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It is shown that energy, entropy and the first law of electrically charged black holes with scalar hair
can be consistently described in a general Hamiltonian approach to black hole thermodynamics.
In particular, we prove that the associated “hairy” Smarr formula is modified with respect to its
standard form.
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I. INTRODUCTION

The concept of black hole entropy introduced in the
1970s [1] had a long-term influence on our understanding
of the gravitational dynamics. During several decades, this
influence has been limited to Riemannian black holes,
obtained as solutions of Einstein’s general relativity (GR)
or higher derivative gravity [2,3]. However, in the early
1960s, there appeared amodern, gauge-field-theoretic theory
of gravity, known as the Poincaré gauge theory (PG) [4–8].
In PG, spacetime is characterized by a Riemann-Cartan
geometry in which both the torsion and the curvature
influence the gravitational dynamics. As a consequence,
PG offers new possibilities for exploring the interplay
between dynamics, geometry and black hole entropy.
Through the years, manywell-known black hole solutions

ofGRhave been successfully generalized to the PG solutions
with torsion [6], but a consistent analysis of their thermo-
dynamic properties has long been missing. However, since
recently, there exists a rather general Hamiltonian approach
to black hole entropy [9] which extends the concept of
entropy from Riemannian to Riemann-Cartan spacetimes.
The approach offers an efficient description of entropy and
the first law of black hole thermodynamics not only in PG,
but also in its Riemannian (vanishing torsion) or teleparallel
(vanishing curvature) subsectors [10,11].
The physics of black holes in the 1960s supported the idea

that “a black hole has no hair,” see Ruffini andWheeler [12].
According to this no-hair conjecture, black holes cannot have
any other charge except for mass, angular momentum, and
electric/magnetic charge [13]. Since the 1990s, attempts to
clarify the range of validity of this conjecture led to
discovering a plethora of new, “hairy” black holes as
counterexamples to the no-hair conjecture. Convincing
results of our Hamiltonian approach in interpreting entropy

as the canonical charge on horizon motivated us to examine
its further extension to hairy black holes.
Martinez et al. [14] reported an exact four-dimensional

black hole solution of GR with scalar hair, which is
asymptotically locally AdS. Relying on our Hamiltonian
approach, we found a simple and consistent description of
its energy and entropy [15]. In the present paper, we focus
our attention on the subsequent work of Martinez and
Troncoso (MT) [16] representing a natural generalization of
[14], with Maxwell field as an additional part of the matter
sector.
The paper is organized as follows. In Sec. II, we present a

PG-inspired tetrad formulation of the MT black hole as a
Riemannian solution of GR. In Sec. III, we introduce general
boundary terms at infinity and horizon, use them to calculate
energy and entropy as the corresponding canonical charges,
and verify the first law. InSec. IV,we analyze boundary terms
for theMT black hole considered as a solution of teleparallel
gravity. Section V is devoted to concluding remarks, and the
Appendix contains some technical details.
Our conventions are the same as in Ref. [15]. Latin

indices ði; j;…Þ are the local Lorentz indices, greek indices
ðμ; ν;…Þ are the coordinate indices, and both run over 0, 1,
2, 3; the orthonormal coframe (tetrad) is ϑi ¼ ϑiμdxμ

(1-form), ϑ ≔ detðϑiμÞ, the dual basis (frame) is
ei ¼ ejμ∂μ, and ωij ¼ ωij

μdxμ is the metric compatible
connection (1-form); the metric components in the local
Lorentz basis are ηij ¼ ð1;−1;−1;−1Þ, and the totally
antisymmetric symbol εijmn is normalized by ε0123 ¼ 1;
the Hodge dual of a form α is denoted by ⋆α, and the wedge
product of forms is implicitly understood.

