitude of Δϕm is
much smaller in the case of binaries in the solitonic scalar
model, compared with the repulsive scalar model. In the
following section, we analyze spurious oscillations of this
kind in more detail, and propose and test methods to help
mitigate these effects.

B. Spurious oscillations

We have seen that the naive choice for the metric and
scalar free data, i.e., the superposed free data, leads to
potentially significant spurious oscillations in the individ-
ual stars in the subsequent evolution of the initial data. To
address this issue, it is instructive to consider possible
physical mechanisms unique to scalar BSs causing these
artifacts. The fundamental feature rendering the fluid star
and the BS cases distinct is that the microphysical scales
of the latter are macroscopic, leading to wavelike phenom-
ena on scales of the star itself. Specifically, the BS can be
thought of as composed of a collection of bosons with
Compton wavelength λ ∼ 1=μ satisfying M=λ ∼ CR=λ∼
Oð1Þ, since C ∼Oð0.1Þ in the relativistic regimes relevant
for this work (see, e.g., Fig. 1). Therefore, there may be
distinct processes active in the context of binary BSs
affecting the quality of the initial data.
Self-gravitating solitonic solutions such as BSs consist

of a single coherent gravitationally bound state of bosons
with energy8 ω<μ. The marginally bound scenario, ω ¼ μ,
separates the bound states from unbound and asymptoti-
cally free states with energies ω > μ. Stationary isolated
BSs are solutions with bosons of energy ω precisely in
equilibrium with the gravitational field. However, pertur-
bations introduced by superposing two stationary BSs and
solving the Hamiltonian and momentum constraints based
on such nonequilibriated free data disrupts this balance.
Perturbations may elevate some fraction of the bound
bosons of energy ω to (i) completely free states (dispersing
away from the binary), (ii) states that are gravitationally
bound to the binary (as opposed to one of the constituents);
analogous to a wave dark matter halo with solitonic core
(see, e.g., Ref. [58]), or (iii) states gravitationally bound to a
single star, but with energy ω that is not at equilibrium with
the gravitational sector. All these processes are, in princi-
ple, able to excite oscillation modes inside the star, as well
as contaminate the GW signal at early times in a numerical
evolution. Note, nonlinear scalar self-interactions may also
disturb equilibrium configurations. However, since since
we mainly focus on high compact stars with ω ≪ μ, these
effects are suppressed (see, e.g., Ref. [47]).
With these possible sources in mind, in the following we

explore several prescriptions for reducing spurious oscil-
lations in binary BSs. We first outline methods commonly

FIG. 2. The properties of the constraint satisfying binary BS
initial data as a function of coordinate separation D0 of the stars.
Here, M is the ADM mass, J the angular momentum (defined
with respect to the axisymmetric Killing field), and Q the initial
charge of the binary configurations with properties summarized
in Table I. These are compared with the corresponding quantities
at infinite separation of the binary (e.g., M0 ¼ M1 þM2). The
amplitude of the spurious oscillations in the stars emerging
during the evolution of these binary initial data is defined in (35).
Dotted lines indicate the ∝ 1=D0 falloff matched to the point with
the largest separations.

8Note, here and in the following, we use boson “energy” and
“frequency” interchangeably, implicitly setting ℏ ¼ 1.
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used in the context of binary black hole and neutron star
initial data and discuss their effectiveness in the BS context,
before introducing and validating several methods specific
to BSs.

1. Modified superposition

We begin by returning to the largest spurious oscillations
in the bottom-right panel of Fig. 2, i.e., those in the head-on
collisions of nonrotating stars in the repulsive scalar model.
As we demonstrate below, some of these spurious oscil-
lation artifacts can be removed by choices of the attenuation
functions fðAÞ and f̂ðAÞ, introduced in Secs. II B and II C 3,
respectively. In the case of binary black hole or neutron star
initial data, it is common practice to remove the metric
variables of one star at the location of the other (analogous
to approaches introduced in Refs. [59–61]), achieved by
nontrivial attenuation functions fðAÞ. This can reduce the
effect of the superposition on the individual stars. In order
to remove the metric and scalar free data due to one of the
stars at the coordinate location of the other, we choose

fð1ÞðxÞ ¼ 1 − exp

�
−
jx − zð2Þjγ

σγð1Þ

�
; ð36Þ

and the corresponding ð1Þ ↔ ð2Þ, as well as scalar attenu-
ation functions f̂ðAÞ with associated length scales σ̂ðAÞ.
Here, zð2Þ is the initial coordinate position of the second star
(as defined in Sec. II B), whereas the length scales σðAÞ and
σ̂ðAÞ set the size of the attenuation region around each of the
constituents of the binary. We consider γ ¼ 2 and 4.
We find this approach to be effective in reducing

spurious oscillations, as measured by Δϕm, only for BS
solutions in the repulsive scalar model (7). In fact, applying
this approach to stars in the solitonic models worsens the
artificial oscillations, requiring a different prescription to
handle the latter, as described in detail in the next section.
In the left panels of Fig. 3, we show the time dependence of
the maximum of the scalar field magnitude, as well as the
dependence of the amplitude of the spurious oscillations on
the length scales associated with the attenuation function
introduced in Eq. (36). As can be seen from the figure,
increasing the attenuation length scales (at fixed separa-
tion), decreases the amplitudeΔϕm. Around σðAÞ=D0 ≈ 0.5,
the spurious oscillations are minimal, and increase in
amplitude for σðAÞ=D0 ≳ 0.5. Therefore, we find that in
all cases considered, tuning the length scales relevant
in (36) results in binary BS initial data with significantly
reduced spurious oscillations. Finally, considering γ ¼ 4

FIG. 3. We show the temporal evolution of the normalized maximum on each time slice ϕm ¼ max jΦj=max jΦjt¼0 and amplitude
of the perturbations Δϕm, defined in (35), for selected binary BS configurations. In all cases shown here, the exponent γ, defined
in (36), is set to γ ¼ 2. (left top) The behavior of the maximum ϕm during the evolution of the binary B4 (see Table I) with initial
coordinate separation D0 ¼ 20M0, constructed with fðAÞ ¼ f̂ðAÞ ¼ 1 (labeled “superposition”) contrasted with the case, where
σðAÞ=D0 ¼ 0.52 and σ̂ðAÞ ¼ 0 (labeled “modified sup.”). (left bottom) The amplitude Δϕm of the spurious oscillations as functions of
the lengthscale σ̂. Cases indicated with “(g)” correspond to only metric attenuation, σ̂ðAÞ ¼ 0 and σ̂ ¼ σðAÞ, while for those labeled
“(gþ s)” both the metric and scalar degrees of freedom are attenuated σ̂ ¼ σ̂ðAÞ ¼ σðAÞ. The binary B2 has initial coordinate
separation D0 ¼ 40M0. (top right) The behavior of the maximum ϕm during the evolution of the binary B3 (see Table I) with initial
coordinate separation D0 ¼ 12M0 (constructed with fðAÞ ¼ f̂ðAÞ ¼ 1) and rescaling the conformal kinetic energy in (37) with p ¼ 0