II. THE MT BLACK HOLE IN THE TETRAD
FORMALISM

A. Dynamics

In our study of the MT black hole entropy, we use the
general PG formalism [5–8], where the tetrad field ϑi and
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the metric compatible spin connection ωij are a priori
independent dynamical variables, interpreted as the gauge
potentials associated to the local Poincaré symmetry.
The corresponding field strengths, the torsion Ti ≔ dϑi þ
ωi

kϑ
k and the curvature Rij ¼ dωij þ ωi

kω
kj, characterize

the Riemann-Cartan geometry of spacetime.
Consider a system of the gravitational field coupled to

matter consisting of the scalar and electromagnetic field,
described by the Lagrangian

L ¼ LG þ Lϕ þ Lem; ð2:1Þ

where

LG ≔−a0⋆R≡−a0⋆ðϑiϑjÞRij; Lϕ ≔
1

2
dϕ⋆dϕþ ⋆VðϕÞ;

Lem ≔−
1

16π
F⋆F: ð2:2aÞ

Here, a0 ¼ 1=16πG, the gravitational part is linear in
curvature,1 the potential VðϕÞ describes a nonlinear self-
interaction of the scalar field,

VðϕÞ ¼ k
2l2

cosh4
�

ϕffiffiffi
k

p
�
; ð2:2bÞ

where k ¼ 12a0 and F ¼ dA is the electromagnetic field
strength.
Since the gravitational Lagrangian is linear in curvature

and matter fields do not depend on the spin connection, the
variation of the complete Lagrangian (2.1) with respect to
ωij yields the condition of vanishing torsion, whereupon
ωij becomes a Riemannian connection [11,15]. Thus, we
end up with a Riemannian spacetime, the subcase of PG
with Ti ¼ 0, where the tetrad field ϑi is the only indepen-
dent gravitational variable. A complementary description
of the MT black hole, based on the teleparallel geometry
with Rij ¼ 0, is given in Sec. IV.
After introducing the matter covariant momenta

Hϕ ≔
∂Lϕ

∂dϕ
¼ ⋆dϕ; Hem ≔

Lem

∂F
¼ −

1

4π
⋆F; ð2:3Þ

the variation of the Lagrangian (2.1) with respect to ϕ; A
and ϑi yields the field equations

Eϕ ≔ −dHϕ þ ∂ϕ
⋆V ¼ 0; ð2:4aÞ

Eem ≔ −dHem ¼ 0; ð2:4bÞ

Ei ≔ Ei þ τi þ T i ¼ 0; ð2:4cÞ

where

Ei ≔
∂LG

∂ϑi
; τi≕

∂Lϕ

∂ϑi
; T i ≔

∂Lem

∂ϑi
; ð2:5Þ

are the gravitational and matter energy-momentum currents
(3-forms), respectively. It is not difficult to verify the
validity of the matter field equations (2.4a) and (2.4b).
In the Appendix, we prove the validity of the gravitational
field equation (2.4c) for k ¼ 12a0, first by showing that it
coincides with Einstein’s equation, and then by performing
an explicit calculation.

B. Geometry

The metric of the MT spacetime is static and spherically
symmetric,

ds2 ¼ f2dt2 −
dr2

g2
− r2ðdρ2 þ sinh2ρ dφ2Þ; ð2:6aÞ

where

f2 ¼ N2C−1; g2 ¼ N2C2; N2 ≔
r2

l2
− 1þ G

q2

l2
;

C ≔ 1þG
q2

r2
: ð2:6bÞ

The only nontrivial parameter of the solution is q; it is
proportional to the electric charge (Sec. III C). The horizon
radius is defined as the positive root of N2 ¼ 0,

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −Gq2

q
: ð2:7Þ

The tetrad field associated to the MT metric (2.6) is chosen
in the diagonal form

ϑ0 ≔ fdt; ϑ1 ≔
dr
g
; ϑ2 ¼ rdρ;

ϑ3 ≔ r sinh ρdφ: ð2:8Þ

The horizon area is given by

AH ¼
Z
SH

ϑ2ϑ3 ¼ r2þσ; ð2:9Þ

where σ is the horizon area normalized to rþ ¼ 1. The
black hole temperature, which is determined by surface
gravity, does not depend on the electric charge parameter q,

κ ≔ g∂rfjrþ ¼ 1

l
⇒ T ≔

1

2πl
; ð2:10Þ

see also [17]. The Riemannian spin connection reads
(with c ¼ 2, 3)

1In the framework of PG, the Lagrangian LG defines Einstein–
Cartan theory of gravity. For matter consisting of scalar and
Yang-Mills fields, the resulting theory coincides with GR [6].
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ω01 ¼ −
g
f
f0ϑ0; ω1c ¼ g

r
ϑc; ω23 ¼ cosh θ

r sinh θ
ϑ3:

ð2:11Þ

One can show that the tetrad (2.8) combined with the
matter fields

ϕ ≔
ffiffiffi
k

p
atanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gq2

r2 þGq2

s !
; A ≔ −

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ Gq2

p ϑ0

f
;

ð2:12Þ

solves the field equation (2.4) provided

k ¼ 12a0 ¼
3

4πG
: ð2:13Þ

For technical details, see the Appendix.
The nonvanishing value of V at q ¼ 0 plays the role of an

effective cosmological constant,Vð0Þ ¼ 6a0=l2≕ − 2Λeff ,
associated to an asymptotically AdS background. Indeed,
for q ¼ 0, the metric functions take the form f2 ¼
g2 ¼ r2=l2 − 1. As a consequence, the curvature scalar R
is not maximally symmetric but contains additional Oðr−1Þ
terms, which prevents the MT black hole to be a solution of
the quadratic curvature gravity; for details, see Ref. [15].

III. BOUNDARY TERMS

A systematic Hamiltonian approach to conserved charges
was originally proposed by Regge and Teitelboim [18]. A
covariant version of that approach, introduced later byNester
and collaborators [19], turned out to be an important step
towards a deeper understanding of the nature of conserved
charges. Relying on these developments, we proposed an
extension of these ideas to the thermodynamics of black
holes [9]. Technically, the canonical gauge generator G is
regularized by adding a suitable boundary term Γ, such that
the improved generator G̃ ≔ Gþ Γ becomes a differentiable
functional on the phase space. The form of Γ depends on
the adopted boundary conditions. In gauge theories, G is a
linear combination of constraints, so that it vanishes on
shell, and the boundary term Γ defines the corresponding
conserved charge.
Thermodynamic variables of the MT black hole are

defined by the gravitational and matter contributions to
the boundary integral Γ ≔ Γ∞ − ΓH, determined by the
following variational equations:

δΓ∞ ¼
I
S∞

δBðξÞ; δΓH ¼
I
SH

δBðξÞ; ð3:1aÞ

δBðξÞ ≔ ðξcϑiÞδHi þ δϑiðξcHiÞ þ
1

2
ðξcωijÞδHij

þ 1

2
δωijðξcδHijÞ − δϕðξcHϕÞ

þ ðξcAÞδHem þ δAðξcHemÞ: ð3:1bÞ

Here, ξ is the Killing vector for local translations (for
static black holes, ξ ¼ ∂t), and ðS∞; SHÞ are components of
the boundary of the spacial section Σ of spacetime, located
at infinity and horizon, respectively. When the boundary
integrals ðΓ∞;ΓHÞ exist as finite solutions of the variational
equation (3.1), they define energy and entropy as the
canonical charges at infinity and horizon, respectively.2

The upper line in (3.1b) describes the gravitational, and
the lower one the matter (scalar and Maxwell) contributions
to δB. The variation δ is assumed to satisfy the following
general requirements:

(r1) On S∞, δ acts only on the parameters of the
solution, excluding thereby background contribu-
tions and consequently, eliminating the need for
subtraction terms.

(r2) On SH, surface gravity is constant, δκ ¼ 0.3

The derivation of the formula (3.1) is based on
the regularity of the corresponding canonical gauge
generator [18], which is ensured by the condition

δΓ≡ δΓ∞ − δΓH ¼ 0: ð3:2Þ

This formula relates the variations of energy, entropy and
Maxwell charge in a way that represents the first law of
black hole thermodynamics.