as well as p ¼ −4. (bottom right) We show the amplitude Δϕm of spurious oscillations emerging during the evolution of binaries
B1;3 with initial coordinate separations D0 ¼ 40M0 and D0 ¼ 12M0, respectively. For the latter, we were unable to construct binary
BS initial data with p < −4.
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(as opposed to γ ¼ 2) results in no qualitative difference to
the behavior shown in left panels of Fig. 3.
Besides improving the binary BS initial data by remov-

ing spurious oscillations, this modified superposition
approach turns out to be necessary in the case of highly
compact binary inspirals at moderate separations within the
repulsive scalar model (7). Specifically, we focus on a
binary BS with ω1 ¼ ω2 ¼ 0.86μ, at initial coordinate
separation D0=M0 ¼ 20 and quasicircular boost velocities.
For this, we find that superposed free data, i.e., with
fðAÞ ¼ f̂ðAÞ ¼ 1, results in premature collapse of each
individual star to a black hole after ≈50M0. In contrast,
with σðAÞ ¼ D0=2, the individual stars remain stable
throughout the inspiral of length ∼Oð103ÞM0 up to the
point of contact. On the other hand, in Ref. [47], we found
the simple choice fðAÞ ¼ f̂ðAÞ ¼ 1 to be sufficient to
successfully evolve the binary with ω1 ¼ ω2 ¼ 0.9μ in
the same family of solutions; hence, the attenuation is
necessary for more relativistic BS solutions. Note, similar
premature collapse was observed in Ref. [62].

2. Conformally rescaled kinetic energy

As alluded to above, we find attenuating the metric and
scalar free data to only be beneficial in binary BSs in the
repulsive scalar theory. For the solitonic case, we return to
the notion of energy levels determined by the frequency ω
of the scalar bound state. In the context of the scalar
variables, this frequency is set by ∂tΦ, which enters the
kinetic energy ∼jηj2 according to (18). For instance, for
isolated BSs ∂tΦ ¼ iωΦ, and similarly η ∼ ðω −mΩ=rÞΦ
(in the coordinates introduced in Sec. II A). To reduce the
impact of the superposition on the BSs, as discussed in
Sec. III B, we modify the kinetic energy of the scalar
field.9 The kinetic energy combines changes in the
frequencies of the individual stars with changes in the
local linear and angular momentum due to the orbital
motion and the star’s intrinsic spin. As such, increasing or
decreasing the kinetic energy locally self-consistently
within the CTS setup may help address spurious oscil-
lations. To incorporate this in our initial data construction
scheme discussed in Sec. II C 3, we rescale the physical
conjugate moment η by an additional power p of the
conformal factor:

η ¼ Ψ−6−pη̃: ð37Þ

In the right panel of Fig. 3, we illustrate the impact of
the choice (37) for different p on the spurious oscillations
in the individual stars of two types of binaries in the
solitonic scalar model (in all binary BSs in the repulsive
scalar model, we set p ¼ 0). In the axisymmetric

binary labeled B1, we find that the amplitude of the
spurious oscillations can be minimized by adjusting the
exponent p. In this case, a rescaling (37) with −4<p<−3
minimizes the spurious oscillations measured by Δϕm.
These oscillations can be addressed also in the case of the
inspiraling binary B3; however, our numerical implemen-
tation robustly relaxes into a solution to the constraint
equations only for p ≥ −4. The oscillation amplitude is still
decreasing with decreasing p for p ¼ −4, and this leaves a
residual oscillation amplitude roughly a factor of 5 smaller
compared with the p ¼ 0 initial data. While the spurious
oscillation amplitude of all binaries in the solitonic scalar
model considered is small, i.e., jΔϕmj ∼ 10−3, there is a
correlation between reducing these small artifacts and
removing a high-frequency contamination from the emitted
gravitational waveform.
In Fig. 4, we show the GW amplitude and phase

extracted from the binary evolution of B3 constructed
using (37) with p ¼ 0. We contrast this with the signal
extracted from the same binary, but with initial data
constructed using p ¼ −4. Similar to the amplitude of
the spurious oscillations described above, the high-
frequency and large amplitude contamination of GWs at

FIG. 4. The GWamplitude (top) and phase (bottom) emitted by
the (aligned-spin) binary B3 with initial separation D0 ¼ 12M0.
The two curves correspond to the evolution of initial data
constructed using p ¼ 0 or p ¼ −4 in (37). Specifically, the
GW phase ϕGW is the complex phase of the Newman-Penrose
scalar Ψ4, whereas the GW amplitude is the magnitude of the
projection of Ψ4 onto the ðl; mÞ ¼ ð2; 2Þ mode of s ¼ −2 spin-
weighted spherical harmonics on a coordinate sphere at radius
r ¼ 100M0. Note, the binary orbits are eccentric with eccentricity
e ≈ 0.1, resulting in modulations with period ≈250M0 as is most
striking in the top panel (eccentricity reduction is discussed
separately in Sec. III C).

9Note, in principle, one could modify ∂tΦ iteratively, even
when working with the parametrization of Sec. II C 3.
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early times changes with the exponent p. As the period of
the high-frequency contamination matches the period of the
spurious oscillations in Fig. 3, we identify the latter as a
source of the GW contamination. Therefore, the adjustment
of the kinetic energy by the conformal rescaling (37) aids in
reducing GW contamination. However, as for the spurious
oscillations, the trend of the magnitude of this contamina-
tion with decreasing exponents p < 0 suggests that if initial
data with p < −4 could be constructed, the contamination
would be further inhibited. In this case, we find that the
amplitude of the contamination is reduced by roughly a
factor of 2 compared with the canonical choice p ¼ 0.
Additionally, the evolution of the GW phase shown in
Fig. 4 indicates that in the p ¼ 0 case the amplitude is
dominated by the high-frequency contamination, while in
the p ¼ −4 case, the phase evolution is determined
primarily by the binary orbit, as opposed to spurious
oscillations. Finally, keeping the superposed free data
fixed, but varying the parameter p, results in constraint
satisfying initial data with different physical kinetic energy
and momentum densities [according to (37)]. This may
lead to different orbital parameters for the binary, explain-
ing the shorter time-to-merger comparing the p ¼ 0 with
the p ¼ −4 case in Fig. 4.

C. Eccentricity reduction

The flexibility of our approach to constructing the
initial data allows us to, in principle, find constraint
satisfying binary BS data resulting in any orbital con-
figuration. Of particular interest in the case of compact
binary inspirals are low-eccentricity orbits. Hence, in a
last step to improve the quality of our binary BS initial
data, we turn to applying common techniques to reduce
the eccentricity of compact binary initial data to the binary
BSs constructed here. To that end, we first define a notion
of the BS coordinate location valid throughout the
evolution, we then briefly review the eccentricity reduc-
tion methods introduced in Refs. [63–65], and finally, we
apply these methods to selected spinning and nonspinning
binary BSs.
To define the coordinate positions of the two BSs during

a binary evolution, we employ a two-step procedure: first, a
rough estimate of the star’s position restricted to the initial
equatorial plane is obtained by finding the coordinate
locations of the local maxima of jΦj for spherically
symmetric stars, and local minima in the case of rotating
BSs associated with each star (i.e., the intersection of the
star’s vortex lines and the equatorial plane). In a second
step, the center of scalar field magnitude within a coor-
dinate sphere BA centered on the previously determined
locations of extrema-enclosing star A,

ziðAÞðtÞ ¼
Z
BA

d3xjΦðt;xÞjxi; ð38Þ

is used as the coordinate position at the given coordinate
time t.10 The coordinate separation dðtÞ of the binary is then
simply dðtÞ ¼ jzð1ÞðtÞ − zð2ÞðtÞj. Note, the first step is
sufficient for stars in the repulsive scalar potential (7), as
the locations of the extrema are less prone to contamination
by spurious oscillations within the stars. In the case of BSs
in the solitonic models, however, we find the second step to
be crucial particularly for nonspinning stars, as jΦj is
roughly constant inside each star. In the remainder of this
work, we use (38) to define the BS position.
The general procedure to reduce eccentricity, following

Ref. [63], is to begin with a set of binary initial data, evolve
these for a sufficiently long time to be able to confidently fit
for the binary’s orbital parameters, and then compute a
correction to the initial radial velocity and orbital frequency
to construct new initial data with lower eccentricity. This
process is repeated until the desired eccentricity is reached.
Specifically, we fit for the binary BS coordinate separation
dðtÞ using

d̂ðtÞ ¼ A−1 þ A0tþ
A1

2
t2 þ B

ω
sinðωtþ φÞ; ð39Þ

and correspondingly for the binary’s radial velocity using
the fit

v̂rðtÞ ¼ A0 þ A1tþ B cosðωtþ φÞ: ð40Þ

Based on this parametrization, the initial orbital frequency
Ω0 and initial radial velocity vr are corrected by [63]

Ω0 → Ω0 þ
Bω sinðφÞ
2Ω0d0

;

vr → vr − B cosðφÞ; ð41Þ

at each eccentricity iteration step, where d0 ¼ A−1.
11

Working entirely in flat space, in order to translate these
orbital parameters to the initial coordinate positions zið1Þ,
zið2Þ and velocities við1Þ, v

i
ð2Þ of the binary constituents, as

defined in Sec. II B, we utilize the Newtonian center-of-
mass expressions

zið1Þ ¼ ri
M2

M0

; zið2Þ ¼ −ri
M1

M0

: ð42Þ

Here, ri is the binary separation with vi ¼ ∂tri, and the
corresponding velocities við1Þ and v

i
ð2Þ are given by the time

derivatives of the above expressions. We decompose the

10Note, in the initial time slice ziðAÞð0Þ agrees with the co-
ordinate positions ziðAÞ defined in Sec. II B to a large degree;
hence, we neglect any potential difference between the two in the
following.

11Note, in general d0 ≠ D0, as we show below explicitly.
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center-of-mass velocity vi into radial vr and tangential vt
components as vi ¼ vrni þ vtλi, where ni ¼ ri=r and
λi ¼ ∂tni. The initial tangential component of the center-
of-mass velocity is set by the initial orbital velocity as well
as initial coordinate separation d0 using vt ¼ Ω0d0. The
constituents velocities are then reconstructed from vi

utilizing the time derivative of the expressions (42). In
this context, the orbital eccentricity is defined to be

e ¼ B
ωd0

: ð43Þ

The formulas (41) are based only on Newtonian gravity,
with radiation reaction and other general relativistic cor-
rections assumed to be absorbed into the linear and
quadratic time dependence in (39); we note that BSs will
also have scalar interactions that become important during
the late inspiral [47], particularly for stars with small
compactness and ω ≈ μ, which may introduce extra com-
plications in performing eccentricity in this way at small
separations.
Applying this machinery to binary BSs, we find that

spurious oscillations of the stars and nonequilibriated scalar
matter result in high-frequency oscillations of the coor-
dinate separation dðtÞ, limiting the eccentricity reduction.
Below eccentricities of e ∼ 10−2, the fit v̂rðtÞ is too
uncertain to confidently extract estimates for the sub-
sequent iteration step. Instead, in these cases, we resort
to using (39) to determine the corrections (41). For
e≲ 10−3, the amplitude of the modulation of d due to
residual eccentricity reaches the amplitude of the oscilla-
tions in d introduced by these spurious oscillations.
Therefore, even the fit d̂ðtÞ to the coordinate separation
d becomes uncertain, and we terminate eccentricity reduc-
tion at e≳ 10−3. Furthermore, it is, of course, crucial to
minimize oscillations of the stars using the methods
discussed in Sec. III B, i.e., find the exponent p of (37)
and length scales fσðAÞ; σ̂ðAÞg in (36), before attempting to
reduce the eccentricity. Especially the choice of (37) alters
the matter’s kinetic energy and linear momentum, and
hence, the orbital frequency and radial velocities.
In Fig. 5, we show the orbital parameters throughout

the iterative reduction of the orbital eccentricity for two
example binaries. In the case of the spinning and unequal-
mass binary B3, the eccentricity decreases exponentially
with the iteration step Ne down to e ∼ 10−3, where the
fitting approach of (39) becomes unreliable. In the case of
the nonspinning and equal-mass binary B5, however, the
eccentricity decreases only slowly with each iteration step.
Consulting the top panel of Fig. 5, the first iteration step
for B5 resulted in a positive radial velocity. While vr is a
coordinate quantity, and hence, carries limited physical
meaning, in binary black hole and neutron star initial data
constructions, this is found to consistently satisfy vr < 0.
Both may be due to fitting to the dðtÞ time series before all

spurious perturbations of the initial data have decayed
away sufficiently (e.g., fits of the Ne ¼ 1 iteration con-
tained only roughly 3=2 orbits), beyond which we cannot
isolate a cause of the slow convergence of e for B5. Finally,
in the case of the precessing B3 (details can be found in
Sec. IV C), we perform only a single iteration step and
find similar convergence behavior as for the aligned-spin
binary B3. Note, in precessing cases the spin-interactions
(particularly for super-spinning compact objects as con-
sidered in B3) induce physical oscillations of the binary
separation beyond residual eccentricity (see, e.g.,
Ref. [66]), which we, however, have not observed here.
Lastly, in Appendix C, we discuss the linear motion of the
center of mass away from the center of the numerical grid,
and how to iteratively reduce this artifact, while simulta-
neously reducing eccentricity.

IV. BINARY EVOLUTIONS

In this section, we illustrate our method for constructing
binary BS initial data in the context of head-on collisions
and quasicircular inspirals, including a precessing system.