A. The gravitational contribution

In Riemannian spacetime, where Hi ¼ 0, the nontrivial
covariant momenta are Hij ¼ −2a0⋆ðϑiϑjÞ, and the gravi-
tational contribution to the boundary term reads

2The existence and finiteness of ðΓ∞;ΓHÞ is not a priori
guaranteed, it strongly depends on the adopted boundary
conditions. Based on a set of naturally chosen boundary
conditions, our analysis of a number of typical PG black holes
(including the Kerr–Newman–AdS spacetime with torsion)
shows that:

– the variational equation (3.1) are δ-integrable, and
– the resulting boundary integrals ðΓ∞;ΓHÞ are finite;
see Refs. [9,10,15].

These results strongly support physical relevance of the
canonical formalism defined by Eq. (3.1).

3For stationary black holes, there exists a Killing vector
field ξ that is normal to the event horizon; it can be used to
define κ and show that δκ ¼ 0 over the horizon, see Wald [20].
The analysis does not depend on the existence or no-
nexistence of torsion, hence, κ is constant also in the framework
of PG.

THERMODYNAMICS OF CHARGED BLACK HOLE WITH SCALAR … PHYS. REV. D 108, 124012 (2023)

124012-3



δBG ¼ ω01
tδH01 þ δω12H12t þ δω13H13t

¼ 2a0f0gδðϑ2ϑ3Þ − 2a0δ

�
g
r
ϑ2
�
fϑ3

þ 2a0δ

�
g
r
ϑ3
�
fϑ2

¼ 2a0f0gδðr2σÞ − 4a0ðδgÞfrσ; ð3:3Þ

where we use ωij
t ≡ ξcωij and Hijt ≡ ξcHij.

Energy is obtained by calculated δBG at infinity.
Since the factor r2j∞ does not depend on the black hole
parameter q, the first term vanishes, so that the integration
over S∞ yields

ðδΓGÞ∞ ¼ −12a0
qδq
l2

rσ þO1: ð3:4aÞ

The O1 term is ignorable and, as we shall see, the
potentially divergent term will be exactly canceled by
the corresponding scalar field contribution.
Entropy is determined by calculating δΓG at horizon:

ðδΓGÞH ¼ 2a0ðgf0ÞHδr2þσ ¼ 2a0κδr2þσ ¼ TδS;

S ≔
r2þσ
4G

: ð3:4bÞ

B. The scalar field contribution

Now, consider the first term in the lower line of (3.1b):

δBϕ ¼ −δϕðξc⋆dϕÞ ¼ −δϕϕ0gfϑ2ϑ3: ð3:5Þ

The calculation of energy yields

ðδΓϕÞ∞ ¼ −δqϕϕ0gfr2σ ¼ k
qδq
l2

rσ þO1: ð3:6Þ

Hence, potentially divergent contributions to energy stem-
ming from gravity and the scalar matter cancel each other.
To be more precise, starting with the integrals of δBG and
δBϕ over the boundary surface Sr located at finite r, and
continuing with the limit r → ∞, one obtains

lim
r→∞

½ðδΓGÞr þ ðδΓϕÞr� ¼ lim
r→∞

�
ð−12a0 þ kÞ qδq

l2
rσ þO1

�
¼ 0: ð3:7Þ

The MT black hole is a solution of the field equations
only for k ¼ 12a0, see Eq. (2.13). As a consequence, the
coefficient ð−12a0 þ kÞ vanishes, which implies E ¼ 0.
The result follows from the specific asymptotic behavior
of dynamical variables, induced by the presence of the
scalar field.