FIG. 5. (top panel) The initial radial velocity component vr and
orbital angular frequency Ω0 of the binary BS initial data
corresponding to B3 and B5 (see Table I), throughout the
eccentricity reduction procedure, starting from iteration step 0.
Here, Ω∞ ¼ ðD3

0=M0Þ1=2. (bottom panel) The associated eccen-
tricity, defined in (43), as a function of iteration step Ne. We only
perform a single iteration step for the B3 binary with misaligned
spins (this case is discussed further in Sec. IV C).
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In the case of head-on collisions, we demonstrate explicitly
that equal-mass rotating binary BSs exhibit solitonic
behavior (resembling the dynamics found in Ref. [37]),
bouncing off each other when colliding along their spin
axes, if the phase offset between the stars is precisely π.
Furthermore, we consider two eccentricity-reduced,
quasicircular inspiraling binary BSs; one nonspinning
equal-mass binary, and one super-spinning unequal-mass
configuration. We analyze their inspiral dynamics, show
that nontrivial scalar interactions result in strong deviations
from the dynamics of binary black holes or neutron stars
(analogous to what was found in Ref. [47]), and character-
ize the GW strain. Finally, we consider a super-spinning,
precessing binary BS inspiral at moderately low eccentric-
ity, analyze the merger dynamics, and show the resulting
gravitational waveform.
To that end, we employ the methods developed above in

Sec. II. In particular, we use the source parametrization
introduced in Sec. II C 3 (the scalar matter is not equili-
briated with approaches outlined in Sec. II D). Since we
focus on BSs in the solitonic scalar model, we set the
attenuation coefficients (introduced in Sec. III B 1), as well
as the conformal rescaling parameter p (introduced in
Sec. III B 2), to zero unless otherwise stated.

A. Head-on collisions

In this section, we explore the merger dynamics of two
rotating BSs during a head-on collision along their respec-
tive spin axes, focusing on the σ ¼ 0.05 solitonic scalar
model (6) and binaries composed of m ¼ 1 rotating BSs. It
is important to note that, in this setting, we evolve the
binary BSs using a generalized Cartoon method, which
explicitly assumes the scalar fields azimuthal dependence
follows Φ ∼ eimφ, in addition to an axisymmetric metric
(see Appendix A for details). As a result, any modes
violating this condition will not appear in the evolution. In
particular, this implies (i) any nonaxisymmetric instability
of the form found in Ref. [51] is suppressed, and (ii) the
vortex structure of the solution on the symmetry axis is
conserved throughout the evolution.
We begin by considering the predictions of the remnant

map introduced in Ref. [47] for these head-on collisions.
We do not repeat the details of the construction of the
remnant map here (which are found in Ref. [47]), and
simply summarize the key features in the context of the
head-on collision of two m ¼ 1 BSs. This map assumes
U(1)-charge conservation (Qrem ¼ Q1 þQ2) during the
merger of two BSs to predict the qualitative and quanti-
tative features of the merger remnant. In order to use the
remnant map, one must provide a plausible candidate
family of remnants. Due to our evolution methods, any
binary composed of two m ¼ 1 stars results in a remnant
withm ¼ 1 vortex along the symmetry axis. Therefore, it is
natural to consider that the remnant of the two rotating BSs
is another rotating BS of the same vortex index (unless the

combined charge of the binary surpasses the maximum
charge of the family of m ¼ 1 BSs in this scalar model, in
which case the remnant is likely a black hole). In our
axisymmetric setup, any known linear instability of the
rotating BSs in the σ ¼ 0.05 solitonic scalar model is
suppressed, implying that this condition allows the merger
remnant to be a m ¼ 1 BS. Hence, we can map all
properties of any given m ¼ 1 binary BS, parametrized
by their frequencies ω1 and ω2, into the properties of the
resulting m ¼ 1 BS assuming charge conservation. In
particular, in order to consider the kinematics of the
merger—and whether this favors the formation of a m ¼ 1
BS remnant—we define the relative mass difference [47]

M ¼ M1 þM2 −Mrem

M1 þM2

: ð44Þ

Here, M1 and M2 are the masses of the individual stars,
while Mrem is the mass of the rotating BS with charge
Qrot ¼ Q1 þQ2 obtained form the remnant map. If a
binary configuration has M > 0, then the formation of
that m ¼ 1 BS remnant of mass Mrem is energetically
favorable. In Fig. 6, we show the relative mass difference
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FIG. 6. The remnant properties of a m1 ¼ m2 ¼ 1 spinning
binary BS head-on collision (with frequencies ω1 and ω2) in the
σ ¼ 0.05 solitonic scalar model (6), assuming the remnant is a
m ¼ 1 rotating BS and using the remnant map of Ref. [47] (i.e.,
assuming U(1)-charge conservation to predict the remnants
properties for each given binary configuration). The dimension-
less angular momentum Jrem=M2

rem and the associated remnant
compactness Crem are shown as contours. The mass ratio M is
defined in (44). We restrict to the ω2 > ω1 portion without loss of
generality, and indicate the regions with Qrem > Qmax, where
Qmax is the maximum charge of the m ¼ 1 family of BSs, in
black. Finally, we classify the merger remnants into black holes
(“BH”) and m ¼ 1 rotating BSs (“BS”), and mark the binary that
gave rise to the respective remnant with dots. [Notice, the central
(left) “BS” corresponds to binary B1 (B6), see Table I.]
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M across the relevant binary BS parameter space. For all
binary configurations shown, it is indeed energetically
favorable to form a m ¼ 1 rotating BS remnant after
merger. Hence, the remnant map predicts the merger
remnant to be a m ¼ 1 rotating BS remnant. Note, if the
initial phase offset α between the stars is exactly α ¼ π,
then the remnant is not a (parity-even) m ¼ 1 rotating BS,
but rather a double rotatingm ¼ 1 star (i.e., a single, parity-
odd rotating star), as we discuss in detail below.
To test this prediction, we perform a series of numerical

evolutions of binary BSs in the axisymmetric setting
described above. The initial data is constructed as dis-
cussed in the previous sections, where for simplicity, the
conformal rescaling power in (37) is set to p ¼ 0, and no
modification of the form give in (36) is applied. The initial
velocities are chosen based on the Newtonian free-fall
velocity from rest at infinity, and the binary separation is
chosen to be D0 ¼ 10M0 initially. Finally, here the phase
offset α (defined at the end of Sec. II C 3) between the
phases of the rotating stars is set to vanish, α ¼ 0. (We
consider scenarios varying the value of α below). For each
of the evolutions, we classify the remnants as either BSs
(m ¼ 1 rotating BSs) or spinning black holes. In Fig. 6,
we show the binary configurations we numerically evolve,
and indicate the remnant type. First, in the case of equal-
mass binaries, i.e., those with ω1 ¼ ω2, the remnant is
consistent with the prediction of the remnant map, except
for the case with ω1 ¼ ω2 ¼ 0.2μ. In this case, and all
other cases indicated as “BH” in Fig. 6, the merger
product collapses to a black hole during the nonlinear
merger process. The fact that the threshold for black hole
formation is slightly lower than predicted by the remnant
map is likely due to the extra compression and kinetic
energy due to the collision. This explicitly demonstrates
that the final remnant of the head-on collision of two
rotating BSs along their mutual vortex line results in
another rotating BS of the same vortex number (or a black
hole if the individual stars are sufficiently compact). In
Ref. [67], a similar analysis was performed in the
Newtonian limit dropping all symmetry assumptions.
Since they find that the central vortex line persists
throughout the merger, their results are consistent with
our findings here, and suggest that the latter generalize to
3D if linear instabilities are absent in both the merging
BSs and the remnant BS.
Let us now return to considering head-on collisions

of two m ¼ 1 rotating binary BS configurations while
varying the initial phase offset α. We perform a series
of evolutions of the binary configuration B6 (with
initial separation of D ¼ 10M0 and Newtonian free-fall
velocities, as before), with initial phase offsets of
α=π ∈ f1=4; 1=2; 3=4; 8=9; 1g. Notice, the α ¼ 0 case
was found to result in a rotating m ¼ 1 BS as indicated
in Fig. 6. In Fig. 7, we show snapshots of the head-on
collision of the binary with maximal phase offset, i.e.,

α ¼ π. As evident there, contrary to the expectation from
the α ¼ 0 scenario, the two stars bounce off each other
upon contact. After several bounces, the system settles
into a state of two spatially separated scalar distributions
with a persistent phase offset of π, as shown in the
right panel of Fig. 7. The end state of this merger is
plausibly a stationary solution analogous to those found in
Refs. [20,68]. These are parity-odd solutions resembling
two rotating BSs, where gravitational attraction is bal-
anced by scalar interactions. Physically, this solitonic
behavior resembles the dynamics during the head-on
collision of two nonspinning BSs with phase offset α ¼ π
reported in Ref. [37] (and associated stationary solutions
of Ref. [69]).
Moving to the cases with α=π ≠ 1, we find that the

remnant of the corresponding head-on collision is
always a single m ¼ 1 rotating BS at late times. In
the case of α=π ¼ 8=9, the system performs a single
bounce upon collision, but then merges to a perturbed
rotating BS. This demonstrates that, similar to the head-
on collision scenario of two nonspinning stars, only the
α ¼ π configuration exhibits a final state different from a
m ¼ 1 rotating BS. This, of course, limits the validity of
the remnant map to those cases with α=π ≠ 1; however,
as this is an edge case (similar to two nonspinning stars
with phase-offset of α ¼ π), the impact on the appli-
cability of the remnant map even in these head-on
scenarios is minimal.

FIG. 7. We show scalar field quantities on axial slices for the
head-on collision of binary B6 with initial phase-offset of α ¼ π.
The z-axis is the spin-axis and z ¼ 0 corresponds to the center of
mass of the system. (left) Surfaces of constant scalar field
magnitude at various times during the head-on collision. (right)
The solution after it has relaxed at late times (t=M0 ¼ 856). The
black contour line indicates the surfaces of constant scalar field
magnitude, while the color indicates the phase ψ of the scalar
field. This end state resembles the parity-odd stationary double-
BS solutions found in Refs. [20,68].
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B. Quasicircular binaries

We return now to the eccentricity-reduced binary con-
figurations discussed in Sec. III C, and provide further
details on their orbital evolution as well as GWemission. In
particular, we consider the equal-mass, nonspinning binary
B5, and the aligned-spin super-spinning binary B3 of mass-
ratio q ¼ 1.43 with details provided in Table I. In both
cases, we focus mainly on the last eccentricity-reduction
iteration step shown in Fig. 5 (i.e., Ne ¼ 5 and Ne ¼ 3
for the nonspinning and spinning binaries, respectively)

with eccentricity e ¼ 4 × 10−3 in the case of B5 and
e ¼ 1.8 × 10−3 in case of the nonprecessing binary B3.
In Fig. 8, we show the orbital trajectories, binary separa-
tions and radial velocities, as well as the emitted GW strain
for both configurations.
First, let us focus on the eccentricity reduced binary B5

(top row of Fig. 8). After initial gauge dynamics (we utilize
damped harmonic gauge and the generalized harmonic
formulation, see Appendix A for details), the binary settles
into a state with roughly 17% large coordinate separation of

FIG. 8. Trajectories and GWs from two quasicircular binary BS mergers: an equal-mass, nonspinning binary labeled B5 (top row), and
a unequal-mass aligned spin case B3 (bottom row). (The binary properties are summarized in Table I.) We show the BS trajectories in the
orbital plane [defined according to (38)] throughout the evolution up to the point of contact (left panels), the binary coordinate separation
d as a function of time (center panels), and the emitted ðl; mÞ ¼ ð2; 2Þ s ¼ −2-weighted spherical harmonic component of the GW

strain hð2;2Þþ (right panels). In the left and center panels, we indicate the initial time (round markers) and the time of contact (square
markers). In the bottom left and center panels, we also indicate the time t=M0 ¼ 1475 (x-marker) and show the subsequent in-plane star
trajectories in the inset in the bottom left panel up to the point of contact, which is discussed in the main text. The dimensionless spins, χ,
of the binary constituents can be found in the bottom right corners of the left panels. The legends in the center panels indicate the
eccentricity reduction step Ne and the rescaling exponent p used in (37). For comparison, in the bottom-center panel only, we also show
two cases with different values of p before eccentricity reduction (Ne ¼ 0). After eccentricity reduction, e ≈ 4 × 10−3 initially for the
top row, and e ≈ 1.8 × 10−3 for the bottom row. In the center top panel, we also show the time derivative of the separation d in the inset.
Notice, the GW strain (right panels) contains residual high-frequency contamination as discussed in Sec. III B; this contamination is
shown in detail in Appendix B. At the point of contact of the two stars, the GW frequency is roughly ωcM0 ≈ 0.1 both for B5 and B3).