On the other hand, Eq. (3.5) with gðrþÞ ¼ 0 yields a
vanishing contribution to entropy,

ðδΓϕÞH ¼ 0: ð3:8Þ

C. The Maxwell contribution

Using the electromagnetic potential A defined in
Eq. (2.12), one can calculate the corresponding covariant
momentum

Hem ¼ −
1

4π
⋆F ¼ 1

4π

q
r2
ϑ2ϑ3; ð3:9Þ

and obtain the asymptotic electric charge:

Q ¼
Z
S∞

Hem ¼ qσ
4π

: ð3:10Þ

Now, using the last two boundary terms in (3.1b),
one finds that the electromagnetic contribution to energy
vanishes,

ðδΓemÞ∞ ¼
Z
S∞

AtδHem ¼ 0; ð3:11Þ

where we used At ¼ O1. Combining this result with (3.7),
one concludes that the complete energy of the MT black
hole vanishes.
The electromagnetic contribution at horizon takes the

standard form,

ðδΓemÞH ¼
Z
SH

AtδHem ¼ q
l
δðqσÞ
4π

¼ ΦδQ; ð3:12Þ

where Φ is the electromagnetic potential

Φ ≔ At

���∞
rþ

¼ q
l
: ð3:13Þ

D. The first law

The form of the boundary terms at infinity implies that
energy (mass) of the MT black hole vanishes:

δE ¼ δΓ∞ ¼ 0: ð3:14aÞ

Similarly, the sum of the boundary terms at horizon also
vanishes:

δΓH ¼ TδSþΦδQ ¼ 0: ð3:14bÞ

Hence, the first law (3.2) takes the form

δΓ∞ ¼ δΓH ⇔ 0 ¼ TδSþΦδQ: ð3:15Þ
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Since the black hole temperature does not depend on the
parameter q, one can combine the relation TδS ¼ δðTSÞ
with ΦδQ ¼ QδΦ to rewrite the first law as

δ

�
TSþ 1

2
ΦQ

�
¼ 0: ð3:16Þ

This relation can be obtained from a hairy deformation of
the Smarr formula [21]

TSþ 1

2
ΦQ −

σl
8πG

¼ 0; ð3:17Þ

where the third term is an extra contribution, independent
of the solution parameter q.

IV. THE MT BLACK HOLE IN
TELEPARALLEL GRAVITY

In the framework of PG, the teleparallel theory of gravity
(TG) is defined by the condition of vanishing curvature [6].
The TG dynamics is naturally defined by a Lagrangian
which is quadratic in torsion,

LT ≔ Ti⋆ða1ð1ÞTi þ a2ð2ÞTi þ a3ð3ÞTiÞ; ð4:1Þ

where ðnÞTi are irreducible components of the torsion.
From the physical point of view, of particular importance
is a one-parameter family of TG Lagrangians, defined by

ða1; a2; a3Þ ¼ a0 × ð1;−2;−1=2þ γÞ; ð4:2Þ

which is empirically indistinguishable from GR.
By adopting the relation ωij ¼ 0 as a gauge fixing

condition for local Lorentz symmetry, torsion takes the
simplified form Ti ¼ dϑi. To examine thermodynamic
properties of the MT solution, we use the tetrad (2.8) to
obtain

T0 ¼ −N0Cϑ0ϑ1; T2 ≔
NC
r

ϑ1ϑ2;

T3 ¼ 1

r
ðcoth θϑ2ϑ3 þ NCϑ1ϑ3Þ: ð4:3Þ

Since ð3ÞTi ¼ 0, the torsion covariant momentum Hi ¼
2a0⋆ðð1ÞTi − 2ð2ÞTiÞ does not depend on the parameter γ:

H0 ¼
2a0
r

ðcoth θϑ1ϑ3 − 2NCϑ2ϑ3Þ;

H1 ¼ −
2a0
r

coth θϑ0ϑ3;

H2 ¼
2a0C
r

ðNrÞ0ϑ0ϑ3;

H3 ¼ −
2a0C
r

ðNrÞ0ϑ0ϑ2: ð4:4Þ

In TG, the general boundary term (3.1b) is reduced to

δBðξÞ ¼ ðξcϑiÞδHi þ δϑiðξcHiÞ þmatter terms: ð4:5Þ

Since the matter part remains the same as in GR, all we
need to calculate is the gravitational contribution, the
nonvanishing part of which reads