For the postmerger phase of binary B5, we estimate the dominant frequency and exponential decay timescale of hð2;2Þþ (see top right
panel) to be ωpostM0 ≈ 0.23 and τpost=M0 ≈ 3 × 102, respectively. There is a slight drift of the center of mass that is barely noticeable in
bottom left panel corresponding to vxcom ≈ −1.2 × 10−4 (all other components are ≲10−5; see Appendix C for a discussion).
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d=M0 ≈ 14. As can be seen from the top-center panel of
Fig. 8, the time derivative ḋ of the coordinate separation
exhibits large, high-frequency features throughout the
inspiral. These are likely a result of the residual low-
amplitude perturbations of each star; the relative amplitude
of the oscillations in this case is at the Δϕm ∼ 10−3 level.
Clearly, further eccentricity reduction cannot rely on a fit
to ḋ, but even a fit to d proves to be challenging at these
eccentricities. Nonetheless, the inspiral dynamics follows a
quasicircular trajectory up to the point of contact, at a
coordinate separation of roughly twice the star’s radii;
d ≈ 2R. As the compactness of each star is C ¼ 0.13, we
expect qualitative similarities to the inspiral of a binary
neutron star. After the point of contact at t=M0 ¼ 855, the
two nonspinning stars merge into another nonspinning star.
As shown in detail in Ref. [47], the binary B5 favors the
formation of a m ¼ 1 rotating remnant BS on purely
energetic grounds. However, it lacks sufficient total angular
momentum, and with a phase offset of α=π ¼ 1=2, is not
expected to form a rotating BS remnant, but instead a
nonrotating star, with the residual angular momentum shed
in the form of scalar and gravitational radiation. Hence,
after merger, the system rings down towards a single,
nonspinning BS. This is reflected in the GW strain (top
right panel of Fig. 8), which exhibits a near exponential
decay in the postmerger phase with a rough decay timescale
of τpost=M0 ¼ 3 × 102 and a dominant ringdown frequency
of ωpostM0 ¼ 0.23. It should be noted that, though not
obvious from the figure, the GW strain shown in Fig. 8 does
contain some residual high-frequency GW contamination
of the kind discussed in detail in Sec. III B. This is made
more apparent in Appendix B.
We now turn to the inspiral of the binary B3 shown in the

bottom row of Fig. 8, which exhibits several new features
fundamentally different from either binary black hole or
neutrons star coalescences. After the initial gauge dynam-
ics, the system has a coordinate separation of roughly
d=M0 ≈ 14. Before t=M0 ¼ 1475 (indicated in the figure
with an x-marker), the binary exhibits a smooth inspiral
with decreasing separation. In the bottom center panel of
Fig. 8, we compare the coordinate distance as functions of
time to those cases with no eccentricity reduction and no
conformal kinetic energy rescaling power p. Between the
Ne ¼ 0 cases, the binary with p ¼ −4 conformally scaling
for the scalar kinetic energy merges before the otherwise
identical binary with p ¼ 0. After several iterations of
eccentricity reduction (Ne ¼ 3), the merger occurs later.
However, for t=M0 ≳ 1475, the coordinate separation d
exhibits oscillations, which culminate in the two stars
moving away from each other, temporarily increasing
the coordinate separation by approximately ∼10% to
d=M0 > 10. After this sudden repulsion, the stars begin
to merge at t=M0 ¼ 1700 (indicated by a square marker
in Fig. 8). In the inset of the left bottom panel in Fig. 8,
we show the in-plane trajectories of both stars from

t=M0 ¼ 1475 to merger. Qualitatively, the sudden repul-
sion of the two stars results in a sudden increase of orbital
eccentricity for the last 3=2 orbits before merger (e.g., the
orbital trajectories self-intersect). This repulsive behavior is
likely due to strong scalar interactions between the two
stars in the late stages of the inspiral. This behavior was first
observed in Ref. [47] during the late inspiral and merger
of two BSs in a scalar theory with repulsive scalar self-
interactions. Despite the terminology, systems may exhibit
repulsive behavior in both attractive and repulsive scalar
models (see e.g. Ref. [37]). These scalar interactions are
exponentially suppressed by the separation of the binary
BS and, hence, only become active in the late stages of the
inspiral, depending on the constituent stars’ compactnesses
and frequencies. In contrast to the less relativistic binaries
considered in Ref. [47], the constituents of binary B3 are
highly compact, with scalar densities that rapidly decay
away from the individual stars. As a result, the scalar
interactions increase in importance over the gravitational
interaction only roughly two orbits before the point of
contact. At this stage, however, the strength of the scalar
interactions surpasses that of the gravity, likely resulting in
the rapid increase of the coordinate separation shown in the
bottom center and left panels of Fig. 8. This is a feature
absent in mergers of compact binaries composed of black
holes and neutron stars, and may serve as a smoking gun
signature to distinguish BS binaries from such cases.
To understand the nonlinear merger dynamics of

binary B3, recall that the initial phase offset of this binary
is α=π ¼ 1=3 and that ω1 ≠ ω2 (see Table I). This latter
renders the vortex structure of the binary time-dependent
even at the linear level. Hence, a precise prediction and
understanding of the merger outcome using the remnant
map of Ref. [47] is challenging. However, the latter can still
be utilized to qualitatively analyze the merger process. Due
to the time-dependent scalar phase, there is no fixed vortex
at the center of mass. Thus, the vortex structure does not
prevent the formation of a single BS, and hence, the final
remnant may be a combination of nonspinning stars
including possibly only a single spherically symmetric
BS. Both transitions, two m ¼ 1 rotating BSs merging to
twom ¼ 0 BSs of the same charge, or a singlem ¼ 0 of the
same charge, are energetically favorable (i.e., the corre-
sponding quantity analogous to (44) satisfiesM > 0 in the
relevant part of the parameter space). However, since the
spins of the inspiraling super-spinning BSs are aligned with
the orbital angular momentum, the system contains large
amounts of angular momentum. While it is plausible that a
single nonspinning BS may shed this angular momentum
sufficiently rapidly during the nonlinear merger (based on
findings of e.g., Ref. [18]), we find that the final remnant is
instead a binary of nonspinning stars, which are flung out
away from the center of mass at high velocities (with the
residual angular momentum likely being converted into
orbital angular momentum as the stars come into contact).
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The binary separation continues to increase up until we
terminate the evolution, at which point the separation
increased to roughly d=M0 ≈ 40. The breakup of the
spinning binary at the point of contact occurs at the
locations of the vortices of each spinning star. As such,
the nonlinear merger process of B3 is qualitatively similar
to what in shown in Fig. 6 of Ref. [47].

C. Precessing binary

Finally, we turn to the precessing binary configuration
B3 (see Table I) mentioned throughout this work, and
analyze its nonlinear dynamics in detail. The initial data for
binary B3 is solved using an initial coordinate separation
D0 ¼ 12M0 and a conformal rescaling exponent p ¼ −4.
The spin of each star is chosen to make a 45° angle with the
plane containing the initial positions and velocities of the
BSs, such that the component parallel to this plane is in the
opposite direction to the initial tangential velocity. Recall,
the dimensionless spins of both individual stars are above
the Kerr bound, Si=M2

i > 1. As indicated in Fig. 5, we
perform a single eccentricity and center-of mass velocity
reduction step, resulting in an eccentricity of e ¼ 0.013
and linear center-of-mass drift of vcom ≈ 9 × 10−5 (with
jvzcomj ≈ 7 × 10−5).
In Fig. 9, we show snapshots of the evolution of these

binary BS initial data, as well as the gravitational wave-
form. Focusing first on the inspiral, recall that the spin of a
rotating BS points along the vortex line through the center
of the star, i.e., perpendicular to the torus formed by

surfaces of constant scalar field magnitude. As can be
seen from the top panel, the binary exhibits rapid pre-
cession of the star’s spin vectors throughout the early
inspiral. In fact, as the individual stars are super-spinning,
the strength of the spin-orbit and spin-spin interactions
surpasses that of any binary black hole during the inspiral.
As the eccentricity is relatively large compared to the other
quasicircular cases, the initial separation is relatively close,
and there is residual high-frequency GW contamination of
the type discussed in Sec. III B, the typical modulation of
the GW amplitude due to precession cannot be seen in the
extracted gravitational waveform. The merger of this binary
is qualitatively similar to the aligned-spin case discussed
in Sec. IV B; the two rotating BSs collide to form two
nonspinning, highly perturbed BSs, which move outward
from the center of mass. This is shown in the last two panels
of the top row of Fig. 9. The coordinate separation
surpasses d=M0 > 40 before we terminate the evolution,
and is not clear whether this new binary is gravitation-
ally bound.

V. CONCLUSION

In this work, we tackled the problem of robustly
constructing binary BS initial data satisfying the
Hamiltonian and momentum constraints of the Einstein
equations utilizing the CTS formulation. We analyzed and
tested various approaches to specifying the scalar free data
entering these equations based on superposing isolated-
boosted BS solutions. Among these approaches, we found

FIG. 9. The inspiral and merger of the precessing binary configuration B3 (see Table I) with initial coordinate separation D0 ¼ 12M0

and initial spin directions (defined in the main text) so the spin vectors point away from the initial boost direction with a 45°-angle to the
initial orbital plane. We show snapshots with surfaces of constant scalar field magnitude (3D rendering; top row) and the gravitational
waveform extracted at r=M0 ¼ 100 (bottom row). In the top row, the orientation of the axes (which is the same for all panels) is shown in
the leftmost panel. The first four panels show the binary during the inspiral at roughly the same orbital phase afterNO orbits, while in the
last two panels, the merger dynamics is presented roughly at coalescence time t=M0 ¼ 1300 and once the resulting nonspinning binary
increase its coordinate separation t=M0 > 1350. For this binary, the eccentricity and center-of-mass drift was reduced in a single
iteration step to e ¼ 0.013 and vcom ≈ 9 × 10−5.
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considering the complex scalar field and its conformally
rescaled kinetic energy as free data to robustly lead to
constraint satisfying initial data that could be readily
evolved without further reconstruction procedures.
Beyond a simple superposition of BS solutions, we also
reduce the spurious oscillations induced by nonequilibrium
initial data using several methods. As suggested in previous
studies, we attenuate the superposed free data of one
compact object in the vicinity of the second compact
object. In addition, here we introduce a new approach
where we change the relation between the initial scalar
kinetic energy and the conformally scaled version of this
quantity which is specified as free data. This reduces the
scalar kinetic energy, and hence, results in less perturbed
scalar matter. Finally, we successfully reduce the orbital
eccentricity of various mass ratio binary BSs down to the
e ∼ 10−3 level.
Our procedure for constructing binary BS is highly

generic, and thus, is ideally suited to exploring a vast
space of possible binary configurations. Here we test it for
head-on and quasicircular inspiral cases, including different
mass-ratios, spin magnitudes, and spin orientations.
Ideally, instead of basing the scalar field configuration

on superposed BS solutions, one would solve additional
equations imposing a quasiequilibrium of the scalar matter
with respect to an approximate helical Killing field,
analogous to approaches to construction of equilibriated
binary neutron star initial data. In this work, we briefly
discuss several ways in which one might approach this
problem, and some of the complications that may arise, in
particular if one wishes to tackle generic spinning binaries
as considered here. However, we leave an implementation
and testing of such an approach to future work.
While we were able to efficiently reduce spurious

oscillations of the BSs in the binary, particularly for star
solutions in the scalar theory with repulsive self-inter-
actions, the residual perturbations limit the eccentricity
reduction and contaminate the extracted gravitational
waveform. In the cases we consider with eccentricities
∼10−3, we find further reduction of this quantity to be
challenging as the spurious oscillations in each star induce
high-frequency oscillations of the coordinate separation
with comparable or larger amplitude as the eccentricity.
Additionally, even small-amplitude perturbations in the
scalar field making up BSs in scalar theories with solitonic
potential induce large-amplitude high-frequency contami-
nation in the gravitational radiation at early times during
the numerical evolutions of the initial data. Both artifacts
may be suppressed by solving the CTS constraint equations
together with quasiequilibrium scalar matter equations.
With the methods to construct binary BS initial data

presented in this work, accurate waveforms of low-
eccentricity nonspinning and (super-)spinning binary BSs
can be obtained. Until the late inspiral, the binary evolution
is largely model-independent, i.e., the inspiral-dynamics is

driven by gravitational effects such as spin-interactions,
rather than any mechanism specific to the scalar matter
making up the stars. The resulting waveforms could be
used in to validate and tune inspiral waveform models that
would allow for binary parameters outside the ranges
allowed by black holes and neutron stars (e.g., Ref. [70]).
Likewise, current tests to distinguish binary black holes and
neutron stars from exotic alternatives based on their GW
signals [71] could be validated with accurate binary BS
inspiral-merger-ringdown waveforms relying on the initial
data constructed in this work. Another interesting avenue
for future work is to study the impact of relativistic features
such as stable light rings and ergoregions of exotic compact
objects on the inspiral gravitational waveform using highly
compact BSs.
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APPENDIX A: NUMERICAL SETUP

In this appendix, we discuss the details of the numerical
evolution of the binary BS initial data, which we perform
using the same methods as in Refs. [47,50]. We evolve
the Einstein-Klein-Gordon system of equations, derived
from (1), using the generalized harmonic formulation of the
Einstein equations [75], including constraint damping
terms [76]. The spatial fourth-order accurate discretization
is achieved using finite-difference stencils over a compac-
tified grid containing spatial infinity. At these boundaries,
we impose asymptotically flat boundary conditions both on
the metric and the scalar variables. In order to track the
individual stars of a given binary, we utilize adaptive mesh
refinement of the Cartesian grid with a 2∶1 refinement ratio
(see Ref. [77]). The time stepping is achieved using a
fourth-order accurate Runge-Kutta integration. As briefly
mentioned in Sec. IVA, the axisymmetric evolutions are
performed using a generalized Cartoon method [75,78],
which explicitly assumes an azimuthal Killing field kμ,
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such thatLkgμν ¼ 0 andLkΦ ¼ imΦ. Typically, we require
seven mesh-refinement levels with grid spacing Δx=M0 ¼
0.08 on the finest level when evolving an inspiraling binary
BSs; in the case of axisymmetric evolutions the grid
spacing on the finest level is typically Δx=M0 ¼ 0.01.
For all evolutions considered here, the gauge is specified by
setting the source functions Hμ ¼ □xμ according to the
damped harmonic gauge [33,79].
We perform convergence tests in order to validate our

numerical methods and quantify the truncation error.
Specifically, we measure the constraint violation given
by C ¼ M0

P
μ jðHμ −□xμÞj=4 throughout the evolutions

by computing max C, as well as the integrated norm
IC ¼ M−2

0

R
d3x

ffiffiffi
γ

p
C in a coordinate sphere of radius

20M0. In the generalized harmonic formulation, any
violation of the Hamiltonian and momentum constraints
on the initial time slice will lead C to evolve to a nonzero
value (as does truncation error). In Fig. 10, we present the
typical convergence behavior of IC and max C for an
axisymmetric binary BS evolution starting from constraint
satisfying initial data using the above numerical evolution
setup. In Fig. 11, we present a convergence study of the
constraint violation of the quasicircular binary initial data
associated with B5 (see Table I). In the axisymmetric cases,
the maximum of the constraint violation max C is mainly
set by the third-order accurate time-interpolation performed
on the mesh refinement boundaries, and as a result,
converges at roughly third order or better in Fig. 10.