δBG ¼ ϑ0tδH0 þ δϑ2H2t þ δϑ3H3t: ð4:6Þ

Explicit calculation gives the following gravitational
boundary terms at infinity and horizon:

ðδΓGÞ∞ ¼
Z
S∞

δBG ¼ −12a0σ
r
l2

qδqþO1; ð4:7aÞ

ðδΓGÞH ¼
Z
SH

δBG ¼ 2a0κσδr2þ ¼ TδS: ð4:7bÞ

Thus, the final values of the gravitational boundary terms in
GR and in teleparallel gravity, presented respectively in
Eqs. (3.4) and (4.7), coincide. Hence, energy, entropy and
the first law of the MT black hole in the one-parameter TG
coincide with the corresponding GR results.

V. CONCLUSIONS

In this paper, we used the general Hamiltonian approach
proposed in Ref. [9] to study energy, entropy and the first
law of the MT black hole in two complementary geometric
settings.
First, we showed that our canonical approach, originally

designed for black holes in PG, can be successfully applied
to the electrically charged black hole with scalar hair,
the solution found by Martinez and Troncoso [16] as a
Riemannian solution of GR.
With vanishing energy and constant temperature, the first

law (3.15) is associated to a hairy deformation of the Smarr
formula (3.17).
Then, the MT solution is reinterpreted as an exact

solution of the teleparallel gravity. Although the original
analytic expressions (3.3) and (4.6) for the gravitational
boundary terms in GR and TG are different, their final
values coincide. Thus, different geometries can have the
same dynamical content.
We expect that the present analysis can be consistently

extended to other hairy black holes.
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APPENDIX: GRAVITATIONAL FIELD
EQUATION (2.4c)

To prove the gravitational field equation (2.4c), we find it
convenient to express all the energy-momentum currents in
terms of the corresponding energy-momentum tensors.
For the scalar field, the energy-momentum current τi

defines the corresponding energy-momentum tensor τki by

τi ≔ hicLϕ − ðhicdϕÞHϕ ¼ −ϵ̂kτki;

τki ≔ ∂
kϕ∂iϕ − δkiLϕ; Lϕ ≔ −⋆Lϕ: ðA1Þ

An analogous procedure in the electromagnetic sector yields

T i ≔ hicLem − ðhicFÞHem ¼ −ϵ̂kT k
i;

T k
i ≔ −

1

4π

�
FkmFim −

1

4
δki F

mnFmn

�
; ðA2Þ

and finally, the gravitational energy-momentum current is
defined as

Ei ≔ hicLG − ðhicRmnÞHmn ¼ ϵ̂kEk
i;

Ek
i ≔ 2a0Gk

i ¼ 2a0

�
Rk

i −
1

2
δki R

�
: ðA3Þ

Then, the gravitational field equation (2.4c) can bewritten in
an equivalent tensorial form as

2a0Gk
i ¼ τki þ T k

i: ðA4Þ

For k ¼ 12a0, explicit calculation confirms the validity of
this equation.
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Cosmology and Gravitation, edited by P. G. Bergmann
and V. De Sabbata, NATO Advanced Study Institutes Series
Vol. 58 (Springer, Boston, MA, 1980).

[6] Gauge Theories of Gravitation, A Reader with Commen-
taries, edited by M. Blagojević and F.W. Hehl (Imperial
College Press, London, 2013), 10.1142/p781.

[7] M. Blagojevi’c, Gravitation and Gauge Symmetries (IOP,
Bristol, 2002); V. N. Ponomariov, A. O. Barvinsky, and
Yu. N. Obukhov, Gauge Approach and Quantization Meth-
ods in Gravity Theory (Nauka, Moscow, 2017). This book
offers an impressive list of 3136 references on gauge
theories of gravity; E. W. Mielke, Geometrodynamics of
Gauge Fields, 2nd ed. (Springer, Switzerland, 2017).
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