FIG. 10. Convergence study of the numerical evolution of the
axisymmetric binary B1 with properties summarized in Table I
(and initial coordinate separation D ¼ 10M0), at three different
numerical resolutions, where h is the grid spacing of the lowest
resolution. The point of contact of this head-on collision is
roughly at t=M0 ≈ 16. The top panel shows ϕm ¼ max jΦj=
max jΦjt¼0, the normalized maximum of the scalar field magni-
tude, while the lower panels show two different measures of the
constraint violation, max C and IC (defined in the text). The
constraint violation is converging to zero at roughly third and
fourth order in the middle and bottom panels, respectively.

FIG. 11. The convergence behavior of the two norms, max C
and IC (defined in the main text), of the constraint violation of the
binary initial data associated with B5 (see Table I) with increasing
resolution N, the number of grid points in each linear dimension,
compared with the lowest resolution considered Nmin extracted
from subsequent numerical evolution at t=M0 ¼ 5. The solid
lines correspond to the constraint satisfying initial data con-
structed with methods developed in the main text (with trivial
attenuation functions and conformal exponent p ¼ −4). The
dashed lines indicate the constraint violation of the associated
free data (i.e., the plain superposition of the two stars). In the case
of the constraint satisfying initial data, both norms exhibit (as
expected) roughly fourth-order accurate convergence towards
zero as indicated by the dash-dotted line. The constraint violation
of the superposed initial data, however, is not converging towards
zero, even at very low resolutions (note, N=Nmin ¼ 1, or
equivalently Δx=M0 ¼ 0.16, corresponds to roughly 10 points
across each star).

FIG. 12. The evolution of the integrated constraint violation
around the binary B5 starting from plain superposed initial data at
three different resolutions N (number of grid points in each linear
dimension) compared to a minimal resolution Nmin. In Fig. 11,
we showed the nonconvergence of the constraint violation at
early times.
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In the three-dimensional evolutions, max C is typically
reached in the interior of the stars. Hence, in those cases,
we expect a roughly fourth-order convergence behavior, as
shown in Fig. 11. In both settings, however, the integrated
norm IC converges at approximately fourth order, as it is
less affected by the lower-order interpolation on the mesh-
refinement boundaries.
Also in Fig. 11, we contrast this convergence with the

behavior of the constraint violation with increasing reso-
lution for initial data composed of the plain superposition
of the two stars, i.e., when not solving the constraint
equations. At the lowest resolution, the two are comparable
in magnitude. However, the constraint violation of the free
data is not converging to zero with increasing resolution.
Resolutions of N=Nmin < 1 are not suitable for evolutions,
as numerical instabilities associated with unresolved spatial
scales (such as the boson mass μ) appear. Furthermore, we
find no evidence that the constraint damping terms we
include in our evolution equations act to damp away the
constraint violations from the superposed initial data down
to a level where they set by truncation error. This is
illustrated in Fig. 12. Note, the damping timescale asso-
ciated with the constraint damping is τconstr:=M0 ¼ 0.5.

APPENDIX B: GW CONTAMINATION

In this appendix, we briefly return to the high-
frequency contamination in the GW emission from the
binaries presented in Sec. IV B. This contamination
emerges from the residual perturbations present in the
eccentricity reduced binaries B3 and B5 constructed
with conformally rescaled kinetic energy using (37)
with p ¼ −4. In Fig. 13, we present the ðl; mÞ ¼ ð2; 2Þ
spherical harmonic component of the Newman-Penrose
scalar Ψ4, which can be compared to the corresponding
GW strain shown in the right panels of Fig. 8. Since Ψ4 is
related to the strain by two time derivatives, it accentuates
the high-frequency component from the perturbed BSs.
As shown in Sec. III B, this contamination is reduced by
means of the rescaling (37) of the conformal kinetic
energy. However, with the lowest exponent with which
the elliptic solver was able to find a solution, p ¼ −4,
some oscillations remain in the stars, and lead to the
high frequency component to Ψ4 evident at early times
in Fig. 13.

APPENDIX C: CENTER-OF-MASS MOTION

Within our approach, the initial linear momentum is set
to zero using Newtonian expressions for the initial boost
velocities (as discussed in Sec. III C). We find this to be
sufficient for nonspinning binaries, i.e, the center-of-mass
velocity throughout the evolution of the initial data remains
below vcom < 10−7. For highly spinning quasicircular
binary initial data, the center of mass of the system exhibits
larger drifts with constant velocity away from origin of the

numerical grid. For the aligned-spin binary B3, the magni-
tude of the in-orbital-plane coordinate velocity of the center
of mass is vcom ¼ 6 × 10−3 (the out-of-plane component
is < 10−10). Leading post-Newtonian corrections to the
center-of-mass and center-of-momentum velocities, used to
initialize the binaries in this work, are roughly an order of
magnitude too small to account for vcom. This strong drift
may be the result of spurious gravitational and scalar
radiation emitted during the first few light crossing times

FIG. 13. We show the ðl; mÞ ¼ ð2; 2Þ spin-weighted spherical
harmonic components of the Newman-Penrose scalar Ψ4 ex-
tracted on a coordinate sphere of radius 100M0. The top panel
corresponds to the Ne ¼ 5 and p ¼ −4 binary B5 shown in the
top row of Fig. 8, while the bottom panel shows the Ne ¼ 3 and
p ¼ −4 binary B3 shown in the bottom row of Fig. 8. This shows
the high-frequency contamination of the gravitational waveform
from the binaries at early times due to residual spurious
oscillations and unbound scalar matter in and around the
constituents of the binaries.
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of the binary, as well as the large spins of the super-
spinning binary B3. We address this by measuring the in-
plane components vicom of the center-of-mass coordinate
velocity and subtracting this from the initial binary veloc-
ities viðAÞ of the free data as defined in Sec. II B. This is done
in tandem with the eccentricity reduction. Hence, the linear
momentum of the binary can be iteratively reduced in this

way. After two iteration steps, the velocity is reduced by
more than an order of magnitude to vcom ¼ 1 × 10−4 for the
binary B3 with aligned spins. In the case of the precessing
binary B3, discussed in Sec. IV C, the center-of-mass
motion in the direction of the orbital angular momentum
dominates; this we treat iteratively in precisely the same
manner as the in-plane center-of-mass velocity.
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